

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ON THE CONVERGENCE OF MUON AND BEYOND

Anonymous authors

Paper under double-blind review

ABSTRACT

The Muon optimizer has demonstrated remarkable empirical success in handling matrix-structured parameters for training neural networks. However, a significant gap remains between its practical performance and theoretical understanding. Existing analyses show that the Muon variants achieve only a suboptimal iteration complexity of $\mathcal{O}(T^{-1/4})$ in stochastic non-convex settings, where T denotes the number of iterations. To explore the theoretical limits of the Muon framework, we analyze two Momentum-based Variance-Reduced variants: a one-batch version (Muon-MVR1) and a two-batch version (Muon-MVR2). We provide the first rigorous proof that incorporating variance reduction enables Muon-MVR2 to attain the optimal iteration complexity of $\tilde{\mathcal{O}}(T^{-1/3})$, thereby matching the theoretical lower bound for this class of problems. Furthermore, our analysis establishes last-iterate convergence guarantees for Muon variants under the Polyak-Łojasiewicz (PL) condition. Extensive experiments on vision (CIFAR-10) and language (C4) benchmarks corroborate our theoretical findings on per-iteration convergence. Overall, this work offers the first proof of optimality for a Muon-style optimizer and clarifies the path toward developing more practically efficient, accelerated variants.

1 INTRODUCTION

The immense computational cost of pre-training Large Language Models (LLMs) has spurred a surge of research into novel optimization methods designed to enhance parameter efficiency and training stability Hoffmann et al. (2022); Liu et al. (2023); Chen et al. (2023); Vyas et al. (2025); Pethick et al. (2025); Yuan et al. (2024). Among these, methods based on matrix orthogonalization have recently garnered significant attention from both academia and industry Jordan et al. (2024); Liu et al. (2025a). In particular, the Muon optimizer has emerged as a notable milestone due to its impressive empirical performance Liu et al. (2025a); An et al. (2025); Liu et al. (2025b); Shah et al. (2025). However, despite its practical success, the theoretical understanding of Muon’s underlying mechanisms has surprisingly lagged behind, with existing convergence analyses being fraught with limitations and even critical fallacies.

Specifically, the current theoretical exploration of Muon’s convergence faces three primary obstacles. First, existing analyses have not established convergence to a stationary point without reliance on problem dimension or batch size; the available bounds become valid only when the batch size is sufficiently large, so the basic requirement for a trustworthy optimizer remains unfulfilled Sato et al. (2025); Sfyra & Wang (2025). Second, some analyses are predicated on flawed mathematical assumptions, such as the erroneous use of the inequality $\|\mathbf{S}^{-1}\|_2 \leq 1/\|\mathbf{S}\|_2$ in a key part of their proof, which casts serious doubt on the validity of their convergence claims Li & Hong (2025). Finally, the most rigorous existing work analyzes both the standard Muon algorithm (like Algorithm 1, Option MVR1 with $\gamma = 0$) and its simplified variant , considering their convergence to a non-standard ϵ -nuclear norm stationary point. This leaves the behavior of the Nesterov-Accelerated Muon algorithm (like Algorithm 1, Option MVR1), as discussed in Liu et al. (2025a); Sato et al. (2025), and Variance-Reduction Muon (like Algorithm 1, Option MVR2) under standard settings as an open question Shen et al. (2025).

To bridge this critical theoretical gap, this work establishes a rigorous and complete theoretical foundation for the Muon optimizer. Our main contributions are threefold:

054 • For general non-convex settings, we provide a convergence analysis for both the standard
 055 Muon (Algorithm 1, Option MVR1 with $\gamma = 0$) and the Muon-MVR1 algorithm (Algo-
 056 rithm 1, Option MVR1).
 057

058 • Regarding iteration complexity, we provide, to the best of our knowledge, the first analysis
 059 showing that, in an [unconstrained Muon-style setting](#), the [variance-reduced Muon-MVR2](#)
 060 [algorithm \(Algorithm 1, Option MVR2\)](#) attains the $\tilde{\mathcal{O}}(T^{-1/3})$ convergence rate, matching
 061 the [best-known complexity for variance-reduced momentum methods](#).
 062

063 • Under the Polyak-Łojasiewicz (PL) condition, we prove that our proposed algorithms,
 064 Muon-MVR1, and Muon-MVR2, all achieve sublinear convergence rates. More precisely,
 065 we demonstrate that Muon-MVR1 converge at a rate of $\tilde{\mathcal{O}}(T^{-1/2})$, and Muon-MVR2 con-
 066 verges at an accelerated rate of $\tilde{\mathcal{O}}(T^{-2/3})$
 067

068 Table 1 summarizes the main contributions of our work and compares them with existing methods.
 069

070
 071 Table 1: Comparison of Existing Muon-type Analyses with Ours.
 072

	Smooth ^a	Stoc. Gradient Estimator ^b	Batch Size	Iteration Complexity	Last-iterate Conv. Rate
Li & Hong (2025)	L	MVR1($\gamma = 0$)	$\mathcal{O}(1)$	$\mathcal{O}(T^{-1/4})$	✗
Sato et al. (2025)	L	MVR1($\gamma = 0$)	$\mathcal{O}(\epsilon^{-1})$	$\mathcal{O}(T^{-1}) + \mathcal{O}(1)^c$	✗
Sato et al. (2025)	L	MVR1	$\mathcal{O}(\epsilon^{-1})$	$\mathcal{O}(T^{-1}) + \mathcal{O}(1)^c$	✗
Sfyraiki & Wang (2025)	L_+	MVR2	$\mathcal{O}(\epsilon^{-1})^d$	$\mathcal{O}(T^{-1/3})$	✗
Shen et al. (2025)	L	MVR1($\gamma = 0$)	$\mathcal{O}(1)$	$\mathcal{O}(T^{-1/4})$	✗
Ours	L	MVR1($\gamma = 0$)	$\mathcal{O}(1)$	$\tilde{\mathcal{O}}(T^{-1/4})$	$\tilde{\mathcal{O}}(T^{-1/2})$
Ours	L	MVR1	$\mathcal{O}(1)$	$\tilde{\mathcal{O}}(T^{-1/4})$	$\tilde{\mathcal{O}}(T^{-1/2})$
Ours	L_+	MVR2	$\mathcal{O}(1)$	$\tilde{\mathcal{O}}(T^{-1/3})$	$\tilde{\mathcal{O}}(T^{-2/3})$

084 ^a L pertains to the smoothness of the overall function f , while L_+ pertains to the smoothness of its stochastic
 085 components $f(\cdot; \xi)$.
 086

087 ^b Option MVR1 ($\gamma = 0$) is the standard momentum method, Option MVR1 is the one-batch variance-reduction
 088 momentum method, and Option MVR2 is the two-batch variance-reduction momentum method. We summarize
 089 them in Algorithm 1.

090 ^c Although increasing the batch size can mitigate the impact of stochastic noise Sato et al. (2025), these methods
 091 still fail to converge to a stationary point and cannot eliminate the influence of dimensionality.
 092

093 ^d The results from Sfyraiki & Wang (2025) on Option MVR2 are the closest to ours. However, their method
 094 requires a large initial batch of size $\mathcal{O}(\epsilon^{-1})$, although the batch size can be reduced to 1 in subsequent iterations.
 095

096 • **Organizations.** The rest of the paper is organized as follows. Section 2 reviews existing variants
 097 of the Muon algorithm. Section 3 addresses iteration complexity and last-iterate convergence rate.
 098 Section 5 presents experimental results demonstrating the effectiveness of our method. Related work
 099 is reviewed in Section 6, and conclusions are drawn in Section 7.
 100

101 • **Notations.** We denote scalars by non-bold letters (e.g., a, A), vectors in \mathbb{R}^d by bold lowercase
 102 letters (e.g., \mathbf{a}), and matrices by bold uppercase letters (e.g., \mathbf{A}). The space \mathbb{R}^d is endowed with the
 103 Euclidean inner product $\langle \mathbf{x}, \mathbf{y} \rangle_2 := \mathbf{x}^\top \mathbf{y}$ and norm $\|\mathbf{x}\|_2$. For matrices, we employ the Frobenius
 104 inner product $\langle \mathbf{A}, \mathbf{B} \rangle_F := \text{tr}(\mathbf{A}^\top \mathbf{B})$ and the corresponding norm $\|\mathbf{A}\|_F$. The nuclear norm, denoted
 105 by $\|\mathbf{A}\|_*$, is defined as the sum of the singular values of the matrix, $\|\mathbf{A}\|_* = \sum_i \sigma_i(\mathbf{A})$. Throughout
 106 the paper, $[m]$ denotes the set of integers $\{1, 2, \dots, m\}$, and \mathbb{N} denotes the set of non-negative
 107 integers. The model is parameterized by a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$. Without loss of generality, we
 108 assume $m \geq n$, so the rank of the matrix is at most n . The model is optimized by minimizing the
 109 empirical loss function $f(\mathbf{X}) := \frac{1}{N} \sum_{i \in [N]} f_i(\mathbf{X})$, where N is the number of training data points,
 110 and $f_i(\mathbf{X})$ is the loss function for $\mathbf{X} \in \mathbb{R}^{m \times n}$ with respect to the i -th training data point \mathbf{z}_i (for
 111 $i \in [N]$). Let ξ be a random variable that is independent of $\mathbf{X} \in \mathbb{R}^{m \times n}$, and let $\mathbb{E}_\xi[\mathbf{X}]$ denote the
 112 expectation of a random variable \mathbf{X} with respect to ξ .
 113

108 **2 REVISITING THE MUON ALGORITHMS**
109110 We consider the following optimization problem:
111

112
$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} f(\mathbf{X}), \text{ where } f(\mathbf{X}) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(\mathbf{X}; \xi)], \quad (1)$$

113

114 where $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is the loss function, \mathbf{X} denotes the decision variable, and ξ represents a
115 random variable (e.g., a training data sample) drawn from an unknown distribution \mathcal{D} . We assume
116 that f is differentiable and possibly nonconvex.
117118 The Muon optimizer begins by computing a momentum-based variance-reduced gradient update,
119 similar in spirit to ADAM Kingma & Ba (2014), STORM Cutkosky & Orabona (2019), and SGD
120 with Nesterov momentum Sutskever et al. (2013). The momentum term \mathbf{M}_t is then projected onto
121 the set of orthogonal matrices. This orthogonalization step equalizes the singular values, ensuring
122 that no principal component direction dominates the optimization. Finally, the resulting scaled or-
123 gonal matrix is used to update the model parameters. The Muon algorithm is summarized in
124 Algorithm 1.
125126 **Algorithm 1 Muon-style Algorithm**
127128 1: **Input:** Initial parameters $\mathbf{X}_0 \in \mathbb{R}^{m \times n}$, learning rate $\eta_t > 0$, momentum parameter $\beta_t \in [0, 1)$,
129 variance-reduction parameter $\gamma \in [0, 1]$, initial momentum $\mathbf{M}_0 = 0$, $\nabla f(\mathbf{X}_0; \xi) = 0$.
130 2: **for** $t = 1$ **to** T **do**
131 3: Compute stochastic gradient: $\nabla f(\mathbf{X}_t; \xi_t)$
132 4: **Option MVR1: One-batch Momentum Variance-Reduction (MVR1)**
133 5: $\mathbf{M}_t = \beta_t \mathbf{M}_{t-1} + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t) + \gamma \cdot \beta_t \cdot (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_{t-1}))$
134 6: **Option MVR2: Two-batch Momentum Variance-Reduction (MVR2)**
135 7: $\mathbf{M}_t = \beta_t \mathbf{M}_{t-1} + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t) + \gamma \cdot \beta_t \cdot (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_t))$
136 8: $\mathbf{O}_t \in \arg \min_{\mathbf{O}} \|\mathbf{O} - \mathbf{M}_t\|_F$, s.t. $\mathbf{O}^\top \mathbf{O} = \mathbf{I}_n$
137 9: $\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \mathbf{O}_t$
10: 10: **end for**
11: 11: **Output:** Final parameters \mathbf{X}_t 138 This orthogonalization step can be obtained from the Singular Value Decomposition (SVD) of \mathbf{M}_t :
139

140
$$\mathbf{M}_t = \mathbf{U} \Sigma \mathbf{V}^\top, \quad \mathbf{O}_t = \mathbf{U} \mathbf{V}^\top.$$

141 Equivalently, we have $\mathbf{O}_t = (\mathbf{M}_t \mathbf{M}_t^\top)^{-1/2} \mathbf{M}_t$, which shows that orthogonalization reduces to com-
142 puting an inverse square root rather than a full SVD. Since forming and decomposing $\mathbf{M}_t \mathbf{M}_t^\top$ re-
143 mains costly, the popular Muon implementation Jordan et al. (2024) uses the quintic Newton–Schulz
144 iteration to approximate the inverse square root. This recurrence converges in only a few steps (typ-
145 ically five), producing a numerically stable, rank-preserving orthogonalization of \mathbf{M}_t that is nearly
146 as accurate as SVD but far more efficient.
147148 Algorithm 1 incorporates two distinct strategies for momentum-based variance reduction, termed
149 Muon-MVR1 and Muon-MVR2. These options present a fundamental trade-off between computa-
150 tional efficiency and theoretical rigor. MVR2 implements a principled variance reduction scheme
151 at the cost of two gradient evaluations per step, while MVR1 serves as a computationally cheaper,
152 single-gradient approximation. We detail both below.
153154 **► Option 1: Muon-MVR1 (One-batch Approximation).** The first option, MVR1, augments the
155 classical momentum update with a variance-reducing term that reuses the gradient from the previous
156 step:
157

158
$$\mathbf{M}_t = \beta_t \mathbf{M}_{t-1} + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t) + \gamma \cdot \beta_t \cdot (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_{t-1})). \quad (2)$$

159 The primary advantage of this formulation is its computational efficiency, as it requires only one
160 stochastic gradient evaluation per iteration. This update rule is flexible:
161(i) When $\gamma = 0$, Rule (2) degenerates to the standard exponential moving average (EMA) of gradi-
162 ents (Rule (3)), a stochastic gradient estimator widely used in optimizers like Adam Kingma & Ba
163 (2014).
164

165
$$\mathbf{M}_t = \beta_t \mathbf{M}_{t-1} + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t). \quad (3)$$

(ii) By setting $\beta_t = \mu$ and $\gamma = 1 - \mu$, the update rule (2) yields a momentum term that, after rescaling by $1/(1 - \mu)$, satisfies the recurrence $\tilde{\mathbf{M}}_t = \mu\tilde{\mathbf{M}}_{t-1} + \nabla f(\mathbf{X}_t; \xi_t) + \mu(\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_{t-1}))$. This form is algebraically equivalent to the standard Muon optimizer Jordan et al. (2024); Liu et al. (2025a) derived from Eq. (4) Yuan et al. (2024), and inherently implements Nesterov acceleration via a first-order Taylor approximation of the gradient Xie et al. (2024).

$$\begin{aligned} \mathbf{C}_t &= \mu\mathbf{C}_{t-1} + \nabla f(\mathbf{X}_t; \xi_t), \\ \mathbf{M}_t &= \mu\mathbf{C}_t + \nabla f(\mathbf{X}_t; \xi_t). \end{aligned} \quad (4)$$

► **Option 2: Muon-MVR2 (Two-batch Principled VR).** The second option, MVR2, incorporates a more rigorous variance-reduction mechanism inspired by methods like SPIDER Fang et al. (2018), STORM Cutkosky & Orabona (2019), SVRG Zhou et al. (2020), SUPER-Adam Huang et al. (2021), and MARS Yuan et al. (2024):

$$\mathbf{M}_t = \beta_t \mathbf{M}_{t-1} + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t) + \gamma \cdot \beta_t \cdot (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_t)). \quad (5)$$

The key distinction from MVR1 is the correction term. MVR2 subtracts the gradient computed on the previous parameters but with the current mini-batch, i.e., $\nabla f(\mathbf{X}_{t-1}; \xi_t)$. This modification is crucial as it is designed to directly cancel the variance introduced by the mini-batch ξ_t Cutkosky & Orabona (2019); Huang et al. (2021); Yuan et al. (2024). However, this theoretical benefit comes at the cost of requiring two gradient evaluations per step. MVR1 can be formally understood as a practical approximation of MVR2. The difference between their update rules is a single noise term, $\Delta_{t-1}^{\text{Noise}} = \nabla f(\mathbf{X}_{t-1}; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_{t-1})$. Under the standard assumption of bounded variance ($\mathbb{E}_{\xi}[\|\nabla f(\mathbf{X}; \xi) - \nabla f(\mathbf{X})\|_F^2] \leq \sigma^2$), the variance of this noise is well-controlled, satisfying $\mathbb{E}[\|\Delta_{t-1}^{\text{Noise}}\|_F^2] \leq 2\sigma^2$. While MVR1 is often sufficient in practice, this structural difference leads to fundamentally different theoretical guarantees. The principled variance cancellation in MVR2 allows our algorithm to achieve a superior iteration complexity of $\tilde{\mathcal{O}}(T^{-1/3})$, as we will formally establish in Theorem 3.2.

