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ABSTRACT

The Muon optimizer has demonstrated remarkable empirical success in handling
matrix-structured parameters for training neural networks. However, a significant
gap remains between its practical performance and theoretical understanding. Ex-
isting analyses show that the Muon variants achieve only a suboptimal iteration
complexity of O(T−1/4) in stochastic non-convex settings, where T denotes the
number of iterations. To explore the theoretical limits of the Muon framework,
we analyze two Momentum-based Variance-Reduced variants: a one-batch ver-
sion (Muon-MVR1) and a two-batch version (Muon-MVR2). We provide the
first rigorous proof that incorporating variance reduction enables Muon-MVR2 to
attain the optimal iteration complexity of Õ(T−1/3), thereby matching the the-
oretical lower bound for this class of problems. Furthermore, our analysis es-
tablishes last-iterate convergence guarantees for Muon variants under the Polyak-
Łojasiewicz (PŁ) condition. Extensive experiments on vision (CIFAR-10) and
language (C4) benchmarks corroborate our theoretical findings on per-iteration
convergence. Overall, this work offers the first proof of optimality for a Muon-
style optimizer and clarifies the path toward developing more practically efficient,
accelerated variants.

1 INTRODUCTION

The immense computational cost of pre-training Large Language Models (LLMs) has spurred a
surge of research into novel optimization methods designed to enhance parameter efficiency and
training stability Hoffmann et al. (2022); Liu et al. (2023); Chen et al. (2023); Vyas et al. (2025);
Pethick et al. (2025); Yuan et al. (2024). Among these, methods based on matrix orthogonalization
have recently garnered significant attention from both academia and industry Jordan et al. (2024);
Liu et al. (2025a). In particular, the Muon optimizer has emerged as a notable milestone due to its
impressive empirical performance Liu et al. (2025a); An et al. (2025); Liu et al. (2025b); Shah et al.
(2025). However, despite its practical success, the theoretical understanding of Muon’s underlying
mechanisms has surprisingly lagged behind, with existing convergence analyses being fraught with
limitations and even critical fallacies.

Specifically, the current theoretical exploration of Muon’s convergence faces three primary obsta-
cles. First, existing analyses have not established convergence to a stationary point without reliance
on problem dimension or batch size; the available bounds become valid only when the batch size
is sufficiently large, so the basic requirement for a trustworthy optimizer remains unfulfilled Sato
et al. (2025); Sfyraki & Wang (2025). Second, some analyses are predicated on flawed mathemat-
ical assumptions, such as the erroneous use of the inequality ∥S−1∥2 ≤ 1/∥S∥2 in a key part of
their proof, which casts serious doubt on the validity of their convergence claims Li & Hong (2025).
Finally, the most rigorous existing work analyzes both the standard Muon algorithm (like Algo-
rithm 1, Option MVR1 with γ = 0) and its simplified variant , considering their convergence to a
non-standard ϵ-nuclear norm stationary point. This leaves the behavior of the Nesterov-Accelerated
Muon algorithm (like Algorithm 1, Option MVR1), as discussed in Liu et al. (2025a); Sato et al.
(2025), and Variance-Reduction Muon (like Algorithm 1, Option MVR2) under standard settings as
an open question Shen et al. (2025).

To bridge this critical theoretical gap, this work establishes a rigorous and complete theoretical
foundation for the Muon optimizer. Our main contributions are threefold:
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• For general non-convex settings, we provide a convergence analysis for both the standard
Muon (Algorithm 1, Option MVR1 with γ = 0) and the Muon-MVR1 algorithm (Algo-
rithm 1, Option MVR1).

• Regarding iteration complexity, we provide, to the best of our knowledge, the first analysis
showing that, in an unconstrained Muon-style setting, the variance-reduced Muon-MVR2
algorithm (Algorithm 1, Option MVR2) attains the Õ(T−1/3) convergence rate, matching
the best-known complexity for variance-reduced momentum methods.

• Under the Polyak-Łojasiewicz (PL) condition, we prove that our proposed algorithms,
Muon-MVR1, and Muon-MVR2, all achieve sublinear convergence rates. More precisely,
we demonstrate that Muon-MVR1 converge at a rate of Õ(T−1/2), and Muon-MVR2 con-
verges at an accelerated rate of Õ(T−2/3)

Table 1 summarizes the main contributions of our work and compares them with existing methods.

Table 1: Comparison of Existing Muon-type Analyses with Ours.

Smootha
Stoc. Gradient

Estimator b
Batch
Size

Iteration
Complexity

Last-iterate
Conv. Rate

Li & Hong (2025) L MVR1(γ = 0) O(1) O(T−1/4) %

Sato et al. (2025) L MVR1(γ = 0) O(ϵ−1) O(T−1) +O(1)c %

Sato et al. (2025) L MVR1 O(ϵ−1) O(T−1) +O(1)c %

Sfyraki & Wang (2025) L+ MVR2 O(ϵ−1)d O(T−1/3) %

Shen et al. (2025) L MVR1(γ = 0) O(1) O(T−1/4) %

Ours L MVR1(γ = 0) O(1) Õ(T−1/4) Õ(T−1/2)

Ours L MVR1 O(1) Õ(T−1/4) Õ(T−1/2)

Ours L+ MVR2 O(1) Õ(T−1/3) Õ(T−2/3)
a L pertains to the smoothness of the overall function f , while L+ pertains to the smoothness of its stochastic

components f(·; ξ).
b Option MVR1 (γ = 0) is the standard momentum method, Option MVR1 is the one-batch variance-reduction

momentum method, and Option MVR2 is the two-batch variance-reduction momentum method. We summarize
them in Algorithm 1.

c Although increasing the batch size can mitigate the impact of stochastic noise Sato et al. (2025), these methods
still fail to converge to a stationary point and cannot eliminate the influence of dimensionality.

d The results from Sfyraki & Wang (2025) on Option MVR2 are the closest to ours. However, their method
requires a large initial batch of size O(ϵ−1), although the batch size can be reduced to 1 in subsequent iterations.

• Organizations. The rest of the paper is organized as follows. Section 2 reviews existing variants
of the Muon algorithm. Section 3 addresses iteration complexity and last-iterate convergence rate.
Section 5 presents experimental results demonstrating the effectiveness of our method. Related work
is reviewed in Section 6, and conclusions are drawn in Section 7.

• Notations. We denote scalars by non-bold letters (e.g., a,A), vectors in Rd by bold lowercase
letters (e.g., a), and matrices by bold uppercase letters (e.g., A). The space Rd is endowed with the
Euclidean inner product ⟨x,y⟩2 := x⊤y and norm ∥x∥2. For matrices, we employ the Frobenius
inner product ⟨A,B⟩F := tr(A⊤B) and the corresponding norm ∥A∥F . The nuclear norm, denoted
by ∥A∥∗, is defined as the sum of the singular values of the matrix, ∥A∥∗ =

∑
i σi(A). Throughout

the paper, [m] denotes the set of integers {1, 2, . . . ,m}, and N denotes the set of non-negative
integers. The model is parameterized by a matrix X ∈ Rm×n. Without loss of generality, we
assume m ≥ n, so the rank of the matrix is at most n. The model is optimized by minimizing the
empirical loss function f(X) := 1

N

∑
i∈[N ] fi(X), where N is the number of training data points,

and fi(X) is the loss function for X ∈ Rm×n with respect to the i-th training data point zi (for
i ∈ [N ]). Let ξ be a random variable that is independent of X ∈ Rm×n, and let Eξ[X] denote the
expectation of a random variable X with respect to ξ.
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2 REVISITING THE MUON ALGORITHMS

We consider the following optimization problem:

min
X∈Rm×n

f(X), where f(X) = Eξ∼D[f(X; ξ)], (1)

where f : Rm×n → R is the loss function, X denotes the decision variable, and ξ represents a
random variable(e.g., a training data sample) drawn from an unknown distribution D. We assume
that f is differentiable and possibly nonconvex.

The Muon optimizer begins by computing a momentum-based variance-reduced gradient update,
similar in spirit to ADAM Kingma & Ba (2014), STORM Cutkosky & Orabona (2019), and SGD
with Nesterov momentum Sutskever et al. (2013). The momentum term Mt is then projected onto
the set of orthogonal matrices. This orthogonalization step equalizes the singular values, ensuring
that no principal component direction dominates the optimization. Finally, the resulting scaled or-
thogonal matrix is used to update the model parameters. The Muon algorithm is summarized in
Algorithm 1.

Algorithm 1 Muon-style Algorithm

1: Input: Initial parameters X0 ∈ Rm×n, learning rate ηt > 0, momentum parameter βt ∈ [0, 1),
variance-reduction parameter γ ∈ [0, 1], initial momentum M0 = 0, ∇f(X0; ξ) = 0.

2: for t = 1 to T do
3: Compute stochastic gradient: ∇f(Xt; ξt)
4: Option MVR1: One-batch Momentum Variance-Reduction (MVR1)
5: Mt = βtMt−1 + (1− βt)∇f(Xt; ξt) + γ · βt · (∇f(Xt; ξt)−∇f(Xt−1; ξt−1))
6: Option MVR2: Two-batch Momentum Variance-Reduction (MVR2)
7: Mt = βtMt−1 + (1− βt)∇f(Xt; ξt) + γ · βt · (∇f(Xt; ξt)−∇f(Xt−1; ξt))
8: Ot ∈ argminO ∥O−Mt∥F , s.t. O⊤O = In
9: Xt+1 = Xt − ηtOt

10: end for
11: Output: Final parameters Xt

This orthogonalization step can be obtained from the Singular Value Decomposition (SVD) of Mt:

Mt = UΣV⊤, Ot = UV⊤.

Equivalently, we have Ot = (MtM
⊤
t )

−1/2Mt, which shows that orthogonalization reduces to com-
puting an inverse square root rather than a full SVD. Since forming and decomposing MtM

⊤
t re-

mains costly, the popular Muon implementation Jordan et al. (2024) uses the quintic Newton–Schulz
iteration to approximate the inverse square root. This recurrence converges in only a few steps (typ-
ically five), producing a numerically stable, rank-preserving orthogonalization of Mt that is nearly
as accurate as SVD but far more efficient.

Algorithm 1 incorporates two distinct strategies for momentum-based variance reduction, termed
Muon-MVR1 and Muon-MVR2. These options present a fundamental trade-off between computa-
tional efficiency and theoretical rigor. MVR2 implements a principled variance reduction scheme
at the cost of two gradient evaluations per step, while MVR1 serves as a computationally cheaper,
single-gradient approximation. We detail both below.

▶ Option 1: Muon-MVR1 (One-batch Approximation). The first option, MVR1, augments the
classical momentum update with a variance-reducing term that reuses the gradient from the previous
step:

Mt = βtMt−1 + (1− βt)∇f(Xt; ξt) + γ · βt · (∇f(Xt; ξt)−∇f(Xt−1; ξt−1)). (2)

The primary advantage of this formulation is its computational efficiency, as it requires only one
stochastic gradient evaluation per iteration. This update rule is flexible:

(i) When γ = 0, Rule (2) degenerates to the standard exponential moving average (EMA) of gradi-
ents (Rule (3)), a stochastic gradient estimator widely used in optimizers like Adam Kingma & Ba
(2014).

