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ABSTRACT

Language models trained on large amounts of data are known to produce inap-
propriate content in some cases and require careful tuning to be used in the real
world. We revisit the reward augmented decoding (RAD) approach to control the
generation from a language model using the scores from a task-specific reward
model. We investigate the training objective of RAD, and reformulate it as a task
of learning a reward matrix. We show that RAD is designed to support high flexi-
bility when representing the reward matrices, which leads to higher computational
costs during decoding. However, we demonstrate that RAD does not use its full
flexibility. Motivated by this, we propose a simpler but more efficient low-rank
parametrization of the reward model enabling fast and effective guided decoding.
For the detoxification and sentiment control tasks, we show that our low-rank
reward model performs on par with the more flexible RAD parametrization, while
requiring only a single reward model call per generated token.

1 INTRODUCTION

Generative large language models (LLMs) have gained a lot of popularity in recent years and shown
impressive results in zero-shot and few-shot scenarios on numerous downstream tasks (Touvron et al.,
2023; OpenAI, 2024; Jiang et al., 2023). These large-scale models are pretrained on large amounts
of data, and are known to inherit and memorize underlying biases (Sheng et al., 2019) as well as to
provide unsafe responses (Wallace et al., 2019; Ganguli et al., 2022), necessitating further tuning for
safer deployment and control (Ouyang et al., 2022).

Control over LLMs can be roughly divided into methods which modify the original model via
finetuning (Ouyang et al., 2022; Rafailov et al., 2023), and decoding-time solutions, which do
not modify the parameters of the original model. As models increase in size, finetuning becomes
prohibitive with limited computational resources. In this work, we focus on a more modular approach
of decoding-time guidance, and assume we have access to top-k logits of a black-box base language
model (see §2.1 for details). In this line of work, a discriminator model is trained to modify or rerank
the logits of the base model during decoding in order to satisfy the desired constraint (Yang & Klein,
2021), while preserving the distribution of the language model as much as possible.

Recently Deng & Raffel (2023) proposed the reward augmented decoding (RAD), an approach to train
an autoregressive reward model as the discriminator. While RAD demonstrates high effectiveness for
controlled generation, it scales poorly when the number of next token candidates grows, requiring a
separate forward pass through the backbone of the reward model for each token candidate. In this
aspect, RAD diverges from previous work of Liu et al. (2021) and Krause et al. (2021): the latter
propose more efficient approaches using external attribute-conditioned language models, where each
expert model only performs a single forward pass to predict the scores for all next token candidates.

In §3.1, we analyze RAD and reformulate its training objective in terms of approximating an
incomplete reward matrix. We highlight that the RAD approach is flexible enough to represent a
large space of reward matrices including those of high rank. However, when we empirically measure
the rank of the reward matrix learned by RAD, it appears to be low-rank. This observation suggests
that RAD might not use its full flexibility, which motivates us to reconsider the trade-off between
efficiency and expressivity of reward models. By analyzing the incomplete reward matrix constructed
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from the training data, we observe that it is enough to have a low-rank approximation to this matrix
in order to reconstruct its observed values.

In light of this observation, we propose the autoregressive reward model (ARM), a low-rank reward
model which combines the strengths of two paradigms: fast inference with language modeling
prediction style and high quality of generations following the reward augmented decoding (RAD)
approach (Deng & Raffel, 2023). We propose a simple strategy for how to transform a pretrained
language model into an efficient autoregressive reward model. In the evaluation, we show that guided
decoding with our model results in a comparable attribute control/fluency to the more flexible but
more computationally intensive RAD approach.

2 PRELIMINARIES

2.1 GUIDED DECODING WITH EXTERNAL EXPERTS

In this section, we outline the approach of guiding a base language model with external token-level
discriminators. At each step of decoding, both the base model and the discriminator observe an
already generated prefix x, and cooperate to score the next token candidates v ∈ V . A language
model predicts the logits zLM(·|x) ∈ R|V | and the goal of discriminator is to augment these logits
with reward scores r̂(·|x) ∈ R|V |. A standard practice is to consider only likely tokens V ′ ⊆ V
at each decoding step e.g. via top-k (Fan et al., 2018; Deng & Raffel, 2023) or nucleus sampling
(Holtzman et al., 2020):

z(v|x) =
{︃
zLM(v|x) + βr̂(v|x), if v ∈ V ′

−∞, otherwise
(1)

and the next token is sampled from the categorical distribution:

p̃(x) = Softmax(z(v|x)). (2)

While some language models might have a restrictive application programming interface (API) for
safety reasons, this line of work makes a reasonable assumption that we have access to the top-k
logits of a language model either directly or via API for a relatively small k ≪ |V |.
To define reward scores, GeDi (Liu et al., 2021) and DExperts (Krause et al., 2021) use attribute-
conditioned unidirectional language models (undesired attribute in GeDi or two LM experts for
desired and undesired attribute in DExperts), trained via the standard language modeling objective on
class-conditioned data: r̂y(v|x) = zt(v|x, y), where y ∈ {0; 1} is the attribute (e.g. positive/negative
sentiment). Given a prefix x they only pass it once through the external language model backbone,
relying on the linear output layer to obtain the scores for each of the next token candidates.