3 CONVERGENCE ANALYSIS

We begin our analysis by situating it within the established context of first-order stochastic optimization. The $\mathcal{O}(T^{-1/4})$ iteration complexity is a well-known bottleneck for methods like SGD, and recent work by Shen et al. (2025) confirmed this limitation for the standard Muon algorithm. Accordingly, our first step in this section is to analyze the Muon-MVR1 variant and formally reaffirm this baseline iteration complexity in Theorem 3.1. While the rate itself is standard, our primary contribution here lies in the novel and unified analytical framework we develop to prove it, as this framework will be instrumental for subsequent results.

Our analysis is conducted under a diminishing stepsize schedule, a standard setting that guarantees convergence to an optimal solution. Nevertheless, our theoretical framework is general enough to encompass the constant-stepsize setting, where it yields a tighter convergence bound devoid of the logarithmic factor $\ln(T)$.

To facilitate the analysis of convergence for Muon, we make the following assumptions:

Assumption 3.1. *The function f is bounded from below. There exists $f^* > -\infty$ such that $f(\mathbf{X}) \geq f^*$, for all $\mathbf{X} \in \mathbb{R}^{m \times n}$.*

Assumption 3.2. *The function f is L -smooth: $\|\nabla f(\mathbf{Y}) - \nabla f(\mathbf{X})\|_F \leq L\|\mathbf{Y} - \mathbf{X}\|_F$.*

Assumption 3.3. *The function f is L -smooth for any ξ : $\|\nabla f(\mathbf{Y}; \xi) - \nabla f(\mathbf{X}; \xi)\|_F \leq L\|\mathbf{Y} - \mathbf{X}\|_F$.*

Assumption 3.4. *The variance of unbiased stochastic gradient is finite. Specifically, there exists a constant $\sigma > 0$ such that for all $\mathbf{X} \in \mathbb{R}^{m \times n}$, the following holds: $\mathbb{E}[\nabla f(\mathbf{X}; \xi)] = \nabla f(\mathbf{X})$ and $\mathbb{E}\|\nabla f(\mathbf{X}; \xi) - \nabla f(\mathbf{X})\|_F^2 \leq \sigma^2$.*

These assumptions are quite common Zhou et al. (2018); Chen et al. (2018); Huang et al. (2021); Guo et al. (2021); Li et al. (2023); Wang et al. (2023); Xie et al. (2024); Yuan et al. (2024).

3.1 EROGDIC CONVERGENCE OF MUON

In this subsection, we establish the ergodic convergence of Muon-MVR1 and Muon-MVR2.

216 3.1.1 OPTION MVR1
217

218 We begin our analysis with Option MVR1, a straightforward implementation of one-batch
219 momentum-based variance reduction. The following theorem establishes its ergodic convergence
220 rate, demonstrating that the algorithm converges to a stationary point at a rate of $\tilde{\mathcal{O}}(T^{-1/4})$ for
221 specific choices of learning rate and momentum schedules.

222 **Theorem 3.1.** *Suppose Assumptions 3.1, 3.2, and 3.4 hold. Consider Algorithm 1 with a learning
223 rate of $\eta_t = t^{-3/4}$. The expected average squared norm of the gradient is bounded for the following
224 options:*

225 1. *For **Option MVR1** ($\gamma = 0$), with momentum parameter $\beta_t = 1 - t^{-1/2}$, the bound is given
226 by:*

$$228 \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \leq \frac{f(\mathbf{X}_1) - f^*}{T^{1/4}} + \frac{A_1 \ln T + A_2}{T^{1/4}},$$

231 where $A_1 = 2L^{-1}\sigma^2 + 4\sqrt{2}Ln + Ln + L/2$ and $A_2 = 4L^{-1}\sigma^2 + 4\sqrt{2}Ln + Ln + L/2$.

232 2. *For **Option MVR1** ($\gamma_t = t^{-1/2}$), with momentum parameter $\beta_t = 1 - (t+1)^{-1/2}$, the
233 bound is given by:*

$$235 \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \leq \frac{f(\mathbf{X}_1) - f^*}{T^{1/4}} + \frac{A_1 \ln T + A_2}{T^{1/4}},$$

238 where $A_1 = 4L^{-1}\sigma^2 + 8\sqrt{2}Ln + Ln + L/2$ and $A_2 = 10L^{-1}\sigma^2 + 8\sqrt{2}Ln + Ln + L/2$.

240 See Appendix B for details.

241 **Remark 3.1.** Theorems 3.1 establishes that as $T \rightarrow \infty$, the leading terms diminish to zero, and
242 the algorithm converges to a neighborhood of a stationary point. The size of this neighborhood is
243 determined by the stochastic gradient variance, the learning rate, and the momentum parameter.
244 Notably, this convergence bound is free of any non-vanishing additive error term that depends on
245 the dimension n Sato et al. (2025). We absorb the dimensional dependence into the \mathcal{O} -notation to
246 define $\tilde{\mathcal{O}}$, which yields the following complexity for the algorithm:

$$248 \min_{t=1, \dots, T} \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \leq \tilde{\mathcal{O}}(T^{-1/4}).$$

250 3.1.2 OPTION MVR2
251

252 While prior work has established a iteration complexity of $\tilde{\mathcal{O}}(T^{-1/3})$ for variance-reduction in non-
253 convex settings for various algorithms, such as SGD Fang et al. (2018); Cutkosky & Orabona (2019);
254 Zhou et al. (2020) and Adam Huang et al. (2021); Yuan et al. (2024), the theoretical convergence
255 properties of this technique when applied to the Muon optimizer have remained an open question.
256 We bridge this theoretical gap in Theorem 3.2, which rigorously proves that Option MVR2 of Algo-
257 rithm 1 (Muon-MVR2) achieves the same $\tilde{\mathcal{O}}(T^{-1/3})$ iteration complexity in the general non-convex
258 setting.

259 **Theorem 3.2.** *Under Assumptions 3.1, 3.3, and 3.4, consider Algorithm 1 with **Option MVR2** and
260 update rule (5) parameters set as $\beta_t = 1 - \eta_t$, $\eta_t = t^{-2/3}$ for $t \geq 1$, and $\gamma = 1$. Then, the following
261 bounds hold:*

$$262 \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \leq \frac{\sqrt{4\sigma^2 + (32L^2n + 8\sigma^2)(1 + \ln T)}}{T^{1/3}} + \frac{G}{T^{1/3}},$$

265 where

$$267 G = f(\mathbf{X}_1) - f^* + 2\sigma^2L^{-1} + 2Ln + \left(16Ln + 4\sigma^2L^{-1} + \frac{Ln}{2}\right)(1 + \ln T).$$

269 See Appendix D for details.

270 **Remark 3.2.** *Theorem 3.2 shows that, for an unconstrained Muon-style algorithm with momentum-based variance reduction, we can match the current state-of-the-art $\tilde{\mathcal{O}}(T^{-1/3})$ iteration complexity in a practical fixed mini-batch setting.* This complements prior work Sfyraki & Wang (2025), which achieves the same rate using a growing batch size $b = \mathcal{O}(T^{1/3})$ to control gradient variance. This is achieved by a specific hyperparameter schedule in which the learning rate $\eta_t = t^{-2/3}$ and the momentum parameter $\beta_t = 1 - \eta_t$ are tightly coupled. This schedule balances optimization progress with control of the stochastic gradient variance.

277 **Remark 3.3.** As noted in Yuan et al. (2024), a more sophisticated, adaptive setting for the variance-reduction parameter γ can be employed. Specifically, by setting $\gamma = \gamma_t = 1 - \frac{A_t}{\beta_t}$, where A_t is defined in Lemma C.2, a key term in the analysis becomes $P_t = -\mathbb{E}\|\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_{t-1}; \xi_t)\|_F^2 \cdot A_t^2$, which is strictly negative. This leads to a tighter convergence bound, as it effectively introduces an additional beneficial term into the recurrence. However, computing this adaptive γ_t is often impractical as it depends on quantities that are difficult to estimate during training. Consequently, we adhere to the common and more practical approach of using a constant $\gamma \leq 1$.

284 **Remark 3.4.** For **Option MVR1**, the prefactor in the $\tilde{\mathcal{O}}(T^{-1/4})$ bound depends linearly on the noise variance and the dimension, i.e., it is of order $L^{-1}\sigma^2 + \ln n + L$, so there is no super-linear growth in n . For **Option MVR2**, the leading stochastic term behaves like $\sigma + L\sqrt{n}$ (up to a $\sqrt{1 + \ln T}$ factor), while the remaining constant term scales as $f(\mathbf{X}_1) - f^* + L^{-1}\sigma^2 + \ln n$, which reveals a mixed \sqrt{n} - and n -dependence. In contrast to standard parameter-agnostic complexity results for variance-reduced SGD and adaptive methods, which typically hide the dependence on L , σ , and n inside the $\tilde{\mathcal{O}}(\cdot)$ notation (see, e.g., Fang et al. (2018); Cutkosky & Orabona (2019); Zhou et al. (2020); Huang et al. (2021); Yuan et al. (2024)), our analysis keeps this structure explicit and highlights how the Muon geometry interacts with variance reduction in the matrix-valued setting.

293 3.2 NON-ERGODIC CONVERGENCE OF MUON

295 In this subsection, we examine the performance of Muon-MVR1 and Muon-MVR2 under the setting where the non-convex objective functions satisfy the Polyak-Łojasiewicz (PL) condition. Our analysis is based on the following additional assumption:

298 **Assumption 3.5.** We assume the function f is μ -PL, i.e., $\|\nabla f(\mathbf{X}_t)\|_F^2 \geq 2\mu(f(\mathbf{X}_t) - f^*)$.

300 **Remark 3.5.** The PL condition has been widely employed in the convergence analysis of various 301 first-order algorithms Karimi et al. (2016); Xie et al. (2020a); Li & Li (2022), though typically 302 under restricted settings. Note that if $f(\cdot)$ is strongly convex, then it is necessarily convex and 303 satisfies the PL condition. However, the converse does not hold in general; a counterexample is 304 given by $f(x) = x^2 + 3 \sin(2x)$.

305 **Theorem 3.3.** Suppose Assumptions 3.1, 3.2, 3.4, and 3.5 hold. Let $\{\mathbf{X}_t\}$ be the sequence of 306 iterates generated by Algorithm 1 with a step size of $\eta_t = t^{-3/4}$. We analyze the following two 307 **MVR1** schemes:

308 1. Scheme 1 ($\gamma = 0$): Using the update rule (3) with momentum $\beta_t = 1 - t^{-1/2}$. For this 309 case, we define the constant \mathcal{A}_1 as:

$$310 \quad \mathcal{A}_1 = 6L^{-1}\sigma^2 + (8\sqrt{2} + 2)Ln + L.$$

312 2. Scheme 2 ($\gamma_t = t^{-1/2}$): Using the update rule (2) with parameters $\beta_t = 1 - (t + 1)^{-1/2}$.
313 For this case, we define the constant \mathcal{A}_2 as:

$$314 \quad \mathcal{A}_2 = 14L^{-1}\sigma^2 + (16\sqrt{2} + 2)Ln + L.$$

316 Then, for either scheme $i \in \{1, 2\}$, there exists a constant $T_0 = 2e^4$ such that for all iterations 317 $T \geq T_0$, the expected suboptimality gap is bounded as follows:

$$318 \quad \mathbb{E}[f(\mathbf{X}_{T+1})] - f^* \leq \frac{\mathcal{A}_i^2}{8\mu} \cdot \frac{(\ln T)^2}{T^{1/2}}.$$

321 **Theorem 3.4.** Suppose Assumptions 3.1, 3.2, 3.4, and 3.5 hold. Let $\{\mathbf{X}_t\}$ be the sequence of iterates 322 generated by Algorithm 1 with **Option MVR2** (see update rule (5)). By setting the parameters to 323 $\eta_t = t^{-2/3}$, $\beta_t = 1 - t^{-2/3}$, and $\gamma = 1$, we define the constant \mathcal{A}_3 as :

$$324 \quad \mathcal{A}_3 = 20L^{-1}\sigma^2 + 66Ln + L.$$

324 Then, there exists a constant $T_0 = 2e^3$ such that for all iterations $T \geq T_0$, the expected suboptimality
 325 gap is bounded as follows:

$$327 \quad \mathbb{E}[f(\mathbf{X}_{T+1})] - f^* \leq \frac{2\mathcal{A}_3^2}{9\mu} \cdot \frac{(\ln T)^2}{T^{2/3}}. \\ 328$$

329 Detailed proofs for Theorems 3.3 and 3.4 are provided in Appendix F and G, respectively.
 330

331 **Remark 3.6.** Our non-ergodic convergence proofs are unified by a recursive inequality on the po-
 332 tential function $\Delta_t = \mathbb{E}[f(\mathbf{X}_t)] - f^*$:

$$333 \quad \Delta_{t+1} \leq \Delta_t - \frac{\sqrt{2\mu}}{t^p} \sqrt{\Delta_t} + \Gamma_t, \\ 334$$

335 where the error terms Γ_t satisfy $\sum_{i=1}^t \Gamma_i \leq \mathcal{O}(\ln t)$, and Γ_t is defined in the Appendix, equa-
 336 tions (20) and (21). The exponent $p \in (0, 1)$ dictates the final convergence rate. For Theorem 3.3,
 337 we establish this inequality with $p = 3/4$, which leads to a rate of $\tilde{\mathcal{O}}(T^{-1/2})$. The superior variance
 338 control in Theorem 3.4 enables a tighter analysis with $p = 2/3$, which in turn yields the accelerated
 339 convergence rate of $\tilde{\mathcal{O}}(T^{-2/3})$.
 340

342 4 CLARIFICATION OF THEORETICAL NOVELTY

343 **► Relation to concurrent work.** Our work is distinct from concurrent studies Sfyraiki & Wang
 344 (2025); Kovalev (2025) in setting and scope. Sfyraiki & Wang (2025) focuses on compact solution
 345 sets using a stochastic Frank–Wolfe scheme with constant step sizes; in contrast, we analyze the
 346 original Muon update without compactness assumptions, employing decaying step sizes to establish
 347 gradient-norm guarantees. Similarly, while Kovalev (2025) provides a general non-Euclidean trust-
 348 region framework yielding SGD-type $\mathcal{O}(\varepsilon^{-4})$ complexity, we exploit the specific Muon structure
 349 with variance reduction (MVR1/MVR2). This specialized analysis improves the rate to $\mathcal{O}(\varepsilon^{-3})$
 350 under the same stochastic assumptions and establishes PL-type non-ergodic guarantees distinct from
 351 the general framework.
 352

353 **► Relation to SGDM-style analyses.** While related to normalization-based gradient-scaling meth-
 354 ods Cutkosky & Mehta (2020; 2021); Chen et al. (2023), our analysis differs in three key aspects.
 355 (i) **Step sizes:** Unlike normalized SGDM Cutkosky & Mehta (2020) which typically uses constant
 356 or $\mathcal{O}(T^{-1/2})$ steps, MVR1/MVR2 employ decaying step sizes $\eta_t = \Theta(t^{-3/4})$ and $\Theta(t^{-2/3})$. This
 357 yields a sharper nonconvex complexity of $\tilde{\mathcal{O}}(\varepsilon^{-3})$ compared to the standard $\tilde{\mathcal{O}}(\varepsilon^{-4})$. (ii) **Manifold**
 358 **Optimization:** We analyze matrix-valued Muon on the Stiefel manifold using a practical two-batch
 359 MVR scheme, proving optimal order convergence with constant mini-batches—a setting not cov-
 360 ered by prior Euclidean MVR or parameter-free results Yang et al. (2023). (iii) **PL Analysis:** Under
 361 the PL condition, we establish non-ergodic convergence via a novel recursion involving $\sqrt{\Delta_t}$ rather
 362 than the standard linear form, necessitating a tailored analysis beyond existing techniques.
 363

364 5 EXPERIMENTS

365 In this section, we evaluate the performance of the Muon-variant optimizers on pretraining tasks.
 366 All experiments were conducted using 48x Ascend 910C (64GB) NPUs and 4x NVIDIA RTX 4090
 367 (24GB) GPUs. Detailed experimental settings are provided in Appendix H.