Mt = βtMt−1 + (1− βt)∇f(Xt; ξt). (3)
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(ii) By setting βt = µ and γ = 1 − µ, the update rule (2) yields a momentum term that, after
rescaling by 1/(1 − µ), satisfies the recurrence M̃t = µM̃t−1 + ∇f(Xt; ξt) + µ(∇f(Xt; ξt) −
∇f(Xt−1; ξt−1)). This form is algebraically equivalent to the standard Muon optimizer Jordan
et al. (2024); Liu et al. (2025a) derived from Eq. (4) Yuan et al. (2024), and inherently implements
Nesterov acceleration via a first-order Taylor approximation of the gradient Xie et al. (2024).

Ct = µCt−1 +∇f(Xt; ξt),

Mt = µCt +∇f(Xt; ξt).
(4)

▶ Option 2: Muon-MVR2 (Two-batch Principled VR). The second option, MVR2, incorporates
a more rigorous variance-reduction mechanism inspired by methods like SPIDER Fang et al. (2018),
STORM Cutkosky & Orabona (2019), SVRG Zhou et al. (2020), SUPER-Adam Huang et al. (2021),
and MARS Yuan et al. (2024):

Mt = βtMt−1 + (1− βt)∇f(Xt; ξt) + γ · βt · (∇f(Xt; ξt)−∇f(Xt−1; ξt)). (5)

The key distinction from MVR1 is the correction term. MVR2 subtracts the gradient computed on
the previous parameters but with the current mini-batch, i.e., ∇f(Xt−1; ξt). This modification is
crucial as it is designed to directly cancel the variance introduced by the mini-batch ξt Cutkosky &
Orabona (2019); Huang et al. (2021); Yuan et al. (2024). However, this theoretical benefit comes
at the cost of requiring two gradient evaluations per step. MVR1 can be formally understood as
a practical approximation of MVR2. The difference between their update rules is a single noise
term, ∆Noise

t−1 = ∇f(Xt−1; ξt)−∇f(Xt−1; ξt−1). Under the standard assumption of bounded vari-
ance (Eξ[∥∇f(X; ξ) − ∇f(X)∥2F ] ≤ σ2), the variance of this noise is well-controlled, satisfying
E[∥∆Noise

t−1 ∥2F ] ≤ 2σ2. While MVR1 is often sufficient in practice, this structural difference leads
to fundamentally different theoretical guarantees. The principled variance cancellation in MVR2
allows our algorithm to achieve a superior iteration complexity of Õ(T−1/3), as we will formally
establish in Theorem 3.2.

3 CONVERGENCE ANALYSIS

We begin our analysis by situating it within the established context of first-order stochastic opti-
mization. The O(T−1/4) iteration complexity is a well-known bottleneck for methods like SGD,
and recent work by Shen et al. (2025) confirmed this limitation for the standard Muon algorithm.
Accordingly, our first step in this section is to analyze the Muon-MVR1 variant and formally reaf-
firm this baseline iteration complexity in Theorem 3.1. While the rate itself is standard, our primary
contribution here lies in the novel and unified analytical framework we develop to prove it, as this
framework will be instrumental for subsequent results.

Our analysis is conducted under a diminishing stepsize schedule, a standard setting that guarantees
convergence to an optimal solution. Nevertheless, our theoretical framework is general enough to
encompass the constant-stepsize setting, where it yields a tighter convergence bound devoid of the
logarithmic factor ln(T ).

To facilitate the analysis of convergence for Muon, we make the following assumptions:
Assumption 3.1. The function f is bounded from below. There exists f∗ > −∞ such that f(X) ≥
f∗, for all X ∈ Rm×n.
Assumption 3.2. The function f is L-smooth: ∥∇f(Y)−∇f(X)∥F ≤ L∥Y −X∥F .
Assumption 3.3. The function f is L-smooth for any ξ: ∥∇f(Y; ξ)−∇f(X; ξ)∥F ≤ L∥Y−X∥F .
Assumption 3.4. The variance of unbiased stochastic gradient is finite. Specifically, there exists a
constant σ > 0 such that for all X ∈ Rm×n, the following holds: E[∇f(X; ξ)] = ∇f(X) and
E∥∇f(X; ξ)−∇f(X)∥2F ≤ σ2.

These assumptions are quite common Zhou et al. (2018); Chen et al. (2018); Huang et al. (2021);
Guo et al. (2021); Li et al. (2023); Wang et al. (2023); Xie et al. (2024); Yuan et al. (2024).

3.1 EROGDIC CONVERGENCE OF MUON

In this subsection, we establish the ergodic convergence of Muon-MVR1 and Muon-MVR2.
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3.1.1 OPTION MVR1

We begin our analysis with Option MVR1, a straightforward implementation of one-batch
momentum-based variance reduction. The following theorem establishes its ergodic convergence
rate, demonstrating that the algorithm converges to a stationary point at a rate of Õ(T−1/4) for
specific choices of learning rate and momentum schedules.

Theorem 3.1. Suppose Assumptions 3.1, 3.2, and 3.4 hold. Consider Algorithm 1 with a learning
rate of ηt = t−3/4. The expected average squared norm of the gradient is bounded for the following
options:

1. For Option MVR1 (γ = 0), with momentum parameter βt = 1− t−1/2, the bound is given
by:

1

T

T∑
t=1

E∥∇f(Xt)∥F ≤ f(X1)− f∗

T 1/4
+

A1 lnT +A2

T 1/4
,

where A1 = 2L−1σ2 + 4
√
2Ln+ Ln+ L/2 and A2 = 4L−1σ2 + 4

√
2Ln+ Ln+ L/2.

2. For Option MVR1 (γt = t−1/2), with momentum parameter βt = 1 − (t + 1)−1/2, the
bound is given by:

1

T

T∑
t=1

E∥∇f(Xt)∥F ≤ f(X1)− f∗

T 1/4
+

A1 lnT +A2

T 1/4
,

where A1 = 4L−1σ2 +8
√
2Ln+Ln+L/2 and A2 = 10L−1σ2 +8

√
2Ln+Ln+L/2.

See Appendix B for details.

Remark 3.1. Theorems 3.1 establishes that as T → ∞, the leading terms diminish to zero, and
the algorithm converges to a neighborhood of a stationary point. The size of this neighborhood is
determined by the stochastic gradient variance, the learning rate, and the momentum parameter.
Notably, this convergence bound is free of any non-vanishing additive error term that depends on
the dimension n Sato et al. (2025). We absorb the dimensional dependence into the O-notation to
define Õ, which yields the following complexity for the algorithm:

min
t=1,...,T

E∥∇f(Xt)∥F ≤ Õ(T−1/4).

3.1.2 OPTION MVR2

While prior work has established a iteration complexity of Õ(T−1/3) for variance-reduction in non-
convex settings for various algorithms, such as SGD Fang et al. (2018); Cutkosky & Orabona (2019);
Zhou et al. (2020) and Adam Huang et al. (2021); Yuan et al. (2024), the theoretical convergence
properties of this technique when applied to the Muon optimizer have remained an open question.
We bridge this theoretical gap in Theorem 3.2, which rigorously proves that Option MVR2 of Algo-
rithm 1 (Muon-MVR2) achieves the same Õ(T−1/3) iteration complexity in the general non-convex
setting.

Theorem 3.2. Under Assumptions 3.1, 3.3, and 3.4, consider Algorithm 1 with Option MVR2 and
update rule (5) parameters set as βt = 1− ηt, ηt = t−2/3 for t ≥ 1, and γ = 1. Then, the following
bounds hold:

1

T

T∑
t=1

E∥∇f(Xt)∥F ≤
√

4σ2 + (32L2n+ 8σ2)(1 + lnT )

T 1/3
+

G

T 1/3
,

where

G = f(X1)− f∗ + 2σ2L−1 + 2Ln+

(
16Ln+ 4σ2L−1 +

Ln

2

)
(1 + lnT ).

See Appendix D for details.
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Remark 3.2. Theorem 3.2 shows that, for an unconstrained Muon-style algorithm with momentum-
based variance reduction, we can match the current state-of-the-art Õ(T−1/3) iteration complexity
in a practical fixed mini-batch setting. This complements prior work Sfyraki & Wang (2025), which
achieves the same rate using a growing batch size b = O(T 1/3) to control gradient variance. This
is achieved by a specific hyperparameter schedule in which the learning rate ηt = t−2/3 and the
momentum parameter βt = 1−ηt are tightly coupled. This schedule balances optimization progress
with control of the stochastic gradient variance.
Remark 3.3. As noted in Yuan et al. (2024), a more sophisticated, adaptive setting for the variance-
reduction parameter γ can be employed. Specifically, by setting γ = γt = 1 − At

βt
, where At is

defined in Lemma C.2, a key term in the analysis becomes Pt = −E∥∇f(Xt; ξt)−∇f(Xt−1; ξt)∥2F ·
A2

t , which is strictly negative. This leads to a tighter convergence bound, as it effectively introduces
an additional beneficial term into the recurrence. However, computing this adaptive γt is often
impractical as it depends on quantities that are difficult to estimate during training. Consequently,
we adhere to the common and more practical approach of using a constant γ ≤ 1.

Remark 3.4. For Option MVR1, the prefactor in the Õ(T−1/4) bound depends linearly on the noise
variance and the dimension, i.e., it is of order L−1σ2+Ln+L, so there is no super-linear growth in
n. For Option MVR2, the leading stochastic term behaves like σ+L

√
n (up to a

√
1 + lnT factor),

while the remaining constant term scales as f(X1) − f∗ + L−1σ2 + Ln, which reveals a mixed√
n- and n-dependence. In contrast to standard parameter-agnostic complexity results for variance-

reduced SGD and adaptive methods, which typically hide the dependence on L, σ, and n inside the
Õ(·) notation (see, e.g., Fang et al. (2018); Cutkosky & Orabona (2019); Zhou et al. (2020); Huang
et al. (2021); Yuan et al. (2024)), our analysis keeps this structure explicit and highlights how the
Muon geometry interacts with variance reduction in the matrix-valued setting.

3.2 NON-ERGODIC CONVERGENCE OF MUON

In this subsection, we examine the performance of Muon-MVR1 and Muon-MVR2 under the set-
ting where the non-convex objective functions satisfy the Polyak-Łojasiewicz (PL) condition. Our
analysis is based on the following additional assumption:
Assumption 3.5. We assume the function f is µ-PL, i.e., ∥∇f(Xt)∥2F ≥ 2µ(f(Xt)− f∗).
Remark 3.5. The PL condition has been widely employed in the convergence analysis of various
first-order algorithms Karimi et al. (2016); Xie et al. (2020a); Li & Li (2022), though typically
under restricted settings. Note that if f(·) is strongly convex, then it is necessarily convex and
satisfies the PL condition. However, the converse does not hold in general; a counterexample is
given by f(x) = x2 + 3 sin(2x).
Theorem 3.3. Suppose Assumptions 3.1, 3.2, 3.4, and 3.5 hold. Let {Xt} be the sequence of
iterates generated by Algorithm 1 with a step size of ηt = t−3/4. We analyze the following two
MVR1 schemes:

1. Scheme 1 (γ = 0): Using the update rule (3) with momentum βt = 1 − t−1/2. For this
case, we define the constant A1 as:

A1 = 6L−1σ2 + (8
√
2 + 2)Ln+ L.

2. Scheme 2 (γt = t−1/2): Using the update rule (2) with parameters βt = 1− (t+ 1)−1/2.
For this case, we define the constant A2 as:

A2 = 14L−1σ2 + (16
√
2 + 2)Ln+ L.

Then, for either scheme i ∈ {1, 2}, there exists a constant T0 = 2e4 such that for all iterations
T ≥ T0, the expected suboptimality gap is bounded as follows:

E[f(XT+1)]− f∗ ≤ A2
i

8µ
· (lnT )

2

T 1/2
.

