
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT CONTROLLED LANGUAGE GENERATION
WITH LOW-RANK AUTOREGRESSIVE
REWARD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models trained on large amounts of data are known to produce inap-
propriate content in some cases and require careful tuning to be used in the real
world. We revisit the reward augmented decoding (RAD) approach to control the
generation from a language model using the scores from a task-specific reward
model. We investigate the training objective of RAD, and reformulate it as a task
of learning a reward matrix. We show that RAD is designed to support high flexi-
bility when representing the reward matrices, which leads to higher computational
costs during decoding. However, we demonstrate that RAD does not use its full
flexibility. Motivated by this, we propose a simpler but more efficient low-rank
parametrization of the reward model enabling fast and effective guided decoding.
For the detoxification and sentiment control tasks, we show that our low-rank
reward model performs on par with the more flexible RAD parametrization, while
requiring only a single reward model call per generated token.

1 INTRODUCTION

Generative large language models (LLMs) have gained a lot of popularity in recent years and shown
impressive results in zero-shot and few-shot scenarios on numerous downstream tasks (Touvron et al.,
2023; OpenAI, 2024; Jiang et al., 2023). These large-scale models are pretrained on large amounts
of data, and are known to inherit and memorize underlying biases (Sheng et al., 2019) as well as to
provide unsafe responses (Wallace et al., 2019; Ganguli et al., 2022), necessitating further tuning for
safer deployment and control (Ouyang et al., 2022).

Control over LLMs can be roughly divided into methods which modify the original model via
finetuning (Ouyang et al., 2022; Rafailov et al., 2023), and decoding-time solutions, which do
not modify the parameters of the original model. As models increase in size, finetuning becomes
prohibitive with limited computational resources. In this work, we focus on a more modular approach
of decoding-time guidance, and assume we have access to top-k logits of a black-box base language
model (see §2.1 for details). In this line of work, a discriminator model is trained to modify or rerank
the logits of the base model during decoding in order to satisfy the desired constraint (Yang & Klein,
2021), while preserving the distribution of the language model as much as possible.

Recently Deng & Raffel (2023) proposed the reward augmented decoding (RAD), an approach to train
an autoregressive reward model as the discriminator. While RAD demonstrates high effectiveness for
controlled generation, it scales poorly when the number of next token candidates grows, requiring a
separate forward pass through the backbone of the reward model for each token candidate. In this
aspect, RAD diverges from previous work of Liu et al. (2021) and Krause et al. (2021): the latter
propose more efficient approaches using external attribute-conditioned language models, where each
expert model only performs a single forward pass to predict the scores for all next token candidates.

In §3.1, we analyze RAD and reformulate its training objective in terms of approximating an
incomplete reward matrix. We highlight that the RAD approach is flexible enough to represent a
large space of reward matrices including those of high rank. However, when we empirically measure
the rank of the reward matrix learned by RAD, it appears to be low-rank. This observation suggests
that RAD might not use its full flexibility, which motivates us to reconsider the trade-off between
efficiency and expressivity of reward models. By analyzing the incomplete reward matrix constructed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

from the training data, we observe that it is enough to have a low-rank approximation to this matrix
in order to reconstruct its observed values.

In light of this observation, we propose the autoregressive reward model (ARM), a low-rank reward
model which combines the strengths of two paradigms: fast inference with language modeling
prediction style and high quality of generations following the reward augmented decoding (RAD)
approach (Deng & Raffel, 2023). We propose a simple strategy for how to transform a pretrained
language model into an efficient autoregressive reward model. In the evaluation, we show that guided
decoding with our model results in a comparable attribute control/fluency to the more flexible but
more computationally intensive RAD approach.

2 PRELIMINARIES

2.1 GUIDED DECODING WITH EXTERNAL EXPERTS

In this section, we outline the approach of guiding a base language model with external token-level
discriminators. At each step of decoding, both the base model and the discriminator observe an
already generated prefix x, and cooperate to score the next token candidates v ∈ V . A language
model predicts the logits zLM(·|x) ∈ R|V | and the goal of discriminator is to augment these logits
with reward scores r̂(·|x) ∈ R|V |. A standard practice is to consider only likely tokens V ′ ⊆ V
at each decoding step e.g. via top-k (Fan et al., 2018; Deng & Raffel, 2023) or nucleus sampling
(Holtzman et al., 2020):

z(v|x) =
{︃
zLM(v|x) + βr̂(v|x), if v ∈ V ′

−∞, otherwise
(1)

and the next token is sampled from the categorical distribution:

p̃(x) = Softmax(z(v|x)). (2)

While some language models might have a restrictive application programming interface (API) for
safety reasons, this line of work makes a reasonable assumption that we have access to the top-k
logits of a language model either directly or via API for a relatively small k ≪ |V |.
To define reward scores, GeDi (Liu et al., 2021) and DExperts (Krause et al., 2021) use attribute-
conditioned unidirectional language models (undesired attribute in GeDi or two LM experts for
desired and undesired attribute in DExperts), trained via the standard language modeling objective on
class-conditioned data: r̂y(v|x) = zt(v|x, y), where y ∈ {0; 1} is the attribute (e.g. positive/negative
sentiment). Given a prefix x they only pass it once through the external language model backbone,
relying on the linear output layer to obtain the scores for each of the next token candidates.

Alternatively, RAD (Deng & Raffel, 2023) trains a unidirectional reward model to predict the attribute
of interest for a prefix concatenated with a next token candidate r̂RAD([x, v]), where [·, ·] denotes the
concatenation of a prefix and a next token candidate. This approach requires passing each next token
candidate as input to the model, thus, to obtain the scores for k next token candidates v for top-k
decoding RAD would need k forward calls of the reward model, which can slow down inference
significantly and constrains them to limit the number of next token candidates. Despite being less
efficient, RAD outperforms the approach with attribute-conditioned language models in terms of
controlled generation quality.

2.2 RAD TRAINING

In this section, we outline how RAD (Deng & Raffel, 2023) uses labeled data to train a reward model.
At the training stage, we assume that we have a dataset D = {(u(i), y(i))}ni=1 of n text utterances u
of length l(u) and responses y ∈ [0; 1]. RAD trains a reward model to predict y given a text input.
While a simple strategy would be to train the reward model on full utterances u from D, it is important
that the model predicts meaningful rewards also for partially generated utterances, needed during
guided decoding. The RAD approach is to first extend the dataset by considering all partial utterance
prefixes u1:t along with corresponding weights:

Df = {(x, y, λ(t, l(u))) |x=u1:t, t ∈ (1, . . . , l(u)), (u, y) ∈ D}, (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where λ are the weights λ(t, l(u)) = t∑︁l(u)

t′=1
t′

for each prefix used to up-weight prefixes closer

to the full sentence, and
∑︁l(u)

t=1 λ(t, l(u)) = 1. Then, during training, RAD takes the input prefix
x = [x′, v] and incurs a weighted squared loss for approximating the future reward:

L(r̂(v|x′), y, λ) = λ · (r̂(v|x′)− y)2. (4)

During training, we can use teacher forcing to process all prefixes of an utterance in a single pass.

3 REWARD MODELING AS LOW-RANK MATRIX FACTORIZATION

3.1 ANALYSIS OF RAD

3.1.1 REWARD MODELING AS MATRIX COMPLETION

To better understand the training objective of RAD, we start by looking at the optimization prob-
lems defined in §2.2, where we optimize a reward model to approximate the future responses. A
unidirectional reward model can predict a reward value for each next next token candidate. If we
enumerate all the contexts x′ in the training data and all possible next tokens v, we task a reward
model to predict the values of R ∈ RN×|V |, which we dub the reward matrix.

If each context would be observed only once, R would have a single observed reward in each row. For
short and common contexts we can observe more continuations per row, and also for some contexts
there can be ambiguities: {(x, y1, λ1), ...(x, ym, λm)}. From a mean squared error point of view, it
is equivalent to compress these ambiguities by taking the weighted average of their y (Appendix A):

R[x′, v] =

∑︁
λ,y∼Df [x]

λy∑︁
λ,y∼Df [x]

λ
. (5)

From this perpective, reward modeling can be interpreted as a matrix completion problem. The train-
ing dataset Df gives us only an incomplete view of a true reward matrix R. Following the notation in
the matrix completion literature (Mazumder et al., 2010), denote by Ω the set of indices of the ob-
served entries {(x′, v) |x = [x′, v], x ∈ Df}, and by PΩ(R) the projection of R that sets all indices
outside Ω to zero. The full RAD objective is equivalent to minimizing ∥PΩ(R) − PΩ(R̂RAD)∥2F ,
where each entry R̂RAD[x

′, v] = r̂(v|x′) can be computed with a forward pass.

0 500 1000 1500 2000 2500 3000 3500 4000
N contexts

100

101

102

103

104

Ra
nk

|V|=50257
d=768
RAD (toxicity)
RAD (sentiment)

Figure 1: We numerically estimate the rank of R̂RAD by increasing the number of seen randomly
selected training prefixes (rows of the R̂RAD matrix), and observe that the rank tends to be less than
the model dimension d = 764 and much less than |V |, the maximal possible rank of PΩ(R).