368 **► ResNet18 on CIFAR10 Dataset.** We train ResNet-18 He et al. (2016) on CIFAR-10
 369 for 100 epochs (batch size 128), comparing Muon variants against SGD and Adam over
 370 five random seeds. For each optimizer, the learning rate is tuned via grid search over
 371 $\{1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1\}$. As shown in Figures 1a and 1b, Muon variants
 372 demonstrate faster initial convergence and lower final test error than the baselines, with Muon-
 373 MVR2 achieving the best overall performance.
 374

375 **► LLaMA2 on C4 Dataset.** We pre-train LLaMA2-130M Touvron et al. (2023) on C4 to
 376 benchmark Muon-MVR variants against AdamW and MARS-AdamW. We perform a grid search
 377 over learning rates $\{3e-4, 5e-4, 8e-4, 1e-3, 2e-3, 4e-3, 6e-3, 8e-3\}$ and, for MARS-AdamW,
 378 Muon-MVR1, and Muon-MVR2, over the gamma parameter $\gamma \in \{0.01, 0.025, 0.05\}$. Models are

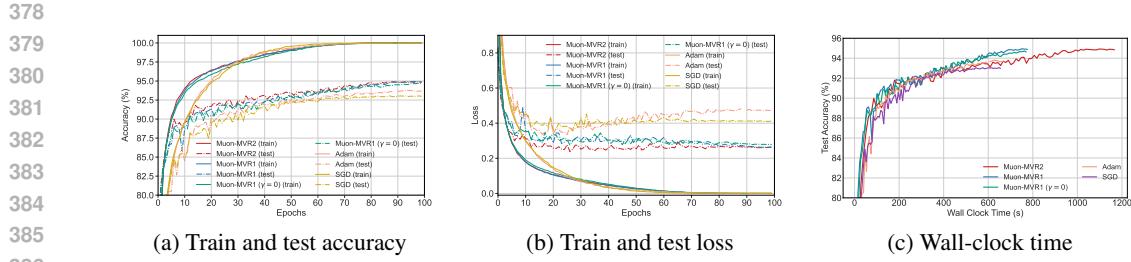


Figure 1: Training dynamics of Muon-MVR2, Muon-MVR1, Muon-MVR1 ($\gamma = 0$), and AdamW on CIFAR-10 with ResNet-18. The plots show (a) accuracy and (b) loss versus epochs for both training and testing, along with (c) test accuracy versus wall-clock time.

trained for 20k steps ($\sim 12B$ tokens); refer to Appendix H for full details. Figure 2 shows that while Muon-MVR2 achieves the lowest per-step loss, it doubles the wall-clock time. Consequently, we prioritize the highly efficient Muon-MVR1 in subsequent experiments, as it attains comparable performance despite the theoretical complexity gap.

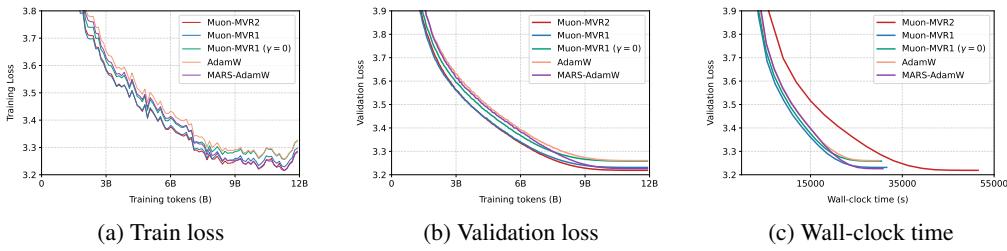


Figure 2: LLaMA2-130M train and validation curves on C4 Dataset Training dynamics of Muon-MVR2, Muon-MVR1, Muon-MVR1 ($\gamma = 0$), MARS-AdamW, and AdamW on C4 Dataset with LLaMA2-130M. The plots show (a) train loss and (b) validation loss, along with (c) validation loss versus wall-clock time using 8x Ascend 910C.

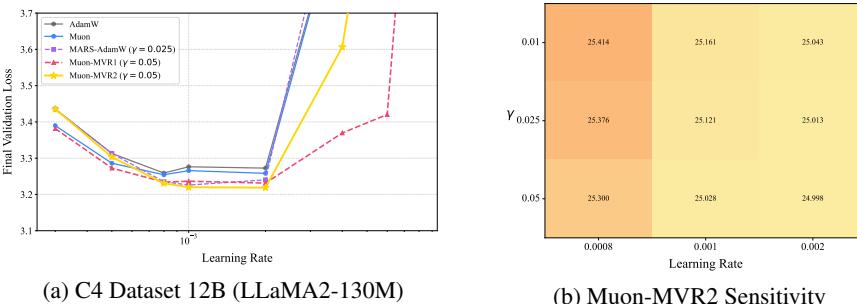


Figure 3: (a) Final validation loss with varying learning rates on C4 Dataset 12B ; (b) Heatmap of the final validation perplexity of the Muon-MVR2 model for different γ values around the optimal learning rate.

Figure 3a reports the final validation loss on C4 Dataset 12B across different learning rates for all optimizers. Each method exhibits a reasonably wide range of stable learning rates, with Muon-type optimizers achieving lower validation loss than AdamW at their respective best settings. For Muon-MVR2, we additionally sweep the algorithmic parameter γ around the optimal learning rate and visualize the resulting validation perplexity as a heatmap in Figure 3b. The heatmap shows that Muon-MVR2 is relatively insensitive to the choice of γ in a neighborhood of the best learning rate, suggesting that γ does not require fine-grained tuning in practice.

432 **Remark 5.1.** The precise variance-reduction formulation Muon-MVR2 (Eq. 5) is more closely
 433 aligned with stochastic optimization theory and, as confirmed by our experiments, consistently at-
 434 tains the highest validation accuracy. However, it requires two gradient evaluations per step and
 435 can be prohibitive in large-scale settings (see Fig. 1c and 2c). *In regimes where the cost differ-
 436 ence between one and two mini-batch gradient evaluations is negligible, we therefore recommend
 437 Muon-MVR2; when computational efficiency is the primary concern, the approximate Muon-MVR1
 438 variant offers a pragmatic alternative with only minimal performance degradation. Thus, the two
 439 variants serve complementary roles rather than one uniformly dominating the other.*

440 **Remark 5.2.** We employ standard weight decay in our experiments, following common practice in
 441 deep learning. For clarity, this regularization term is omitted from the theoretical analysis, but the
 442 same analysis framework naturally extends to this setting.

446 6 RELATED WORK

449 6.1 THE EVOLUTION OF OPTIMIZATION ALGORITHMS

452 The advancement of deep learning relies on first-order optimization methods. Nesterov (1983)
 453 proposed the Momentum method, which leverages historical gradients to accelerate convergence.
 454 Subsequently, Hinton et al. (2012) introduced RMSprop, enabling per-parameter adaptive learning
 455 rates. Kingma & Ba (2014) then integrated these ideas in Adam, an optimizer that adapts using the
 456 first and second moments of the gradients, establishing it as a standard choice in the field.

457 Numerous variants have been proposed to address the limitations of Adam. Reddi et al. (2018)
 458 introduced AMSGrad to ensure a non-increasing learning rate, while Dozat (2016) created NAdam
 459 by incorporating Nesterov momentum. To improve regularization, Loshchilov (2017) developed
 460 AdamW, which decouples weight decay from the optimization step. Other methods focus on con-
 461 trolling the learning rate and variance: Luo et al. (2019) proposed AdaBound to dynamically clip
 462 learning rates; Liu et al. (2019) designed RAdam to rectify variance estimates in early training;
 463 and Zhuang et al. (2020) created AdaBelief to adapt step sizes based on gradient belief. Recent
 464 developments continue this trend, such as Xie et al. (2020b) which decouples adaptation from mo-
 465 mentum in the Adai framework, and Xie et al. (2024) which introduced Adan with a novel Nesterov
 466 momentum estimation. The latest works from Liang et al. (2024) and Yuan et al. (2024) further
 467 enhance efficiency with new masking and variance-reduction strategies, respectively. Additionally,
 468 the MGUP strategy proposed by Chang & Yuan (2025) smooths zero masks into small non-zero
 469 values to alleviate potential non-convergence issues that the Cautious mask may cause in Adam.

470 Beyond Adam variants, research has explored other paradigms such as preconditioning methods
 471 that use parameter curvature. Gupta et al. (2018) pioneered this direction with the Shampoo op-
 472 timizer. Building on this work, Jordan et al. (2024) proposed Muon, which adapts to curvature
 473 by orthogonalizing gradient momentum. Subsequent variants emerged, such as AdaMuon Si et al.
 474 (2025) which adds element-wise adaptivity, and COSMOS Liu et al. (2025b) which integrates ideas
 475 from SOAP Vyas et al. (2025) for large model training. While these methods showed practical
 476 benefits, they often lacked convergence proofs. To bridge this theoretical gap for LMO-based meth-
 477 ods, Gluon Riabinin et al. (2025) introduces a novel layer-wise smoothness assumption, provid-
 478 ing convergence guarantees that align with the practical implementations of optimizers like Muon
 479 and Scion Pethick et al. (2025). In the literature, other related preconditioning methods include
 480 ASGO An et al. (2025), PolarGrad Lau et al. (2025), and AdaGO Zhang et al. (2025), which intro-
 481 duces the Adagrad-Norm step size Ward et al. (2020) into a simplified version of Muon. Meanwhile,
 482 other high-performing optimizers not belonging to the Shampoo family also warrant attention, such
 483 as Sophia Liu et al. (2023), which improves second-moment estimation through efficient diagonal
 484 Hessian approximation and coordinate clipping, and Lion Chen et al. (2023), a lightweight opti-
 485 mizer that only tracks momentum and uses the sign function to normalize updates. *These methods
 486 are closely related to normalized SGD with momentum variants, where the gradient is rescaled or
 487 truncated before the update Cutkosky & Mehta (2020; 2021), in contrast to Muon and our Muon-
 488 MVR variants, which perform spectral-norm-based matrix orthogonalization.*

486
487

6.2 ANALYSIS OF MUON

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

Recent theoretical analyses have clarified the mechanisms and convergence of the Muon optimizer. One central line of work models modern optimizers as steepest-descent or trust-region methods under non-Euclidean norm constraints Bernstein & Newhouse (2024); Kovalev (2025), clarifying how spectral-norm constraints shape the orthogonalized update direction and, in the case of Kovalev (2025). Building on this, subsequent work has linked Muon with weight decay to the stochastic Frank-Wolfe method, identifying it as an instance operating under a spectral norm constraint Sfyraki & Wang (2025). From a constrained optimization viewpoint, Muon has also been characterized as a special case of Lion- \mathcal{K} , with its convergence to a KKT point proven in both deterministic and stochastic settings Chen et al. (2025). These analyses, alongside broader research on norm-constrained stochastic conditional gradient methods, form Muon’s theoretical underpinnings Pethick et al. (2025). Beyond its formal framework, Muon’s implicit bias has become a key area of investigation. It has been demonstrated that Muon tends to converge toward max-margin solutions with respect to the spectral norm of the weight matrix, revealing a distinct implicit regularization and generalization preference compared to Adam Fan et al. (2025). A unifying preconditioning perspective, based on matrix polar decomposition, explains this behavior by distinguishing between curvature and gradient anisotropy. This decomposition clarifies the differing ways Muon and Adam handle various parameter types Lau et al. (2025). The convergence analysis of Muon has also seen active development. Although rigorous proofs and iteration complexity in non-convex settings have been established under various smoothness assumptions Shen et al. (2025), the validity of some early results has been challenged. For instance, certain proofs were found to rely on incorrect mathematical inequalities, casting doubt on their conclusions Li & Hong (2025). Other analyses, while confirming the convergence of several Muon variants, report slow convergence rates or the need for stringent conditions to reach a stationary point Sato et al. (2025). On a practical level, especially for pre-training large-scale language models (LLMs), weight decay has been identified as an indispensable component for Muon. To enhance its scalability and utility, methods based on RMS analysis have also been proposed to effectively transfer learning rates from Adam to Muon Liu et al. (2025a).

513
514

7 CONCLUSION

515
516
517
518
519
520
521
522
523
524
525
526
527

In this work, we establish a rigorous theoretical foundation for the Muon optimizer, addressing the gap between its empirical success and formal analysis. We analyze two momentum-based variance-reduced variants of Muon: a one-batch version (Muon-MVR1) and a two-batch version (Muon-MVR2). We provide the first proof that Muon-MVR2 achieves the optimal iteration complexity of $\tilde{\mathcal{O}}(T^{-1/3})$ in stochastic nonconvex settings, matching the theoretical lower bound Arjevani et al. (2023). Furthermore, we show that under the Polyak-Łojasiewicz condition, Muon-MVR1 and Muon-MVR2 attain sublinear nonergodic convergence rates of $\tilde{\mathcal{O}}(T^{-1/2})$ and $\tilde{\mathcal{O}}(T^{-2/3})$, respectively. Our theoretical results are validated by extensive experiments on the CIFAR-10 and C4 benchmarks, which confirm the practical acceleration and superior performance of Muon-MVR2 over its standard counterpart and other widely used optimizers. Overall, this research strengthens the Muon framework by providing robust theoretical guarantees and a practically effective new variant for deep learning training.

528
529

8 LIMITATIONS AND FUTURE WORK

530
531
532
533
534
535
536
537
538
539

► **Limitations:** First, a systematic comparison with other Muon-type optimizers is currently lacking. Second, a gap remains between the theoretical assumption of exact orthogonalization and the practical use of finite Newton-Schulz iterations, particularly for the inexact Muon-MVR variant.

► **Future work:** Future directions include conducting a large-scale, unified evaluation of Muon variants with thorough tuning. Furthermore, it is valuable to derive rigorous guarantees for finite-step Newton-Schulz orthogonalization and to improve the theoretical convergence rate of Muon-MVR1 beyond $\tilde{\mathcal{O}}(T^{-1/4})$.

540 REFERENCES
541

542 Kang An, Yuxing Liu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive structured gradient optimization. *ArXiv*, abs/2503.20762, 2025. URL <https://api.semanticscholar.org/CorpusID:277321722>.

543

544 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 199(1):165–214, 2023.

545

546 Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *arXiv preprint arXiv:2409.20325*, 2024.

547

548 Da Chang and Ganzhao Yuan. MGUP: A momentum-gradient alignment update policy for stochastic optimization. In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=TDFSKAspoQ>.

549

550 Lizhang Chen, Jonathan Li, and Qiang Liu. Muon optimizes under spectral norm constraints. *arXiv preprint arXiv:2506.15054*, 2025.

551

552 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization algorithms. *ArXiv*, abs/2302.06675, 2023. URL <https://api.semanticscholar.org/CorpusID:256846990>.

553

554 Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type algorithms for non-convex optimization. *ArXiv*, abs/1808.02941, 2018. URL <https://api.semanticscholar.org/CorpusID:51952942>.

555

556 Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In *International conference on machine learning*, pp. 2260–2268. PMLR, 2020.

557

558 Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization with heavy tails. *Advances in Neural Information Processing Systems*, 34:4883–4895, 2021.

559

560 Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd. *ArXiv*, abs/1905.10018, 2019. URL <https://api.semanticscholar.org/CorpusID:165163984>.

561

562 Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

563

564 Chen Fan, Mark Schmidt, and Christos Thrampoulidis. Implicit bias of spectral descent and muon on multiclass separable data. *arXiv preprint arXiv:2502.04664*, 2025.

565

566 Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. *Advances in neural information processing systems*, 31, 2018.

567

568 Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for algorithms of the adam family. *ArXiv*, abs/2112.03459, 2021. URL <https://api.semanticscholar.org/CorpusID:244920672>.

569

570 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization. In *International Conference on Machine Learning*, 2018. URL <https://api.semanticscholar.org/CorpusID:3585068>.

571

572 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

573

574 Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a overview of mini-batch gradient descent. *Coursera Lecture slides* <https://class.coursera.org/neuralnets-2012-001/lecture/>, 2012.

594 Jordan Hoffmann, Sébastien Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 595 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
 596 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

597

598 Feihu Huang, Junyi Li, and Heng Huang. Super-adam: Faster and universal framework of adaptive
 599 gradients. *ArXiv*, abs/2106.08208, 2021. URL <https://api.semanticscholar.org/CorpusID:235436027>.

600

601 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 602 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

603

604 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 605 gradient methods under the polyak-łojasiewicz condition. In *Joint European conference on ma-
 606 chine learning and knowledge discovery in databases*, pp. 795–811. Springer, 2016.

607

608 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
 609 *CoRR*, abs/1412.6980, 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

610

611 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
 612 trust-region optimization. *arXiv preprint arXiv:2503.12645*, 2025.

613

614 Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
 615 unifying preconditioning perspective. *arXiv preprint arXiv:2505.21799*, 2025.

616

617 Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of adam under relaxed as-
 618 sumptions. *ArXiv*, abs/2304.13972, 2023. URL <https://api.semanticscholar.org/CorpusID:258352491>.

619

620 Jiaxiang Li and Mingyi Hong. A note on the convergence of muon. 2025. URL <https://api.semanticscholar.org/CorpusID:276116929>.

621

622 Zhize Li and Jian Li. Simple and optimal stochastic gradient methods for nonsmooth nonconvex
 623 optimization. *Journal of Machine Learning Research*, 23(239):1–61, 2022.

624

625 Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training with
 626 one line of code. *ArXiv*, abs/2411.16085, 2024. URL <https://api.semanticscholar.org/CorpusID:274234738>.

627

628 Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
 629 stochastic second-order optimizer for language model pre-training. *ArXiv*, abs/2305.14342, 2023.
 630 URL <https://api.semanticscholar.org/CorpusID:258841030>.