Alternatively, RAD (Deng & Raffel, 2023) trains a unidirectional reward model to predict the attribute
of interest for a prefix concatenated with a next token candidate r̂RAD([x, v]), where [·, ·] denotes the
concatenation of a prefix and a next token candidate. This approach requires passing each next token
candidate as input to the model, thus, to obtain the scores for k next token candidates v for top-k
decoding RAD would need k forward calls of the reward model, which can slow down inference
significantly and constrains them to limit the number of next token candidates. Despite being less
efficient, RAD outperforms the approach with attribute-conditioned language models in terms of
controlled generation quality.

2.2 RAD TRAINING

In this section, we outline how RAD (Deng & Raffel, 2023) uses labeled data to train a reward model.
At the training stage, we assume that we have a dataset D = {(u(i), y(i))}ni=1 of n text utterances u
of length l(u) and responses y ∈ [0; 1]. RAD trains a reward model to predict y given a text input.
While a simple strategy would be to train the reward model on full utterances u from D, it is important
that the model predicts meaningful rewards also for partially generated utterances, needed during
guided decoding. The RAD approach is to first extend the dataset by considering all partial utterance
prefixes u1:t along with corresponding weights:

Df = {(x, y, λ(t, l(u))) |x=u1:t, t ∈ (1, . . . , l(u)), (u, y) ∈ D}, (3)
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where λ are the weights λ(t, l(u)) = t∑︁l(u)

t′=1
t′

for each prefix used to up-weight prefixes closer

to the full sentence, and
∑︁l(u)

t=1 λ(t, l(u)) = 1. Then, during training, RAD takes the input prefix
x = [x′, v] and incurs a weighted squared loss for approximating the future reward:

L(r̂(v|x′), y, λ) = λ · (r̂(v|x′)− y)2. (4)

During training, we can use teacher forcing to process all prefixes of an utterance in a single pass.

3 REWARD MODELING AS LOW-RANK MATRIX FACTORIZATION

3.1 ANALYSIS OF RAD

3.1.1 REWARD MODELING AS MATRIX COMPLETION

To better understand the training objective of RAD, we start by looking at the optimization prob-
lems defined in §2.2, where we optimize a reward model to approximate the future responses. A
unidirectional reward model can predict a reward value for each next next token candidate. If we
enumerate all the contexts x′ in the training data and all possible next tokens v, we task a reward
model to predict the values of R ∈ RN×|V |, which we dub the reward matrix.

If each context would be observed only once, R would have a single observed reward in each row. For
short and common contexts we can observe more continuations per row, and also for some contexts
there can be ambiguities: {(x, y1, λ1), ...(x, ym, λm)}. From a mean squared error point of view, it
is equivalent to compress these ambiguities by taking the weighted average of their y (Appendix A):

R[x′, v] =

∑︁
λ,y∼Df [x]

λy∑︁
λ,y∼Df [x]

λ
. (5)

From this perpective, reward modeling can be interpreted as a matrix completion problem. The train-
ing dataset Df gives us only an incomplete view of a true reward matrix R. Following the notation in
the matrix completion literature (Mazumder et al., 2010), denote by Ω the set of indices of the ob-
served entries {(x′, v) |x = [x′, v], x ∈ Df}, and by PΩ(R) the projection of R that sets all indices
outside Ω to zero. The full RAD objective is equivalent to minimizing ∥PΩ(R) − PΩ(R̂RAD)∥2F ,
where each entry R̂RAD[x

′, v] = r̂(v|x′) can be computed with a forward pass.

0 500 1000 1500 2000 2500 3000 3500 4000
N contexts

100

101

102

103

104

Ra
nk

|V|=50257
d=768
RAD (toxicity)
RAD (sentiment)

Figure 1: We numerically estimate the rank of R̂RAD by increasing the number of seen randomly
selected training prefixes (rows of the R̂RAD matrix), and observe that the rank tends to be less than
the model dimension d = 764 and much less than |V |, the maximal possible rank of PΩ(R).

3.1.2 RAD CAN BE HIGH-RANK, BUT IS NOT IN PRACTICE

Given a prefix x, RAD accepts a token candidate v as an additional input to the model R̂RAD[x
′, v] =

r̂RAD([x
′, v]), passing v through the layers of the reward model. For this reason, we expect RAD

to have the capacity to represent a large space of reward matrices including matrices with higher
rank. In Appendix C.1, we empirically verify that RAD is capable to approximate PΩ(R) matrix
with high rank: rank(PΩ(R)) > d, where d is the dimensionality of the model . This flexibility
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does come at the cost: to score many next token candidates during top-k decoding, RAD needs to do
a forward pass through all layers of the model for each of the k next token candidates. Hence, an
important question is do we need this flexibility at the cost of slower decoding?

In Figure 1, we aim to measure the rank of R̂RAD for RAD trained on two datasets: for detoxification
and sentiment control tasks (discussed in detail in §5). To numerically estimate the rank, we follow
Finlayson et al. (2024) and first sample N random prefixes x from the dataset Df to calculate N

full rows of R̂RAD (requiring N · |V | calls to the RAD reward model). Then we use singular value
decomposition with the standard singular value cutoff to compute the rank (Appendix C.4). We
observe that the reward matrix learned by RAD tends to be low-rank, suggesting that it is possible
to use less flexible but faster reward models to improve the efficiency of reward models.