3.1.2 RAD CAN BE HIGH-RANK, BUT IS NOT IN PRACTICE

Given a prefix x, RAD accepts a token candidate v as an additional input to the model R̂RAD[x
′, v] =

r̂RAD([x
′, v]), passing v through the layers of the reward model. For this reason, we expect RAD

to have the capacity to represent a large space of reward matrices including matrices with higher
rank. In Appendix C.1, we empirically verify that RAD is capable to approximate PΩ(R) matrix
with high rank: rank(PΩ(R)) > d, where d is the dimensionality of the model . This flexibility

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

does come at the cost: to score many next token candidates during top-k decoding, RAD needs to do
a forward pass through all layers of the model for each of the k next token candidates. Hence, an
important question is do we need this flexibility at the cost of slower decoding?

In Figure 1, we aim to measure the rank of R̂RAD for RAD trained on two datasets: for detoxification
and sentiment control tasks (discussed in detail in §5). To numerically estimate the rank, we follow
Finlayson et al. (2024) and first sample N random prefixes x from the dataset Df to calculate N

full rows of R̂RAD (requiring N · |V | calls to the RAD reward model). Then we use singular value
decomposition with the standard singular value cutoff to compute the rank (Appendix C.4). We
observe that the reward matrix learned by RAD tends to be low-rank, suggesting that it is possible
to use less flexible but faster reward models to improve the efficiency of reward models.

3.1.3 IS THE TRAINING DATA FULL RANK?

Note that the presence of a low-rank solution compatible with Ω does not imply that the true reward,
if it could be fully observed, is necessarily low rank. We argue that low-rank predictions can partly be
explained by the specifics of the training objective. Particularly, the incompleteness of PΩ(R) makes
it easier for a reward model to learn a low rank approximation. To understand why this is the case,
consider a simple scenario, when all prefixes x appear only once in the dataset. For this case, there
exists a rank-1 R̂ compatible with PΩ(R) (Appendix B.1).

To better understand this phenomenon, we would like to understand whether the PΩ(R) can be
fit with the low-rank model. We define the minimum rank of a partially observed matrix R̂ as
min rank(PΩ(R)) = min{rank(R̂) : PΩ(R) = PΩ(R̂)}. We claim that the data has low minimal
rank. Note that empirically calculating the minimal rank of the data is challenging due to the very
large number of prefixes. We use a combination of theoretical and empirical approaches listed in
Appendix B.2 to demonstrate that incomplete PΩ(R) matrix can be fit with the low-rank matrix
factorization with a small error (with the rank less than the model dimension).

3.2 LOW-RANK AUTOREGRESSIVE REWARD MODEL

Motivated to reduce the decoding costs of RAD, we propose ARM (Figure 2), a low-rank autoregres-
sive reward model suitable for guided decoding, designed for efficient modeling of rewards scores
for next token candidates. To ensure prediction efficiency of the reward model, we aim to revisit
the language modeling style of prediction (Liu et al., 2021; Krause et al., 2021) and aim to predict
the scores for all next token candidates with just a single forward pass through the backbone of a
language model.

In contrast to RAD, ARM predicts the representation vector h(x) ∈ Rd given a prefix x and uses
output embeddings e(v) ∈ Rd to get the scores for all next token candidates. We propose the
following ARM parametrization, similar to the how Dueling Network (Wang et al., 2016; Tang et al.,
2023; Han et al., 2024) parametrizes the scores for the next tokens given the prefix:

r̂ARM(v|x) = r̂b(h(x))
baseline

+∆r̂(e(v)|h(x)), (6)

where the baseline predicts the score for the prefix x and ∆r̂ predicts how observing a next token v
changes the score. Particularly, we use a linear parametrization:

r̂b(v|x) := ⟨h(x), w⟩ ∆r̂(e(v)|h(x)) := ⟨h(x),We(v)⟩. (7)

Here, we introduced two attribute-specific parameters: w ∈ Rd for modeling the baseline reward
score of the prefix, and W ∈ Rd×d to model marginal rewards for each next token candidate. Now it
is clear that in contrast to RAD, ARM (as defined in Eq. (7)) performs a low-rank matrix factorization
of PΩ(R):

R̂ARM = H(w1T +WE) = HA, (8)

where we stack all context representations x′ into H ∈ RN×d and all next token representations into
WE ∈ Rd×|V |, and 1 is a column d-vector of all ones. rank inequality, rank(R̂ARM) = rank(HA) ≤
min(rank(H), rank(A)) ≤ d, meaning that if rank(PΩ(R)) > d, ARM cannot possibly perfectly
reconstruct PΩ(R) no matter how flexible h(x) is. In the language modeling literature the rank

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

bottleneck problem is known as the softmax bottleneck (Yang et al., 2018) and mitigation strategies
are well-studied (Ganea et al., 2019; Chang & McCallum, 2022).

In the experiments (§5), we empirically demonstrate that our low-rank ARM can match the perfor-
mance of the more flexible RAD on the two standard controlled generation benchmarks.

3.3 ARM TRAINING

Ah, they

love
are

hate

Ah, they

love
are

hate

+

ARMLM

Figure 2: During decoding, we augment the logits of the base language model with reward scores
from ARM. ARM uses the language model output embeddings to efficiently predict the rewards for
next token candidates.

To train ARM, we rely on the RAD approach to train a reward model. We split x into a last token and
remaining prefix: x = [x′, v]. We pass x′ as input to the model, and v indexes output embeddings (7).
We consider two types of experiments: training ARM on original responses from the dataset, and
distillation experiment, where we train ARM to predict the scores of less efficient RAD.

For the first type of experiment , we train ARM on the responses from the dataset using the weighted
squared loss:

L(r̂(v|x′), y, λ) = λ(r̂(v|x′)− y)2 (9)
For the second type of experiment , we train an ARM student to approximate the less efficient RAD
teacher r̃(x) (a frozen trained RAD) using the distillation loss (Hinton et al., 2015):

Ldstl(r̂(v|x′), r̃(x)) = (r̂(v|x′)− r̃(x))2. (10)

A reward model can only observe a limited number of next tokens v given x during finetuning. While
the loss defined above provides a positive signal for some tokens v, it might be beneficial to regularize
the prediction for other (unrelated) tokens, including rare or unseen tokens. In our parametrization (6),
it is natural to push the predicted reward towards the baseline for unrelated tokens. We regularize the
prediction of ARM to be close on average to the prefix baseline by forcing ∆r̂ to be close to 0 for
randomly sampled token candidates:

Lreg(h(x)) = Ev′∼Uniform[V] [∆r̂(e(v′)|h(x))]2 , (11)

where we use one sample of v′ for each prefix position, sampling uniformly from the vocabulary.
Particularly, a regularized model can learn to abstain by predicting the baseline score for each next
token candidate, which will not change the distribution of a base model.

4 RELATED WORK

There are multiple approaches that investigate how to finetune a language model using attribute-
conditioned data (desired/undesired examples). Keskar et al. (2019) finetunes a language model using
control prompts. More recent approaches (Schulman et al., 2017; Stiennon et al., 2020; Lu et al., 2022)
perform finetuning while regularizing the weights of the model to stay close to pretrained weights.
Despite the efficiency of decoding, these methods might require more resources for finetuning if the
language model is large, or might even be unusable if we only have access to the top-k logits of base
language model via an API.

Unlike finetuning, alternative approaches keep the language model untouched and use external
models to guide the decoding from the base language model. Dathathri et al. (2019) use the gradients

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from a discriminator to modify the prefix activations of the base model during decoding. However,
gradient-based methods are costly to use during decoding since they require backpropagating through
the large base model.

Closest to our work are gradient-free guided decoding methods, where we have access to the frozen
base language model and use external models to guide the sampling process from the base model.
GeDi (Krause et al., 2021) proposes to use class-conditioned language models as discriminators to
augment the decoding and efficiently compute the scores for next token candidates. DExperts (Liu
et al., 2021) improves the quality of GeDi introducing an ensemble of two class-conditioned language
models finetuned on desired and undesired data. We look closer into parametrization of the output
layer and propose to decouple the prefix score from marginal scores of the next token candidates.
Additionally, for our parametrization, we propose a regularization, which makes it easier for the
model to abstain.

More recently, Deng & Raffel (2023) and Sitdikov et al. (2022) argue to use discriminator models
Yang & Klein (2021) to guide the decoding. Sitdikov et al. (2022); Dekoninck et al. (2023) use
available bidirectional Transformers to guide the base language model, which, however, requires to
recompute all prefix tokens at each decoding step. To tackle this issue, RAD (Deng & Raffel, 2023)
proposes a unidirectional model suitable for caching of prefix activations. They train a reward model
on partial prefixes to predict the expected future attribute and demonstrate high quality of controlled
generation.

In our work, we focus on the analysis of the RAD, while an alternative but related direction follows
reinforcement learning (RL) approach. Particularly, RAD uses value-function style parameterization,
while ARM is Q-function style. Among RL-based approaches, Mudgal et al. (2024), Chakraborty
et al. (2024) parametrize the value function, which results in higher decoding complexity; Cao
et al. (2022) parametrize the Q-function, resulting in similar efficiency to ARM. To the best of
our knowledge, there is little attention to the implied efficiency-quality trade-off that we study in
our work. The closest to our analysis is the recent work of Han et al. (2024), where they compare
both parametrizations in relation to language modeling, however they observe that value function
parametrization outperforms Q-function parametrization, which disagrees with our work.

To summarize, we complement the previous work, by zooming in into the parametrization of an
autoregressive reward model. We highlight the trade-off between efficiency and expressiveness of a
reward model, and showcase that, for tasks and datasets we consider, higher rank-expressiveness can
be traded for higher efficiency without quality drop. We hope our analysis will inform future work on
the design choices of autoregressive reward models.