631

632 Jingyuan Liu, Jianling Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 633 Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
 634 Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Meng Dong, Zheng Zhang, Yongsheng Kang,
 635 Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is scalable
 636 for llm training. *ArXiv*, abs/2502.16982, 2025a. URL <https://api.semanticscholar.org/CorpusID:276575212>.

637

638 Liming Liu, Zhenghao Xu, Zixuan Zhang, Hao Kang, Zichong Li, Chen Liang, Weizhu Chen, and
 639 Tuo Zhao. Cosmos: A hybrid adaptive optimizer for memory-efficient training of llms. *arXiv
 640 preprint arXiv:2502.17410*, 2025b.

641

642 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
 643 Han. On the variance of the adaptive learning rate and beyond. *ArXiv*, abs/1908.03265, 2019.
 644 URL <https://api.semanticscholar.org/CorpusID:199528271>.

645

646 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

647

648 Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
 649 dynamic bound of learning rate. *ArXiv*, abs/1902.09843, 2019. URL <https://api.semanticscholar.org/CorpusID:67856101>.

648 Yurii Nesterov. A method for solving the convex programming problem with convergence rate
 649 $o(1/k^2)$. *Proceedings of the USSR Academy of Sciences*, 269:543–547, 1983. URL <https://api.semanticscholar.org/CorpusID:145918791>.

650

651 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 652 Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint*
 653 *arXiv:2502.07529*, 2025.

654

655 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 656 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 657 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

658 Sashank J. Reddi, Satyen Kale, and Surinder Kumar. On the convergence of adam and be-
 659 yond. *ArXiv*, abs/1904.09237, 2018. URL <https://api.semanticscholar.org/CorpusID:3455897>.

660

661 Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
 662 scion great again!(bridging theory and practice of lmo-based optimizers for llms). *arXiv preprint*
 663 *arXiv:2505.13416*, 2025.

664

665 Naoki Sato, Hiroki Naganuma, and Hideaki Iiduka. Convergence bound and critical batch size
 666 of muon optimizer. 2025. URL <https://api.semanticscholar.org/CorpusID:280140878>.

667

668 Maria-Eleni Sfyraiki and Jun-Kun Wang. Lions and muons: Optimization via stochastic frank-wolfe.
 669 *arXiv preprint arXiv:2506.04192*, 2025.

670

671 Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 672 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
 673 pretraining. *arXiv preprint arXiv:2505.02222*, 2025.

674

675 Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence
 676 analysis of muon. *arXiv preprint arXiv:2505.23737*, 2025.

677

678 Chongjie Si, Debng Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. *arXiv preprint*
 679 *arXiv:2507.11005*, 2025.

680

681 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
 682 ization and momentum in deep learning. In *International conference on machine learning*, pp.
 683 1139–1147. pmlr, 2013.

684

685 Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
 686 Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
 687 Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
 688 des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
 689 thony S. Hartshorn, Saghaf Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
 690 dian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
 691 Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
 692 Miaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
 693 Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian,
 694 Xia Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan,
 695 Iliyan Zarov, Yuchen Zhang, Angela Fan, Melissa Hall Melanie Kambadur, Sharan Narang,
 696 Aurélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open
 697 foundation and fine-tuned chat models. *ArXiv*, abs/2307.09288, 2023. URL <https://api.semanticscholar.org/CorpusID:259950998>.

698

699 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
 700 Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling.
 701 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IDxZhXrpNf>.

702

703 Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
 704 the upper bound and the lower bound of adam’s iteration complexity. *ArXiv*, abs/2310.17998,
 705 2023. URL <https://api.semanticscholar.org/CorpusID:264555523>.

702 Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
 703 landscapes. *Journal of Machine Learning Research*, 21(219):1–30, 2020.
 704

705 Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
 706 momentum algorithm for faster optimizing deep models. *IEEE Transactions on Pattern Analysis
 707 and Machine Intelligence*, 46(12):9508–9520, 2024.

708 Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic gradient de-
 709 scent. In *International conference on artificial intelligence and statistics*, pp. 1475–1485. PMLR,
 710 2020a.

711 Zeke Xie, Xinrui Wang, Huishuai Zhang, Issei Sato, and Masashi Sugiyama. Adaptive inertia:
 712 Disentangling the effects of adaptive learning rate and momentum. In *International Conference on
 713 Machine Learning*, 2020b. URL [https://api.semanticscholar.org/CorpusID:
 714 248986834](https://api.semanticscholar.org/CorpusID:248986834).

715 Junchi Yang, Xiang Li, Ilyas Fatkhullin, and Niao He. Two sides of one coin: the limits of untuned
 716 sgd and the power of adaptive methods. *Advances in Neural Information Processing Systems*, 36:
 717 74257–74288, 2023.

718 Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
 719 of variance reduction for training large models. *ArXiv*, abs/2411.10438, 2024. URL [https://api.semanticscholar.org/CorpusID:
 720 274116548](https://api.semanticscholar.org/CorpusID:274116548).

721 Minxin Zhang, Yuxuan Liu, and Hayden Schaeffer. Adagrad meets muon: Adaptive stepsizes for
 722 orthogonal updates. 2025. URL [https://api.semanticscholar.org/CorpusID:
 723 281091748](https://api.semanticscholar.org/CorpusID:281091748).

724 Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. On the convergence of
 725 adaptive gradient methods for nonconvex optimization. *ArXiv*, abs/1808.05671, 2018. URL
 726 <https://api.semanticscholar.org/CorpusID:52040763>.

727 Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
 728 optimization. *Journal of machine learning research*, 21(103):1–63, 2020.

729 Juntang Zhuang, Tommy M. Tang, Yifan Ding, Sekhar Chandra Tatikonda, Nicha C. Dvornek,
 730 Xenophon Papademetris, and James S. Duncan. Adabelief optimizer: Adapting stepsizes
 731 by the belief in observed gradients. *ArXiv*, abs/2010.07468, 2020. URL [https://api.semanticscholar.org/CorpusID:
 732 222377595](https://api.semanticscholar.org/CorpusID:222377595).

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **APPENDIX**
 757

758 **A LEMMAS FOR THEOREM 3.1**
 759

760 **A.1 LEMMA A.1**
 761

763 **Lemma A.1.** *For Algorithm 1, choosing an arbitrary parameter $\alpha > 0$, we have the following
 764 inequality:*

766
$$f(\mathbf{X}_{t+1}) \leq f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\eta_t \alpha}{2} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\eta_t n}{2\alpha} + \frac{L\eta_t^2 n}{2}.$$

 767

768
 769 *Proof.* According to Assumption 3.2, we have the upper bound for the function value:
 770

771
$$\begin{aligned} f(\mathbf{X}_{t+1}) &\leq f(\mathbf{X}_t) + \langle \nabla f(\mathbf{X}_t), \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\ 772 &\leq f(\mathbf{X}_t) - \eta_t \langle \nabla f(\mathbf{X}_t), \mathbf{O}_t \rangle + \frac{L\eta_t^2}{2} \|\mathbf{O}_t\|_F^2 \\ 773 &\leq f(\mathbf{X}_t) - \eta_t \langle \mathbf{M}_t, \mathbf{O}_t \rangle - \eta_t \langle \nabla f(\mathbf{X}_t) - \mathbf{M}_t, \mathbf{O}_t \rangle + \frac{L\eta_t^2}{2} \|\mathbf{O}_t\|_F^2. \end{aligned}$$

 774
 775

776 Now we bound the three terms on the right-hand side respectively:
 777

778 Descent Term: According to the definition of \mathbf{O}_t and the norm property $\|\mathbf{M}_t\|_* \geq \|\mathbf{M}_t\|_F$, we
 779 have:
 780

781
$$-\eta_t \langle \mathbf{M}_t, \mathbf{O}_t \rangle = -\eta_t \langle \mathbf{M}_t, \mathbf{U}_r \mathbf{V}_r^\top \rangle = -\eta_t \|\mathbf{M}_t\|_* \leq -\eta_t \|\mathbf{M}_t\|_F.$$

 782

783 Cross Term: This is the key to eliminating the dimension-dependent error. We use Young's inequality
 784 with a parameter ($ab \leq \frac{\alpha}{2}a^2 + \frac{1}{2\alpha}b^2$) and the fact that $\|\mathbf{O}_t\|_F^2 \leq \sum_{i=1}^n 1 = n$:
 785

786
$$\begin{aligned} -\eta_t \langle \nabla f(\mathbf{X}_t) - \mathbf{M}_t, \mathbf{O}_t \rangle &\leq \eta_t \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F \|\mathbf{O}_t\|_F \\ 787 &\leq \eta_t \left(\frac{\alpha}{2} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{1}{2\alpha} \|\mathbf{O}_t\|_F^2 \right) \\ 788 &\leq \eta_t \left(\frac{\alpha}{2} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{n}{2\alpha} \right). \end{aligned}$$

 789

790 Quadratic Term:
 791

792
$$\frac{L\eta_t^2}{2} \|\mathbf{O}_t\|_F^2 \leq \frac{L\eta_t^2 n}{2}.$$

 793

794 Substituting these three bounds into the inequality for $f(\mathbf{X}_{t+1})$:
 795

796
$$f(\mathbf{X}_{t+1}) \leq f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\eta_t \alpha}{2} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\eta_t n}{2\alpha} + \frac{L\eta_t^2 n}{2}.$$

 797

798 This completes the proof. \square
 799

800 **A.2 LEMMA A.2**
 801

802 **Lemma A.2.** *For Algorithm 1 option MVR1 ($\gamma = 0$), the accumulated error between the momentum
 803 term and the true gradient is bounded:*

804
$$\mathbb{E} [\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] \leq \beta_{t+1} \mathbb{E} [\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] + \frac{\beta_{t+1}^2}{1 - \beta_{t+1}} L^2 \eta_t^2 n + (1 - \beta_{t+1})^2 \sigma^2.$$

 805

810 *Proof.* First, we have
811

$$\begin{aligned}
& \|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2 \\
&= \|\beta_{t+1}\mathbf{M}_t + (1 - \beta_{t+1})\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})\|_F^2 \\
&= \|\beta_{t+1}(\mathbf{M}_t - \nabla f(\mathbf{X}_t)) + (1 - \beta_{t+1})(\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})) \\
&\quad + \beta_{t+1}(\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}))\|_F^2 \\
&= \beta_{t+1}^2 \|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2 + \beta_{t+1}^2 \|\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})\|_F^2 \\
&\quad + (1 - \beta_{t+1})^2 \|\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})\|_F^2 \\
&\quad + 2\beta_{t+1}^2 \langle \mathbf{M}_t - \nabla f(\mathbf{X}_t), \nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}) \rangle_F \\
&\quad + 2\beta_{t+1}(1 - \beta_{t+1}) \langle \mathbf{M}_t - \nabla f(\mathbf{X}_t), \nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1}) \rangle_F \\
&\quad + 2\beta_{t+1}(1 - \beta_{t+1}) \langle \nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}), \nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1}) \rangle_F.
\end{aligned}$$

823 According to Assumption 3.4. Taking the expectation of its squared norm, and using the unbiased-
824 ness and independence of the stochastic gradient, we obtain:
825

$$\begin{aligned}
\mathbb{E}[\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] &= \beta_{t+1}^2 \mathbb{E}[\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] \\
&\quad + (1 - \beta_{t+1})^2 \mathbb{E}[\|\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})\|_F^2] \\
&\quad + \beta_{t+1}^2 \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})\|_F^2] \\
&\quad + 2\beta_{t+1}^2 \mathbb{E}[\langle \mathbf{M}_t - \nabla f(\mathbf{X}_t), \nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}) \rangle].
\end{aligned}$$

831 Applying Young's inequality with a parameter ($ab \leq \frac{\epsilon}{2}a^2 + \frac{1}{2\epsilon}b^2$), we have
832

$$\langle \mathbf{M}_t - \nabla f(\mathbf{X}_t), \nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}) \rangle_F \leq \frac{\epsilon}{2} \|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2 + \frac{1}{2\epsilon} \|\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})\|_F^2.$$

835 Thus, we have:

$$\begin{aligned}
\mathbb{E}[\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] &\leq \beta_{t+1}^2(1 + \epsilon) \mathbb{E}[\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] \\
&\quad + \beta_{t+1}^2 \left(1 + \frac{1}{\epsilon}\right) \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})\|_F^2] \\
&\quad + (1 - \beta_{t+1})^2 \mathbb{E}[\|\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})\|_F^2].
\end{aligned}$$

841 According to Assumption 3.2,

$$\begin{aligned}
\|\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})\|_F^2 &\leq L^2 \|\mathbf{X}_t - \mathbf{X}_{t+1}\|_F^2 \\
&= L^2 \eta_t^2 \|\mathbf{O}_t\|_F^2 \\
&\leq L^2 \eta_t^2 n.
\end{aligned}$$

847 Therefore:

$$\begin{aligned}
\mathbb{E}[\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] &\leq \beta_{t+1}^2(1 + \epsilon) \mathbb{E}[\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] \\
&\quad + \beta_{t+1}^2 \left(1 + \frac{1}{\epsilon}\right) L^2 \eta_t^2 n + (1 - \beta_{t+1})^2 \sigma^2.
\end{aligned}$$

853 Then, by letting $\epsilon := \frac{1 - \beta_{t+1}}{\beta_{t+1}}$, we have
854

$$\mathbb{E}[\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] \leq \beta_{t+1} \mathbb{E}[\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] + \frac{\beta_{t+1}^2}{1 - \beta_{t+1}} L^2 \eta_t^2 n + (1 - \beta_{t+1})^2 \sigma^2. \quad (6)$$

857 \square

859 A.3 LEMMA A.3

861 **Lemma A.3.** Suppose that $\{E_i, A_i\}$ are two nonnegative sequences. Assume $E_{t+1} \leq (1 -$
862 $\alpha_{t+1})E_t + A_{t+1}$ where $\alpha_t = t^{-p}$, $p \in (0, 1]$. Then we have:
863

$$\alpha_t E_t \leq 2(E_t - E_{t+1} + A_{t+1}).$$

864 *Proof.* We derive the following inequalities:
 865

$$\begin{aligned}
 866 \quad & \alpha_t E_t - c(E_t - E_{t+1} + A_{t+1}) \\
 867 \quad & \stackrel{(\bullet)}{\leq} \alpha_t E_t - c(E_t + A_{t+1}) + c \cdot (E_t - \alpha_{t+1} E_t + A_{t+1}) \\
 868 \quad & = E_t (\alpha_t - c \alpha_{t+1}) \\
 869 \quad & = E_t \cdot (t+1)^{-p} \cdot \left(\left(\frac{t}{t+1} \right)^{-p} - c \right) \\
 870 \quad & \stackrel{(\circ)}{\leq} E_t \cdot (t+1)^{-p} \cdot (2-c) \\
 871 \quad & \stackrel{(\star)}{\leq} 0,
 \end{aligned}$$

872 where (\bullet) follows from $E_{t+1} \leq (1 - \alpha_{t+1})E_t + A_{t+1}$; (\circ) is due to $(\frac{t}{t+1})^{-p} \leq 2^p \leq 2$; (\star) is due
 873 to our choice $c = 2$. \square
 874

875 B PROOFS OF THEOREM 3.1

876 *Proof.* According to Lemma A.1, we have:
 877

$$\begin{aligned}
 878 \quad f(\mathbf{X}_{t+1}) & \leq f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\eta_t \alpha}{2} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\eta_t n}{2\alpha} + \frac{L\eta_t^2 n}{2} \\
 879 \quad & \stackrel{(\circ)}{\leq} f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\eta_t^{2/3}}{2L} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\eta_t^{4/3} L n}{2} + \frac{L\eta_t^2 n}{2} \\
 880 \quad & \stackrel{(\star)}{\leq} f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\eta_t^{2/3}}{2L} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + L n \eta_t^{4/3},
 \end{aligned}$$

881 where (\circ) by setting $\alpha = \frac{1}{\eta_t^{1/3} L}$; (\star) follows from $\eta_t \leq 1$, we have $L \leq L/\eta_t^{1/3}$.
 882

883 Thus, taking the expectation yields
 884

$$\begin{aligned}
 885 \quad \mathbb{E}[f(\mathbf{X}_{t+1})] & \leq \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\mathbf{M}_t\|_F] + \frac{\eta_t^{2/3}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + L n \eta_t^{4/3} \\
 886 \quad & \stackrel{(\circ)}{\leq} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F] \\
 887 \quad & + \frac{\eta_t^{2/3}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + L n \eta_t^{4/3} \\
 888 \quad & \stackrel{(\star)}{\leq} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \frac{1}{2\epsilon} \eta_t^2 + \frac{\epsilon}{2} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] \\
 889 \quad & + \frac{\eta_t^{2/3}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + L n \eta_t^{4/3} \\
 890 \quad & \stackrel{(\bullet)}{=} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] \\
 891 \quad & + \underbrace{\frac{L\eta_t^{4/3}}{2} + \left(\frac{\eta_t^{2/3}}{2L} + \frac{\eta_t^{2/3}}{2L} \right) \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + L n \eta_t^{4/3}}_{\Gamma_t}, \tag{7}
 \end{aligned}$$