3.1.3 IS THE TRAINING DATA FULL RANK?

Note that the presence of a low-rank solution compatible with Ω does not imply that the true reward,
if it could be fully observed, is necessarily low rank. We argue that low-rank predictions can partly be
explained by the specifics of the training objective. Particularly, the incompleteness of PΩ(R) makes
it easier for a reward model to learn a low rank approximation. To understand why this is the case,
consider a simple scenario, when all prefixes x appear only once in the dataset. For this case, there
exists a rank-1 R̂ compatible with PΩ(R) (Appendix B.1).

To better understand this phenomenon, we would like to understand whether the PΩ(R) can be
fit with the low-rank model. We define the minimum rank of a partially observed matrix R̂ as
min rank(PΩ(R)) = min{rank(R̂) : PΩ(R) = PΩ(R̂)}. We claim that the data has low minimal
rank. Note that empirically calculating the minimal rank of the data is challenging due to the very
large number of prefixes. We use a combination of theoretical and empirical approaches listed in
Appendix B.2 to demonstrate that incomplete PΩ(R) matrix can be fit with the low-rank matrix
factorization with a small error (with the rank less than the model dimension).

3.2 LOW-RANK AUTOREGRESSIVE REWARD MODEL

Motivated to reduce the decoding costs of RAD, we propose ARM (Figure 2), a low-rank autoregres-
sive reward model suitable for guided decoding, designed for efficient modeling of rewards scores
for next token candidates. To ensure prediction efficiency of the reward model, we aim to revisit
the language modeling style of prediction (Liu et al., 2021; Krause et al., 2021) and aim to predict
the scores for all next token candidates with just a single forward pass through the backbone of a
language model.

In contrast to RAD, ARM predicts the representation vector h(x) ∈ Rd given a prefix x and uses
output embeddings e(v) ∈ Rd to get the scores for all next token candidates. We propose the
following ARM parametrization, similar to the how Dueling Network (Wang et al., 2016; Tang et al.,
2023; Han et al., 2024) parametrizes the scores for the next tokens given the prefix:

r̂ARM(v|x) = r̂b(h(x))
baseline

+∆r̂(e(v)|h(x)), (6)

where the baseline predicts the score for the prefix x and ∆r̂ predicts how observing a next token v
changes the score. Particularly, we use a linear parametrization:

r̂b(v|x) := ⟨h(x), w⟩ ∆r̂(e(v)|h(x)) := ⟨h(x),We(v)⟩. (7)

Here, we introduced two attribute-specific parameters: w ∈ Rd for modeling the baseline reward
score of the prefix, and W ∈ Rd×d to model marginal rewards for each next token candidate. Now it
is clear that in contrast to RAD, ARM (as defined in Eq. (7)) performs a low-rank matrix factorization
of PΩ(R):

R̂ARM = H(w1T +WE) = HA, (8)

where we stack all context representations x′ into H ∈ RN×d and all next token representations into
WE ∈ Rd×|V |, and 1 is a column d-vector of all ones. rank inequality, rank(R̂ARM) = rank(HA) ≤
min(rank(H), rank(A)) ≤ d, meaning that if rank(PΩ(R)) > d, ARM cannot possibly perfectly
reconstruct PΩ(R) no matter how flexible h(x) is. In the language modeling literature the rank
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bottleneck problem is known as the softmax bottleneck (Yang et al., 2018) and mitigation strategies
are well-studied (Ganea et al., 2019; Chang & McCallum, 2022).

In the experiments (§5), we empirically demonstrate that our low-rank ARM can match the perfor-
mance of the more flexible RAD on the two standard controlled generation benchmarks.

3.3 ARM TRAINING

Ah, they

love
are

hate

Ah, they

love
are

hate

+

ARMLM

Figure 2: During decoding, we augment the logits of the base language model with reward scores
from ARM. ARM uses the language model output embeddings to efficiently predict the rewards for
next token candidates.

To train ARM, we rely on the RAD approach to train a reward model. We split x into a last token and
remaining prefix: x = [x′, v]. We pass x′ as input to the model, and v indexes output embeddings (7).
We consider two types of experiments: training ARM on original responses from the dataset, and
distillation experiment, where we train ARM to predict the scores of less efficient RAD.

For the first type of experiment , we train ARM on the responses from the dataset using the weighted
squared loss:

L(r̂(v|x′), y, λ) = λ(r̂(v|x′)− y)2 (9)
For the second type of experiment , we train an ARM student to approximate the less efficient RAD
teacher r̃(x) (a frozen trained RAD) using the distillation loss (Hinton et al., 2015):

Ldstl(r̂(v|x′), r̃(x)) = (r̂(v|x′)− r̃(x))2. (10)

A reward model can only observe a limited number of next tokens v given x during finetuning. While
the loss defined above provides a positive signal for some tokens v, it might be beneficial to regularize
the prediction for other (unrelated) tokens, including rare or unseen tokens. In our parametrization (6),
it is natural to push the predicted reward towards the baseline for unrelated tokens. We regularize the
prediction of ARM to be close on average to the prefix baseline by forcing ∆r̂ to be close to 0 for
randomly sampled token candidates:

Lreg(h(x)) = Ev′∼Uniform[V ] [∆r̂(e(v′)|h(x))]2 , (11)

where we use one sample of v′ for each prefix position, sampling uniformly from the vocabulary.
Particularly, a regularized model can learn to abstain by predicting the baseline score for each next
token candidate, which will not change the distribution of a base model.