5 EXPERIMENTS

5.1 CONTROLLED GENERATION

We follow previous work (Deng & Raffel, 2023; Liu et al., 2021) and evaluate ARM on two controlled
generation tasks: detoxification and sentiment control.

In our experiments, we guide the decoding from a base model using a smaller finetuned reward
model with the same tokenizer. Namely, we guide GPT-2-Large using a reward model finetuned from
GPT-2-Small, and we guide the LLaMa-2-(7b/13b) (Touvron et al., 2023) base language model with
a reward model finetuned from TinyLLaMa (Zhang et al., 2024). We finetune all parameters of the
reward models except input/output embeddings, which remain frozen (we hope that, this way, the
reward model generalizes better to unseen tokens).

We conduct experiments in two regimes: first, by distilling less efficient RAD (Deng & Raffel, 2023)
using Ldstl loss (10); second, by training a reward model from scratch on the responses from the
datasets using cumulative loss L (9). In both settings, we use additional regularization Lreg by default.
For evaluation, we perform guided decoding using top-k sampling from the categorical distribution
defined in (2), where top-k candidates are selected taking k largest logits of the base model at the
current decoding step.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60
Average Perplexity

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM k=20 distill
ARM k=20 resp. only
RAD k=20
GPT-2
GeDi
DExperts

0.650.700.750.800.850.900.951.00
MAUVE

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

Figure 3: ARM student (distil) shows comparable toxicity/fluency trade-off with the teacher RAD,
where the ARM student closely matches the performance of the teacher RAD. ARM trained on
original responses (ARM resp. only) shows slightly worse fluency and similar toxicity level. We
rerun the evaluation for RAD, GeDi and DExperts with an up-to-date Perspective API classifier. We
include the results with other baselines from Deng & Raffel (2023) in Figure 12 (see Appendix F.1.1).

5.2 DETOXIFICATION

For the detoxification evaluation, we follow previous work (Deng & Raffel, 2023; Liu et al., 2021)
and evaluate samples from guided decoding given a 10k subset (Liu et al., 2021) of prompts from the
RealToxicityPrompts dataset (Gehman et al., 2020). We follow Deng & Raffel (2023) and Liu et al.
(2021) and finetune our model on 2M pairs of text and continuous ‘toxicity’ responses between 0 and
1 from the Jigsaw Unintended Bias in Toxicity Classification challenge (cjadams et al., 2019). Like
previous work, we train our model on 7 independent responses (‘toxicity’, ‘severe toxicity’, ‘obscene’,
‘identity attack’, ‘insult’, ‘threat’, ‘sexual explicit’) with different head parameters wi,Wi, i ∈
{1, ..., 7} for each sub-task. During decoding, we only use the ‘toxicity’ predictor. For the distillation
experiment, we use the same dataset, and the released toxicity discriminator from Deng & Raffel
(2023) as a teacher.

During decoding, we sample 25 continuations generating at most 20 new tokens. To evaluate toxicity,
we use an external closed-source toxicity classifier Perspective API (Lees et al., 2022), and following
previous work (Deng & Raffel, 2023; Liu et al., 2021), we rely on the Maximal Average Toxicity
metric, which is the maximal toxicity score value over 25 samples for a given prompt, averaged
over the set of 10k prompts. We also report Toxic Rate, which is calculated as the probability that at
least one out of 25 continuations is toxic according to Perspective API (toxicity score > 0.5); and
Diversity score, which is the average number of distinct n-grams normalized by the length of text
(Li et al., 2018). To evaluate the fluency of model generations, we follow previous work (Liu et al.,
2021; Deng & Raffel, 2023) and report the average perplexity of the GPT-2-XL when generating
from the GPT-2-Large model; and the OLMo1 to evaluate the LLaMa family as in Lovelace et al.
(2024). As an additional fluency metric, we report MAUVE (Pillutla et al., 2021) to measure the
distance between unguided and guided generations (details in Appendix E). In the experiments, we
will look at the toxicity/fluency trade-off, alternating the weight β of the discriminator (see Table 2
and Table 3). We expect to obtain a model with both low toxicity according to the Perspective API,
and high fluency.

1https://huggingface.co/allenai/OLMo-1B

7

https://huggingface.co/allenai/OLMo-1B

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.6

0.7

0.8

0.9

1.0

Ne
ut

ra
l p

ro
m

pt
Po

sit
iv

e
Ra

te

10 20 30 40 50 60
Average Perplexity

0.2

0.4

Ne
ga

tiv
e

pr
om

pt
Po

sit
iv

e
Ra

te

ARM k=20 distill
ARM k=20, resp. only
RAD k=20
GPT-2
CTRL
GeDi
DExperts
DAPT
PPO
Quark

0.6
0.7
0.8
0.9
1.0

Ne
ut

ra
l p

ro
m

pt
Po

sit
iv

e
Ra

te

0.700.750.800.850.900.951.00
MAUVE

0.2

0.4

Ne
ga

tiv
e

pr
om

pt
Po

sit
iv

e
Ra

te

Figure 4: For the sentiment control task, ARM trained on responses only lags slightly
behind the RAD baseline, while student ARM outperforms the teacher RAD model. For
the plot with average perplexity, we include the results from Deng & Raffel (2023) for
other baselines for reference.

Since toxicity scores from the Perspective API can change overtime, which can complicate the
evaluation, in Appendix F.3.1 we evaluate our detoxification models with an open-weight toxicity
classifier,2 where we observe the same relative results as with Perspective API scores.

5.3 SENTIMENT CONTROL

For sentiment control, we follow previous work (Li et al., 2018; Sudhakar et al., 2019; Liu et al.,
2021; Deng & Raffel, 2023) to evaluate the samples given a prompt from one of the three categories:
2.5K negative, 5K neutral, and 2.5K positive prompts from OpenWebText (Gokaslan & Cohen,
2019). To finetune ARM on responses only, we follow Deng & Raffel (2023) and finetune our model
on millions of reviews from the Amazon Polarity (Zhang et al., 2015) and SST-2 (Socher et al., 2013)
datasets. To distil the sentiment discriminator of Deng & Raffel (2023), we use text examples from
the Amazon Polarity dataset. Additional training details are provided in Appendix D.

2https://huggingface.co/nicholasKluge/ToxicityModel

8

https://huggingface.co/nicholasKluge/ToxicityModel

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000 3500 4000
N contexts

0

20

40

60

80

Ra
nk

ARM distil
ARM distil w/o reg
ARM distil w/o baseline

(a) Rank analysis

10 20 30 40 50 60
Average Perplexity

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y ARM distil

ARM distil w/o reg
ARM distil w/o baseline

(b) Detoxification task
9

Figure 5: Ablation experiment for distilled ARM, on the detoxification task with top-k=20. On the
right, we observe that regularization towards the baseline results in better fluency of generated samples.
On the left, we observe that regularization lowers the rank of the model’s outputs rank(R̂ARM).

For evaluation, we follow Deng & Raffel (2023), and use the average Positive Rate metric w.r.t. the
finetuned DistilBERT classifier (Sanh et al., 2019) provided via the HuggingFace.3 As in the toxicity
task, we use GPT-2-XL/OLMo and MAUVE to evaluate the fluency of the sampled continuations,
and we expect to obtain a high Positive Rate and high fluency.

5.4 RESULTS

To compare RAD and ARM, we rely on the methodology of Deng & Raffel (2023) and Liu et al.
(2021), and visualize the trade-off plots for both models varying the control parameter β. Namely,
each point in the figure will represent two metrics: toxicity/sentiment along the vertical axis and
fluency along the horizontal axis. From this plot, we can read e.g. what fluency (perplexity/mauve)
can be achieved for a given ‘target’ toxicity. To compare two models, we compare their curves (in the
same plot). Our hypothesis is that ARM will perform similar to the more flexible RAD approach,
meaning that the trade-off plots for these models will be close to each other.

Detoxification. For the detoxification task (Figure 3), our efficient student (ARM) closely follows
the RAD teacher for toxicity control/fluency trade-off. We observe that ARM trained on responses
only shows slightly worse fluency w.r.t. average perplexity for lower levels of toxicity. For complete-
ness, in Figure 12, we include the results for other baselines from Deng & Raffel (2023) computed
for an older version of Perspective API. For guided decoding from the LLaMa-2-(7b/13b), we ob-
serve that again ARM closely follows RAD in terms of toxicity/fluency trade-off (see Figure 14 in
Appendix F.1.1).

Sentiment control. From the results on the sentiment control task in Figure 4, we observe that the
ARM student model shows slightly better trade-off than the RAD teacher model, closely following
approaches that require training using feedback from the evaluation pipeline (Lu et al., 2022, Quark),
(Stiennon et al., 2020, PPO). Again, ARM trained on original responses slightly lags behind but still
performs competitively compared to other guided decoding baselines.

Summary. Our empirical results suggest that ARM can match the quality of more flexible but
less efficient RAD. We observe that distilling the RAD teacher into the ARM student results in
slightly higher quality compared to training ARM on original responses. One difference is that when
training from data, we will see short contexts multiple times with different reward responses and
must implicitly converge to their average, while in distillation, the teacher already performs this
compression and provides a single deterministic target r̂(v|x) for every context (x, v). We conjecture
that this may lead to better-trained distilled models.