Theorem 3.4. Suppose Assumptions 3.1, 3.2, 3.4, and 3.5 hold. Let {Xt} be the sequence of iterates
generated by Algorithm 1 with Option MVR2 (see update rule (5)). By setting the parameters to
ηt = t−2/3, βt = 1− t−2/3, and γ = 1, we define the constant A3 as :

A3 = 20L−1σ2 + 66Ln+ L.
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Then, there exists a constant T0 = 2e3 such that for all iterations T ≥ T0, the expected suboptimality
gap is bounded as follows:

E[f(XT+1)]− f∗ ≤ 2A2
3

9µ
· (lnT )

2

T 2/3
.

Detailed proofs for Theorems 3.3 and 3.4 are provided in Appendix F and G, respectively.
Remark 3.6. Our non-ergodic convergence proofs are unified by a recursive inequality on the po-
tential function ∆t = E[f(Xt)]− f∗:

∆t+1 ≤ ∆t −
√
2µ

tp

√
∆t + Γt,

where the error terms Γt satisfy
∑t

i=1 Γi ≤ O(ln t), and Γt is defined in the Appendix, equa-
tions (20) and (21). The exponent p ∈ (0, 1) dictates the final convergence rate. For Theorem 3.3,
we establish this inequality with p = 3/4, which leads to a rate of Õ(T−1/2). The superior variance
control in Theorem 3.4 enables a tighter analysis with p = 2/3, which in turn yields the accelerated
convergence rate of Õ(T−2/3).

4 CLARIFICATION OF THEORETICAL NOVELTY

▶ Relation to concurrent work. Our work is distinct from concurrent studies Sfyraki & Wang
(2025); Kovalev (2025) in setting and scope. Sfyraki & Wang (2025) focuses on compact solution
sets using a stochastic Frank–Wolfe scheme with constant step sizes; in contrast, we analyze the
original Muon update without compactness assumptions, employing decaying step sizes to establish
gradient-norm guarantees. Similarly, while Kovalev (2025) provides a general non-Euclidean trust-
region framework yielding SGD-type O(ε−4) complexity, we exploit the specific Muon structure
with variance reduction (MVR1/MVR2). This specialized analysis improves the rate to O(ε−3)
under the same stochastic assumptions and establishes PL-type non-ergodic guarantees distinct from
the general framework.

▶ Relation to SGDM-style analyses. While related to normalization-based gradient-scaling meth-
ods Cutkosky & Mehta (2020; 2021); Chen et al. (2023), our analysis differs in three key aspects.
(i) Step sizes: Unlike normalized SGDM Cutkosky & Mehta (2020) which typically uses constant
or O(T−1/2) steps, MVR1/MVR2 employ decaying step sizes ηt = Θ(t−3/4) and Θ(t−2/3). This
yields a sharper nonconvex complexity of Õ(ε−3) compared to the standard Õ(ε−4). (ii) Manifold
Optimization: We analyze matrix-valued Muon on the Stiefel manifold using a practical two-batch
MVR scheme, proving optimal order convergence with constant mini-batches—a setting not cov-
ered by prior Euclidean MVR or parameter-free results Yang et al. (2023). (iii) PL Analysis: Under
the PL condition, we establish non-ergodic convergence via a novel recursion involving

√
∆t rather

than the standard linear form, necessitating a tailored analysis beyond existing techniques.

5 EXPERIMENTS

In this section, we evaluate the performance of the Muon-variant optimizers on pretraining tasks.
All experiments were conducted using 48x Ascend 910C (64GB) NPUs and 4x NVIDIA RTX 4090
(24GB) GPUs. Detailed experimental settings are provided in Appendix H.

▶ ResNet18 on CIFAR10 Dataset. We train ResNet-18 He et al. (2016) on CIFAR-10
for 100 epochs (batch size 128), comparing Muon variants against SGD and Adam over
five random seeds. For each optimizer, the learning rate is tuned via grid search over
{1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1}. As shown in Figures 1a and 1b, Muon variants
demonstrate faster initial convergence and lower final test error than the baselines, with Muon-
MVR2 achieving the best overall performance.

▶ LLaMA2 on C4 Dataset. We pre-train LLaMA2-130M Touvron et al. (2023) on C4 to
benchmark Muon-MVR variants against AdamW and MARS-AdamW. We perform a grid search
over learning rates {3e−4, 5e−4, 8e−4, 1e−3, 2e−3, 4e−3, 6e−3, 8e−3} and, for MARS-AdamW,
Muon-MVR1, and Muon-MVR2, over the gamma parameter γ ∈ {0.01, 0.025, 0.05}. Models are
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Figure 1: Training dynamics of Muon-MVR2, Muon-MVR1, Muon-MVR1 (γ = 0), and AdamW
on CIFAR-10 with ResNet-18. The plots show (a) accuracy and (b) loss versus epochs for both
training and testing, along with (c) test accuracy versus wall-clock time.

trained for 20k steps (∼12B tokens); refer to Appendix H for full details. Figure 2 shows that
while Muon-MVR2 achieves the lowest per-step loss, it doubles the wall-clock time. Consequently,
we prioritize the highly efficient Muon-MVR1 in subsequent experiments, as it attains comparable
performance despite the theoretical complexity gap.
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Figure 2: LLaMA2-130M train and validation curves on C4 Dataset Training dynamics of Muon-
MVR2, Muon-MVR1, Muon-MVR1 (γ = 0), MARS-AdamW, and AdamW on C4 Dataset with
LLaMA2-130M. The plots show (a) train loss and (b) validation loss, along with (c) validation loss
versus wall-clock time using 8x Ascend 910C.
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Figure 3: (a) Final validation loss with varying learning rates on C4 Dataset 12B ; (b) Heatmap of
the final validation perplexity of the Muon-MVR2 model for different γ values around the optimal
learning rate.

Figure 3a reports the final validation loss on C4 Dataset 12B across different learning rates for all
optimizers. Each method exhibits a reasonably wide range of stable learning rates, with Muon-type
optimizers achieving lower validation loss than AdamW at their respective best settings. For Muon-
MVR2, we additionally sweep the algorithmic parameter γ around the optimal learning rate and
visualize the resulting validation perplexity as a heatmap in Figure 3b. The heatmap shows that
Muon-MVR2 is relatively insensitive to the choice of γ in a neighborhood of the best learning rate,
suggesting that γ does not require fine-grained tuning in practice.
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Remark 5.1. The precise variance-reduction formulation Muon-MVR2 (Eq. 5) is more closely
aligned with stochastic optimization theory and, as confirmed by our experiments, consistently at-
tains the highest validation accuracy. However, it requires two gradient evaluations per step and
can be prohibitive in large-scale settings (see Fig. 1c and 2c). In regimes where the cost differ-
ence between one and two mini-batch gradient evaluations is negligible, we therefore recommend
Muon-MVR2; when computational efficiency is the primary concern, the approximate Muon-MVR1
variant offers a pragmatic alternative with only minimal performance degradation. Thus, the two
variants serve complementary roles rather than one uniformly dominating the other.

Remark 5.2. We employ standard weight decay in our experiments, following common practice in
deep learning. For clarity, this regularization term is omitted from the theoretical analysis, but the
same analysis framework naturally extends to this setting.

6 RELATED WORK

6.1 THE EVOLUTION OF OPTIMIZATION ALGORITHMS

The advancement of deep learning relies on first-order optimization methods. Nesterov (1983)
proposed the Momentum method, which leverages historical gradients to accelerate convergence.
Subsequently, Hinton et al. (2012) introduced RMSprop, enabling per-parameter adaptive learning
rates. Kingma & Ba (2014) then integrated these ideas in Adam, an optimizer that adapts using the
first and second moments of the gradients, establishing it as a standard choice in the field.

Numerous variants have been proposed to address the limitations of Adam. Reddi et al. (2018)
introduced AMSGrad to ensure a non-increasing learning rate, while Dozat (2016) created NAdam
by incorporating Nesterov momentum. To improve regularization, Loshchilov (2017) developed
AdamW, which decouples weight decay from the optimization step. Other methods focus on con-
trolling the learning rate and variance: Luo et al. (2019) proposed AdaBound to dynamically clip
learning rates; Liu et al. (2019) designed RAdam to rectify variance estimates in early training;
and Zhuang et al. (2020) created AdaBelief to adapt step sizes based on gradient belief. Recent
developments continue this trend, such as Xie et al. (2020b) which decouples adaptation from mo-
mentum in the Adai framework, and Xie et al. (2024) which introduced Adan with a novel Nesterov
momentum estimation. The latest works from Liang et al. (2024) and Yuan et al. (2024) further
enhance efficiency with new masking and variance-reduction strategies, respectively. Additionally,
the MGUP strategy proposed by Chang & Yuan (2025) smooths zero masks into small non-zero
values to alleviate potential non-convergence issues that the Cautious mask may cause in Adam.

Beyond Adam variants, research has explored other paradigms such as preconditioning methods
that use parameter curvature. Gupta et al. (2018) pioneered this direction with the Shampoo op-
timizer. Building on this work, Jordan et al. (2024) proposed Muon, which adapts to curvature
by orthogonalizing gradient momentum. Subsequent variants emerged, such as AdaMuon Si et al.
(2025) which adds element-wise adaptivity, and COSMOS Liu et al. (2025b) which integrates ideas
from SOAP Vyas et al. (2025) for large model training. While these methods showed practical
benefits, they often lacked convergence proofs. To bridge this theoretical gap for LMO-based meth-
ods, Gluon Riabinin et al. (2025) introduces a novel layer-wise smoothness assumption, provid-
ing convergence guarantees that align with the practical implementations of optimizers like Muon
and Scion Pethick et al. (2025). In the literature, other related preconditioning methods include
ASGO An et al. (2025), PolarGrad Lau et al. (2025), and AdaGO Zhang et al. (2025), which intro-
duces the Adagrad-Norm step size Ward et al. (2020) into a simplified version of Muon. Meanwhile,
other high-performing optimizers not belonging to the Shampoo family also warrant attention, such
as Sophia Liu et al. (2023), which improves second-moment estimation through efficient diagonal
Hessian approximation and coordinate clipping, and Lion Chen et al. (2023), a lightweight opti-
mizer that only tracks momentum and uses the sign function to normalize updates. These methods
are closely related to normalized SGD with momentum variants, where the gradient is rescaled or
truncated before the update Cutkosky & Mehta (2020; 2021), in contrast to Muon and our Muon-
MVR variants, which perform spectral-norm-based matrix orthogonalization.
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6.2 ANALYSIS OF MUON

Recent theoretical analyses have clarified the mechanisms and convergence of the Muon optimizer.
One central line of work models modern optimizers as steepest-descent or trust-region methods
under non-Euclidean norm constraints Bernstein & Newhouse (2024); Kovalev (2025), clarifying
how spectral-norm constraints shape the orthogonalized update direction and, in the case of Kovalev
(2025). Building on this, subsequent work has linked Muon with weight decay to the stochastic
Frank-Wolfe method, identifying it as an instance operating under a spectral norm constraint Sfyraki
& Wang (2025). From a constrained optimization viewpoint, Muon has also been characterized
as a special case of Lion-K, with its convergence to a KKT point proven in both deterministic
and stochastic settings Chen et al. (2025). These analyses, alongside broader research on norm-
constrained stochastic conditional gradient methods, form Muon’s theoretical underpinnings Pethick
et al. (2025). Beyond its formal framework, Muon’s implicit bias has become a key area of inves-
tigation. It has been demonstrated that Muon tends to converge toward max-margin solutions with
respect to the spectral norm of the weight matrix, revealing a distinct implicit regularization and gen-
eralization preference compared to Adam Fan et al. (2025). A unifying preconditioning perspective,
based on matrix polar decomposition, explains this behavior by distinguishing between curvature
and gradient anisotropy. This decomposition clarifies the differing ways Muon and Adam handle
various parameter types Lau et al. (2025). The convergence analysis of Muon has also seen active
development. Although rigorous proofs and iteration complexity in non-convex settings have been
established under various smoothness assumptions Shen et al. (2025), the validity of some early re-
sults has been challenged. For instance, certain proofs were found to rely on incorrect mathematical
inequalities, casting doubt on their conclusions Li & Hong (2025). Other analyses, while confirming
the convergence of several Muon variants, report slow convergence rates or the need for stringent
conditions to reach a stationary point Sato et al. (2025). On a practical level, especially for pre-
training large-scale language models (LLMs), weight decay has been identified as an indispensable
component for Muon. To enhance its scalability and utility, methods based on RMS analysis have
also been proposed to effectively transfer learning rates from Adam to Muon Liu et al. (2025a).