4 RELATED WORK

There are multiple approaches that investigate how to finetune a language model using attribute-
conditioned data (desired/undesired examples). Keskar et al. (2019) finetunes a language model using
control prompts. More recent approaches (Schulman et al., 2017; Stiennon et al., 2020; Lu et al., 2022)
perform finetuning while regularizing the weights of the model to stay close to pretrained weights.
Despite the efficiency of decoding, these methods might require more resources for finetuning if the
language model is large, or might even be unusable if we only have access to the top-k logits of base
language model via an API.

Unlike finetuning, alternative approaches keep the language model untouched and use external
models to guide the decoding from the base language model. Dathathri et al. (2019) use the gradients
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from a discriminator to modify the prefix activations of the base model during decoding. However,
gradient-based methods are costly to use during decoding since they require backpropagating through
the large base model.

Closest to our work are gradient-free guided decoding methods, where we have access to the frozen
base language model and use external models to guide the sampling process from the base model.
GeDi (Krause et al., 2021) proposes to use class-conditioned language models as discriminators to
augment the decoding and efficiently compute the scores for next token candidates. DExperts (Liu
et al., 2021) improves the quality of GeDi introducing an ensemble of two class-conditioned language
models finetuned on desired and undesired data. We look closer into parametrization of the output
layer and propose to decouple the prefix score from marginal scores of the next token candidates.
Additionally, for our parametrization, we propose a regularization, which makes it easier for the
model to abstain.

More recently, Deng & Raffel (2023) and Sitdikov et al. (2022) argue to use discriminator models
Yang & Klein (2021) to guide the decoding. Sitdikov et al. (2022); Dekoninck et al. (2023) use
available bidirectional Transformers to guide the base language model, which, however, requires to
recompute all prefix tokens at each decoding step. To tackle this issue, RAD (Deng & Raffel, 2023)
proposes a unidirectional model suitable for caching of prefix activations. They train a reward model
on partial prefixes to predict the expected future attribute and demonstrate high quality of controlled
generation.

In our work, we focus on the analysis of the RAD, while an alternative but related direction follows
reinforcement learning (RL) approach. Particularly, RAD uses value-function style parameterization,
while ARM is Q-function style. Among RL-based approaches, Mudgal et al. (2024), Chakraborty
et al. (2024) parametrize the value function, which results in higher decoding complexity; Cao
et al. (2022) parametrize the Q-function, resulting in similar efficiency to ARM. To the best of
our knowledge, there is little attention to the implied efficiency-quality trade-off that we study in
our work. The closest to our analysis is the recent work of Han et al. (2024), where they compare
both parametrizations in relation to language modeling, however they observe that value function
parametrization outperforms Q-function parametrization, which disagrees with our work.

To summarize, we complement the previous work, by zooming in into the parametrization of an
autoregressive reward model. We highlight the trade-off between efficiency and expressiveness of a
reward model, and showcase that, for tasks and datasets we consider, higher rank-expressiveness can
be traded for higher efficiency without quality drop. We hope our analysis will inform future work on
the design choices of autoregressive reward models.

5 EXPERIMENTS

5.1 CONTROLLED GENERATION

We follow previous work (Deng & Raffel, 2023; Liu et al., 2021) and evaluate ARM on two controlled
generation tasks: detoxification and sentiment control.

In our experiments, we guide the decoding from a base model using a smaller finetuned reward
model with the same tokenizer. Namely, we guide GPT-2-Large using a reward model finetuned from
GPT-2-Small, and we guide the LLaMa-2-(7b/13b) (Touvron et al., 2023) base language model with
a reward model finetuned from TinyLLaMa (Zhang et al., 2024). We finetune all parameters of the
reward models except input/output embeddings, which remain frozen (we hope that, this way, the
reward model generalizes better to unseen tokens).

We conduct experiments in two regimes: first, by distilling less efficient RAD (Deng & Raffel, 2023)
using Ldstl loss (10); second, by training a reward model from scratch on the responses from the
datasets using cumulative loss L (9). In both settings, we use additional regularization Lreg by default.
For evaluation, we perform guided decoding using top-k sampling from the categorical distribution
defined in (2), where top-k candidates are selected taking k largest logits of the base model at the
current decoding step.
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Figure 3: ARM student (distil) shows comparable toxicity/fluency trade-off with the teacher RAD,
where the ARM student closely matches the performance of the teacher RAD. ARM trained on
original responses (ARM resp. only) shows slightly worse fluency and similar toxicity level. We
rerun the evaluation for RAD, GeDi and DExperts with an up-to-date Perspective API classifier. We
include the results with other baselines from Deng & Raffel (2023) in Figure 12 (see Appendix F.1.1).

5.2 DETOXIFICATION

For the detoxification evaluation, we follow previous work (Deng & Raffel, 2023; Liu et al., 2021)
and evaluate samples from guided decoding given a 10k subset (Liu et al., 2021) of prompts from the
RealToxicityPrompts dataset (Gehman et al., 2020). We follow Deng & Raffel (2023) and Liu et al.
(2021) and finetune our model on 2M pairs of text and continuous ‘toxicity’ responses between 0 and
1 from the Jigsaw Unintended Bias in Toxicity Classification challenge (cjadams et al., 2019). Like
previous work, we train our model on 7 independent responses (‘toxicity’, ‘severe toxicity’, ‘obscene’,
‘identity attack’, ‘insult’, ‘threat’, ‘sexual explicit’) with different head parameters wi,Wi, i ∈
{1, ..., 7} for each sub-task. During decoding, we only use the ‘toxicity’ predictor. For the distillation
experiment, we use the same dataset, and the released toxicity discriminator from Deng & Raffel
(2023) as a teacher.