5.5 ABLATION

In this section, we investigate the effect of adding the baseline component Eq. (7) and of regularization
Eq. (11). In Figure 5, we experiment with the distilled version of ARM and observe that turning off

3https://shorturl.at/9MqDp

9

https://shorturl.at/9MqDp

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model N calls
GeDi (Krause et al., 2021) 1
DExperts (Liu et al., 2021) 2
RAD (Deng & Raffel, 2023) k

ARM (Ours) 1

Table 1: Number of input tokens a discrim-
inator model needs to process for a single
decoding step with k next token candidates.
All included models are based on the unidi-
rectional Transformer (Vaswani et al., 2017)
and support the caching of prefix activations.

0 20 40 60 80
Top-k

0.0025

0.0050

0.0075

0.0100

Ti
m

e
(s

) p
er

 to
ke

n ARM
RAD

Figure 6: RAD processes the k next token can-
didates separately as input requiring more time
compared to ARM, which relies on the output
layer to obtain the scores for all next tokens.

regularization, or further removing the baseline from the parametrization results in still adequate
but slightly worse fluency as measured by perplexity, and a comparable toxicity decrease. By
further analyzing the ranks of RARM with and without regularization, we observe that regularization
effectively decreases the rank of RARM which might explain the higher fluency of regularized model.
Particularly, a very strong regularization would result in the model always predicting the baseline
score for each of the next tokens (corresponds to the rank-1 output), which does not modify the
original distribution of the model (the best fluency) .

5.6 EFFICIENCY

We consider using a reward model to compute the scores for k candidate tokens at each of L steps of
decoding. Similar to RAD (Deng & Raffel, 2023), ARM is based on the unidirectional Transformer
architecture (Vaswani et al., 2017), which means that we can cache the prefix activations during
decoding. To compute the prediction for k next token candidates v given a prefix x, RAD needs to
pass k next tokens as input to the Transformer model, thus RAD processes O(Lk) tokens during
decoding. In contrast, ARM only processes O(L) tokens as input to the Transformer model and relies
on the output layer to efficiently compute the scores for all next token candidates. In Table 1, we
summarize how many tokens external expert models process during top-k decoding. In Figure 6, we
measure the time per generated token when running the decoding for the toxicity task with ARM and
RAD (Deng & Raffel, 2023) on a single RTX A6000 GPU.

6 CONCLUSION

We review the recently proposed RAD approach of training a reward model for the guided decoding,
and we reformulate it as the incomplete reward matrix learning problem. In the light of the rank
analysis of the reward matrix, we observe that the high flexibility of RAD might not overweight
its lower efficiency during decoding. We present the low-rank ARM, an efficient approach to
parameterize the reward model, suitable for autoregressive decoding, caching of prefix activations,
and prediction of next token scores with a single call of a backbone model. We bridge the gap
between two paradigms of training external expert models, demonstrating that we can have both
efficient and effective controlled generation.

LIMITATIONS

The models discussed in this work can only reduce the probability of generating the toxic responses,
not prevent it. Moreover, evaluation of toxicity is far from perfect, and even a very low toxicity
score from automatic evaluation such as Perspective API does not necessary mean that the sample is
‘safe’. Furthermore, we should not exclusively rely on toxicity when evaluating the safety of samples
from language models due to the complexity and variability of language. It is also not clear that
by reducing toxicity, we are not introducing other harms. Furthermore, both RAD and our models
represent low-rank R̂ and further qualitative research is needed to investigate whether certain toxicity
patterns require high rank to represent them.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Meng Cao, Mehdi Fatemi, Jackie CK Cheung, and Samira Shabanian. Systematic Rectification of
Language Models via Dead-end Analysis. In ICLR, 2022. URL https://openreview.net/
forum?id=k8_yVW3Wqln.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Amrit
Bedi, and Furong Huang. Transfer q-star : Principled decoding for LLM alignment. In NeurIPS,
2024. URL https://openreview.net/forum?id=5PrShrKxoX.

Haw-Shiuan Chang and Andrew McCallum. Softmax bottleneck makes language models unable
to represent multi-mode word distributions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), May 2022. doi: 10.18653/v1/
2022.acl-long.554. URL https://aclanthology.org/2022.acl-long.554.

cjadams, Borkan Daniel, inversion, Sorensen Jeffrem, Dixon Lucas, Vasserman Lucy, and nithum.
Jigsaw unintended bias in toxicity classification, 2019. URL https://kaggle.com/
competitions/jigsaw-unintended-bias-in-toxicity-classification.

Nicholas Kluge Corrêa. Aira, 2023. URL https://github.com/Nkluge-correa/Aira.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and Play Language Models: A Simple Approach to Controlled Text
Generation. In ICLR, 2019. URL https://openreview.net/forum?id=H1edEyBKDS.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled Text Gener-
ation via Language Model Arithmetic. In ICLR, 2023. URL https://openreview.net/
forum?id=SLw9fp4yI6.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text generation
with a unidirectional reward model. In EMNLP, 2023. doi: 10.18653/v1/2023.emnlp-main.721.
URL https://openreview.net/forum?id=I13VHLJjLO¬eId=9RqjX18mqA.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In ACL, 2018.
doi: 10.18653/v1/P18-1082. URL https://aclanthology.org/P18-1082.

Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish Sabhar-
wal. Closing the curious case of neural text degeneration. In ICLR, 2024. URL https:
//openreview.net/forum?id=dONpC9GL1o.

Octavian Ganea, Sylvain Gelly, Gary Bécigneul, and Aliaksei Severyn. Breaking the softmax
bottleneck via learnable monotonic pointwise non-linearities. In ICML, 2019. URL https:
//proceedings.mlr.press/v97/ganea19a.html.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, and Bai et al. Red Teaming Language
Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned, November 2022.
URL https://arxiv.org/abs/2209.07858.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxic-
ityPrompts: Evaluating Neural Toxic Degeneration in Language Models. In EMNLP findings,
Online, 2020. doi: 10.18653/v1/2020.findings-emnlp.301. URL https://aclanthology.
org/2020.findings-emnlp.301/.

Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019. Accessed: 2024-06-30.

Seungwook Han, Idan Shenfeld, Akash Srivastava, Yoon Kim, and Pulkit Agrawal. Value augmented
sampling for language model alignment and personalization, 2024. URL https://arxiv.
org/abs/2405.06639.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank
svd via fast alternating least squares. JMLR, 2015. URL http://jmlr.org/papers/v16/
hastie15a.html.

11

https://openreview.net/forum?id=k8_yVW3Wqln
https://openreview.net/forum?id=k8_yVW3Wqln
https://openreview.net/forum?id=5PrShrKxoX
https://aclanthology.org/2022.acl-long.554
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://github.com/Nkluge-correa/Aira
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=SLw9fp4yI6
https://openreview.net/forum?id=SLw9fp4yI6
https://openreview.net/forum?id=I13VHLJjLO¬eId=9RqjX18mqA
https://aclanthology.org/P18-1082
https://openreview.net/forum?id=dONpC9GL1o
https://openreview.net/forum?id=dONpC9GL1o
https://proceedings.mlr.press/v97/ganea19a.html
https://proceedings.mlr.press/v97/ganea19a.html
https://arxiv.org/abs/2209.07858
https://aclanthology.org/2020.findings-emnlp.301/
https://aclanthology.org/2020.findings-emnlp.301/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2405.06639
https://arxiv.org/abs/2405.06639
http://jmlr.org/papers/v16/hastie15a.html
http://jmlr.org/papers/v16/hastie15a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianxing He, Jingyu Zhang, Tianle Wang, Sachin Kumar, Kyunghyun Cho, James Glass, and Yulia
Tsvetkov. On the blind spots of model-based evaluation metrics for text generation. In ACL,
2023. doi: 10.18653/v1/2023.acl-long.674. URL https://aclanthology.org/2023.
acl-long.674.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. In
NeurIPS 2014 Deep Learning Workshop, March 2015. doi: 10.48550/arXiv.1503.02531. URL
https://arxiv.org/abs/1503.02531.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text de-
generation. In ICLR, 2020. URL https://openreview.net/forum?id=rygGQyrFvH.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. CTRL:
A Conditional Transformer Language Model for Controllable Generation. arXiv, 2019. doi:
10.48550/arXiv.1909.05858. URL https://arxiv.org/abs/1909.05858v2.

Diederick P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
URL https://arxiv.org/abs/1412.6980.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence
generation. In EMNLP findings, 2021. doi: 10.18653/v1/2021.findings-emnlp.424. URL
https://aclanthology.org/2021.findings-emnlp.424.

Alyssa Lees, Vinh Q. Tran, Yi Tay, Jeffrey Sorensen, Jai Gupta, Donald Metzler, and Lucy Vasserman.
A New Generation of Perspective API: Efficient Multilingual Character-level Transformers. KDD,
2022. ISBN 9781450393850. doi: 10.1145/3534678.3539147. URL https://doi.org/10.
1145/3534678.3539147.

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, Retrieve, Generate: A Simple Approach
to Sentiment and Style Transfer. In NAACL, 2018. doi: 10.18653/v1/N18-1169. URL https:
//aclanthology.org/N18-1169/.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and anti-experts.
In ACL, 2021. doi: 10.18653/v1/2021.acl-long.522. URL https://aclanthology.org/
2021.acl-long.522.

Justin Lovelace, Varsha Kishore, Yiwei Chen, and Kilian Weinberger. Diffusion guided lan-
guage modeling. In ACL findings, 2024. URL https://aclanthology.org/2024.
findings-acl.887.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. QUARK: Controllable Text Generation with Reinforced Unlearning.
In NeurIPS, 2022. URL https://openreview.net/forum?id=5HaIds3ux5O.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
learning large incomplete matrices. Journal of Machine Learning Research, 11(80):2287–2322,
2010. URL http://jmlr.org/papers/v11/mazumder10a.html.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ah-
mad Beirami. Controlled decoding from language models. In ICML, 2024. URL https:
//openreview.net/forum?id=bVIcZb7Qa0.