892 where (\circ) follows from the reverse triangle inequality $-\|\mathbf{M}_t\|_F \leq \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F -$
 893 $\|\nabla f(\mathbf{X}_t)\|_F$; (\star) applies Young's inequality to the term $\eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F]$; and (\bullet) collects
 894 the residual terms into Γ_t and sets $\epsilon = \eta_t^{2/3}/L$.
 895

896 Next, we set $\eta_t = t^{-3/4}$ and $\beta_t = 1 - t^{-1/2}$, $\alpha_t = t^{-1/2}$.
 897

898 Case 1: $\gamma = 0$.

918 By Lemma A.2 inequality (6), we have
 919

$$\begin{aligned} 920 \mathbb{E} [\|\mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})\|_F^2] &\leq \beta_{t+1} \mathbb{E} [\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] + \frac{\beta_{t+1}^2}{1 - \beta_{t+1}} L^2 \eta_t^2 n + (1 - \beta_{t+1})^2 \sigma^2 \\ 921 \\ 922 &\leq \beta_{t+1} \mathbb{E} [\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2] + \frac{L^2 \eta_t^2 n}{1 - \beta_{t+1}} + (1 - \beta_{t+1})^2 \sigma^2. \\ 923 \end{aligned}$$

924 Let $\mathbf{S}_{t+1} = \mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1})$. Thus, setting $\alpha_{t+1} = (t+1)^{-1/2}$, we observe the following
 925 relationship for $t \geq 1$:

$$\frac{\eta_t^2}{1 - \beta_{t+1}} = \frac{t^{-3/2}}{(t+1)^{-1/2}} = \frac{\sqrt{t+1}}{t^{3/2}} \leq \frac{2\sqrt{2}}{t+1}.$$

926 This allows us to bound the expectation as follows:
 927

$$\mathbb{E} \|\mathbf{S}_{t+1}\|_F^2 \leq (1 - \alpha_{t+1}) \mathbb{E} \|\mathbf{S}_t\|_F^2 + \alpha_{t+1}^2 (2\sqrt{2}L^2n + \sigma^2).$$

928 According to Lemma A.3, by letting $A_{t+1} = \alpha_{t+1}^2 (2\sqrt{2}L^2n + \sigma^2)$, we have
 929

$$\alpha_t \mathbb{E} \|\mathbf{S}_t\|_F^2 \leq 2(\mathbb{E} \|\mathbf{S}_t\|_F^2 - \mathbb{E} \|\mathbf{S}_{t+1}\|_F^2 + A_{t+1}).$$

930 Furthermore, since
 931

$$\begin{aligned} 932 \mathbb{E} \|\mathbf{S}_1\| &= \mathbb{E} \|\nabla f(\mathbf{X}_1) - \mathbf{M}_1\|_F^2 = \mathbb{E} \|\nabla f(\mathbf{X}_1) - (1 - \beta_1) \nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \\ 933 &= \mathbb{E} \|\nabla f(\mathbf{X}_1) - \nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \leq \sigma^2 \quad (\text{since } \beta_1 = 0). \end{aligned}$$

934 It follows that
 935

$$\begin{aligned} 936 \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}_t\|_F^2 &\leq 2 \sum_{t=1}^T (\mathbb{E} \|\mathbf{S}_t\|_F^2 - \mathbb{E} \|\mathbf{S}_{t+1}\|_F^2 + A_{t+1}) \\ 937 \\ 938 &\leq 2\mathbb{E} \|\mathbf{S}_1\|_F^2 + 2(2\sqrt{2}L^2n + \sigma^2) \sum_{t=1}^T \frac{1}{t+1} \\ 939 &\leq 2\sigma^2 + 2(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1). \end{aligned} \tag{8}$$

940 Thus,
 941

$$\begin{aligned} 942 \Gamma_t &= \frac{\eta_t^{2/3}}{L} \mathbb{E} \|\mathbf{S}_t\|_F^2 + (L/2 + Ln) \eta_t^{4/3} \\ 943 &= \frac{\alpha_t}{L} \mathbb{E} \|\mathbf{S}_t\|_F^2 + (L/2 + Ln) \alpha_t^2. \end{aligned}$$

944 Next, we define $A_1 = 4\sqrt{2}Ln + Ln + 2L^{-1}\sigma^2 + L/2$ and $A_2 = 4\sqrt{2}Ln + Ln + 4L^{-1}\sigma^2 + L/2$.
 945

$$\begin{aligned} 946 \sum_{t=1}^T \Gamma_t &= \frac{1}{L} \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}_t\|_F^2 + (L/2 + Ln) \sum_{t=1}^T \alpha_t^2 \\ 947 &\stackrel{(o)}{\leq} \frac{2\sigma^2 + 2(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1)}{L} + (L/2 + Ln)(\ln T + 1) \\ 948 &\leq A_1 \ln T + A_2, \end{aligned} \tag{9}$$

949 where (o) due to inequality (8).
 950

951 Therefore, we have
 952

$$\begin{aligned} 953 \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F &= \frac{1}{T} \sum_{t=1}^T t^{3/4} \cdot t^{-3/4} \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \\ 954 &\leq \frac{1}{T} \sum_{t=1}^T t^{3/4} \cdot \eta_t \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \\ 955 &\leq \frac{T^{3/4}}{T} \sum_{t=1}^T f(\mathbf{X}_t) - f(\mathbf{X}_{t+1}) + \frac{T^{3/4}}{T} \sum_{t=1}^T \Gamma_t \\ 956 &\leq \frac{f(\mathbf{X}_1) - f^*}{T^{1/4}} + \frac{A_1 \ln T + A_2}{T^{1/4}} \\ 957 &= \tilde{\mathcal{O}}(T^{-1/4}). \end{aligned}$$

972 Case 2: $\gamma \neq 0$.
 973

974 We set $\eta_t = t^{-3/4}$ and $\beta_t = 1 - (t+1)^{-1/2}$, $\alpha_t = t^{-1/2}$, and $\gamma = 1 - \beta_{t-1} = t^{-1/2}$, we first note
 975 that an equivalent form of Algorithm 1 Option MVR1 is given by

$$\begin{aligned} \mathbf{C}_t &= \beta_{t-1} \mathbf{C}_{t-1} + (1 - \beta_{t-1}) \nabla f(\mathbf{X}_t; \xi_t) \\ \mathbf{M}_t &= \beta_t \mathbf{C}_t + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t). \end{aligned} \quad (10)$$

976 In this case, then we have
 977

$$\begin{aligned} \mathbb{E} \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2 &= \mathbb{E} \|\beta_{t-1} \mathbf{C}_{t-1} + (1 - \beta_{t-1}) \nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t)\|_F^2 \\ &= \mathbb{E} \|\beta_{t-1} (\mathbf{C}_{t-1} - \nabla f(\mathbf{X}_{t-1})) + (1 - \beta_{t-1}) (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t)) \\ &\quad + \beta_{t-1} (\nabla f(\mathbf{X}_{t-1}) - \nabla f(\mathbf{X}_t))\|_F^2 \\ &\stackrel{(o)}{\leq} \beta_{t-1} \mathbb{E} \|\mathbf{C}_{t-1} - \nabla f(\mathbf{X}_{t-1})\|_F^2 + \frac{\beta_{t-1}^2 L \eta_{t-1}^2 n}{1 - \beta_{t-1}} + (1 - \beta_{t-1})^2 \sigma^2 \\ &= (1 - \alpha_t) \mathbb{E} \|\mathbf{C}_{t-1} - \nabla f(\mathbf{X}_{t-1})\|_F^2 + \alpha_t^2 (2\sqrt{2}Ln + \sigma^2), \end{aligned}$$

989 where (o) follows from Lemma A.2.
 990

991 Then, we define $\mathbf{S}'_t = \|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2$, $\mathbf{S}_t = \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2$, $A_{t+1} = \alpha_{t+1}^2 (2\sqrt{2}Ln + \sigma^2)$.
 992 Using the conclusion of Lemma A.3, we have

$$\mathbb{E} \|\mathbf{S}_{t+1}\|_F^2 \leq (1 - \alpha_{t+1}) \mathbb{E} \|\mathbf{S}_t\|_F^2 + A_{t+1}.$$

993 Furthermore, since
 994

$$\begin{aligned} \mathbb{E} \|\mathbf{S}_1\| &= \mathbb{E} \|\nabla f(\mathbf{X}_1) - \mathbf{C}_1\|_F^2 = \mathbb{E} \|\nabla f(\mathbf{X}_1) - (1 - \beta_0) \nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \\ &= \mathbb{E} \|\nabla f(\mathbf{X}_1) - \nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \leq \sigma^2 \quad (\text{since } \beta_0 = 0). \end{aligned}$$

995 Thus, as in inequality (8), we have
 996

$$\begin{aligned} \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}_t\|_F^2 &\leq 2 \sum_{t=1}^T (\mathbb{E} \|\mathbf{S}_t\|_F^2 - \mathbb{E} \|\mathbf{S}_{t+1}\|_F^2 + A_{t+1}) \\ &\leq 2 \mathbb{E} \|\mathbf{S}_1\|_F^2 + 2(2\sqrt{2}L^2n + \sigma^2) \sum_{t=1}^T \frac{1}{t+1} \\ &\leq 2\sigma^2 + 2(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1). \end{aligned}$$

1000 Then,
 1001

$$\begin{aligned} \|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F &= \|\beta_t \mathbf{C}_t + (1 - \beta_t) \nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t)\|_F \\ &= \|\beta_t (\mathbf{C}_t - \nabla f(\mathbf{X}_t)) + (1 - \beta_t) (\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t))\|_F. \end{aligned}$$

1011 From this, we can bound the squared norm using the inequality $\|\mathbf{A} + \mathbf{B}\|_F^2 \leq 2\|\mathbf{A}\|_F^2 + 2\|\mathbf{B}\|_F^2$:
 1012

$$\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2 \leq 2\beta_t^2 \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2 + 2(1 - \beta_t)^2 \|\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t)\|_F^2.$$

1013 Thus, we have
 1014

$$\begin{aligned} \mathbb{E} \|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2 &\leq 2\beta_t^2 \mathbb{E} \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2 + 2(1 - \beta_t)^2 \mathbb{E} \|\nabla f(\mathbf{X}_t; \xi_t) - \nabla f(\mathbf{X}_t)\|_F^2 \\ &\leq 2\beta_t^2 \mathbb{E} \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2 + 2(1 - \beta_t)^2 \sigma^2 \\ &\leq 2 \mathbb{E} \|\mathbf{C}_t - \nabla f(\mathbf{X}_t)\|_F^2 + 2(1 - \beta_t)^2 \sigma^2. \end{aligned} \quad (11)$$

1015 Thus,
 1016

$$\begin{aligned} \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}'_t\|_F^2 &\leq 2 \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}_t\|_F^2 + 2\sigma^2 \sum_{t=1}^T \frac{1}{t(t+1)} \\ &\stackrel{(o)}{\leq} 4\sigma^2 + 4(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1) + 2\sigma^2 \\ &= 6\sigma^2 + 4(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1), \end{aligned} \quad (12)$$

1026 where (\circ) is due to $\sum_{t=1}^T \frac{1}{t(t+1)} = \sum_{t=1}^T \left(\frac{1}{t} - \frac{1}{t+1}\right) = 1 - \frac{1}{T+1} \leq 1$.
1027

1028 Therefore,

$$\begin{aligned}\Gamma_t &= \frac{\eta_t^{2/3}}{L} \mathbb{E} \|\mathbf{S}'_t\|_F^2 + (L/2 + Ln) \eta_t^{4/3} \\ &= \frac{\alpha_t}{L} \mathbb{E} \|\mathbf{S}'_t\|_F^2 + (L/2 + Ln) \alpha_t^2.\end{aligned}$$

1034 Then, we define $A_1 = 8\sqrt{2}Ln + Ln + 4L^{-1}\sigma^2 + L/2$ and $A_2 = 8\sqrt{2}Ln + Ln + 10L^{-1}\sigma^2 + L/2$.
 1035 We have

$$\begin{aligned}
\sum_{t=1}^T \Gamma_t &= \frac{1}{L} \sum_{t=1}^T \alpha_t \mathbb{E} \|\mathbf{S}'_t\|_F^2 + (L/2 + Ln) \sum_{t=1}^T \alpha_t^2 \\
&\stackrel{(o)}{\leq} \frac{6\sigma^2 + 4(2\sqrt{2}L^2n + \sigma^2)(\ln T + 1)}{L} + (L/2 + Ln)(\ln T + 1) \\
&\leq A_1 \ln T + A_2,
\end{aligned} \tag{13}$$

where (\circ) is due to inequality (12).

Then, we have

$$\begin{aligned}
\frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F &= \frac{1}{T} \sum_{t=1}^T t^{3/4} \cdot t^{-3/4} \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \\
&\leq \frac{1}{T} \sum_{t=1}^T t^{3/4} \cdot \eta_t \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \\
&\leq \frac{T^{3/4}}{T} \sum_{t=1}^T f(\mathbf{X}_t) - f(\mathbf{X}_{t+1}) + \frac{T^{3/4}}{T} \sum_{t=1}^T \Gamma_t \\
&\leq \frac{f(\mathbf{X}_1) - f^*}{T^{1/4}} + \frac{A_1 \ln T + A_2}{T^{1/4}} \\
&= \tilde{\mathcal{O}}(T^{-1/4}).
\end{aligned}$$

This completes the proof. \square

C. LEMMAS FOR THEOREM 3.2

C.1 LEMMA C.1

Lemma C.1. Let $\{A_t\}_{t \geq 1}$ and $\{B_t\}_{t \geq 1}$ be non-negative sequences satisfying the relation $A_{t+1} \leq (1 - \varepsilon_{t+1})A_t + B_{t+1}$ for all $t \geq 1$. If we define the sequence $\varepsilon_t = t^{-p}$ for some constant $p \in (0, 1]$, then for all $t \geq 1$, the following inequality holds:

$$\sqrt{\varepsilon_t} A_t \leq 4 \left(\frac{A_t}{\sqrt{\varepsilon_t}} - \frac{A_{t+1}}{\sqrt{\varepsilon_{t+1}}} + \frac{B_{t+1}}{\sqrt{\varepsilon_{t+1}}} \right).$$

Proof. First, we define the function $F(t, q) = \frac{1}{4}t^{-q} - t^q + (t+1)^q - (t+1)^{-q}$ for $t \geq 1$ and $q \in (0, 1/2]$. To analyze its properties, let us define $g(t) = F(t, q)$ for a fixed $q \in (0, 1/2]$ and $f(q) = F(t, q)$ for a fixed $t \geq 1$.

Case 1: For $t = 1$. We have $g(1) = \frac{1}{4} - 1 + 2^q - \frac{1}{2^q}$. Since $q \in (0, 1/2]$, this expression is bounded above by its value at $q = 1/2$, yielding $g(1) \leq \frac{1}{4} - 1 + 2^{1/2} - \frac{1}{2^{1/2}} < 0$. Thus, for $t = 1$, the inequality $g(t) < 0$ holds.

1080 Case 2: For $t > 1$. For any given $t > 1$ and $q \in (0, 1/2]$, we examine the derivative of $f(q)$:

$$\begin{aligned}
 1082 \quad f'(q) &= \left(\ln(t+1)(t+1)^{-q} - \frac{1}{4} \ln(t)t^{-q} \right) + (\ln(t+1)(t+1)^q - \ln(t)t^q) \\
 1083 &\stackrel{(\circ)}{\geq} \left(\ln(t+1)(t+1)^{-q} - \frac{1}{4} \ln(t)t^{-q} \right) \\
 1084 &= \ln(t)t^{-q} \cdot \left\{ \frac{\ln(t+1)}{\ln(t)} \cdot \left(\frac{t}{t+1} \right)^q - \frac{1}{4} \right\} \\
 1085 &\stackrel{(\star)}{\geq} \ln(t)t^{-q} \cdot \left\{ 1 \cdot \sqrt{\frac{t}{t+1}} - \frac{1}{4} \right\} \\
 1086 &\stackrel{(\bullet)}{\geq} \ln(t)t^{-q} \cdot \left\{ \sqrt{\frac{1}{2}} - \frac{1}{4} \right\} \geq 0,
 \end{aligned} \tag{14}$$

1089 where (\circ) holds because $\ln(t+1) > \ln(t)$ and $(t+1)^q > t^q$ for all $t \geq 1$ and $q \in (0, 1/2]$. The
1090 inequality (\star) holds because $\frac{\ln(t+1)}{\ln(t)} > 1$ for $t > 1$, and the function $(\frac{t}{t+1})^q$ is decreasing in q , thus
1091 its minimum on $(0, 1/2]$ is achieved at $q = 1/2$. The final inequality (\bullet) holds because $t \geq 1$ implies
1092 $\sqrt{\frac{t}{t+1}} \geq \sqrt{\frac{1}{2}}$, and $\sqrt{\frac{1}{2}} > 1/4$.