During decoding, we sample 25 continuations generating at most 20 new tokens. To evaluate toxicity,
we use an external closed-source toxicity classifier Perspective API (Lees et al., 2022), and following
previous work (Deng & Raffel, 2023; Liu et al., 2021), we rely on the Maximal Average Toxicity
metric, which is the maximal toxicity score value over 25 samples for a given prompt, averaged
over the set of 10k prompts. We also report Toxic Rate, which is calculated as the probability that at
least one out of 25 continuations is toxic according to Perspective API (toxicity score > 0.5); and
Diversity score, which is the average number of distinct n-grams normalized by the length of text
(Li et al., 2018). To evaluate the fluency of model generations, we follow previous work (Liu et al.,
2021; Deng & Raffel, 2023) and report the average perplexity of the GPT-2-XL when generating
from the GPT-2-Large model; and the OLMo1 to evaluate the LLaMa family as in Lovelace et al.
(2024). As an additional fluency metric, we report MAUVE (Pillutla et al., 2021) to measure the
distance between unguided and guided generations (details in Appendix E). In the experiments, we
will look at the toxicity/fluency trade-off, alternating the weight β of the discriminator (see Table 2
and Table 3). We expect to obtain a model with both low toxicity according to the Perspective API,
and high fluency.

1https://huggingface.co/allenai/OLMo-1B
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Figure 4: For the sentiment control task, ARM trained on responses only lags slightly
behind the RAD baseline, while student ARM outperforms the teacher RAD model. For
the plot with average perplexity, we include the results from Deng & Raffel (2023) for
other baselines for reference.

Since toxicity scores from the Perspective API can change overtime, which can complicate the
evaluation, in Appendix F.3.1 we evaluate our detoxification models with an open-weight toxicity
classifier,2 where we observe the same relative results as with Perspective API scores.

5.3 SENTIMENT CONTROL

For sentiment control, we follow previous work (Li et al., 2018; Sudhakar et al., 2019; Liu et al.,
2021; Deng & Raffel, 2023) to evaluate the samples given a prompt from one of the three categories:
2.5K negative, 5K neutral, and 2.5K positive prompts from OpenWebText (Gokaslan & Cohen,
2019). To finetune ARM on responses only, we follow Deng & Raffel (2023) and finetune our model
on millions of reviews from the Amazon Polarity (Zhang et al., 2015) and SST-2 (Socher et al., 2013)
datasets. To distil the sentiment discriminator of Deng & Raffel (2023), we use text examples from
the Amazon Polarity dataset. Additional training details are provided in Appendix D.

2https://huggingface.co/nicholasKluge/ToxicityModel
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Figure 5: Ablation experiment for distilled ARM, on the detoxification task with top-k=20. On the
right, we observe that regularization towards the baseline results in better fluency of generated samples.
On the left, we observe that regularization lowers the rank of the model’s outputs rank(R̂ARM).

For evaluation, we follow Deng & Raffel (2023), and use the average Positive Rate metric w.r.t. the
finetuned DistilBERT classifier (Sanh et al., 2019) provided via the HuggingFace.3 As in the toxicity
task, we use GPT-2-XL/OLMo and MAUVE to evaluate the fluency of the sampled continuations,
and we expect to obtain a high Positive Rate and high fluency.

5.4 RESULTS

To compare RAD and ARM, we rely on the methodology of Deng & Raffel (2023) and Liu et al.
(2021), and visualize the trade-off plots for both models varying the control parameter β. Namely,
each point in the figure will represent two metrics: toxicity/sentiment along the vertical axis and
fluency along the horizontal axis. From this plot, we can read e.g. what fluency (perplexity/mauve)
can be achieved for a given ‘target’ toxicity. To compare two models, we compare their curves (in the
same plot). Our hypothesis is that ARM will perform similar to the more flexible RAD approach,
meaning that the trade-off plots for these models will be close to each other.

Detoxification. For the detoxification task (Figure 3), our efficient student (ARM) closely follows
the RAD teacher for toxicity control/fluency trade-off. We observe that ARM trained on responses
only shows slightly worse fluency w.r.t. average perplexity for lower levels of toxicity. For complete-
ness, in Figure 12, we include the results for other baselines from Deng & Raffel (2023) computed
for an older version of Perspective API. For guided decoding from the LLaMa-2-(7b/13b), we ob-
serve that again ARM closely follows RAD in terms of toxicity/fluency trade-off (see Figure 14 in
Appendix F.1.1).

Sentiment control. From the results on the sentiment control task in Figure 4, we observe that the
ARM student model shows slightly better trade-off than the RAD teacher model, closely following
approaches that require training using feedback from the evaluation pipeline (Lu et al., 2022, Quark),
(Stiennon et al., 2020, PPO). Again, ARM trained on original responses slightly lags behind but still
performs competitively compared to other guided decoding baselines.

Summary. Our empirical results suggest that ARM can match the quality of more flexible but
less efficient RAD. We observe that distilling the RAD teacher into the ARM student results in
slightly higher quality compared to training ARM on original responses. One difference is that when
training from data, we will see short contexts multiple times with different reward responses and
must implicitly converge to their average, while in distillation, the teacher already performs this
compression and provides a single deterministic target r̂(v|x) for every context (x, v). We conjecture
that this may lead to better-trained distilled models.