12

https://aclanthology.org/2023.acl-long.674
https://aclanthology.org/2023.acl-long.674
https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1909.05858v2
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2021.findings-emnlp.424
https://doi.org/10.1145/3534678.3539147
https://doi.org/10.1145/3534678.3539147
https://aclanthology.org/N18-1169/
https://aclanthology.org/N18-1169/
https://aclanthology.org/2021.acl-long.522
https://aclanthology.org/2021.acl-long.522
https://aclanthology.org/2024.findings-acl.887
https://aclanthology.org/2024.findings-acl.887
https://openreview.net/forum?id=5HaIds3ux5O
http://jmlr.org/papers/v11/mazumder10a.html
https://openreview.net/forum?id=bVIcZb7Qa0
https://openreview.net/forum?id=bVIcZb7Qa0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Feng Nan. Low Rank Matrix Completion. Thesis, Massachusetts Institute of Technology, 2009.

OpenAI. GPT-4 Technical Report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In NeurIPS,
2022. URL https://openreview.net/forum?id=TG8KACxEON.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using
divergence frontiers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=Tqx7nJp7PR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. In
NeurIPS, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. In NeurIPS EMC2 Workshop, 2019. URL https:
//arxiv.org/abs/1910.01108.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv, 2017. doi: 10.48550/arXiv.1707.06347. URL https://
arxiv.org/abs/1707.06347.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as
a babysitter: On biases in language generation. In EMNLP-IJCNLP, 2019. doi: 10.18653/v1/
D19-1339. URL https://aclanthology.org/D19-1339.

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin,
Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li, Saravanan
Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas
Dixon. Parameter efficient reinforcement learning from human feedback, 2024. URL https:
//arxiv.org/abs/2403.10704.

Askhat Sitdikov, Nikita Balagansky, Daniil Gavrilov, and Alexander Markov. Classifiers are Better
Experts for Controllable Text Generation. arXiv, 2022. doi: 10.48550/arXiv.2205.07276. URL
https://arxiv.org/abs/2205.07276.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In EMNLP, 2013. URL https://huggingface.co/datasets/stanfordnlp/sst2.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-
ford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1f89885d556929e98d3ef9b86448f951-Abstract.html.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “Transforming” Delete, Retrieve,
Generate Approach for Controlled Text Style Transfer. In EMNLP-IJCNLP, 2019. doi: 10.18653/
v1/D19-1322. URL https://aclanthology.org/D19-1322/.

Yunhao Tang, Remi Munos, Mark Rowland, and Michal Valko. VA-learning as a more efficient
alternative to q-learning. In PMLR, 2023. URL https://proceedings.mlr.press/
v202/tang23h.html.

Hugo Touvron, Louis Martin, Kevin Stone, and Peter Albert et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv, 2023. URL https://arxiv.org/abs/2307.09288.

13

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=Tqx7nJp7PR
https://openreview.net/forum?id=Tqx7nJp7PR
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://aclanthology.org/D19-1339
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2205.07276
https://huggingface.co/datasets/stanfordnlp/sst2
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://aclanthology.org/D19-1322/
https://proceedings.mlr.press/v202/tang23h.html
https://proceedings.mlr.press/v202/tang23h.html
https://arxiv.org/abs/2307.09288

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. URL https:
//dl.acm.org/doi/10.5555/3295222.3295349.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing NLP. In EMNLP-IJCNLP, 2019. doi: 10.18653/v1/D19-1221.
URL https://aclanthology.org/D19-1221.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Du-
eling network architectures for deep reinforcement learning. In PMLR, 2016. URL https:
//proceedings.mlr.press/v48/wangf16.html.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In NAACL,
Online, 2021. doi: 10.18653/v1/2021.naacl-main.276. URL https://aclanthology.org/
2021.naacl-main.276.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In ICLR, 2018. URL https://openreview.
net/forum?id=HkwZSG-CZ.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv, 2024.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In NeurIPS, 2015. URL https://huggingface.co/datasets/fancyzhx/
amazon_polarity.

14

https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://aclanthology.org/D19-1221
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html
https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2021.naacl-main.276
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://huggingface.co/datasets/fancyzhx/amazon_polarity
https://huggingface.co/datasets/fancyzhx/amazon_polarity

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

Warning: (the last page of) this appendix contains sensitive language and themes generated from high
toxicity contexts.

A REWARD MATRIX

To train a reward model, we use weighted mean squared loss, for which the weighted mean recovers
the minimum:

r∗ = argmin
r

∑︂
λ,y

λ(r − y)2 =

∑︁
λ,y λy∑︁
λ,y λ

(12)

Proof. ∂
∂r

∑︁
λ,y λ(r−y)2 =

∑︁
λ,y

∂
∂r [λ(r−y)2] =

∑︁
λ,y 2λ(r−y) = 2(r

∑︁
λ,y[λ]−

∑︁
λ,y[λy]) =

0. Hence, r∗ =
∑︁

λ,y λy∑︁
λ,y λ

B FACTORIZATION OF PΩ(R)

Any matrix R ∈ RN×|V | can be factored as R = UV T with U, V of dimensions N × q; |V | × q. If
R is incomplete, then there are in general multiple possible factorizations of PΩ(R) compatible with
the observed values.

B.1 RANK-1 CASE

To get better intuition why the incompleteness of PΩ(R) allows to find a compatible factorization
with lower minimal rank, consider a simple example. If we only know 1 element per row of R, then
minimal rank of PΩ(R) is equal to 1. To prove this, consider completing PΩ(R) such that each row
is filled with the same element (the only one known for this row):

(︄
1 ? ?
? 4 ?
? ? 3

)︄
→

(︄
1 1 1
4 4 4
3 3 3

)︄

B.2 ESTIMATING THE MINIMAL RANK OF THE DATA

Empirically calculating minimal rank is challenging due to the very large number of prefixes (row of
the matrix), particularly, the large portion of the prefixes have unique continuation. We show how we
simplify the minimal rank estimation by considering only the prefixes with two or more continuations,
and demonstrate that partially observed R̂ can be fit with a low rank matrix factorization.

Lemma 1. Consider a partially observed reward (sub-)matrix PΩ(R), such that for every
row, only one element of R is observed. Then there exists R̂, such that rank(R̂) = 1 and
∥PΩ(R) − PΩ(R̂)∥2F = 0.

Proof. Let vi be the observed value in R at row i, and let R̂ = v1⊤; i.e., we complete the whole row
with the same value. This rank-1 matrix achieves zero loss.

Given a training dataset of responses and text utterances, there will be many unique prefixes, for
which the Lemma 1 is applicable.

Lemma 2. Let PΩ(R) be a partially observed matrix and [PΩ(R)]2 correspond to the
submatrix formed only with the rows of PΩ(R̂) with at least two observed indices. Then,
min rank(PΩ(R)) ≤ 1 + min rank([PΩ(R)]2)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Next, we demonstrate that [PΩ(R)]2 can be fitted by a model that produces low rank R̂:
min rank([PΩ(R)]2) ≤ d− 1 for our specific dataset, and using Lemmas 1 and 2, we conclude that
min rank(PΩ(R)) < d. This implies that the training dataset Df can be fit by a reward model that
produces low-rank R̂, regardless of the specifics of said model.

Here we check that there exists a factorization of [PΩ(R)]2 with rank q at most 512 (q is less than the
model dimension d = 764). In general, finding minimal rank factorization of incomplete matrices
is known to be NP-hard, and usually convex relaxation such as minimization of the nuclear norm
is considered (see Nan (2009)). To factorize PΩ(R), we use the alternating least squares algorithm
(Mazumder et al., 2010; Hastie et al., 2015).4 To accelerate convergence to a good solution, we first
optimize for 50 iterations with a trace norm penalty of λ = 0.01 (i.e we start by solving a non-convex
approximation of a convex problem) followed by an additional 50 iterations with no trace penalty. At
the end, the mean squared error (MSE) over the observed entries is 0.00056. Given the large scale of
PΩ(R), it is possible that a better fit could be found nevertheless we find this sufficient evidence to
claim that low-rank models could indeed fit the training data.

C R̂RAD AND R̂ARM

C.1 R̂RAD

In this experiment, we empirically verify that RAD is capable to approximate PΩ(R) matrix with
rank(PΩ(R)) > d, where d is the dimensionality of the model. We finetune RAD initialized
from the GPT-2-Small (with d = 764) on a synthetic data constructed as follows. We generate
RI = I(n), n = 1024 > d, an identity matrix of size 1024.

With RI as a full rank 1024× 1024 submatrix of PΩ(R), rank(PΩ(R)) > d. We verify that we can
train RAD to fit this train matrix obtaining the MSE < 10−7.

C.2 R̂ARM

ARM approximates PΩ(R) as a product of two rank d matrices, hence for ARM, the lowest MSE for
the synthetic experiment from the previous section is recovered for rank-k singular value decomposi-
tion of RI , which is I(k). Hence for ARM, MSE ≥ (n− d)/n2 = 0.00024.

We thus conclude that RAD (in contrast to ARM) is indeed capable of representing PΩ(R) matrices
with a rank higher than d.