7 CONCLUSION

In this work, we establish a rigorous theoretical foundation for the Muon optimizer, addressing the
gap between its empirical success and formal analysis. We analyze two momentum-based variance-
reduced variants of Muon: a one-batch version (Muon-MVR1) and a two-batch version (Muon-
MVR2). We provide the first proof that Muon-MVR2 achieves the optimal iteration complexity of
Õ(T−1/3) in stochastic nonconvex settings, matching the theoretical lower bound Arjevani et al.
(2023). Furthermore, we show that under the Polyak–Łojasiewicz condition, Muon-MVR1 and
Muon-MVR2 attain sublinear nonergodic convergence rates of Õ(T−1/2) and Õ(T−2/3), respec-
tively. Our theoretical results are validated by extensive experiments on the CIFAR-10 and C4
benchmarks, which confirm the practical acceleration and superior performance of Muon-MVR2
over its standard counterpart and other widely used optimizers. Overall, this research strengthens
the Muon framework by providing robust theoretical guarantees and a practically effective new vari-
ant for deep learning training.

8 LIMITATIONS AND FUTURE WORK

▶ Limitations: First, a systematic comparison with other Muon-type optimizers is currently lack-
ing. Second, a gap remains between the theoretical assumption of exact orthogonalization and the
practical use of finite Newton–Schulz iterations, particularly for the inexact Muon-MVR variant.

▶ Future work: Future directions include conducting a large-scale, unified evaluation of Muon
variants with thorough tuning. Furthermore, it is valuable to derive rigorous guarantees for finite-
step Newton–Schulz orthogonalization and to improve the theoretical convergence rate of Muon-
MVR1 beyond Õ(T−1/4).
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APPENDIX

A LEMMAS FOR THEOREM 3.1

A.1 LEMMA A.1

Lemma A.1. For Algorithm 1, choosing an arbitrary parameter α > 0, we have the following
inequality:

f(Xt+1) ≤ f(Xt)− ηt∥Mt∥F +
ηtα

2
∥∇f(Xt)−Mt∥2F +

ηtn

2α
+

Lη2n

2
.

Proof. According to Assumption 3.2, we have the upper bound for the function value:

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt),Xt+1 −Xt⟩+
L

2
∥Xt+1 −Xt∥2F

≤ f(Xt)− ηt⟨∇f(Xt),Ot⟩+
Lη2t
2

∥Ot∥2F

≤ f(Xt)− ηt⟨Mt,Ot⟩ − ηt⟨∇f(Xt)−Mt,Ot⟩+
Lη2t
2

∥Ot∥2F .

Now we bound the three terms on the right-hand side respectively:

Descent Term: According to the definition of Ot and the norm property ∥Mt∥∗ ≥ ∥Mt∥F , we
have:

−ηt⟨Mt,Ot⟩ = −ηt⟨Mt,UrV
⊤
r ⟩ = −ηt∥Mt∥∗ ≤ −ηt∥Mt∥F .

Cross Term: This is the key to eliminating the dimension-dependent error. We use Young’s inequal-
ity with a parameter (ab ≤ α

2 a
2 + 1

2αb
2) and the fact that ∥Ot∥2F ≤

∑n
i=1 1 = n:

−ηt⟨∇f(Xt)−Mt,Ot⟩ ≤ ηt∥∇f(Xt)−Mt∥F ∥Ot∥F

≤ ηt

(
α

2
∥∇f(Xt)−Mt∥2F +

1

2α
∥Ot∥2F

)
≤ ηt

(α
2
∥∇f(Xt)−Mt∥2F +

n

2α

)
.

Quadratic Term:

Lη2t
2

∥Ot∥2F ≤ Lη2t n

2
.

Substituting these three bounds into the inequality for f(Xt+1):

f(Xt+1) ≤ f(Xt)− ηt∥Mt∥F +
ηtα

2
∥∇f(Xt)−Mt∥2F +

ηtn

2α
+

Lη2t n

2
.

This completes the proof.

A.2 LEMMA A.2

Lemma A.2. For Algorithm 1 option MVR1 (γ = 0), the accumulated error between the momentum
term and the true gradient is bounded:

E
[
∥Mt+1 −∇f(Xt+1)∥2F

]
≤ βt+1E

[
∥Mt −∇f(Xt)∥2F

]
+

β2
t+1

1− βt+1
L2η2t n+ (1− βt+1)

2σ2.
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Proof. First, we have

∥Mt+1 −∇f(Xt+1)∥2F
= ∥βt+1Mt + (1− βt+1)∇f(Xt+1; ξt+1)−∇f(Xt+1)∥2F
= ∥βt+1(Mt −∇f(Xt)) + (1− βt+1)(∇f(Xt+1; ξt+1)−∇f(Xt+1))

+ βt+1(∇f(Xt)−∇f(Xt+1))∥2F
= β2

t+1∥Mt −∇f(Xt)∥2F + β2
t+1∥∇f(Xt)−∇f(Xt+1)∥2F

+ (1− βt+1)
2∥∇f(Xt+1; ξt+1)−∇f(Xt+1)∥2F

+ 2β2
t+1⟨Mt −∇f(Xt),∇f(Xt)−∇f(Xt+1)⟩F

+ 2βt+1(1− βt+1)⟨Mt −∇f(Xt),∇f(Xt+1; ξt+1)−∇f(Xt+1)⟩F
+ 2βt+1(1− βt+1)⟨∇f(Xt)−∇f(Xt+1),∇f(Xt+1; ξt+1)−∇f(Xt+1)⟩F .

According to Assumption 3.4. Taking the expectation of its squared norm, and using the unbiased-
ness and independence of the stochastic gradient, we obtain:

E[∥Mt+1 −∇f(Xt+1)∥2F ] =β2
t+1E[∥Mt −∇f(Xt)∥2F ]
+ (1− βt+1)

2E[∥∇f(Xt+1; ξt+1)−∇f(Xt+1)∥2F ]
+ β2

t+1E[∥∇f(Xt)−∇f(Xt+1)∥2F ]
+ 2β2

t+1E[⟨Mt −∇f(Xt),∇f(Xt)−∇f(Xt+1)⟩].

Applying Young’s inequality with a parameter (ab ≤ ϵ
2a

2 + 1
2ϵb

2), we have

⟨Mt −∇f(Xt),∇f(Xt)−∇f(Xt+1)⟩F ≤ ϵ

2
∥Mt −∇f(Xt)∥2F +

1

2ϵ
∥∇f(Xt)−∇f(Xt+1)∥2F .

Thus, we have:

E
[
∥Mt+1 −∇f(Xt+1)∥2F

]
≤ β2

t+1(1 + ϵ)E
[
∥Mt −∇f(Xt)∥2F

]
+ β2

t+1

(
1 +

1

ϵ

)
E
[
∥∇f(Xt)−∇f(Xt+1)∥2F

]
+ (1− βt+1)

2E
[
∥∇f(Xt+1; ξt+1)−∇f(Xt+1)∥2F

]
.

According to Assumption 3.2,

∥∇f(Xt)−∇f(Xt+1)∥2F ≤ L2∥Xt −Xt+1∥2F
= L2η2t ∥Ot∥2F
≤ L2η2t n.

Therefore:

E
[
∥Mt+1 −∇f(Xt+1)∥2F

]
≤ β2

t+1(1 + ϵ)E
[
∥Mt −∇f(Xt)∥2F

]
+ β2

t+1

(
1 +

1

ϵ

)
L2η2t n+ (1− βt+1)

2σ2.

Then, by letting ϵ := 1−βt+1

βt+1
, we have

E
[
∥Mt+1 −∇f(Xt+1)∥2F

]
≤ βt+1E

[
∥Mt −∇f(Xt)∥2F

]
+

β2
t+1

1− βt+1
L2η2t n+ (1− βt+1)

2σ2.

(6)

A.3 LEMMA A.3

Lemma A.3. Suppose that {Ei, Ai} are two nonnegative sequences. Assume Et+1 ≤ (1 −
αt+1)Et +At+1 where αt = t−p, p ∈ (0, 1]. Then we have:

αtEt ≤ 2(Et − Et+1 +At+1).
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Proof. We derive the following inequalities:

αtEt − c (Et − Et+1 +At+1)

(•)
≤ αtEt − c (Et +At+1) + c · (Et − αt+1Et +At+1)

= Et (αt − cαt+1)

= Et · (t+ 1)−p ·

((
t

t+ 1

)−p

− c

)
(◦)
≤ Et · (t+ 1)−p · (2− c)

(⋆)

≤ 0,

where (•) follows from Et+1 ≤ (1− αt+1)Et +At+1; (◦) is due to ( t
t+1 )

−p ≤ 2p ≤ 2; (⋆) is due
to our choice c = 2.

B PROOFS OF THEOREM 3.1

Proof. According to Lemma A.1, we have:

f(Xt+1) ≤ f(Xt)− ηt∥Mt∥F +
ηtα

2
∥∇f(Xt)−Mt∥2F +

ηtn

2α
+

Lη2t n

2
(◦)
≤ f(Xt)− ηt∥Mt∥F +

η
2/3
t

2L
∥∇f(Xt)−Mt∥2F +

η
4/3
t Ln

2
+

Lη2t n

2
(⋆)

≤ f(Xt)− ηt∥Mt∥F +
η
2/3
t

2L
∥∇f(Xt)−Mt∥2F + Lnη

4/3
t ,

where (◦) by setting α = 1

η
1/3
t L

; (⋆) follows from ηt ≤ 1, we have L ≤ L/η
1/3
t .

Thus, taking the expectation yields

E[f(Xt+1)] ≤ E[f(Xt)]− ηtE[∥Mt∥F ] +
η
2/3
t

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

4/3
t

(◦)
≤ E[f(Xt)]− ηtE[∥∇f(Xt)∥F ] + ηtE[∥∇f(Xt)−Mt∥F ]

+
η
2/3
t

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

4/3
t

(⋆)

≤ E[f(Xt)]− ηtE[∥∇f(Xt)∥F ] +
1

2ϵ
η2t +

ϵ

2
E[∥∇f(Xt)−Mt∥2F ]

+
η
2/3
t

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

4/3
t

(•)
= E[f(Xt)]− ηtE[∥∇f(Xt)∥F ]

+
Lη

4/3
t

2
+

(
η
2/3
t

2L
+

η
2/3
t

2L

)
E[∥∇f(Xt)−Mt∥2F ] + Lnη

4/3
t︸ ︷︷ ︸

Γt

,

(7)

where (◦) follows from the reverse triangle inequality −∥Mt∥F ≤ ∥∇f(Xt) − Mt∥F −
∥∇f(Xt)∥F ; (⋆) applies Young’s inequality to the term ηtE[∥∇f(Xt) − Mt∥F ]; and (•) collects
the residual terms into Γt and sets ϵ = η

2/3
t /L.