5.5 ABLATION

In this section, we investigate the effect of adding the baseline component Eq. (7) and of regularization
Eq. (11). In Figure 5, we experiment with the distilled version of ARM and observe that turning off

3https://shorturl.at/9MqDp
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Model N calls
GeDi (Krause et al., 2021) 1
DExperts (Liu et al., 2021) 2
RAD (Deng & Raffel, 2023) k

ARM (Ours) 1

Table 1: Number of input tokens a discrim-
inator model needs to process for a single
decoding step with k next token candidates.
All included models are based on the unidi-
rectional Transformer (Vaswani et al., 2017)
and support the caching of prefix activations.
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Figure 6: RAD processes the k next token can-
didates separately as input requiring more time
compared to ARM, which relies on the output
layer to obtain the scores for all next tokens.

regularization, or further removing the baseline from the parametrization results in still adequate
but slightly worse fluency as measured by perplexity, and a comparable toxicity decrease. By
further analyzing the ranks of RARM with and without regularization, we observe that regularization
effectively decreases the rank of RARM which might explain the higher fluency of regularized model.
Particularly, a very strong regularization would result in the model always predicting the baseline
score for each of the next tokens (corresponds to the rank-1 output), which does not modify the
original distribution of the model (the best fluency) .

5.6 EFFICIENCY

We consider using a reward model to compute the scores for k candidate tokens at each of L steps of
decoding. Similar to RAD (Deng & Raffel, 2023), ARM is based on the unidirectional Transformer
architecture (Vaswani et al., 2017), which means that we can cache the prefix activations during
decoding. To compute the prediction for k next token candidates v given a prefix x, RAD needs to
pass k next tokens as input to the Transformer model, thus RAD processes O(Lk) tokens during
decoding. In contrast, ARM only processes O(L) tokens as input to the Transformer model and relies
on the output layer to efficiently compute the scores for all next token candidates. In Table 1, we
summarize how many tokens external expert models process during top-k decoding. In Figure 6, we
measure the time per generated token when running the decoding for the toxicity task with ARM and
RAD (Deng & Raffel, 2023) on a single RTX A6000 GPU.

6 CONCLUSION

We review the recently proposed RAD approach of training a reward model for the guided decoding,
and we reformulate it as the incomplete reward matrix learning problem. In the light of the rank
analysis of the reward matrix, we observe that the high flexibility of RAD might not overweight
its lower efficiency during decoding. We present the low-rank ARM, an efficient approach to
parameterize the reward model, suitable for autoregressive decoding, caching of prefix activations,
and prediction of next token scores with a single call of a backbone model. We bridge the gap
between two paradigms of training external expert models, demonstrating that we can have both
efficient and effective controlled generation.

LIMITATIONS

The models discussed in this work can only reduce the probability of generating the toxic responses,
not prevent it. Moreover, evaluation of toxicity is far from perfect, and even a very low toxicity
score from automatic evaluation such as Perspective API does not necessary mean that the sample is
‘safe’. Furthermore, we should not exclusively rely on toxicity when evaluating the safety of samples
from language models due to the complexity and variability of language. It is also not clear that
by reducing toxicity, we are not introducing other harms. Furthermore, both RAD and our models
represent low-rank R̂ and further qualitative research is needed to investigate whether certain toxicity
patterns require high rank to represent them.
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SUPPLEMENTARY MATERIAL

Warning: (the last page of) this appendix contains sensitive language and themes generated from high
toxicity contexts.

A REWARD MATRIX

To train a reward model, we use weighted mean squared loss, for which the weighted mean recovers
the minimum:

r∗ = argmin
r

∑︂
λ,y

λ(r − y)2 =

∑︁
λ,y λy∑︁
λ,y λ

(12)

Proof. ∂
∂r

∑︁
λ,y λ(r−y)2 =

∑︁
λ,y

∂
∂r [λ(r−y)2] =

∑︁
λ,y 2λ(r−y) = 2(r

∑︁
λ,y[λ]−

∑︁
λ,y[λy]) =

0. Hence, r∗ =
∑︁

λ,y λy∑︁
λ,y λ

B FACTORIZATION OF PΩ(R)

Any matrix R ∈ RN×|V | can be factored as R = UV T with U, V of dimensions N × q; |V | × q. If
R is incomplete, then there are in general multiple possible factorizations of PΩ(R) compatible with
the observed values.

B.1 RANK-1 CASE

To get better intuition why the incompleteness of PΩ(R) allows to find a compatible factorization
with lower minimal rank, consider a simple example. If we only know 1 element per row of R, then
minimal rank of PΩ(R) is equal to 1. To prove this, consider completing PΩ(R) such that each row
is filled with the same element (the only one known for this row):

(︄
1 ? ?
? 4 ?
? ? 3

)︄
→

(︄
1 1 1
4 4 4
3 3 3

)︄

B.2 ESTIMATING THE MINIMAL RANK OF THE DATA

Empirically calculating minimal rank is challenging due to the very large number of prefixes (row of
the matrix), particularly, the large portion of the prefixes have unique continuation. We show how we
simplify the minimal rank estimation by considering only the prefixes with two or more continuations,
and demonstrate that partially observed R̂ can be fit with a low rank matrix factorization.

Lemma 1. Consider a partially observed reward (sub-)matrix PΩ(R), such that for every
row, only one element of R is observed. Then there exists R̂, such that rank(R̂) = 1 and
∥PΩ(R) − PΩ(R̂)∥2F = 0.