C.3 REAL DATA EXPERIMENTS

For the experiment with the real datasets for the detoxification and sentiment control tasks, in Figure 7,
we numerically measure the rank of RRAD and RARM , and observe that both ARM and RAD learn
low-rank reward matrices. We thus conclude that both these models have needed capacity to represent
the incomplete PΩ(R) matrices obtained from the datasets.

C.4 NUMERICAL RANK

To compute rank of n×m matrix, we use the default cutoff in Numpy5 and PyTorch6 at the time
of writing, which is to say we count only singular values above max(m,n)εσ1, where ε is the
machine epsilon for the corresponding data type, i.e., the difference between 1.0 and the next smallest
representable number larger than 1.0, and σ1 is the largest singular value .

There are potential issues that may arise when computing the numerical rank. One issue is that the
singular values, especially for the matrices coming from 32bit float precision neural network, will
not be exactly zero, so this is why libraries like Numpy or PyTorch use a precision-based cutoff

4https://cran.r-project.org/web/packages/softImpute/index.html
5https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_

rank.html
6https://pytorch.org/docs/stable/generated/torch.linalg.matrix_rank.

html

16

https://cran.r-project.org/web/packages/softImpute/index.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html
https://pytorch.org/docs/stable/generated/torch.linalg.matrix_rank.html
https://pytorch.org/docs/stable/generated/torch.linalg.matrix_rank.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000 3500 4000
N contexts

0

20

40

60

80

Ra
nk

RAD
ARM distil
ARM orig labels

(a) Detoxification task.

0 500 1000 1500 2000 2500 3000 3500 4000
N contexts

0

20

40

60

80

Ra
nk

RAD
ARM distil
ARM orig labels

(b) Sentiment task.

Figure 7: We numerically estimate the ranks of both R̂RAD and R̂ARM increasing the number of
training prefixes (rows of R̂). In all cases, the ranks tend to be less than the model dimension
d = 764. This means that rank-capacity of ARM is sufficient to capture the training datasets for the
detoxification and sentiment tasks.

for singular values that should be considered indistinguishable from zero; we use the default such
parameters. The other issue is that the number of rows in the reward matrices is very high and we
follow the work of Finlayson et al. (2024) and estimate rank by sampling rows from the matrix.
Different submatrices can have different ranks, but we sample i.i.d. to prevent this.

D TRAINING DETAILS

To train reward models, we reuse the hyperparameters from Deng & Raffel (2023), where possible.
We finetune the reward models with Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 =
0.95, ϵ = 1e−12. We use weight decay 0.02, and batch size 100.

To train ARM, we initialize the parameters with the pretrained GPT-2-Small/TinyLLaMa7 weights,
and freeze the shared input-output embedding parameters. Alternative strategy would be to use
parameter efficient finetuning (Hu et al., 2022; Sidahmed et al., 2024) .

E MAUVE

To complement perplexity as a measure of fluency, we use MAUVE (Pillutla et al., 2021) as one
of the fluency metrics. For reference texts, we take the generations of unguided model (GPT-2, or
LLaMa-2-(7b/13b). Thus, this metric should capture how close the distribution of the continuations
of a guided model is to the distribution of the original language model. To calculate MAUVE,
we follow recommendations of He et al. (2023) and use ELECTRA-large model to obtain the text
representations. We use the hyperparameters of Pillutla et al. (2021): c = 5 for the scaling constant;
k−means for the quantization algorithm with 500 iterations, and n/10 clusters where n is the number
of generations. To compute MAUVE, we use 1000 prompts from the evaluation dataset.

E.1 DETOXIFICATION

For the detoxification task, we finetune ARM with the learning rate 10−5 for 5 epochs.

For the LLaMa-2, we additionally finetune RAD with the TinyLLaMa backbone for the fair compari-
son with ARM.

E.2 SENTIMENT CONTROL

To finetune ARM on responses only for sentiment control task, we first finetune the model with the
learning rate 10−5 on the Amazon Polarity dataset, and then finetune it for 5 epochs on the SST-2
dataset with the learning rate 2e−6. For distillation experiment, we finetune ARM for 5 epochs with
the learning rate 10−5 on Amazon Polarity dataset.

7https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T

17

https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

12 14 16 18 20 22 24 26
Perplexity

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

DExperts
ARM distil

Figure 8: Comparison of toxicity/fluency trade-off between ARM (distil) and DExperts. We rerun
the sampling from these two models using top-k decoding with k = 20. Results are calculated over
randomly selected 1000 prompts. We observe, that ARM show better constraint satisfaction/fluency
than DExperts.

F RESULTS

F.1 DETOXIFICATION

F.1.1 RESULTS WITH PERSPECTIVE API CLASSIFIER

In this section, we report full results with the Perspective API as a toxicity classifier.

GPT-2. Results for the detoxification task with the GPT-2-Large base model and GPT-2-small
reward model, are presented in Table 2.

We present the results for ARM and RAD with top-k decoding with k = 40 in Figure 11. We observe
similar relative performance of ARM compared to RAD as in the experiment with k = 20, presented
in the Figure 3.

LLaMa-2. Results for detoxification task with LLaMa-2-(7b/13b) base model and TinyLLaMa
reward model are presented in Figure 14 and Table 4.

Baselines. Additionally, in Figure 12, we include results from Deng & Raffel (2023) for other
baseline models (for an older version of Perspective API).

To highlight the difference between the ARM and DExperts, we show the trade-off plot for DExperts
model in Figure 8, varying the α scalar parameter for DExperts. As we can observe, the ARM
has better constraint satisfaction / fluency trade-off than DExperts model. We attribute this to the
difference in the training objectives of the expert models (reward modeling or language modeling), as
argued in (Deng & Raffel, 2023).

F.2 ADDITIONAL ABLATION RESULTS

F.2.1 LOSS CHOICE

We perform an ablation study for the choice of the loss function used to train ARM Eq. (9). There,
we follow the approach of (Deng & Raffel, 2023), where they introduce the squared loss (see section
2.1 Unidirectional Reward Model). An alternative strategy would be to use the binary cross-entropy
loss, using the fact that for our datasets responses y are from [0; 1] range:

Lce(r̂(v|x′), y, λ) = λ(y log σ(r̂(v|x′)) + (1− y) log(1− σ(r̂(v|x′)))), (13)

where we introduced σ(x) = 1/(1 + e−x) function to softly map the predictions of ARM into [0; 1]
range, which is also used during generation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

12 14 16 18 20 22 24 26 28
Perplexity

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM ce
ARM mse

Figure 9: Comparison of ARM model trained on original responses with squared loss vs with
cross-entropy loss. We rerun the sampling from these two models using top-k decoding with k = 20.
Results are calculated over randomly selected 1000 prompts. We observe, that ARM trained with the
squared loss show slightly better constraint satisfaction/fluency than ARM trained with cross-entropy
loss.

15 20 25 30 35
Perplexity

0.10

0.15

0.20

0.25

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM + MLP
ARM

Figure 10: Comparison of ARM trained on original responses with linear parametrization vs with
non-linear MLP parametrization. We rerun the sampling from these two models using top-k decoding
with k = 20. Results are calculated over randomly selected 1000 prompts. We observe, that both
parametrizations perform very closely.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 9 demonstrates that the ARM trained with the squared loss slightly outperform the ARM
trained with the binary cross-entropy loss.

F.2.2 MLP VS LINEAR PARAMETRIZATION

In this ablation, we consider replacing the linear parametrization of ARM Eq. (8) with a non-linear
MLP parametrization:

∆r̂ARM+MLP(x) := W1σ(W2E
TWTh(x)T), (14)

where W1 ∈ Rd×|V |;W2 ∈ R|V |×d. As we observe in Figure 10, MLP parametrization performs on
par with the linear parametrization. We thus recommend using a more simple linear parametrization.

F.3 SENTIMENT CONTROL

Here, in Figure 13, we include the additional results for the RAD and ARM with top-k decoding with
k = 40.

F.3.1 RESULTS WITH ROBERTA CLASSIFIER

In addition to toxicity scores with Perspective API, we provide the results with the open-weight
RoBERTa toxicity classifier (Corrêa, 2023) for the guided generation with GPT-2 (Figure 15 and
Table 5) and the LLaMa-2 (Figure 16 and Table 6). We notice that results for the average maximal
toxicity with RoBERTa are relatively similar to the result with Perspective API. We hope that with an
open-weight classifier it will be easier for the community to directly compare to the published results
without the need to recompute the API scores.

10 20 30 40 50 60
Average Perplexity

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM k=40 distill
ARM k=40 resp. only
RAD k=40
GPT-2
GeDi
DExperts

0.60.70.80.91.0
MAUVE

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

Figure 11: Additional results for detoxification task for ARM and RAD with k = 40.

F.4 SENTIMENT CONTROL

Results for sentiment control task with the GPT-2-Large are presented in Table 3.

F.5 GENERATED EXAMPLES

Examples for the detoxification and sentiment control are presented in the Table 7, Table 8 and
Table 9.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60
Average Perplexity

0.10

0.15

0.20

0.25

0.30

0.35
Av

er
ag

e
M

ax
im

al
 To

xi
cit

y

RAD k=20
RAD k=50
GPT-2
GeDi
DExperts
Rectification
PPLM
DAPT
PPO
Quark

Figure 12: Detoxification results reported in Deng & Raffel (2023) with Perspective API with
GPT-2-Large model (API queries made between May and June 2023).