1100 Inequality (14) implies that $f(q)$ is monotonically increasing with respect to q on the interval
1101 $(0, 1/2]$.

1102 Next, we consider the boundary condition at $q = 1/2$. Let $h(t) := f(\frac{1}{2}) = \frac{1}{4}t^{-1/2} - t^{1/2} +$
1103 $(t+1)^{1/2} - (t+1)^{-1/2}$. It can be verified that $h(t) \leq 0$ for all $t > 1$. Consequently, we have
1104 $F(t, \frac{1}{2}) = f(\frac{1}{2}) \leq 0$ for all $t > 1$.

1105 Finally, for all $t > 1$ and $q \in (0, 1/2]$, we have

$$F(t, q) \leq F(t, 1/2) \leq 0, \tag{15}$$

1106 where the first inequality holds because $f(q)$ is monotonically increasing in q on $(0, 1/2]$ for any
1107 fixed $t > 1$.

1108 With this result, we can proceed as follows:

$$\begin{aligned}
 1109 \quad &\sqrt{\varepsilon_t} A_t - 4 \left(\frac{A_t}{\sqrt{\varepsilon_t}} - \frac{A_{t+1}}{\sqrt{\varepsilon_{t+1}}} + \frac{B_{t+1}}{\sqrt{\varepsilon_{t+1}}} \right) \\
 1110 &\stackrel{(\circ)}{\leq} \sqrt{\varepsilon_t} A_t - 4 \left(\frac{A_t}{\sqrt{\varepsilon_t}} + \frac{B_{t+1}}{\sqrt{\varepsilon_{t+1}}} \right) + \frac{4}{\sqrt{\varepsilon_{t+1}}} \cdot (A_t - \varepsilon_{t+1} A_t + B_{t+1}) \\
 1111 &= \sqrt{\varepsilon_t} A_t - 4 \frac{A_t}{\sqrt{\varepsilon_t}} + \frac{4}{\sqrt{\varepsilon_{t+1}}} (1 - \varepsilon_{t+1}) A_t \\
 1112 &= A_t \cdot \left(\sqrt{\varepsilon_t} - \frac{4}{\sqrt{\varepsilon_t}} + \frac{4}{\sqrt{\varepsilon_{t+1}}} - 4\sqrt{\varepsilon_{t+1}} \right) \\
 1113 &\stackrel{(\star)}{=} 4A_t \cdot \left(\frac{1}{4}t^{-q} - t^q + (t+1)^q - (t+1)^{-q} \right) \\
 1114 &\stackrel{(\bullet)}{\leq} 0.
 \end{aligned}$$

1115 Here, (\circ) follows from the assumption $A_{t+1} \leq (1 - \varepsilon_{t+1})A_t + B_{t+1}$. The equality (\star) is obtained
1116 by substituting $\varepsilon_t = t^{-p}$ and setting $q = \frac{p}{2}$ (note that $p \in (0, 1]$ implies $q \in (0, 1/2]$). Finally, (\bullet) is
1117 a direct consequence of our result in inequality (15). \square

C.2 LEMMA C.2

1118 **Lemma C.2.** *For Algorithm 1 option MVR2, let $\Delta_t = \nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_t; \xi_{t+1})$, $\delta_t =$
1119 $\nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1})$, $\mathbf{S}_t = \mathbf{M}_t - \nabla f(\mathbf{X}_t)$, and $\mathbf{R}_{t+1} = \nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})$. Then we*

1134 have the following inequality:

1135
$$\mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 \leq \beta_{t+1}^2 \mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\beta_{t+1}^2 L^2 \mathbb{E}\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 + 2(1 - \beta_{t+1})^2 \sigma^2 + P_{t+1},$$

1137 where

1138
$$A_{t+1} = \frac{B_{t+1} + \beta_{t+1}(\mathbb{E}\|\Delta_t\|_F^2 - \|\mathbb{E}\Delta_t\|_F^2)}{\mathbb{E}\|\Delta_t\|_F^2}$$

1139
$$B_{t+1} = (1 - \beta_{t+1})\mathbb{E}\langle\Delta_t, \mathbf{R}_{t+1}\rangle + \beta_{t+1}\mathbb{E}\langle\Delta_t, \mathbf{S}_t\rangle$$

1140
$$P_{t+1} = \mathbb{E}\|\Delta_t\|_F^2(\beta_{t+1}(1 - \gamma_{t+1}) - A_{t+1})^2 - \mathbb{E}\|\Delta_t\|_F^2 A_{t+1}^2.$$

1141 If we choose $\gamma_{t+1} = 1 - \frac{A_{t+1}}{\beta_{t+1}}$ or $\gamma_{t+1} = 1$, then

1142
$$\mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 \leq \beta_{t+1}\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\beta_{t+1}^2 L^2 \mathbb{E}\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 + 2(1 - \beta_{t+1})^2 \sigma^2.$$

1143 *Proof.* First, we have

1144
$$\begin{aligned} \mathbf{M}_{t+1} &= \beta_{t+1}\mathbf{M}_t + (1 - \beta_{t+1})\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) + \gamma_{t+1} \cdot \beta_{t+1}(\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_t; \xi_{t+1})) \\ &= (1 - \beta_{t+1})\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) + \beta_{t+1}(\mathbf{M}_t + \gamma_{t+1}(\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_t; \xi_{t+1}))) \\ &= (1 - \beta_{t+1})\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) + \beta_{t+1}(\mathbf{M}_t + \gamma_{t+1}\Delta_t). \end{aligned}$$

1145 Hence,

1146
$$\begin{aligned} \mathbf{M}_{t+1} - \nabla f(\mathbf{X}_{t+1}) &= (1 - \beta_{t+1})(\nabla f(\mathbf{X}_{t+1}; \xi_{t+1}) - \nabla f(\mathbf{X}_{t+1})) \\ &\quad + \beta_{t+1}(\mathbf{M}_t - \nabla f(\mathbf{X}_t) + \delta_t + \gamma_{t+1}\Delta_t) \\ &= (1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}(\mathbf{S}_t + \delta_t + \gamma_{t+1}\Delta_t). \end{aligned}$$

1147 Note that, according to Assumption 3.4:

1148
$$\delta_t = \nabla f(\mathbf{X}_t) - \nabla f(\mathbf{X}_{t+1}) = -\mathbb{E}_{t+1}[\Delta_t].$$

1149 Therefore,

1150
$$\mathbf{S}_{t+1} = (1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\gamma_{t+1}\Delta_t - \mathbb{E}\Delta_t).$$

1151 Thus,

1152
$$\begin{aligned} \mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 &= \mathbb{E}\|(1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\gamma_{t+1}\Delta_t - \mathbb{E}\Delta_t)\|_F^2 \\ &= \mathbb{E}\|(1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}((\gamma_{t+1} - 1)\Delta_t + \Delta_t - \mathbb{E}\Delta_t)\|_F^2 \\ &= \underbrace{\mathbb{E}\|(1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\Delta_t - \mathbb{E}\Delta_t)\|_F^2}_{\text{Term A.1}} \\ &\quad + \underbrace{\beta_{t+1}^2(\gamma_{t+1} - 1)^2 \mathbb{E}\|\Delta_t\|_F^2}_{\text{Term A.2}} \\ &\quad + \underbrace{2\beta_{t+1}(\gamma_{t+1} - 1)\mathbb{E}\langle\Delta_t, (1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\Delta_t - \mathbb{E}\Delta_t)\rangle}_{\text{Term A.3}}. \end{aligned}$$

1153 First, let's consider Term A.1:

1154
$$\begin{aligned} \text{A.1} &= \mathbb{E}\|(1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\Delta_t - \mathbb{E}\Delta_t)\|_F^2 \\ &\stackrel{(\circ)}{=} \mathbb{E}\|(1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}(\Delta_t - \mathbb{E}\Delta_t)\|_F^2 + \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2 \\ &\stackrel{(*)}{\leq} 2(1 - \beta_{t+1})^2\mathbb{E}\|\mathbf{R}_{t+1}\|_F^2 + 2\beta_{t+1}^2\mathbb{E}\|\Delta_t - \mathbb{E}\Delta_t\|_F^2 + \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2, \end{aligned}$$

1155 where (\circ) holds because Assumption 3.4 implies $\mathbb{E}[\mathbf{R}_{t+1}] = 0$ and $\mathbb{E}[\Delta_t - \mathbb{E}\Delta_t] = 0$, making the cross-terms with \mathbf{S}_t zero; and $(*)$ follows from the inequality $\|\mathbf{A} + \mathbf{B}\|_F^2 \leq 2\|\mathbf{A}\|_F^2 + 2\|\mathbf{B}\|_F^2$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$.

1156 Next, considering the sum of Terms A.2 and A.3, let us define

1157
$$\begin{aligned} A_{t+1} &= \frac{B_{t+1} + \beta_{t+1}(\mathbb{E}\|\Delta_t\|_F^2 - \|\mathbb{E}\Delta_t\|_F^2)}{\mathbb{E}\|\Delta_t\|_F^2} \\ B_{t+1} &= (1 - \beta_{t+1})\mathbb{E}\langle\Delta_t, \mathbf{R}_{t+1}\rangle + \beta_{t+1}\mathbb{E}\langle\Delta_t, \mathbf{S}_t\rangle. \end{aligned}$$

1188 Then we have

$$\begin{aligned}
 1190 \quad A.2 + A.3 &= \beta_{t+1}^2(\gamma_{t+1} - 1)^2 \mathbb{E}\|\Delta_t\|_F^2 \\
 1191 &\quad + 2(\gamma_{t+1} - 1)\beta_{t+1}\mathbb{E}\langle\Delta_t, (1 - \beta_{t+1})\mathbf{R}_{t+1} + \beta_{t+1}\mathbf{S}_t + \beta_{t+1}(\Delta_t - \mathbb{E}\Delta_t)\rangle \\
 1192 &= \beta_{t+1}^2\mathbb{E}\|\Delta_t\|_F^2 \left((\gamma_{t+1} - 1)^2 + 2(\gamma_{t+1} - 1)\frac{A_{t+1}}{\beta_{t+1}} \right) \\
 1193 &= \beta_{t+1}^2\mathbb{E}\|\Delta_t\|_F^2 \left(\gamma_{t+1} - 1 + \frac{A_{t+1}}{\beta_{t+1}} \right)^2 - \beta_{t+1}^2\mathbb{E}\|\Delta_t\|_F^2 \left(\frac{A_{t+1}}{\beta_{t+1}} \right)^2 \\
 1194 &= \mathbb{E}\|\Delta_t\|_F^2(\beta_{t+1}(1 - \gamma_{t+1}) - A_{t+1})^2 - A_{t+1}^2\mathbb{E}\|\Delta_t\|_F^2 \\
 1195 &:= P_{t+1}.
 \end{aligned}$$

1200 Therefore, combining the bounds:

$$\begin{aligned}
 1201 \quad \mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 &\leq 2(1 - \beta_{t+1})^2\mathbb{E}\|\mathbf{R}_{t+1}\|_F^2 + 2\beta_{t+1}^2\mathbb{E}\|\Delta_t - \mathbb{E}\Delta_t\|_F^2 + \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2 + P_{t+1} \\
 1202 &\stackrel{(\circ)}{\leq} 2(1 - \beta_{t+1})^2\sigma^2 + 2\beta_{t+1}^2\mathbb{E}\|\Delta_t\|_F^2 + \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2 + P_{t+1} \\
 1203 &\stackrel{(\star)}{\leq} 2(1 - \beta_{t+1})^2\sigma^2 + 2\beta_{t+1}^2L^2\mathbb{E}\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 + \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2 + P_{t+1},
 \end{aligned}$$

1207 where (\circ) uses Assumption 3.4 (bounded variance, i.e., $\mathbb{E}\|\mathbf{R}_{t+1}\|_F^2 \leq \sigma^2$) and the property that
 1208 $\mathbb{E}\|\Delta_t - \mathbb{E}\Delta_t\|_F^2 \leq \mathbb{E}\|\Delta_t\|_F^2$; and (\star) follows from Assumption 3.3, which implies $\|\Delta_t\|_F^2 \leq L^2\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2$.

1210 Next, we set

$$1212 \quad \gamma_{t+1} = 1 - \frac{A_{t+1}}{\beta_{t+1}} \text{ or } \gamma_{t+1} = \gamma = 1. \quad (16)$$

1214 Then,

$$1215 \quad P_{t+1} = -\mathbb{E}\|\Delta_t\|_F^2A_{t+1}^2 \leq 0 \text{ or } P_{t+1} = 0.$$

1216 This leads to the final result:

$$\begin{aligned}
 1217 \quad \mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 &\leq \beta_{t+1}^2\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\beta_{t+1}^2L^2\mathbb{E}\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 + 2(1 - \beta_{t+1})^2\sigma^2 \\
 1218 &\stackrel{(\circ)}{\leq} \beta_{t+1}\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\beta_{t+1}^2L^2\mathbb{E}\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 + 2(1 - \beta_{t+1})^2\sigma^2,
 \end{aligned}$$

1221 where (\circ) follows from $\beta_{t+1}^2 \leq \beta_{t+1} \leq 1$. □

1223 C.3 LEMMA C.3

1225 **Lemma C.3.** *Let $\{\mathbf{S}_t\}_{t \geq 1}$ be a sequence of matrices satisfying the recursive inequality
 1226 $\mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 \leq (1 - \eta_{t+1})\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\eta_{t+1}^2(2L^2n + \sigma^2)$ for some constants $L, n, \sigma^2 > 0$. If we set
 1227 the step size $\eta_t = t^{-2/3}$ and $\gamma = 1$, then we have the following upper bound on the time-averaged
 1228 expectation:*

$$1229 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}\|\mathbf{S}_t\|_F^2 \leq \frac{4\sigma^2 + 8(2L^2n + \sigma^2)(1 + \ln T)}{T^{2/3}}.$$

1232 *Proof.* The proof begins with the recursive inequality derived from a preceding Lemma C.2:

$$1234 \quad \mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 \leq (1 - \eta_{t+1})\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\eta_{t+1}^2L^2n + 2\eta_{t+1}^2\sigma^2,$$

1236 where $\mathbf{S}_{t+1} = \nabla f(\mathbf{X}_{t+1}) - \mathbf{M}_{t+1}$. We have noticed the following facts

$$1238 \quad \frac{1}{t^{2/3}} \leq \frac{2}{(t+1)^{2/3}}.$$

1240 Therefore, we have

$$1241 \quad \mathbb{E}\|\mathbf{S}_{t+1}\|_F^2 \leq (1 - \eta_{t+1})\mathbb{E}\|\mathbf{S}_t\|_F^2 + 2\eta_{t+1}^2(4L^2n + \sigma^2).$$

Let $A_t = \mathbb{E}\|\mathbf{S}_t\|_F^2$ and $B_{t+1} = 2\eta_{t+1}^2(4L^2n + \sigma^2)$. The inequality can be written as $A_{t+1} \leq (1 - \eta_{t+1})A_t + B_{t+1}$. This structure allows us to apply a standard result Lemma C.1 which yields:

$$\sqrt{\eta_t}A_t \leq 4 \left(\frac{A_t}{\sqrt{\eta_t}} - \frac{A_{t+1}}{\sqrt{\eta_{t+1}}} + \frac{B_{t+1}}{\sqrt{\eta_{t+1}}} \right).$$

Then, we define $P_t = \frac{4A_t}{\sqrt{\eta_t}} = \frac{4\mathbb{E}\|\mathbf{S}_t\|_F^2}{\sqrt{\eta_t}}$. Substituting P_t and the definition of B_{t+1} into the inequality gives:

$$\sqrt{\eta_t}\mathbb{E}\|\mathbf{S}_t\|_F^2 \leq P_t - P_{t+1} + \frac{4 \cdot 2\eta_{t+1}^2(4L^2n + \sigma^2)}{\sqrt{\eta_{t+1}}} = P_t - P_{t+1} + 8\eta_{t+1}^{3/2}(4L^2n + \sigma^2).$$

Now, we sum this inequality from $t = 1$ to T :

$$\begin{aligned} \sum_{t=1}^T \sqrt{\eta_t}\mathbb{E}\|\mathbf{S}_t\|_F^2 &\leq \sum_{t=1}^T \left(P_t - P_{t+1} + 8\eta_{t+1}^{3/2}(4L^2n + \sigma^2) \right) \\ &= (P_1 - P_{T+1}) + 8(4L^2n + \sigma^2) \sum_{t=1}^T \eta_{t+1}^{3/2}. \end{aligned}$$

Since $P_{T+1} \geq 0$, we can drop this term to simplify the bound. By setting the step size $\eta_t = t^{-2/3}$, we have $\eta_{t+1}^{3/2} = ((t+1)^{-2/3})^{3/2} = (t+1)^{-1}$. The summation becomes:

$$\begin{aligned} \sum_{t=1}^T \sqrt{\eta_t}\mathbb{E}\|\mathbf{S}_t\|_F^2 &\leq P_1 + 8(4L^2n + \sigma^2) \sum_{t=1}^T \frac{1}{t+1} \\ &\leq P_1 + 8(4L^2n + \sigma^2) \sum_{t=1}^T \frac{1}{t} \\ &\stackrel{(\circ)}{\leq} P_1 + 8(4L^2n + \sigma^2)(1 + \ln T), \end{aligned} \tag{17}$$

where (\circ) follows from the harmonic series, $\sum_{t=1}^T \frac{1}{t} \leq 1 + \ln T$.