Proof. Let vi be the observed value in R at row i, and let R̂ = v1⊤; i.e., we complete the whole row
with the same value. This rank-1 matrix achieves zero loss.

Given a training dataset of responses and text utterances, there will be many unique prefixes, for
which the Lemma 1 is applicable.

Lemma 2. Let PΩ(R) be a partially observed matrix and [PΩ(R)]2 correspond to the
submatrix formed only with the rows of PΩ(R̂) with at least two observed indices. Then,
min rank(PΩ(R)) ≤ 1 + min rank([PΩ(R)]2)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Next, we demonstrate that [PΩ(R)]2 can be fitted by a model that produces low rank R̂:
min rank([PΩ(R)]2) ≤ d− 1 for our specific dataset, and using Lemmas 1 and 2, we conclude that
min rank(PΩ(R)) < d. This implies that the training dataset Df can be fit by a reward model that
produces low-rank R̂, regardless of the specifics of said model.

Here we check that there exists a factorization of [PΩ(R)]2 with rank q at most 512 (q is less than the
model dimension d = 764). In general, finding minimal rank factorization of incomplete matrices
is known to be NP-hard, and usually convex relaxation such as minimization of the nuclear norm
is considered (see Nan (2009)). To factorize PΩ(R), we use the alternating least squares algorithm
(Mazumder et al., 2010; Hastie et al., 2015).4 To accelerate convergence to a good solution, we first
optimize for 50 iterations with a trace norm penalty of λ = 0.01 (i.e we start by solving a non-convex
approximation of a convex problem) followed by an additional 50 iterations with no trace penalty. At
the end, the mean squared error (MSE) over the observed entries is 0.00056. Given the large scale of
PΩ(R), it is possible that a better fit could be found nevertheless we find this sufficient evidence to
claim that low-rank models could indeed fit the training data.

C R̂RAD AND R̂ARM

C.1 R̂RAD

In this experiment, we empirically verify that RAD is capable to approximate PΩ(R) matrix with
rank(PΩ(R)) > d, where d is the dimensionality of the model. We finetune RAD initialized
from the GPT-2-Small (with d = 764) on a synthetic data constructed as follows. We generate
RI = I(n), n = 1024 > d, an identity matrix of size 1024.

With RI as a full rank 1024× 1024 submatrix of PΩ(R), rank(PΩ(R)) > d. We verify that we can
train RAD to fit this train matrix obtaining the MSE < 10−7.

C.2 R̂ARM

ARM approximates PΩ(R) as a product of two rank d matrices, hence for ARM, the lowest MSE for
the synthetic experiment from the previous section is recovered for rank-k singular value decomposi-
tion of RI , which is I(k). Hence for ARM, MSE ≥ (n− d)/n2 = 0.00024.

We thus conclude that RAD (in contrast to ARM) is indeed capable of representing PΩ(R) matrices
with a rank higher than d.

C.3 REAL DATA EXPERIMENTS

For the experiment with the real datasets for the detoxification and sentiment control tasks, in Figure 7,
we numerically measure the rank of RRAD and RARM , and observe that both ARM and RAD learn
low-rank reward matrices. We thus conclude that both these models have needed capacity to represent
the incomplete PΩ(R) matrices obtained from the datasets.

C.4 NUMERICAL RANK

To compute rank of n×m matrix, we use the default cutoff in Numpy5 and PyTorch6 at the time
of writing, which is to say we count only singular values above max(m,n)εσ1, where ε is the
machine epsilon for the corresponding data type, i.e., the difference between 1.0 and the next smallest
representable number larger than 1.0, and σ1 is the largest singular value .

There are potential issues that may arise when computing the numerical rank. One issue is that the
singular values, especially for the matrices coming from 32bit float precision neural network, will
not be exactly zero, so this is why libraries like Numpy or PyTorch use a precision-based cutoff

4https://cran.r-project.org/web/packages/softImpute/index.html
5https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_

rank.html
6https://pytorch.org/docs/stable/generated/torch.linalg.matrix_rank.

html
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Figure 7: We numerically estimate the ranks of both R̂RAD and R̂ARM increasing the number of
training prefixes (rows of R̂). In all cases, the ranks tend to be less than the model dimension
d = 764. This means that rank-capacity of ARM is sufficient to capture the training datasets for the
detoxification and sentiment tasks.

for singular values that should be considered indistinguishable from zero; we use the default such
parameters. The other issue is that the number of rows in the reward matrices is very high and we
follow the work of Finlayson et al. (2024) and estimate rank by sampling rows from the matrix.
Different submatrices can have different ranks, but we sample i.i.d. to prevent this.

D TRAINING DETAILS

To train reward models, we reuse the hyperparameters from Deng & Raffel (2023), where possible.
We finetune the reward models with Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 =
0.95, ϵ = 1e−12. We use weight decay 0.02, and batch size 100.

To train ARM, we initialize the parameters with the pretrained GPT-2-Small/TinyLLaMa7 weights,
and freeze the shared input-output embedding parameters. Alternative strategy would be to use
parameter efficient finetuning (Hu et al., 2022; Sidahmed et al., 2024) .