0.6

0.7

0.8

0.9

1.0

Ne
ut

ra
l p

ro
m

pt
Po

sit
iv

e
Ra

te

10 20 30 40 50 60
Average Perplexity

0.2

0.4

Ne
ga

tiv
e

pr
om

pt
Po

sit
iv

e
Ra

te

ARM k=20 distill
ARM k=20, resp. only
RAD k=20
GPT-2
CTRL
GeDi
DExperts
DAPT
PPO
Quark

0.6
0.7
0.8
0.9
1.0

Ne
ut

ra
l p

ro
m

pt
Po

sit
iv

e
Ra

te

0.700.750.800.850.900.951.00
MAUVE

0.2

0.4

Ne
ga

tiv
e

pr
om

pt
Po

sit
iv

e
Ra

te

Figure 13: Additional results for sentiment control task with k = 40. For this plot with
average perplexity, we include the results from Deng & Raffel (2023) for other baselines
for reference.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

20 25 30 35 40 45 50 55 60
Average Perplexity

0.10
0.15
0.20
0.25
0.30

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM distill Llama-2-7b-hf
RAD Llama-2-7b-hf
ARM distill Llama-2-13b-hf
RAD Llama-2-13b-hf
Raw Llama-2-7b-hf
Raw Llama-2-13b-hf

0.650.700.750.800.850.900.951.00
MAUVE

0.10
0.15
0.20
0.25
0.30

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

Figure 14: Detoxification results with Perspective API toxicity classifier and LLaMa-2 model. RAD
and ARM distill demonstrate similar performance w.r.t. two fluency metrics: average perplexity and
MAUVE. Performance remains consistent across different models sizes of base LLaMa-2 model.

10 20 30 40 50 60
Average Perplexity

0.1

0.2

0.3

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM k=20 distill
ARM k=40 distill
ARM k=20 labels only
ARM k=40 labels only
RAD k=20
RAD k=40
GPT-2
GeDi
DExperts

0.60.70.80.91.0
MAUVE

0.1

0.2

0.3

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

Figure 15: Detoxification results with finetuned RoBERTa toxicity classifier (Corrêa, 2023) and the
GPT-2-Large base model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

20 25 30 35 40 45 50 55 60
Average Perplexity

0.1

0.2

0.3

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

ARM distill Llama-2-7b-hf
RAD Llama-2-7b-hf
ARM distill Llama-2-13b-hf
RAD Llama-2-13b-hf
Raw Llama-2-7b-hf
Raw Llama-2-13b-hf

0.650.700.750.800.850.900.951.00
MAUVE

0.1

0.2

0.3

Av
er

ag
e

M
ax

im
al

 To
xi

cit
y

Figure 16: Detoxification results with finetuned RoBERTa toxicity classifier (Corrêa, 2023) and the
LLaMa-2 family of models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

% Toxicity (↓) Fluency Diversity (↑)
Model β Avg. Max Toxic PPL (↓) MAUVE (↑) Dist 2 Dist 3

β Toxicity Rate

ARM distill

k=20

10 0.301 0.139 11.70 0.96 0.81 0.84
20 0.270 0.096 11.73 0.96 0.81 0.84
30 0.246 0.071 11.77 0.96 0.81 0.84
50 0.212 0.043 11.98 0.95 0.81 0.84

100 0.160 0.019 12.67 0.95 0.80 0.83
200 0.117 0.005 15.78 0.88 0.78 0.81
300 0.097 0.002 24.53 0.75 0.75 0.79

k=40

10 0.304 0.137 14.68 0.97 0.83 0.85
20 0.270 0.092 14.73 0.97 0.83 0.85
30 0.245 0.064 14.90 0.97 0.83 0.85
50 0.210 0.039 15.14 0.96 0.83 0.85

100 0.158 0.013 16.26 0.94 0.83 0.84
200 0.112 0.003 21.28 0.86 0.81 0.83
300 0.095 0.002 32.27 0.68 0.78 0.80

ARM resp. only

k=20

10 0.278 0.097 11.71 0.96 0.81 0.84
20 0.241 0.053 11.81 0.97 0.81 0.84
30 0.218 0.029 12.02 0.96 0.81 0.84
50 0.185 0.014 12.26 0.96 0.81 0.84

100 0.143 0.004 14.79 0.93 0.80 0.83
200 0.113 0.002 25.31 0.82 0.76 0.79
300 0.102 0.002 45.82 0.65 0.72 0.75

k=40

10 0.280 0.091 14.72 0.97 0.83 0.85
20 0.242 0.046 14.92 0.96 0.83 0.85
30 0.217 0.028 15.09 0.96 0.83 0.85
50 0.185 0.013 15.69 0.96 0.83 0.85

100 0.142 0.003 18.84 0.92 0.82 0.84
200 0.111 0.002 39.53 0.77 0.79 0.80
300 0.103 0.002 83.36 0.54 0.74 0.76

RAD

k=20

10 0.265 0.077 11.73 0.96 0.81 0.84
20 0.231 0.040 11.81 0.96 0.81 0.84
30 0.211 0.024 11.87 0.96 0.81 0.84
50 0.184 0.014 12.09 0.95 0.81 0.84

100 0.149 0.005 12.64 0.93 0.81 0.83
200 0.115 0.002 14.98 0.84 0.79 0.81
300 0.099 0.001 19.08 0.69 0.76 0.78

k=40

10 0.267 0.072 14.86 0.96 0.83 0.85
20 0.232 0.036 14.87 0.96 0.83 0.85
30 0.211 0.021 14.99 0.95 0.83 0.85
50 0.185 0.011 15.26 0.95 0.83 0.85

100 0.146 0.005 16.30 0.93 0.83 0.84
200 0.114 0.002 20.69 0.80 0.82 0.83
300 0.098 0.001 30.36 0.60 0.79 0.80

Table 2: Results for detoxification task with the Perspective API as a toxicity classifier. Calls to the
Perspective API were performed in June-July 2024.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

% Positive Rate (↑) Fluency Diversity (↑)
Model β Negative Neutral PPL (↓) MAUVE (↑) Dist 2 Dist 3

ARM distill

k=20

10 12.94 81.08 12.16 0.96 0.76 0.78
20 24.87 91.00 12.85 0.94 0.75 0.78
30 35.18 94.87 14.11 0.92 0.75 0.78
40 43.60 96.60 15.74 0.89 0.75 0.78
50 49.84 97.38 18.03 0.86 0.74 0.78
60 55.34 97.87 20.09 0.81 0.73 0.77

k=40

10 13.50 80.97 15.53 0.95 0.78 0.79
20 26.66 91.45 17.20 0.94 0.78 0.79
30 39.12 95.32 18.29 0.90 0.78 0.80
40 48.28 96.98 20.57 0.86 0.77 0.79
50 55.94 97.80 24.36 0.82 0.76 0.79
60 61.39 98.21 28.20 0.77 0.75 0.78

ARM resp. only

k=20

10 12.13 80.02 12.19 0.96 0.75 0.78
20 21.24 89.06 13.67 0.95 0.75 0.78
30 29.94 92.66 15.29 0.93 0.74 0.78
40 37.38 94.62 17.06 0.89 0.74 0.78
50 43.19 95.65 20.11 0.85 0.72 0.77
60 47.19 96.20 23.07 0.82 0.71 0.76

k=40

10 12.17 79.49 15.58 0.95 0.78 0.79
20 22.82 89.40 17.12 0.94 0.77 0.79
30 32.63 93.22 19.46 0.91 0.77 0.79
40 41.58 95.15 24.36 0.87 0.76 0.79
50 47.98 96.10 27.48 0.81 0.75 0.79
60 53.76 96.58 30.91 0.76 0.74 0.78

RAD

k=20

10 19.94 86.06 12.61 0.95 0.75 0.78
20 35.37 92.70 14.87 0.92 0.75 0.78
30 43.87 94.82 17.36 0.87 0.74 0.78
40 48.51 95.74 20.35 0.83 0.73 0.77
50 50.96 96.20 23.78 0.80 0.72 0.76
60 52.99 96.62 28.36 0.76 0.71 0.75

k=40

10 22.03 86.56 16.20 0.95 0.78 0.79
20 40.09 93.14 19.90 0.91 0.78 0.80
30 50.61 95.16 23.45 0.85 0.77 0.79
40 55.77 96.05 27.74 0.80 0.76 0.79
50 58.69 96.54 33.55 0.76 0.75 0.78
60 60.66 96.81 41.57 0.72 0.74 0.77

Table 3: Results for sentiment control task with GPT-2 model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Toxicity (↓) Fluency Diversity (↑)
Model Base LM β Avg. Max Toxic PPL (↓) MAUVE (↑) Dist 2 Dist 3

Toxicity Rate

ARM distill

LLaMa-2-7b

10 0.260 0.092 21.88 0.99 0.79 0.81
50 0.181 0.022 23.16 0.97 0.79 0.81

100 0.142 0.010 25.28 0.95 0.79 0.81
200 0.103 0.003 37.92 0.87 0.77 0.79
300 0.082 0.002 47.13 0.75 0.74 0.76

LLaMa-2-13b

10 0.268 0.104 22.74 0.99 0.79 0.81
50 0.188 0.027 23.58 0.97 0.79 0.80

100 0.148 0.013 27.59 0.95 0.78 0.80
200 0.108 0.004 36.87 0.87 0.76 0.78
300 0.086 0.003 55.53 0.76 0.73 0.75

RAD

LLaMa-2-7b

10 0.244 0.069 21.76 0.99 0.79 0.81
50 0.162 0.010 22.62 0.96 0.79 0.81

100 0.123 0.004 27.69 0.94 0.79 0.80
200 0.088 0.002 41.27 0.83 0.77 0.78
300 0.072 0.002 53.68 0.65 0.74 0.75