Next, we set ηt = t−3/4 and βt = 1− t−1/2, αt = t−1/2.

Case 1: γ = 0.

17
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By Lemma A.2 inequality (6), we have

E
[
∥Mt+1 −∇f(Xt+1)∥2F

]
≤ βt+1E

[
∥Mt −∇f(Xt)∥2F

]
+

β2
t+1

1− βt+1
L2η2t n+ (1− βt+1)

2σ2

≤ βt+1E
[
∥Mt −∇f(Xt)∥2F

]
+

L2η2t n

1− βt+1
+ (1− βt+1)

2σ2.

Let St+1 = Mt+1 − ∇f(Xt+1). Thus, setting αt+1 = (t + 1)−1/2, we observe the following
relationship for t ≥ 1:

η2t
1− βt+1

=
t−3/2

(t+ 1)−1/2
=

√
t+ 1

t3/2
≤ 2

√
2

t+ 1
.

This allows us to bound the expectation as follows:

E∥St+1∥2F ≤ (1− αt+1)E∥St∥2F + α2
t+1(2

√
2L2n+ σ2).

According to Lemma A.3, by letting At+1 = α2
t+1(2

√
2L2n+ σ2), we have

αtE∥St∥2F ≤ 2(E∥St∥2F − E∥St+1∥2F +At+1).

Furthermore, since
E∥S1∥ = E∥∇f(X1)−M1∥2F = E∥∇f(X1)− (1− β1)∇f(X1; ξ1)∥2F

= E∥∇f(X1)−∇f(X1; ξ1)∥2F ≤ σ2 (since β1 = 0).

It follows that
T∑

t=1

αtE∥St∥2F ≤ 2

T∑
t=1

(E∥St∥2F − E∥St+1∥2F +At+1)

≤ 2E∥S1∥2F + 2(2
√
2L2n+ σ2)

T∑
t=1

1

t+ 1

≤ 2σ2 + 2(2
√
2L2n+ σ2)(lnT + 1).

(8)

Thus,

Γt =
η
2/3
t

L
E∥St∥2F + (L/2 + Ln)η

4/3
t

=
αt

L
E∥St∥2F + (L/2 + Ln)α2

t .

Next, we define A1 = 4
√
2Ln+ Ln+ 2L−1σ2 + L/2 and A2 = 4

√
2Ln+ Ln+ 4L−1σ2 + L/2.

T∑
t=1

Γt =
1

L

T∑
t=1

αtE∥St∥2F + (L/2 + Ln)

T∑
t=1

α2
t

(◦)
≤ 2σ2 + 2(2

√
2L2n+ σ2)(lnT + 1)

L
+ (L/2 + Ln)(lnT + 1)

≤ A1 lnT +A2,

(9)

where (◦) due to inequality (8).

Therefore, we have

1

T

T∑
t=1

E∥∇f(Xt)∥F =
1

T

T∑
t=1

t3/4 · t−3/4E∥∇f(Xt)∥F

≤ 1

T

T∑
t=1

t3/4 · ηtE∥∇f(Xt)∥F

≤ T 3/4

T

T∑
t=1

f(Xt)− f(Xt+1) +
T 3/4

T

T∑
t=1

Γt

≤ f(X1)− f∗

T 1/4
+

A1 lnT +A2

T 1/4

= Õ(T−1/4).
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Case 2: γ ̸= 0.

We set ηt = t−3/4 and βt = 1− (t+ 1)−1/2, αt = t−1/2, and γ = 1− βt−1 = t−1/2, we first note
that an equivalent form of Algorithm 1 Option MVR1 is given by

Ct = βt−1Ct−1 + (1− βt−1)∇f(Xt; ξt)

Mt = βtCt + (1− βt)∇f(Xt; ξt).
(10)

In this case, then we have

E∥Ct −∇f(Xt)∥2F
= E∥βt−1Ct−1 + (1− βt−1)∇f(Xt; ξt)−∇f(Xt)∥2F
= E∥βt−1(Ct−1 −∇f(Xt−1)) + (1− βt−1)(∇f(Xt; ξt)−∇f(Xt))

+ βt−1(∇f(Xt−1)−∇f(Xt))∥2F
(◦)
≤ βt−1E∥Ct−1 −∇f(Xt−1)∥2F +

β2
t−1Lη

2
t−1n

1− βt−1
+ (1− βt−1)

2σ2

= (1− αt)E∥Ct−1 −∇f(Xt−1)∥2F + α2
t (2

√
2Ln+ σ2),

where (◦) follows from Lemma A.2.

Then, we define S′
t = ∥Mt −∇f(Xt)∥2F ,St = ∥Ct −∇f(Xt)∥2F , At+1 = α2

t+1(2
√
2Ln + σ2).

Using the conclusion of Lemma A.3, we have

E∥St+1∥2F ≤ (1− αt+1)E∥St∥2F +At+1.

Furthermore, since

E∥S1∥ = E∥∇f(X1)−C1∥2F = E∥∇f(X1)− (1− β0)∇f(X1; ξ1)∥2F
= E∥∇f(X1)−∇f(X1; ξ1)∥2F ≤ σ2 (since β0 = 0).

Thus, as in inequality (8), we have

T∑
t=1

αtE∥St∥2F ≤ 2

T∑
t=1

(E∥St∥2F − E∥St+1∥2F +At+1)

≤ 2E∥S1∥2F + 2(2
√
2L2n+ σ2)

T∑
t=1

1

t+ 1

≤ 2σ2 + 2(2
√
2L2n+ σ2)(lnT + 1).

Then,

∥Mt −∇f(Xt)∥F = ∥βtCt + (1− βt)∇f(Xt; ξt)−∇f(Xt)∥F
= ∥βt(Ct −∇f(Xt)) + (1− βt)(∇f(Xt; ξt)−∇f(Xt))∥F .

From this, we can bound the squared norm using the inequality ∥A+B∥2F ≤ 2∥A∥2F + 2∥B∥2F :

∥Mt −∇f(Xt)∥2F ≤ 2β2
t ∥Ct −∇f(Xt)∥2F + 2(1− βt)

2∥∇f(Xt; ξt)−∇f(Xt)∥2F .
Thus, we have

E∥Mt −∇f(Xt)∥2F ≤ 2β2
tE∥Ct −∇f(Xt)∥2F + 2(1− βt)

2E∥∇f(Xt; ξt)−∇f(Xt)∥2F
≤ 2β2

tE∥Ct −∇f(Xt)∥2F + 2(1− βt)
2σ2

≤ 2E∥Ct −∇f(Xt)∥2F + 2(1− βt)
2σ2.

(11)

Thus,
T∑

t=1

αtE∥S′
t∥2F ≤ 2

T∑
t=1

αtE∥St∥2F + 2σ2
T∑

t=1

1

t(t+ 1)

(◦)
≤ 4σ2 + 4(2

√
2L2n+ σ2)(lnT + 1) + 2σ2

= 6σ2 + 4(2
√
2L2n+ σ2)(lnT + 1),

(12)
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where (◦) is due to
∑T

t=1
1

t(t+1) =
∑T

t=1(
1
t −

1
t+1 ) = 1− 1

T+1 ≤ 1.

Therefore,

Γt =
η
2/3
t

L
E∥S′

t∥2F + (L/2 + Ln)η
4/3
t

=
αt

L
E∥S′

t∥2F + (L/2 + Ln)α2
t .

Then, we define A1 = 8
√
2Ln+Ln+4L−1σ2 +L/2 and A2 = 8

√
2Ln+Ln+10L−1σ2 +L/2.

We have

T∑
t=1

Γt =
1

L

T∑
t=1

αtE∥S′
t∥2F + (L/2 + Ln)

T∑
t=1

α2
t

(◦)
≤ 6σ2 + 4(2

√
2L2n+ σ2)(lnT + 1)

L
+ (L/2 + Ln)(lnT + 1)

≤ A1 lnT +A2,

(13)

where (◦) is due to inequality (12).

Then, we have

1

T

T∑
t=1

E∥∇f(Xt)∥F =
1

T

T∑
t=1

t3/4 · t−3/4E∥∇f(Xt)∥F

≤ 1

T

T∑
t=1

t3/4 · ηtE∥∇f(Xt)∥F

≤ T 3/4

T

T∑
t=1

f(Xt)− f(Xt+1) +
T 3/4

T

T∑
t=1

Γt

≤ f(X1)− f∗

T 1/4
+

A1 lnT +A2

T 1/4

= Õ(T−1/4).

This completes the proof.

C LEMMAS FOR THEOREM 3.2

C.1 LEMMA C.1

Lemma C.1. Let {At}t≥1 and {Bt}t≥1 be non-negative sequences satisfying the relation At+1 ≤
(1− εt+1)At +Bt+1 for all t ≥ 1. If we define the sequence εt = t−p for some constant p ∈ (0, 1],
then for all t ≥ 1, the following inequality holds:

√
εtAt ≤ 4

(
At√
εt

− At+1√
εt+1

+
Bt+1√
εt+1

)
.

Proof. First, we define the function F (t, q) = 1
4 t

−q − tq + (t + 1)q − (t + 1)−q for t ≥ 1 and
q ∈ (0, 1/2]. To analyze its properties, let us define g(t) = F (t, q) for a fixed q ∈ (0, 1/2] and
f(q) = F (t, q) for a fixed t ≥ 1.

Case 1: For t = 1. We have g(1) = 1
4 − 1+ 2q − 1

2q . Since q ∈ (0, 1/2], this expression is bounded
above by its value at q = 1/2, yielding g(1) ≤ 1

4 − 1 + 21/2 − 1
21/2

< 0. Thus, for t = 1, the
inequality g(t) ≤ 0 holds.
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Case 2: For t > 1. For any given t > 1 and q ∈ (0, 1/2], we examine the derivative of f(q):

f ′(q) =

(
ln(t+ 1)(t+ 1)−q − 1

4
ln(t)t−q

)
+ (ln(t+ 1)(t+ 1)q − ln(t)tq)

(◦)
≥
(
ln(t+ 1)(t+ 1)−q − 1

4
ln(t)t−q

)
= ln(t)t−q ·

{
ln(t+ 1)

ln(t)
·
(

t

t+ 1

)q

− 1

4

}
(⋆)

≥ ln(t)t−q ·

{
1 ·
√

t

t+ 1
− 1

4

}
(•)
≥ ln(t)t−q ·

{√
1

2
− 1

4

}
≥ 0,

(14)

where (◦) holds because ln(t + 1) > ln(t) and (t + 1)q > tq for all t ≥ 1 and q ∈ (0, 1/2]. The
inequality (⋆) holds because ln(t+1)

ln(t) > 1 for t > 1, and the function ( t
t+1 )

q is decreasing in q, thus
its minimum on (0, 1/2] is achieved at q = 1/2. The final inequality (•) holds because t ≥ 1 implies√

t
t+1 ≥

√
1
2 , and

√
1
2 > 1/4.

Inequality (14) implies that f(q) is monotonically increasing with respect to q on the interval
(0, 1/2].