Finally, we establish the bound on the time-averaged expectation. With our choice of $\eta_t = t^{-2/3}$, we have $\sqrt{\eta_t} = t^{-1/3}$. Therefore:

$$\begin{aligned} \frac{1}{T} \sum_{t=1}^T \mathbb{E}\|\mathbf{S}_t\|_F^2 &= \frac{1}{T} \sum_{t=1}^T t^{1/3} \cdot t^{-1/3} \mathbb{E}\|\mathbf{S}_t\|_F^2 \\ &= \frac{1}{T} \sum_{t=1}^T t^{1/3} \sqrt{\eta_t} \mathbb{E}\|\mathbf{S}_t\|_F^2 \\ &\leq \frac{T^{1/3}}{T} \sum_{t=1}^T \sqrt{\eta_t} \mathbb{E}\|\mathbf{S}_t\|_F^2 && \text{(since } t^{1/3} \leq T^{1/3} \text{ for } t \leq T\text{)} \\ &\stackrel{(\circ)}{\leq} \frac{T^{1/3}}{T} (P_1 + 8(4L^2n + \sigma^2)(1 + \ln T)) \\ &= \frac{P_1 + 8(4L^2n + \sigma^2)(1 + \ln T)}{T^{2/3}}, \end{aligned}$$

where (\circ) follows from the inequality (17).

Substituting $P_1 = 4\mathbb{E}\|\mathbf{S}_1\|_F^2/\sqrt{\eta_1} = 4\mathbb{E}\|\mathbf{S}_1\|_F^2$ completes the main proof. To establish the final bound, we now analyze the initial term P_1 . Given the definition $\mathbf{S}_1 = \nabla f(\mathbf{X}_1) - \mathbf{M}_1$, we have:

$$\begin{aligned} P_1 &= 4\mathbb{E}\|\nabla f(\mathbf{X}_1) - \mathbf{M}_1\|_F^2 \\ &= 4\mathbb{E}\|\nabla f(\mathbf{X}_1) - (1 - \beta_1 + \gamma_1\beta_1)\nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \\ &= 4\mathbb{E}\|\nabla f(\mathbf{X}_1) - \nabla f(\mathbf{X}_1; \xi_1)\|_F^2 \\ &\stackrel{(*)}{\leq} 4\sigma^2. \end{aligned}$$

The final inequality $(*)$ holds by setting the parameter $\gamma_1 = \gamma = 1$. This choice nullifies the first term, as $(\gamma_1 - 1)^2 = 0$, and simplifies the coefficient of the variance to $(1 - \beta_1 + \beta_1)^2 = 1$. \square

1296 **D PROOFS OF THEOREM 3.2**
 1297

1298 *Proof.* According to Assumption 3.3, and based on the descent lemma, we have
 1299

$$\begin{aligned}
 1300 \quad f(\mathbf{X}_{t+1}) &\leq f(\mathbf{X}_t) + \langle \nabla f(\mathbf{X}_t), \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\
 1301 \\
 1302 \quad &\leq f(\mathbf{X}_t) + \langle \mathbf{M}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \langle \nabla f(\mathbf{X}_t) - \mathbf{M}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\
 1303 \\
 1304 \quad &\stackrel{(\circ)}{\leq} f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_* + \langle \nabla f(\mathbf{X}_t) - \mathbf{M}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\
 1305 \\
 1306 \quad &\leq f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_* + \frac{1}{2\alpha} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\alpha + L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\
 1307 \\
 1308 \quad &\stackrel{(\star)}{\leq} f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\sqrt{\eta_t}}{2L} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\frac{L}{\sqrt{\eta_t}} + L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2,
 \end{aligned}$$

1311 where (\circ) holds because, by the definition of \mathbf{O}_t and the property of norms $\|\mathbf{M}_t\|_* \geq \|\mathbf{M}_t\|_F$, we
 1312 have:
 1313

$$1314 \quad \langle \mathbf{M}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle = -\eta_t \langle \mathbf{M}_t, \mathbf{O}_t \rangle = -\eta_t \langle \mathbf{M}_t, \mathbf{U}_r \mathbf{V}_r^\top \rangle = -\eta_t \|\mathbf{M}_t\|_* \leq -\eta_t \|\mathbf{M}_t\|_F,$$

1315 and (\star) holds by setting $\alpha = \frac{L}{\sqrt{\eta_t}}$. Thus, we have
 1316

$$\begin{aligned}
 1317 \quad \sum_{t=1}^T \eta_t \mathbb{E} \|\mathbf{M}_t\|_F &\leq \sum_{t=1}^T (\mathbb{E}[f(\mathbf{X}_t)] - \mathbb{E}[f(\mathbf{X}_{t+1})]) + \sum_{t=1}^T \frac{\sqrt{\eta_t}}{2L} \mathbb{E} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 \\
 1318 \\
 1319 \quad &+ \sum_{t=1}^T \frac{\frac{L}{\sqrt{\eta_t}} + L}{2} \mathbb{E} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2 \\
 1320 \\
 1321 \quad &\leq f(\mathbf{X}_1) - f^* + \sum_{t=1}^T \frac{\sqrt{\eta_t}}{2L} \mathbb{E} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \sum_{t=1}^T \frac{L(\eta_t^{3/2} + \eta_t^2)}{2} n \\
 1322 \\
 1323 \quad &\leq f(\mathbf{X}_1) - f^* + \frac{1}{2L} \sum_{t=1}^T \sqrt{\eta_t} \mathbb{E} \|\mathbf{S}_t\|_F^2 + \frac{Ln}{2} \sum_{t=1}^T t^{-1} + \frac{Ln}{2} \sum_{t=1}^T t^{-4/3} \\
 1324 \\
 1325 \quad &\stackrel{(\circ)}{\leq} f(\mathbf{X}_1) - f^* + \frac{4\sigma^2 + 8(4L^2 n + \sigma^2)(1 + \ln T)}{2L} \\
 1326 \\
 1327 \quad &+ \frac{Ln}{2} (1 + \ln T) + \frac{Ln}{2} \sum_{t=1}^T t^{-4/3} \\
 1328 \\
 1329 \quad &\stackrel{(\star)}{\leq} f(\mathbf{X}_1) - f^* + \frac{2\sigma^2}{L} + 2Ln + 4(4Ln + \sigma^2 L^{-1})(1 + \ln T) + \frac{Ln}{2} (1 + \ln T),
 \end{aligned}$$

1330 where (\circ) uses Lemma C.2; (\star) follows from the fact that $\sum_{t=1}^T \frac{1}{t^{4/3}} \leq 4$. Next, we let
 1331

$$1332 \quad G = f(\mathbf{X}_1) - f^* + \frac{2\sigma^2}{L} + \left(16Ln + 4\sigma^2 L^{-1} + \frac{Ln}{2} \right) (1 + \ln T) + 2Ln.$$

1333 Thus, we have
 1334

$$\begin{aligned}
 1335 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\mathbf{M}_t\|_F &\leq \frac{1}{T} \sum_{t=1}^T \frac{t^{2/3}}{t^{2/3}} \mathbb{E} \|\mathbf{M}_t\|_F \\
 1336 \\
 1337 \quad &\leq \frac{T^{2/3}}{T} \sum_{t=1}^T \frac{1}{t^{2/3}} \mathbb{E} \|\mathbf{M}_t\|_F = \frac{1}{T^{1/3}} \sum_{t=1}^T \eta_t \mathbb{E} \|\mathbf{M}_t\|_F \\
 1338 \\
 1339 \quad &\leq \frac{G}{T^{1/3}}.
 \end{aligned}$$

1350 Next, we have

$$\begin{aligned}
 1352 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F \stackrel{(\circ)}{\leq} \sqrt{\frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2} \\
 1353 \quad & \stackrel{(\star)}{\leq} \sqrt{\frac{4\sigma^2 + 8(4L^2n + \sigma^2)(1 + \ln T)}{T^{2/3}}}.
 \end{aligned}$$

1355 where (\circ) uses Jensen's inequality; (\star) uses Lemma C.3 by letting $\mathbf{S}_t = \nabla f(\mathbf{X}_t) - \mathbf{M}_t$. Thus, we
1356 have

$$\begin{aligned}
 1359 \quad & \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t)\|_F \leq \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F + \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\mathbf{M}_t\|_F \\
 1360 \quad & \leq \sqrt{\frac{4\sigma^2 + 8(4L^2n + \sigma^2)(1 + \ln T)}{T^{2/3}}} + \frac{G}{T^{1/3}} \\
 1361 \quad & = \mathcal{O}\left(\frac{\ln T}{T^{1/3}}\right).
 \end{aligned}$$

1366 This completes the proof. \square

E LEMMAS FOR THEOREMS 3.3 AND 3.4

E.1 LEMMA E.1

1372 **Lemma E.1.** Let $\{\Gamma_t\}_{t \geq 1}$ be a non-negative sequence whose partial sum $D_t = \sum_{t=1}^T \Gamma_t$ is bounded
1373 by $D_t \leq A_1 \ln T + A_2$ for some positive constants A_1 and A_2 . Define the function $f(t) = \frac{t^{1-p}}{\ln t}$
1374 where $p \in (0, 1)$. Fix $T_0 = 2e^{1/(1-p)}$, where e is the base of the natural logarithm. Then, the
1375 following inequality holds for all $T > T_0$:

$$\sum_{t=T_0}^{T-1} \Gamma_t f(t) \leq (A_1 + A_2) (T-1)^{1-p}.$$

1380 *Proof.* We choose an integer $T_0 = 2e^{1/(1-p)} > e^{1/(1-p)}$ large enough such that for all $t \geq T_0$, the
1381 function $f(t)$ is positive and monotonically increasing. We use summation by parts to bound the
1382 sum $\sum_{t=T_0}^{T-1} \Gamma_t f(t)$:

$$\sum_{t=T_0}^{T-1} \Gamma_t f(t) = \sum_{t=T_0}^{T-1} (D_t - D_{t-1}) f(t) = D_{T-1} f(T-1) - D_{T_0-1} f(T_0) - \sum_{t=T_0}^{T-1} D_{t-1} (f(t) - f(t-1)).$$

1387 Since $D_{t-1} \geq 0$ and $f(t)$ is monotonically increasing for $t \geq T_0$ (i.e., $f(t) - f(t-1) \geq 0$), the last
1388 term, $\sum_{t=T_0}^{T-1} D_{t-1} (f(t) - f(t-1))$, is non-negative. Therefore, we have:

$$\sum_{t=T_0}^{T-1} \Gamma_t f(t) \leq D_{T-1} f(T-1).$$

1393 Substituting the given bound on the partial sums, $D_{T-1} \leq A_1 \ln(T-1) + A_2$, we obtain:

$$\begin{aligned}
 1394 \quad & \sum_{t=T_0}^{T-1} \Gamma_t f(t) \leq (A_1 \ln(T-1) + A_2) \frac{(T-1)^{1-p}}{\ln(T-1)} \\
 1395 \quad & = \left(A_1 + \frac{A_2}{\ln(T-1)} \right) (T-1)^{1-p} \\
 1396 \quad & \stackrel{(\circ)}{\leq} (A_1 + A_2) (T-1)^{1-p},
 \end{aligned}$$

1401 where (\circ) follows from $\ln(T-1) \geq 1$ for sufficiently large T . \square

1402 Consequently, for any given $\epsilon > 0$, the expression can be bounded by $(A_1 + A_2 + \epsilon) T^{1-p}$ for
1403 sufficiently large T . \square

1404 E.2 LEMMA E.2
14051406 **Lemma E.2.** Suppose a positive sequence $\{\Delta_t\}_{t \geq 1}$ satisfies the following recursive inequality:
1407

1408
$$\Delta_{t+1} \leq \Delta_t - \frac{\sqrt{2\mu}}{t^p} \sqrt{\Delta_t} + \Gamma_t,$$

1409

1410 where $p \in (0, 1)$ and $\mu > 0$ are constants. The non-negative noise sequence $\{\Gamma_t\}_{t \geq 1}$ satisfies the
1411 condition from Lemma E.1 that $\sum_{t=1}^T \Gamma_t = A_1 \ln T + A_2$. Then, the sequence Δ_t converges to 0
1412 with the following rate:
1413

1414
$$\Delta_t \leq \frac{\mathcal{A}^2(1-p)^2}{C^2} \cdot \frac{(\ln t)^2}{t^{2(1-p)}},$$

1415

1416 where $\mathcal{A} := A_1 + A_2$ and $C = \frac{\sqrt{2\mu}}{2}$.
14171418 *Proof.* We define the variable $G_t = \sqrt{\Delta_t}$.
14191420 Since $\Delta_t > 0$, it follows that $G_t > 0$. The function $f(x) = \sqrt{x}$ is concave, which implies
1421 $\sqrt{y} - \sqrt{x} \leq \frac{1}{2\sqrt{x}}(y - x)$ for any $x, y > 0$. By setting $y = \Delta_{t+1}$ and $x = \Delta_t$, we obtain:
1422

1423
$$G_{t+1} - G_t \leq \frac{\Delta_{t+1} - \Delta_t}{2G_t}.$$

1424

1425 Substituting the original recurrence relation $\Delta_{t+1} - \Delta_t \leq -\frac{\sqrt{2\mu}}{t^p} \sqrt{\Delta_t} + \Gamma_t$ and noting that $\sqrt{\Delta_t} = G_t$, we have:
1426

1427
$$G_{t+1} - G_t \leq \frac{1}{2G_t} \left(-\frac{\sqrt{2\mu}}{t^p} G_t + \Gamma_t \right).$$

1428

1429 Letting $C = \frac{\sqrt{2\mu}}{2}$, $T_0 = 2e^{1/(1-p)}$, we arrive at the core recurrence for G_t :
1430

1431
$$G_{t+1} \leq G_t - \frac{C}{t^p} + \frac{\Gamma_t}{2G_t} \tag{18}$$

1432

1433 For $p \in (0, 1)$, we will prove that $G_t \leq \frac{\mathcal{A}(1-p)}{C} \cdot \frac{\ln t}{t^{1-p}}$ by contradiction.
14341435 Assume the proposition is false. This means that for any constant $A > 0$, there exist infinitely many
1436 time steps t such that $G_t > B_t$, where $B_t = A \cdot \frac{\ln t}{t^{1-p}}$.
14371438 We choose a constant A large enough (the specific condition will be derived later). By our assumption,
1439 there must exist an arbitrarily large time T such that $G_T > B_T$. Consider an interval $[T_0, T-1]$
1440 and assume that $G_t > B_t$ for all t in this interval.
14411442 Summing the inequality (18) from $t = T_0$ to $T-1$ gives:
1443

1444
$$G_T - G_{T_0} \leq \sum_{t=T_0}^{T-1} (G_{t+1} - G_t) \leq \sum_{t=T_0}^{T-1} \left(-\frac{C}{t^p} + \frac{\Gamma_t}{2G_t} \right).$$

1445

1446 Over this interval, since $G_t > B_t = A \frac{\ln t}{t^{1-p}}$, we have $\frac{1}{G_t} < \frac{1}{B_t} = \frac{t^{1-p}}{A \ln t}$. Substituting this bound
1447 yields:
1448

1449
$$G_T < G_{T_0} - \underbrace{C \sum_{t=T_0}^{T-1} \frac{1}{t^p}}_{V_1} + \underbrace{\frac{1}{2A} \sum_{t=T_0}^{T-1} \frac{\Gamma_t t^{1-p}}{\ln t}}_{V_2}.$$

1450

1451 Next, we analyze the asymptotic behavior of the two sums, V_1 and V_2 .
14521453 For the negative drift term V_1 , we use an integral approximation:
1454

1455
$$\sum_{t=T_0}^{T-1} \frac{1}{t^p} \geq \int_{T_0}^T x^{-p} dx = \frac{1}{1-p} (T^{1-p} - T_0^{1-p}).$$

1456

1457 The leading term of V_1 is thus on the order of $\frac{C}{1-p} T^{1-p}$.
1458

1458 For the positive noise term V_2 , we use the condition on the partial sums of Γ_t , $S_t = \sum_{k=1}^t \Gamma_k \leq$
 1459 $A_1 \ln t + A_2$. Applying summation by parts (in a manner analogous to Lemma E.1), the dominant
 1460 behavior of the sum in V_2 is given by $S_{T-1} \cdot \frac{(T-1)^{1-p}}{\ln(T-1)}$. This can be bounded by $((A_1 + A_2) \ln(T -$
 1461 $1)) \frac{(T-1)^{1-p}}{\ln(T-1)} = (A_1 + A_2)(T-1)^{1-p}$. For simplicity in asymptotics, let us denote the effective
 1462 constant as $\mathcal{A} := A_1 + A_2$. The leading behavior of V_2 is thus on the order of $\frac{\mathcal{A}}{2A} T^{1-p}$.
 1463
 1464 Substituting the leading terms of these bounds back into the inequality for G_T :
 1465

$$1466 \quad G_T < G_{T_0} - \frac{C}{1-p} T^{1-p} + \frac{\mathcal{A}}{2A} T^{1-p} = G_{T_0} + T^{1-p} \left(\frac{\mathcal{A}}{2A} - \frac{C}{1-p} \right).$$

1466 We now choose the constant A such that the coefficient of the leading term is negative:
 1467

$$1470 \quad \frac{\mathcal{A}}{2A} - \frac{C}{1-p} < 0 \implies A > \frac{\mathcal{A}(1-p)}{2C}.$$

1473 With an A satisfying this condition, for a sufficiently large T , the negative term proportional to
 1474 T^{1-p} will dominate, forcing the right-hand side to become negative. This contradicts the fact that
 1475 $G_T = \sqrt{\Delta_T}$ must be positive.