LLaMa-2-13b

10 0.252 0.079 22.15 0.99 0.79 0.80
50 0.169 0.012 23.74 0.97 0.79 0.80

100 0.128 0.004 31.25 0.94 0.78 0.80
200 0.091 0.002 48.09 0.83 0.76 0.77
300 0.075 0.001 60.82 0.69 0.73 0.74

Table 4: Results for detoxification task with LLaMa-2 base models. Toxicity metrics are computed
with Perspective API.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Avg. Max Toxicity
Model β Toxicity Rate

ARM distill

k=20

10 0.286 0.270
20 0.239 0.220
30 0.209 0.190
50 0.160 0.140
100 0.089 0.070
200 0.038 0.025
300 0.022 0.011

k=40

10 0.297 0.282
20 0.247 0.232
30 0.209 0.192
50 0.154 0.133

100 0.084 0.066
200 0.034 0.020
300 0.021 0.009

ARM responses only

k=20

10 0.257 0.238
20 0.212 0.192
30 0.178 0.158
50 0.135 0.112

100 0.084 0.063
200 0.056 0.035
300 0.050 0.029

k=40

10 0.267 0.249
20 0.214 0.193
30 0.179 0.157
50 0.133 0.109

100 0.083 0.061
200 0.060 0.036
300 0.054 0.031

RAD

k=20

10 0.242 0.223
20 0.189 0.167
30 0.159 0.137
50 0.118 0.097
100 0.072 0.052
200 0.039 0.021
300 0.027 0.011

k=40

10 0.245 0.225
20 0.189 0.166
30 0.159 0.137
50 0.116 0.090

100 0.071 0.048
200 0.037 0.019
300 0.025 0.008

Table 5: Additional results for detoxification task with the GPT-2 and the RoBERTa (Corrêa, 2023)
as toxicity classifier. Other metrics are the same as in Table 2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Toxicity (↓)
Model Base LM β Avg. Max Toxic

Toxicity Rate

ARM distill

LLaMa-2-7b

10 0.273 0.256
50 0.160 0.139

100 0.110 0.090
200 0.069 0.050
300 0.051 0.030

LLaMa-2-13b

10 0.285 0.266
50 0.176 0.151

100 0.122 0.103
200 0.074 0.052
300 0.054 0.035

RAD

LLaMa-2-7b

10 0.254 0.233
50 0.135 0.112

100 0.091 0.070
200 0.055 0.033
300 0.044 0.024

LLaMa-2-13b

10 0.267 0.246
50 0.150 0.125

100 0.098 0.072
200 0.061 0.040
300 0.048 0.028

Table 6: Additional results for the detoxification task with the LLaMa-2 base models with the
RoBERTa (Corrêa, 2023) as toxicity classifier.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Pr
om

pt
:X

”)
re

ce
iv

ed
a

se
ri

es
of

te
xt

m
es

sa
ge

sf
ro

m
he

r
at

ta
ck

er
,i

nc
lu

di
ng

on
e

th
at

re
ad

“I
fI

...

β
C

on
tin

ua
tio

n
To

xi
ci

ty
1
0

ha
ve

to
,I

w
ill

ki
ll

m
ys

el
fa

nd
th

en
Iw

ill
ta

ke
al

lo
fy

ou
as

w
el

la
nd

al
lo

f
0.

86
5
0

ge
to

ut
of

he
re

I’
m

go
in

g
to

ki
ll

yo
u“

"
“w

hi
ch

w
as

tr
an

sl
at

ed
in

to
a

0.
89

1
0
0

ge
ti

n
m

y
ca

rI
’m

go
in

g
to

dr
iv

e
ov

er
a

cu
rb

an
d

br
ea

k
it

in
tw

o,
”

0.
47

3
0
0

ev
er

ha
ve

th
e

op
po

rt
un

ity
to

m
ee

tw
ith

an
yo

ne
in

re
al

lif
e,

it
w

ou
ld

be
yo

u.
Ik

no
w

I
0.

24

Ta
bl

e
7:

M
os

tt
ox

ic
sa

m
pl

es
(o

ut
of

25
ge

ne
ra

te
d)

fr
om

th
e

A
R

M
w

ith
di

ff
er

en
tβ

co
ef

fic
ie

nt
s,

an
d

co
rr

es
po

nd
in

g
To

xi
ci

ty
sc

or
es

fr
om

th
e

Pe
rs

pe
ct

iv
e

A
PI

.

Pr
om

pt
:N

o
m

at
te

r
w

ho
yo

u’
ll

pi
ck

yo
u’

ll.
..

G
PT

-2
ne

ed
to

fin
d

th
e

co
rr

ec
tp

ie
ce

s
fo

ri
ta

nd
th

e
ri

gh
tc

om
bi

na
tio

n
of

ch
ar

ac
te

rs
an

d
w

ea
po

ns
to

ki
ll

th
e

bo
ss

es
G

eD
i

ne
ed

th
e

fo
cu

s
fo

rt
hi

s
on

e.
Pe

rs
on

al
ly

,I
ha

d
a

go
od

tim
e

in
jo

ki
ng

ly
ca

lli
ng

ou
tC

ar
d

D
E

xp
er

ts
ne

ed
a

ve
rs

at
ile

D
H

pl
ay

er
an

d
D

ah
lw

ill
ce

rt
ai

nl
y

he
lp

yo
u

as
he

’s
id

ea
lly

po
si

tio
ne

d
at

th
e

ba
ck

of
R

A
D

st
ill

be
pl

ay
in

g
ag

ai
ns

ta
w

el
l-

pr
ep

ar
ed

te
am

.I
n

th
is

da
y

an
d

ag
e

of
in

st
an

tg
ra

tifi
ca

tio
n

w
e

A
R

M
pr

ob
ab

ly
w

an
tt

o
m

ak
e

su
re

yo
u

do
at

le
as

ts
om

e
re

se
ar

ch
on

a
te

am
be

fo
re

de
ci

di
ng

,a
s

th
e

co
m

pe
tit

io
n

Ta
bl

e
8:

D
et

ox
ifi

ca
tio

n
ta

sk
:s

am
pl

es
fr

om
th

e
A

R
M

an
d

R
A

D
w

ith
k
=

2
0,
β
=

1
0
0.

E
xa

m
pl

es
fo

rt
he

G
eD

ia
nd

D
E

xp
er

ts
ar

e
fr

om
D

en
g

&
R

af
fe

l(
20

23
).

Pr
om

pt
:M

ea
nw

hi
le

th
e

ir
on

an
d

le
ad

...

G
PT

-2
in

th
e

bl
oo

d
of

an
in

no
ce

nt
ch

ild
m

ay
be

of
no

co
ns

eq
ue

nc
e

if
th

e
pa

re
nt

di
es

be
fo

re
he

or
sh

e
G

eD
i

ga
th

er
ed

,o
ur

ne
w

fr
ie

nd
s

da
nc

ed
,j

es
ts

w
er

e
m

er
ri

ly
sp

ic
ed

,a
nd

pl
en

ty
of

so
ng

s
fir

ed
D

E
xp

er
ts

fie
ld

s
m

ay
no

ts
ee

m
lik

e
th

e
pe

rf
ec

ta
re

as
fo

rr
ec

la
im

in
g

co
al

an
d

st
ee

l,
bu

tt
ec

hn
ol

og
y

ha
s

br
ou

gh
tm

in
in

g
R

A
D

in
du

st
ri

es
,a

nd
al

so
th

e
en

er
gy

an
d

m
at

er
ia

ls
m

ar
ke

ts
in

th
e

U
ni

te
d

St
at

es
,h

av
e

gr
ow

n
an

d
m

at
ur

ed
.T

he
A

R
M

in
m

y
lif

e
ha

ve
a

gr
ea

te
ff

ec
to

n
m

e.
T

he
y

br
in

g
m

e
to

lif
e

w
he

n
It

hi
nk

of
al

l

Ta
bl

e
9:

Se
nt

im
en

tc
on

tr
ol

ta
sk

:s
am

pl
es

fr
om

th
e

A
R

M
an

d
R

A
D

w
ith

k
=

2
0,
β
=

3
0.

E
xa

m
pl

es
fo

rt
he

G
eD

ia
nd

D
E

xp
er

ts
ar

e
fr

om
D

en
g

&
R

af
fe

l(
20

23
).

29

	Introduction
	Preliminaries
	Guided decoding with external experts
	RAD training

	Reward modeling as low-rank matrix factorization
	Analysis of RAD
	Reward modeling as matrix completion
	RAD can be high-rank, but is not in practice
	Is the training data full rank?

	Low-Rank Autoregressive Reward Model
	ARM training

	Related Work
	Experiments
	Controlled generation
	Detoxification
	Sentiment control
	Results
	Ablation
	Efficiency

	Conclusion
	Reward Matrix
	Factorization of PΩ(R)
	Rank-1 case
	Estimating the minimal rank of the data

	R=RRRRRAD and R=RRRRARM
	R=RRRRRAD
	R=RRRRARM
	Real data experiments
	Numerical rank

	Training Details
	MAUVE
	Detoxification
	Sentiment Control

	Results
	Detoxification
	Results with Perspective API classifier

	Additional Ablation Results
	Loss choice
	MLP vs Linear Parametrization

	Sentiment control
	Results with RoBERTa classifier

	Sentiment Control
	Generated Examples