Next, we consider the boundary condition at q = 1/2. Let h(t) := f( 12 ) = 1
4 t

−1/2 − t1/2 +

(t + 1)1/2 − (t + 1)−1/2. It can be verified that h(t) ≤ 0 for all t > 1. Consequently, we have
F (t, 1

2 ) = f( 12 ) ≤ 0 for all t > 1.

Finally, for all t > 1 and q ∈ (0, 1/2], we have

F (t, q) ≤ F (t, 1/2) ≤ 0, (15)

where the first inequality holds because f(q) is monotonically increasing in q on (0, 1/2] for any
fixed t > 1.

With this result, we can proceed as follows:

√
εtAt − 4

(
At√
εt

− At+1√
εt+1

+
Bt+1√
εt+1

)
(◦)
≤

√
εtAt − 4

(
At√
εt

+
Bt+1√
εt+1

)
+

4
√
εt+1

· (At − εt+1At +Bt+1)

=
√
εtAt − 4

At√
εt

+
4

√
εt+1

(1− εt+1)At

= At ·
(
√
εt −

4
√
εt

+
4

√
εt+1

− 4
√
εt+1

)
(⋆)
= 4At ·

(
1

4
t−q − tq + (t+ 1)q − (t+ 1)−q

)
(•)
≤ 0.

Here, (◦) follows from the assumption At+1 ≤ (1− εt+1)At +Bt+1. The equality (⋆) is obtained
by substituting εt = t−p and setting q = p

2 (note that p ∈ (0, 1] implies q ∈ (0, 1/2]). Finally, (•) is
a direct consequence of our result in inequality (15).

C.2 LEMMA C.2

Lemma C.2. For Algorithm 1 option MVR2, let ∆t = ∇f(Xt+1; ξt+1) − ∇f(Xt; ξt+1), δt =
∇f(Xt)−∇f(Xt+1), St = Mt −∇f(Xt), and Rt+1 = ∇f(Xt+1; ξt+1)−∇f(Xt+1). Then we
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have the following inequality:

E∥St+1∥2F ≤ β2
t+1E∥St∥2F + 2β2

t+1L
2E∥Xt+1 −Xt∥2F + 2(1− βt+1)

2σ2 + Pt+1,

where

At+1 =
Bt+1 + βt+1(E∥∆t∥2F − ∥E∆t∥2F )

E∥∆t∥2F
Bt+1 = (1− βt+1)E⟨∆t,Rt+1⟩+ βt+1E⟨∆t,St⟩
Pt+1 = E∥∆t∥2F (βt+1(1− γt+1)−At+1)

2 − E∥∆t∥2FA2
t+1.

If we choose γt+1 = 1− At+1

βt+1
or γt+1 = 1, then

E∥St+1∥2F ≤ βt+1E∥St∥2F + 2β2
t+1L

2E∥Xt+1 −Xt∥2F + 2(1− βt+1)
2σ2.

Proof. First, we have

Mt+1

= βt+1Mt + (1− βt+1)∇f(Xt+1; ξt+1) + γt+1 · βt+1(∇f(Xt+1; ξt+1)−∇f(Xt; ξt+1))

= (1− βt+1)∇f(Xt+1; ξt+1) + βt+1(Mt + γt+1(∇f(Xt+1; ξt+1)−∇f(Xt; ξt+1)))

= (1− βt+1)∇f(Xt+1; ξt+1) + βt+1(Mt + γt+1∆t).

Hence,
Mt+1 −∇f(Xt+1) = (1− βt+1) (∇f(Xt+1; ξt+1)−∇f(Xt+1))

+ βt+1 (Mt −∇f(Xt) + δt + γt+1∆t)

= (1− βt+1)Rt+1 + βt+1(St + δt + γt+1∆t).

Note that, according to Assumption 3.4:

δt = ∇f(Xt)−∇f(Xt+1) = −Et+1[∆t].

Therefore,
St+1 = (1− βt+1)Rt+1 + βt+1St + βt+1(γt+1∆t − E∆t).

Thus,

E∥St+1∥2F = E∥(1− βt+1)Rt+1 + βt+1St + βt+1(γt+1∆t − E∆t)∥2F
= E∥(1− βt+1)Rt+1 + βt+1St + βt+1((γt+1 − 1)∆t +∆t − E∆t)∥2F
= E∥(1− βt+1)Rt+1 + βt+1St + βt+1(∆t − E∆t)∥2F︸ ︷︷ ︸

Term A.1

+ β2
t+1(γt+1 − 1)2E∥∆t∥2F︸ ︷︷ ︸

Term A.2

+ 2βt+1(γt+1 − 1)E⟨∆t, (1− βt+1)Rt+1 + βt+1St + βt+1(∆t − E∆t)⟩︸ ︷︷ ︸
Term A.3

.

First, let’s consider Term A.1:

A.1 = E∥(1− βt+1)Rt+1 + βt+1St + βt+1(∆t − E∆t)∥2F
(◦)
= E∥(1− βt+1)Rt+1 + βt+1(∆t − E∆t)∥2F + β2

t+1E∥St∥2F
(⋆)

≤ 2(1− βt+1)
2E∥Rt+1∥2F + 2β2

t+1E∥∆t − E∆t∥2F + β2
t+1E∥St∥2F ,

where (◦) holds because Assumption 3.4 implies E[Rt+1] = 0 and E[∆t − E∆t] = 0, making the
cross-terms with St zero; and (⋆) follows from the inequality ∥A +B∥2F ≤ 2∥A∥2F + 2∥B∥2F for
any A,B ∈ Rm×n.

Next, considering the sum of Terms A.2 and A.3, let us define

At+1 =
Bt+1 + βt+1(E∥∆t∥2F − ∥E∆t∥2F )

E∥∆t∥2F
Bt+1 = (1− βt+1)E⟨∆t,Rt+1⟩+ βt+1E⟨∆t,St⟩.
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Then we have

A.2 + A.3 = β2
t+1(γt+1 − 1)2E∥∆t∥2F

+ 2(γt+1 − 1)βt+1E⟨∆t, (1− βt+1)Rt+1 + βt+1St + βt+1(∆t − E∆t)⟩

= β2
t+1E∥∆t∥2F

(
(γt+1 − 1)2 + 2(γt+1 − 1)

At+1

βt+1

)
= β2

t+1E∥∆t∥2F
(
γt+1 − 1 +

At+1

βt+1

)2

− β2
t+1E∥∆t∥2F

(
At+1

βt+1

)2

= E∥∆t∥2F (βt+1(1− γt+1)−At+1)
2 −A2

t+1E∥∆t∥2F
:= Pt+1.

Therefore, combining the bounds:

E∥St+1∥2F ≤ 2(1− βt+1)
2E∥Rt+1∥2F + 2β2

t+1E∥∆t − E∆t∥2F + β2
t+1E∥St∥2F + Pt+1

(◦)
≤ 2(1− βt+1)

2σ2 + 2β2
t+1E∥∆t∥2F + β2

t+1E∥St∥2F + Pt+1

(⋆)

≤ 2(1− βt+1)
2σ2 + 2β2

t+1L
2E∥Xt+1 −Xt∥2F + β2

t+1E∥St∥2F + Pt+1,

where (◦) uses Assumption 3.4 (bounded variance, i.e., E∥Rt+1∥2F ≤ σ2) and the property that
E∥∆t − E∆t∥2F ≤ E∥∆t∥2F ; and (⋆) follows from Assumption 3.3, which implies ∥∆t∥2F ≤
L2∥Xt+1 −Xt∥2F .

Next, we set

γt+1 = 1− At+1

βt+1
or γt+1 = γ = 1. (16)

Then,
Pt+1 = −E∥∆t∥2FA2

t+1 ≤ 0 or Pt+1 = 0.

This leads to the final result:

E∥St+1∥2F ≤ β2
t+1E∥St∥2F + 2β2

t+1L
2E∥Xt+1 −Xt∥2F + 2(1− βt+1)

2σ2

(◦)
≤ βt+1E∥St∥2F + 2β2

t+1L
2E∥Xt+1 −Xt∥2F + 2(1− βt+1)

2σ2,

where (◦) follows from β2
t+1 ≤ βt+1 ≤ 1.

C.3 LEMMA C.3

Lemma C.3. Let {St}t≥1 be a sequence of matrices satisfying the recursive inequality
E∥St+1∥2F ≤ (1 − ηt+1)E∥St∥2F + 2η2t+1(2L

2n + σ2) for some constants L, n, σ2 > 0. If we set
the step size ηt = t−2/3 and γ = 1, then we have the following upper bound on the time-averaged
expectation:

1

T

T∑
t=1

E∥St∥2F ≤ 4σ2 + 8(2L2n+ σ2)(1 + lnT )

T 2/3
.

Proof. The proof begins with the recursive inequality derived from a preceding Lemma C.2:

E∥St+1∥2F ≤ (1− ηt+1)E∥St∥2F + 2η2tL
2n+ 2η2t+1σ

2,

where St+1 = ∇f(Xt+1)−Mt+1. We have noticed the following facts

1

t2/3
≤ 2

(t+ 1)2/3
.

Therefore , we have

E∥St+1∥2F ≤ (1− ηt+1)E∥St∥2F + 2η2t+1(4L
2n+ σ2).
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Let At = E∥St∥2F and Bt+1 = 2η2t+1(4L
2n + σ2). The inequality can be written as At+1 ≤

(1− ηt+1)At +Bt+1. This structure allows us to apply a standard result Lemma C.1 which yields:
√
ηtAt ≤ 4

(
At√
ηt

− At+1√
ηt+1

+
Bt+1√
ηt+1

)
.

Then, we define Pt =
4At√
ηt

=
4E∥St∥2

F√
ηt

. Substituting Pt and the definition of Bt+1 into the inequality
gives:

√
ηtE∥St∥2F ≤ Pt − Pt+1 +

4 · 2η2t+1(4L
2n+ σ2)

√
ηt+1

= Pt − Pt+1 + 8η
3/2
t+1(4L

2n+ σ2).

Now, we sum this inequality from t = 1 to T :
T∑

t=1

√
ηtE∥St∥2F ≤

T∑
t=1

(
Pt − Pt+1 + 8η

3/2
t+1(4L

2n+ σ2)
)

= (P1 − PT+1) + 8(4L2n+ σ2)

T∑
t=1

η
3/2
t+1.

Since PT+1 ≥ 0, we can drop this term to simplify the bound. By setting the step size ηt = t−2/3,
we have η

3/2
t+1 = ((t+ 1)−2/3)3/2 = (t+ 1)−1. The summation becomes:

T∑
t=1

√
ηtE∥St∥2F ≤ P1 + 8(4L2n+ σ2)

T∑
t=1

1

t+ 1

≤ P1 + 8(4L2n+ σ2)

T∑
t=1

1

t

(◦)
≤ P1 + 8(4L2n+ σ2)(1 + lnT ),

(17)

where (◦) follows from the harmonic series,
∑T

t=1
1
t ≤ 1 + lnT .

Finally, we establish the bound on the time-averaged expectation. With our choice of ηt = t−2/3,
we have

√
ηt = t−1/3. Therefore:

1

T

T∑
t=1

E∥St∥2F =
1

T

T∑
t=1

t1/3 · t−1/3E∥St∥2F

=
1

T

T∑
t=1

t1/3
√
ηtE∥St∥2F

≤ T 1/3

T

T∑
t=1

√
ηtE∥St∥2F (since t1/3 ≤ T 1/3 for t ≤ T )

(◦)
≤ T 1/3

T

(
P1 + 8(4L2n+ σ2)(1 + lnT )

)
=

P1 + 8(4L2n+ σ2)(1 + lnT )

T 2/3
,

where (◦) follows from the inequality (17).