1476 This contradiction proves that our assumption that G_t can remain above B_t for an arbitrarily long
 1477 interval is false. Therefore, there must exist a time T_A such that for all $t > T_A > T_0 = 2e^{1/(1-p)}$,
 1478 $G_t \leq B_t$. This establishes that $G_t = \mathcal{O}(\frac{\ln t}{t^{1-p}})$.
 1479

1480 Finally, by choosing the constant $A = \frac{\mathcal{A}(1-p)}{C}$, squaring both sides of this result yields the conver-
 1481 gence rate for Δ_t :

$$1482 \quad \Delta_t = G_t^2 \leq \frac{\mathcal{A}^2(1-p)^2}{C^2} \cdot \frac{(\ln t)^2}{t^{2(1-p)}} \\ 1483 \quad = \mathcal{O}\left(\frac{(\ln t)^2}{t^{2(1-p)}}\right).$$

□

1488 F PROOFS OF THEOREM 3.3

1491 *Proof.* By Theorem 3.1 inequality (7), we have

$$1492 \quad \mathbb{E}[f(\mathbf{X}_{t+1})] \leq \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \Gamma_t \quad (19)$$

1494 where

$$1495 \quad \Gamma_t = \frac{\eta_t^{2/3}}{L} \mathbb{E}\|\mathbf{M}_t - \nabla f(\mathbf{X}_t)\|_F^2 + (L/2 + Ln)\eta_t^{4/3}. \quad (20)$$

1497 Case 1: $\gamma = 0$.

1499 Let $\eta_t = t^{-3/4}$, $\beta_t = 1 - t^{-1/2}$, $\alpha_t = t^{-1/2}$. According to Theorem 3.1 inequality (9), we have

$$1500 \quad \sum_{t=1}^T \Gamma_t \leq A_1 \ln T + A_2,$$

1504 where $A_1 = 2L^{-1}\sigma^2 + 4\sqrt{2}Ln + Ln + L/2$ and $A_2 = 4L^{-1}\sigma^2 + 4\sqrt{2}Ln + Ln + L/2$.

1505 Case 2: $\gamma \neq 0$.

1507 Let $\eta_t = t^{-3/4}$, $\beta_t = 1 - (1+t)^{-1/2}$, $\alpha_t = t^{-1/2}$. According to Theorem 3.1 inequality (13), we
 1508 have

$$1509 \quad \sum_{t=1}^T \Gamma_t \leq A_1 \ln T + A_2,$$

1511 where $A_1 = 4L^{-1}\sigma^2 + 8\sqrt{2}Ln + Ln + L/2$ and $A_2 = 10L^{-1}\sigma^2 + 8\sqrt{2}Ln + Ln + L/2$.

1512 Then, we define $\Delta_t = \mathbb{E}[f(\mathbf{X}_t)] - f^*$. Applying Assumption 3.5 to inequality (19), we have
 1513

$$\begin{aligned} 1514 \Delta_{t+1} &\leq \Delta_t - \eta_t \sqrt{2\mu\Delta_t} + \Gamma_t \\ 1515 &= \Delta_t - \frac{\sqrt{2\mu}}{t^{3/4}} \sqrt{\Delta_t} + \Gamma_t. \\ 1516 \end{aligned}$$

1517 By Lemma E.2, let $G_t = \sqrt{\Delta_t}$, $C = \sqrt{2\mu}/2$ and $p = 3/4$.
 1518

$$1519 G_{t+1} \leq G_t - \frac{C}{t^{3/4}} + \frac{\Gamma_t}{2G_t}. \\ 1520$$

1521 Setting $p = 3/4$, for any constant $A > \frac{(A_1+A_2)(1-p)}{2C} = \frac{A_1+A_2}{8C}$, there exists a time step T_A such
 1522 that for all $t > T_A$, we have $G_t \leq A \cdot \frac{\ln t}{t^{1/4}}$. By choosing $A = \frac{A}{4C}$, we satisfy the condition $A > \frac{A}{8C}$,
 1523 which ensures this bound holds. Thus, we obtain the convergence rate for Δ_t :
 1524

$$1525 \Delta_t \leq \frac{A^2(1-3/4)^2}{C^2} \cdot \frac{(\ln t)^2}{t^{2(1-3/4)}} = \frac{A^2}{8\mu} \cdot \frac{(\ln t)^2}{t^{1/2}} \\ 1526$$

1527 We can now summarize the results for both scenarios. In either case ($\gamma = 0$ or $\gamma \neq 0$), the analysis
 1528 yields the same asymptotic convergence rate. For any number of iterations $T > T_0 = 2e^4$, the
 1529 analysis leads to the same asymptotic upper bound:

$$1530 \mathbb{E}[f(\mathbf{X}_{T+1})] - f^* \leq \frac{A^2}{8\mu} \cdot \frac{(\ln T)^2}{T^{1/2}} = \mathcal{O}\left(\frac{(\ln T)^2}{T^{1/2}}\right). \\ 1531$$

1533 The specific definition of A is as follows: (i) Case 1 ($\gamma = 0$): $A = 6L^{-1}\sigma^2 + 8\sqrt{2}Ln + 2Ln + L$.
 1534 (ii) Case 2 ($\gamma \neq 0$): $A = 14L^{-1}\sigma^2 + 16\sqrt{2}Ln + 2Ln + L$.

1535 This completes the proof. □
 1536

1537 G PROOFS OF THEOREM 3.4

1539 *Proof.* According to Theorem 3.2, we have
 1540

$$1541 f(\mathbf{X}_{t+1}) \leq f(\mathbf{X}_t) - \eta_t \|\mathbf{M}_t\|_F + \frac{\sqrt{\eta_t}}{2L} \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2 + \frac{\frac{L}{\sqrt{\eta_t}} + L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2.$$

1543 Since $\eta_t \leq 1$, we have $\frac{L}{\sqrt{\eta_t}} \geq L$. Thus, taking the expectation yields
 1544

$$\begin{aligned} 1545 \mathbb{E}[f(\mathbf{X}_{t+1})] &\leq \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\mathbf{M}_t\|_F] + \frac{\sqrt{\eta_t}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + \frac{L}{\sqrt{\eta_t}} \mathbb{E}[\|\mathbf{X}_{t+1} - \mathbf{X}_t\|_F^2] \\ 1546 &\leq \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\mathbf{M}_t\|_F] + \frac{\sqrt{\eta_t}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + Ln\eta_t^{3/2} \\ 1547 &\stackrel{(\circ)}{\leq} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F] \\ 1548 &\quad + \frac{\sqrt{\eta_t}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + Ln\eta_t^{3/2} \\ 1549 &\stackrel{(*)}{\leq} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \frac{1}{2\epsilon} \eta_t^2 + \frac{\epsilon}{2} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] \\ 1550 &\quad + \frac{\sqrt{\eta_t}}{2L} \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2] + Ln\eta_t^{3/2} \\ 1551 &\stackrel{(\bullet)}{=} \mathbb{E}[f(\mathbf{X}_t)] - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] \\ 1552 &\quad + \underbrace{\frac{L\eta_t^{3/2}}{2} + \left(\frac{\epsilon}{2} + \frac{\sqrt{\eta_t}}{2L}\right) \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F^2]}_{\Gamma_t} + Ln\eta_t^{3/2}, \\ 1553 \end{aligned}$$

1554 where (\circ) follows from the reverse triangle inequality $-\|\mathbf{M}_t\|_F \leq \|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F - \|\nabla f(\mathbf{X}_t)\|_F$; (\star) applies Young's inequality to the term $\eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t) - \mathbf{M}_t\|_F]$; and (\bullet) collects
 1555 the residual terms into Γ_t . By setting $\epsilon = \frac{\sqrt{\eta_t}}{L}$, we can simplify the expression for Γ_t :
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563

1566

$$\Gamma_t = \frac{\sqrt{\eta_t}}{L} \mathbb{E}[\|\mathbf{S}_t\|_F^2] + (L/2 + Ln)\eta_t^{3/2}, \quad (21)$$

1569 where $\mathbf{S}_t = \nabla f(\mathbf{X}_t) - \mathbf{M}_t$. The sum of these terms can be bounded. Let $A_1 = 33Ln + 8L^{-1}\sigma^2 +$
 1570 $L/2$ and $A_2 = 33Ln + 12L^{-1}\sigma^2 + L/2$. We have
 1571

$$\begin{aligned} \sum_{t=1}^T \Gamma_t &= \frac{1}{L} \sum_{t=1}^T \sqrt{\eta_t} \mathbb{E}[\|\mathbf{S}_t\|_F^2] + \sum_{t=1}^T (L/2 + Ln)\eta_t^{3/2} \\ &\leq \frac{1}{L} \sum_{t=1}^T \sqrt{\eta_t} \mathbb{E}[\|\mathbf{S}_t\|_F^2] + (L/2 + Ln) \sum_{t=1}^T \frac{1}{t} \\ &\stackrel{(o)}{\leq} \frac{4\sigma^2 + 8(4L^2n + \sigma^2)(1 + \ln T)}{L} + (L/2 + Ln)(1 + \ln T) \\ &= A_1 \ln T + A_2, \end{aligned}$$

1581 where (o) holds by Lemma C.3 inequality (17).
 1582

1583 Next, let $\Delta_t = \mathbb{E}[f(\mathbf{X}_t)] - f^*$. By applying the Assumption 3.5, $\|\nabla f(\mathbf{X}_t)\|_F^2 \geq 2\mu(f(\mathbf{X}_t) - f^*)$,
 1584 and Jensen's inequality to the main recurrence, we obtain
 1585

$$\begin{aligned} \Delta_{t+1} &\leq \Delta_t - \eta_t \mathbb{E}[\|\nabla f(\mathbf{X}_t)\|_F] + \Gamma_t \\ &\leq \Delta_t - \eta_t \sqrt{2\mu \mathbb{E}[f(\mathbf{X}_t) - f^*]} + \Gamma_t \\ &\leq \Delta_t - \eta_t \sqrt{2\mu \Delta_t} + \Gamma_t. \end{aligned}$$

1590 Setting the step size $\eta_t = 1/t^{2/3}$, the recurrence becomes
 1591

$$\Delta_{t+1} \leq \Delta_t - \frac{\sqrt{2\mu}}{t^{2/3}} \sqrt{\Delta_t} + \Gamma_t.$$

1594 This recurrence is in the form required by Lemma E.2. Let $G_t = \sqrt{\Delta_t}$, $C = \sqrt{2\mu}/2$ and $p = 2/3$.
 1595 According to Lemma E.2, for any constant $A > \frac{(A_1+A_2)(1-p)}{2C} = \frac{A_1+A_2}{6C}$, there exists a time T_A
 1596 such that for all $t > T_A$, $G_t \leq A \cdot \frac{\ln t}{t^{1/3}}$. We choose a specific constant $A = \frac{\mathcal{A}}{3C}$, where $\mathcal{A} :=$
 1597 $A_1 + A_2 = 20L^{-1}\sigma^2 + 66Ln + L$. Squaring both sides of the inequality for G_t establishes the
 1598 convergence rate for $\Delta_t = G_t^2$:
 1599

$$\Delta_t \leq A^2 \cdot \frac{(\ln t)^2}{t^{2/3}} = \frac{\mathcal{A}^2}{9C^2} \frac{(\ln t)^2}{t^{2/3}} = \frac{2\mathcal{A}^2}{9\mu} \frac{(\ln t)^2}{t^{2/3}}$$

1602 Therefore, for any number of iterations $T > T_0 = 2e^3$, the expected suboptimality has the following
 1603 asymptotic bound:
 1604

$$\mathbb{E}[f(\mathbf{X}_{T+1})] - f^* \leq \frac{2\mathcal{A}^2}{9\mu} \cdot \frac{(\ln T)^2}{T^{2/3}} = \mathcal{O}\left(\frac{(\ln T)^2}{T^{2/3}}\right).$$

1608 This completes the proof. □
 1609

1610 H EXPERIMENTAL DETAILS

1612 H.1 TRAINING ON CIFAR10

1614 The ResNet18 model He et al. (2016) undergoes pretraining on the CIFAR-10 dataset with comprehensive
 1615 hyperparameter specifications provided in Table 2. For each optimizer, the learning rate is selected via a grid search over the set $\{1 \times 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}\}$.
 1616 To ensure a robust comparison, all experiments are repeated over five different random seeds, and we
 1617 report the mean results with one standard deviation shaded. For the ResNet-18 model, we reshape
 1618 each convolutional kernel into a 2D matrix and apply a Muon-type optimizer to these parameters,
 1619 while the remaining 1D vector parameters are optimized with AdamW.

1620
1621
1622 Table 2: Hyperparameters used for training ResNet18 on CIFAR10
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

	SGD	Adam	Muon	Muon-MVR1	Muon-MVR2
Model Size			42.7M		
Training Epochs			100		
Batch Size			128		
Learning Rate	0.1	0.01		0.05	
Learning Rate Scheduling			cosine to 10%		
Numerical precision			float32		
Weight Decay			0.01		
(β_1, β_2)	✗	(0.9,0.999)		✗	
Muon-Momentum	✗	✗		0.9	
Gamma	✗	✗	✗		0.1

1633
1634 Table 3: Hyperparameters used for training LLaMA2-130M on C4
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Hyper-parameter	AdamW	MARS-AdamW	Muon	Muon-MVR1	Muon-MVR2
Max Learning Rate	8e-4	1e-3	8e-4	2e-3	2e-3
Warmup Ratio			0.1		
Batch Size			128		
Maximum Length			4096		
Weight Decay			0.1		
(β_1, β_2)			(0.9,0.98)		
Muon-Momentum	✗	✗		0.95	
Gamma	✗	0.025	✗		0.05

1645
1646 H.2 PRETRAINING ON C41647
1648 ► **Experimental setup.** We use 48 Ascend 910C (64GB) NPUs for all experiments. For the additional experiments, we conduct hyperparameter sweeps for LLaMA2-130M Touvron et al. (2023) trained for 12B tokens on the C4 (Colossal Clean Crawled Corpus) dataset Raffel et al. (2020). For all optimizers (AdamW, MARS-AdamW, Muon, Muon-MVR1, and Muon-MVR2), we keep the model architecture and training data fixed. For LLaMA2-130M, we use a global batch size of 128 and a maximum sequence length of 4096. For each optimizer we train all configurations on the 4x Chinchilla data about 12B tokens for 20,000 steps and select the hyperparameters that achieve the best validation performance.1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
► **Hyperparameter search.** Comprehensive experimental specifications are tabulated in Table 3. For AdamW, we set $(\beta_1, \beta_2) = (0.9, 0.98)$, $\epsilon = 10^{-8}$, and a weight decay of 0.1. The learning rate η is selected from the set $\{3e-4, 5e-4, 8e-4, 1e-3, 2e-3, 4e-3, 6e-3, 8e-3\}$. For MARS-AdamW, we use the same $(\beta_1, \beta_2) = (0.9, 0.98)$, $\epsilon = 10^{-8}$, and weight decay of 0.1, and we search over the same learning-rate set for η . In addition, we sweep over the algorithmic parameter $\gamma \in \{0.01, 0.025, 0.05\}$.For Muon, we set $\beta = 0.95$ and a weight decay of 0.1, and we again choose the learning rate η from $\{3e-4, 5e-4, 8e-4, 1e-3, 2e-3, 4e-3, 6e-3, 8e-3\}$. Muon-MVR1 and Muon-MVR2 use the same settings $\beta = 0.98$ and weight decay of 0.1, and share the same learning-rate search space as Muon. For both Muon-MVR1 and Muon-MVR2, we additionally perform a sweep over $\gamma \in \{0.01, 0.025, 0.05\}$. We use the Muon implementation from Moonlight¹. For LLaMA model, we optimize all 2D matrix parameters (except the embedding layers) using a Muon-type optimizer, while the remaining 1D vector parameters (including the embedding layers) are optimized with AdamW.

I LLM USAGE

A large language model (LLM) was used to aid in the polishing of this paper’s writing.

¹<https://github.com/MoonshotAI/Moonlight>