Substituting P1 = 4E∥S1∥2F /
√
η1 = 4E∥S1∥2F completes the main proof. To establish the final

bound, we now analyze the initial term P1. Given the definition S1 = ∇f(X1)−M1, we have:
P1 = 4E∥∇f(X1)−M1∥2F

= 4E∥∇f(X1)− (1− β1 + γ1β1)∇f(X1; ξ1)∥2F
= 4E∥∇f(X1)−∇f(X1; ξ1)∥2F
(⋆)

≤ 4σ2.

The final inequality (⋆) holds by setting the parameter γ1 = γ = 1. This choice nullifies the first
term, as (γ1 − 1)2 = 0, and simplifies the coefficient of the variance to (1− β1 + β1)

2 = 1.
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D PROOFS OF THEOREM 3.2

Proof. According to Assumption 3.3, and based on the descent lemma, we have

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt),Xt+1 −Xt⟩+
L

2
∥Xt+1 −Xt∥2F

≤ f(Xt) + ⟨Mt,Xt+1 −Xt⟩+ ⟨∇f(Xt)−Mt,Xt+1 −Xt⟩+
L

2
∥Xt+1 −Xt∥2F

(◦)
≤ f(Xt)− ηt∥Mt∥∗ + ⟨∇f(Xt)−Mt,Xt+1 −Xt⟩+

L

2
∥Xt+1 −Xt∥2F

≤ f(Xt)− ηt∥Mt∥∗ +
1

2α
∥∇f(Xt)−Mt∥2F +

α+ L

2
∥Xt+1 −Xt∥2F

(⋆)

≤ f(Xt)− ηt∥Mt∥F +

√
ηt

2L
∥∇f(Xt)−Mt∥2F +

L√
ηt

+ L

2
∥Xt+1 −Xt∥2F ,

where (◦) holds because, by the definition of Ot and the property of norms ∥Mt∥∗ ≥ ∥Mt∥F , we
have:

⟨Mt,Xt+1 −Xt⟩ = −ηt⟨Mt,Ot⟩ = −ηt⟨Mt,UrV
⊤
r ⟩ = −ηt∥Mt∥∗ ≤ −ηt∥Mt∥F ,

and (⋆) holds by setting α = L√
ηt

. Thus, we have

T∑
t=1

ηtE∥Mt∥F ≤
T∑

t=1

(E[f(Xt)]− E[f(Xt+1)]) +

T∑
t=1

√
ηt

2L
E∥∇f(Xt)−Mt∥2F

+

T∑
t=1

L√
ηt

+ L

2
E∥Xt+1 −Xt∥2F

≤ f(X1)− f∗ +

T∑
t=1

√
ηt

2L
E∥∇f(Xt)−Mt∥2F +

T∑
t=1

L(η
3/2
t + η2t )

2
n

≤ f(X1)− f∗ +
1

2L

T∑
t=1

√
ηtE∥St∥2F +

Ln

2

T∑
t=1

t−1 +
Ln

2

T∑
t=1

t−4/3

(◦)
≤ f(X1)− f∗ +

4σ2 + 8(4L2n+ σ2)(1 + lnT )

2L

+
Ln

2
(1 + lnT ) +

Ln

2

T∑
t=1

t−4/3

(⋆)

≤ f(X1)− f∗ +
2σ2

L
+ 2Ln+ 4(4Ln+ σ2L−1)(1 + lnT ) +

Ln

2
(1 + lnT ),

where (◦) uses Lemma C.2; (⋆) follows from the fact that
∑T

t=1
1

t4/3
≤ 4. Next, we let

G = f(X1)− f∗ +
2σ2

L
+

(
16Ln+ 4σ2L−1 +

Ln

2

)
(1 + lnT ) + 2Ln.

Thus, we have

1

T

T∑
t=1

E∥Mt∥F ≤ 1

T

T∑
t=1

t2/3

t2/3
E∥Mt∥F

≤ T 2/3

T

T∑
t=1

1

t2/3
E∥Mt∥F =

1

T 1/3

T∑
t=1

ηtE∥Mt∥F

≤ G

T 1/3
.
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Next, we have

1

T

T∑
t=1

E∥∇f(Xt)−Mt∥F
(◦)
≤

√√√√ 1

T

T∑
t=1

E∥∇f(Xt)−Mt∥2F

(⋆)

≤
√

4σ2 + 8(4L2n+ σ2)(1 + lnT )

T 2/3
.

where (◦) uses Jensen’s inequality; (⋆) uses Lemma C.3 by letting St = ∇f(Xt)−Mt. Thus, we
have

1

T

T∑
t=1

E∥∇f(Xt)∥F ≤ 1

T

T∑
t=1

E∥∇f(Xt)−Mt∥F +
1

T

T∑
t=1

E∥Mt∥F

≤
√

4σ2 + 8(4L2n+ σ2)(1 + lnT )

T 2/3
+

G

T 1/3

= O
(
lnT

T 1/3

)
.

This completes the proof.

E LEMMAS FOR THEOREMS 3.3 AND 3.4

E.1 LEMMA E.1

Lemma E.1. Let {Γt}t≥1 be a non-negative sequence whose partial sum Dt =
∑T

t=1 Γt is bounded
by Dt ≤ A1 lnT + A2 for some positive constants A1 and A2. Define the function f(t) = t1−p

ln t

where p ∈ (0, 1). Fix T0 = 2e1/(1−p), where e is the base of the natural logarithm. Then, the
following inequality holds for all T > T0:

T−1∑
t=T0

Γtf(t) ≤ (A1 +A2) (T − 1)1−p.

Proof. We choose an integer T0 = 2e1/(1−p) > e1/(1−p) large enough such that for all t ≥ T0, the
function f(t) is positive and monotonically increasing. We use summation by parts to bound the
sum

∑T−1
t=T0

Γtf(t):
T−1∑
t=T0

Γtf(t) =

T−1∑
t=T0

(Dt−Dt−1)f(t) = DT−1f(T−1)−DT0−1f(T0)−
T−1∑
t=T0

Dt−1(f(t)−f(t−1)).

Since Dt−1 ≥ 0 and f(t) is monotonically increasing for t ≥ T0 (i.e., f(t)− f(t− 1) ≥ 0), the last
term,

∑T−1
t=T0

Dt−1(f(t)− f(t− 1)), is non-negative. Therefore, we have:
T−1∑
t=T0

Γtf(t) ≤ DT−1f(T − 1).

Substituting the given bound on the partial sums, DT−1 ≤ A1 ln(T − 1) +A2, we obtain:
T−1∑
t=T0

Γtf(t) ≤ (A1 ln(T − 1) +A2)
(T − 1)1−p

ln(T − 1)

=

(
A1 +

A2

ln(T − 1)

)
(T − 1)1−p

(◦)
≤ (A1 +A2)(T − 1)1−p,

where (◦) follows from ln(T − 1) ≥ 1 for sufficiently large T .

Consequently, for any given ϵ > 0, the expression can be bounded by (A1 + A2 + ϵ)T 1−p for
sufficiently large T .
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E.2 LEMMA E.2

Lemma E.2. Suppose a positive sequence {∆t}t≥1 satisfies the following recursive inequality:

∆t+1 ≤ ∆t −
√
2µ

tp

√
∆t + Γt,

where p ∈ (0, 1) and µ > 0 are constants. The non-negative noise sequence {Γt}t≥1 satisfies the
condition from Lemma E.1 that

∑T
t=1 Γt = A1 lnT + A2. Then, the sequence ∆t converges to 0

with the following rate:

∆t ≤
A2(1− p)2

C2
· (ln t)2

t2(1−p)
,

where A := A1 +A2 and C =
√
2µ
2 .

Proof. We define the variable Gt =
√
∆t.

Since ∆t > 0, it follows that Gt > 0. The function f(x) =
√
x is concave, which implies√

y −
√
x ≤ 1

2
√
x
(y − x) for any x, y > 0. By setting y = ∆t+1 and x = ∆t, we obtain:

Gt+1 −Gt ≤
∆t+1 −∆t

2Gt
.

Substituting the original recurrence relation ∆t+1 −∆t ≤ −
√
2µ
tp

√
∆t +Γt and noting that

√
∆t =

Gt, we have:

Gt+1 −Gt ≤
1

2Gt

(
−
√
2µ

tp
Gt + Γt

)
.

Letting C =
√
2µ
2 , T0 = 2e1/(1−p), we arrive at the core recurrence for Gt:

Gt+1 ≤ Gt −
C

tp
+

Γt

2Gt
(18)

For p ∈ (0, 1), we will prove that Gt ≤ A(1−p)
C · ln t

t1−p by contradiction.

Assume the proposition is false. This means that for any constant A > 0, there exist infinitely many
time steps t such that Gt > Bt, where Bt = A · ln t

t1−p .

We choose a constant A large enough (the specific condition will be derived later). By our assump-
tion, there must exist an arbitrarily large time T such that GT > BT . Consider an interval [T0, T−1]
and assume that Gt > Bt for all t in this interval.

Summing the inequality (18) from t = T0 to T − 1 gives:

GT −GT0 ≤
T−1∑
t=T0

(Gt+1 −Gt) ≤
T−1∑
t=T0

(
−C

tp
+

Γt

2Gt

)
.

Over this interval, since Gt > Bt = A ln t
t1−p , we have 1

Gt
< 1

Bt
= t1−p

A ln t . Substituting this bound
yields:

GT < GT0
− C

T−1∑
t=T0

1

tp︸ ︷︷ ︸
V1

+
1

2A

T−1∑
t=T0

Γtt
1−p

ln t︸ ︷︷ ︸
V2

.

Next, we analyze the asymptotic behavior of the two sums, V1 and V2.

For the negative drift term V1, we use an integral approximation:

T−1∑
t=T0

1

tp
≥
∫ T

T0

x−pdx =
1

1− p
(T 1−p − T 1−p

0 ).

The leading term of V1 is thus on the order of C
1−pT

1−p.
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For the positive noise term V2, we use the condition on the partial sums of Γt, St =
∑t

k=1 Γk ≤
A1 ln t + A2. Applying summation by parts (in a manner analogous to Lemma E.1), the dominant
behavior of the sum in V2 is given by ST−1 · (T−1)1−p

ln(T−1) . This can be bounded by ((A1 +A2) ln(T −

1)) (T−1)1−p

ln(T−1) = (A1 + A2)(T − 1)1−p. For simplicity in asymptotics, let us denote the effective
constant as A := A1 +A2. The leading behavior of V2 is thus on the order of A

2AT 1−p.

Substituting the leading terms of these bounds back into the inequality for GT :

GT < GT0 −
C

1− p
T 1−p +

A
2A

T 1−p = GT0 + T 1−p

(
A
2A

− C

1− p

)
.

We now choose the constant A such that the coefficient of the leading term is negative:

A
2A

− C

1− p
< 0 =⇒ A >

A(1− p)

2C
.

With an A satisfying this condition, for a sufficiently large T , the negative term proportional to
T 1−p will dominate, forcing the right-hand side to become negative. This contradicts the fact that
GT =

√
∆T must be positive.

This contradiction proves that our assumption that Gt can remain above Bt for an arbitrarily long
interval is false. Therefore, there must exist a time TA such that for all t > TA > T0 = 2e1/(1−p),
Gt ≤ Bt. This establishes that Gt = O

(
ln t
t1−p

)
.

Finally, by choosing the constant A = A(1−p)
C , squaring both sides of this result yields the conver-

gence rate for ∆t:

∆t = G2
t ≤ A2(1− p)2

C2
· (ln t)2

t2(1−p)

= O
(
(ln t)2

t2(1−p)

)
.

F PROOFS OF THEOREM 3.3

Proof. By Theorem 3.1 inequality (7), we have

E[f(Xt+1)] ≤ E[f(Xt)]− ηtE[∥∇f(Xt)∥F ] + Γt (19)

where

Γt =
η
2/3
t

L
E∥Mt −∇f(Xt)∥2F + (L/2 + Ln)η

4/3
t . (20)

Case 1: γ = 0.

Let ηt = t−3/4, βt = 1− t−1/2, αt = t−1/2. According to Theorem 3.1 inequality (9), we have

T∑
t=1

Γt ≤ A1 lnT +A2,

where A1 = 2L−1σ2 + 4
√
2Ln+ Ln+ L/2 and A2 = 4L−1σ2 + 4

√
2Ln+ Ln+ L/2.

Case 2: γ ̸= 0.

Let ηt = t−3/4, βt = 1 − (1 + t)−1/2, αt = t−1/2. According to Theorem 3.1 inequality (13), we
have

T∑
t=1

Γt ≤ A1 lnT +A2,

where A1 = 4L−1σ2 + 8
√
2Ln+ Ln+ L/2 and A2 = 10L−1σ2 + 8

√
2Ln+ Ln+ L/2.
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Then, we define ∆t = E[f(Xt)]− f∗ . Applying Assumption 3.5 to inequality (19), we have

∆t+1 ≤ ∆t − ηt
√
2µ∆t + Γt

= ∆t −
√
2µ

t3/4

√
∆t + Γt.

By Lemma E.2, let Gt =
√
∆t, C =

√
2µ/2 and p = 3/4.

Gt+1 ≤ Gt −
C

t3/4
+

Γt

2Gt
.

Setting p = 3/4, for any constant A > (A1+A2)(1−p)
2C = A1+A2

8C , there exists a time step TA such
that for all t > TA, we have Gt ≤ A · ln t

t1/4
. By choosing A = A

4C , we satisfy the condition A > A
8C ,

which ensures this bound holds. Thus, we obtain the convergence rate for ∆t:

∆t ≤
A2(1− 3/4)2

C2
· (ln t)2

t2(1−3/4)
=

A2

8µ
· (ln t)

2

t1/2

We can now summarize the results for both scenarios. In either case (γ = 0 or γ ̸= 0), the analysis
yields the same asymptotic convergence rate. For any number of iterations T > T0 = 2e4, the
analysis leads to the same asymptotic upper bound:

E[f(XT+1)]− f∗ ≤ A2

8µ
· (lnT )

2

T 1/2
= O

(
(lnT )2

T 1/2

)
.

The specific definition of A is as follows: (i) Case 1 (γ = 0): A = 6L−1σ2 + 8
√
2Ln+ 2Ln+ L.

(ii) Case 2 (γ ̸= 0): A = 14L−1σ2 + 16
√
2Ln+ 2Ln+ L.

This completes the proof.

G PROOFS OF THEOREM 3.4

Proof. According to Theorem 3.2, we have

f(Xt+1) ≤ f(Xt)− ηt∥Mt∥F +

√
ηt

2L
∥∇f(Xt)−Mt∥2F +

L√
ηt

+ L

2
∥Xt+1 −Xt∥2F .

Since ηt ≤ 1, we have L√
ηt

≥ L. Thus, taking the expectation yields

E[f(Xt+1)] ≤ E[f(Xt)]− ηtE[∥Mt∥F ] +
√
ηt

2L
E[∥∇f(Xt)−Mt∥2F ] +

L
√
ηt
E[∥XT+1 −Xt∥2F ]

≤ E[f(Xt)]− ηtE[∥Mt∥F ] +
√
ηt

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

3/2
t

(◦)
≤ E[f(Xt)]− ηtE[∥∇f(Xt)∥F ] + ηtE[∥∇f(Xt)−Mt∥F ]

+

√
ηt

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

3/2
t

(⋆)

≤ E[f(Xt)]− ηtE[∥∇f(Xt)∥F ] +
1

2ϵ
η2t +

ϵ

2
E[∥∇f(Xt)−Mt∥2F ]

+

√
ηt

2L
E[∥∇f(Xt)−Mt∥2F ] + Lnη

3/2
t

(•)
= E[f(Xt)]− ηtE[∥∇f(Xt)∥F ]

+
Lη

3/2
t

2
+

(
ϵ

2
+

√
ηt

2L

)
E[∥∇f(Xt)−Mt∥2F ] + Lnη

3/2
t︸ ︷︷ ︸

Γt

,

where (◦) follows from the reverse triangle inequality −∥Mt∥F ≤ ∥∇f(Xt) − Mt∥F −
∥∇f(Xt)∥F ; (⋆) applies Young’s inequality to the term ηtE[∥∇f(Xt) − Mt∥F ]; and (•) collects
the residual terms into Γt. By setting ϵ =

√
ηt

L , we can simplify the expression for Γt:
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Γt =

√
ηt

L
E[∥St∥2F ] + (L/2 + Ln)η

3/2
t , (21)

where St = ∇f(Xt)−Mt. The sum of these terms can be bounded. Let A1 = 33Ln+8L−1σ2 +
L/2 and A2 = 33Ln+ 12L−1σ2 + L/2. We have

T∑
t=1

Γt =
1

L

T∑
t=1

√
ηtE[∥St∥2F ] +

T∑
t=1

(L/2 + Ln)η
3/2
t

≤ 1

L

T∑
t=1

√
ηtE[∥St∥2F ] + (L/2 + Ln)

T∑
t=1

1

t

(◦)
≤ 4σ2 + 8(4L2n+ σ2)(1 + lnT )

L
+ (L/2 + Ln)(1 + lnT )

= A1 lnT +A2,

where (◦) holds by Lemma C.3 inequality (17).

Next, let ∆t = E[f(Xt)]− f∗. By applying the Assumption 3.5, ∥∇f(Xt)∥2F ≥ 2µ(f(Xt)− f∗),
and Jensen’s inequality to the main recurrence, we obtain

∆t+1 ≤ ∆t − ηtE[∥∇f(Xt)∥F ] + Γt

≤ ∆t − ηt
√

2µE[f(Xt)− f∗] + Γt

≤ ∆t − ηt
√
2µ∆t + Γt.

Setting the step size ηt = 1/t2/3, the recurrence becomes

∆t+1 ≤ ∆t −
√
2µ

t2/3

√
∆t + Γt.

This recurrence is in the form required by Lemma E.2. Let Gt =
√
∆t, C =

√
2µ/2 and p = 2/3.

According to Lemma E.2, for any constant A > (A1+A2)(1−p)
2C = A1+A2

6C , there exists a time TA

such that for all t > TA, Gt ≤ A · ln t
t1/3

. We choose a specific constant A = A
3C , where A :=

A1 + A2 = 20L−1σ2 + 66Ln + L. Squaring both sides of the inequality for Gt establishes the
convergence rate for ∆t = G2

t :

∆t ≤ A2 · (ln t)
2

t2/3
=

A2

9C2

(ln t)2

t2/3
=

2A2

9µ

(ln t)2

t2/3

Therefore, for any number of iterations T > T0 = 2e3, the expected suboptimality has the following
asymptotic bound:

E[f(XT+1)]− f∗ ≤ 2A2

9µ
· (lnT )

2

T 2/3
= O

(
(lnT )2

T 2/3

)
.

This completes the proof.

H EXPERIMENTAL DETAILS

H.1 TRAINING ON CIFAR10

The ResNet18 model He et al. (2016) undergoes pretraining on the CIFAR-10 dataset with compre-
hensive hyperparameter specifications provided in Table 2. For each optimizer, the learning rate is
selected via a grid search over the set {1× 10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 10−1}.
To ensure a robust comparison, all experiments are repeated over five different random seeds, and we
report the mean results with one standard deviation shaded. For the ResNet-18 model, we reshape
each convolutional kernel into a 2D matrix and apply a Muon-type optimizer to these parameters,
while the remaining 1D vector parameters are optimized with AdamW.
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Table 2: Hyperparameters used for training ResNet18 on CIFAR10

SGD Adam Muon Muon-MVR1 Muon-MVR2
Model Size 42.7M
Training Epochs 100
Batch Size 128
Learning Rate 0.1 0.01 0.05
Learning Rate Scheduling cosine to 10%
Numerical precision float32
Weight Decay 0.01
(β1, β2) % (0.9,0.999) %

Muon-Momentum % % 0.9
Gamma % % % 0.1

Table 3: Hyperparameters used for training LLaMA2-130M on C4

Hyper-parameter AdamW MARS-AdamW Muon Muon-MVR1 Muon-MVR2
Max Learning Rate 8e-4 1e-3 8e-4 2e-3 2e-3
Warmup Ratio 0.1
Batch Size 128
Maximum Length 4096
Weight Decay 0.1
(β1, β2) (0.9,0.98)
Muon-Momentum % % 0.95
Gamma % 0.025 % 0.05

H.2 PRETRAINING ON C4

▶ Experimental setup. We use 48 Ascend 910C (64GB) NPUs for all experiments. For the addi-
tional experiments, we conduct hyperparameter sweeps for LLaMA2-130M Touvron et al. (2023)
trained for 12B tokens on the C4 (Colossal Clean Crawled Corpus) dataset Raffel et al. (2020). For
all optimizers (AdamW, MARS-AdamW, Muon, Muon-MVR1, and Muon-MVR2), we keep the
model architecture and training data fixed. For LLaMA2-130M, we use a global batch size of 128
and a maximum sequence length of 4096. For each optimizer we train all configurations on the 4×
Chinchilla data about 12B tokens for 20,000 steps and select the hyperparameters that achieve the
best validation performance.

▶ Hyperparameter search. Comprehensive experimental specifications are tabulated in Table 3.
For AdamW, we set (β1, β2) = (0.9, 0.98), ϵ = 10−8, and a weight decay of 0.1. The learning
rate η is selected from the set {3e−4, 5e−4, 8e−4, 1e−3, 2e−3, 4e−3, 6e−3, 8e−3}. For MARS-
AdamW, we use the same (β1, β2) = (0.9, 0.98), ϵ = 10−8, and weight decay of 0.1, and we
search over the same learning-rate set for η. In addition, we sweep over the algorithmic parameter
γ ∈ {0.01, 0.025, 0.05}.

For Muon, we set β = 0.95 and a weight decay of 0.1, and we again choose the learning rate η
from {3e−4, 5e−4, 8e−4, 1e−3, 2e−3, 4e−3, 6e−3, 8e−3}. Muon-MVR1 and Muon-MVR2 use
the same settings β = 0.98 and weight decay of 0.1, and share the same learning-rate search space
as Muon. For both Muon-MVR1 and Muon-MVR2, we additionally perform a sweep over γ ∈
{0.01, 0.025, 0.05}. We use the Muon implementation from Moonlight1. For LLaMA model, we
optimize all 2D matrix parameters (except the embedding layers) using a Muon-type optimizer,
while the remaining 1D vector parameters (including the embedding layers) are optimized with
AdamW.

I LLM USAGE

A large language model (LLM) was used to aid in the polishing of this paper’s writing.
1https://github.com/MoonshotAI/Moonlight
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