E MAUVE

To complement perplexity as a measure of fluency, we use MAUVE (Pillutla et al., 2021) as one
of the fluency metrics. For reference texts, we take the generations of unguided model (GPT-2, or
LLaMa-2-(7b/13b). Thus, this metric should capture how close the distribution of the continuations
of a guided model is to the distribution of the original language model. To calculate MAUVE,
we follow recommendations of He et al. (2023) and use ELECTRA-large model to obtain the text
representations. We use the hyperparameters of Pillutla et al. (2021): c = 5 for the scaling constant;
k−means for the quantization algorithm with 500 iterations, and n/10 clusters where n is the number
of generations. To compute MAUVE, we use 1000 prompts from the evaluation dataset.

E.1 DETOXIFICATION

For the detoxification task, we finetune ARM with the learning rate 10−5 for 5 epochs.

For the LLaMa-2, we additionally finetune RAD with the TinyLLaMa backbone for the fair compari-
son with ARM.

E.2 SENTIMENT CONTROL

To finetune ARM on responses only for sentiment control task, we first finetune the model with the
learning rate 10−5 on the Amazon Polarity dataset, and then finetune it for 5 epochs on the SST-2
dataset with the learning rate 2e−6. For distillation experiment, we finetune ARM for 5 epochs with
the learning rate 10−5 on Amazon Polarity dataset.

7https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
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Figure 8: Comparison of toxicity/fluency trade-off between ARM (distil) and DExperts. We rerun
the sampling from these two models using top-k decoding with k = 20. Results are calculated over
randomly selected 1000 prompts. We observe, that ARM show better constraint satisfaction/fluency
than DExperts.

F RESULTS

F.1 DETOXIFICATION

F.1.1 RESULTS WITH PERSPECTIVE API CLASSIFIER

In this section, we report full results with the Perspective API as a toxicity classifier.

GPT-2. Results for the detoxification task with the GPT-2-Large base model and GPT-2-small
reward model, are presented in Table 2.

We present the results for ARM and RAD with top-k decoding with k = 40 in Figure 11. We observe
similar relative performance of ARM compared to RAD as in the experiment with k = 20, presented
in the Figure 3.

LLaMa-2. Results for detoxification task with LLaMa-2-(7b/13b) base model and TinyLLaMa
reward model are presented in Figure 14 and Table 4.

Baselines. Additionally, in Figure 12, we include results from Deng & Raffel (2023) for other
baseline models (for an older version of Perspective API).

To highlight the difference between the ARM and DExperts, we show the trade-off plot for DExperts
model in Figure 8, varying the α scalar parameter for DExperts. As we can observe, the ARM
has better constraint satisfaction / fluency trade-off than DExperts model. We attribute this to the
difference in the training objectives of the expert models (reward modeling or language modeling), as
argued in (Deng & Raffel, 2023).

F.2 ADDITIONAL ABLATION RESULTS

F.2.1 LOSS CHOICE

We perform an ablation study for the choice of the loss function used to train ARM Eq. (9). There,
we follow the approach of (Deng & Raffel, 2023), where they introduce the squared loss (see section
2.1 Unidirectional Reward Model). An alternative strategy would be to use the binary cross-entropy
loss, using the fact that for our datasets responses y are from [0; 1] range:

Lce(r̂(v|x′), y, λ) = λ(y log σ(r̂(v|x′)) + (1− y) log(1− σ(r̂(v|x′)))), (13)

where we introduced σ(x) = 1/(1 + e−x) function to softly map the predictions of ARM into [0; 1]
range, which is also used during generation.
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Figure 9: Comparison of ARM model trained on original responses with squared loss vs with
cross-entropy loss. We rerun the sampling from these two models using top-k decoding with k = 20.
Results are calculated over randomly selected 1000 prompts. We observe, that ARM trained with the
squared loss show slightly better constraint satisfaction/fluency than ARM trained with cross-entropy
loss.
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Figure 10: Comparison of ARM trained on original responses with linear parametrization vs with
non-linear MLP parametrization. We rerun the sampling from these two models using top-k decoding
with k = 20. Results are calculated over randomly selected 1000 prompts. We observe, that both
parametrizations perform very closely.
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Figure 9 demonstrates that the ARM trained with the squared loss slightly outperform the ARM
trained with the binary cross-entropy loss.

F.2.2 MLP VS LINEAR PARAMETRIZATION

In this ablation, we consider replacing the linear parametrization of ARM Eq. (8) with a non-linear
MLP parametrization:

∆r̂ARM+MLP(x) := W1σ(W2E
TWTh(x)T ), (14)

where W1 ∈ Rd×|V |;W2 ∈ R|V |×d. As we observe in Figure 10, MLP parametrization performs on
par with the linear parametrization. We thus recommend using a more simple linear parametrization.

F.3 SENTIMENT CONTROL

Here, in Figure 13, we include the additional results for the RAD and ARM with top-k decoding with
k = 40.

F.3.1 RESULTS WITH ROBERTA CLASSIFIER

In addition to toxicity scores with Perspective API, we provide the results with the open-weight
RoBERTa toxicity classifier (Corrêa, 2023) for the guided generation with GPT-2 (Figure 15 and
Table 5) and the LLaMa-2 (Figure 16 and Table 6). We notice that results for the average maximal
toxicity with RoBERTa are relatively similar to the result with Perspective API. We hope that with an
open-weight classifier it will be easier for the community to directly compare to the published results
without the need to recompute the API scores.
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Figure 11: Additional results for detoxification task for ARM and RAD with k = 40.

F.4 SENTIMENT CONTROL

Results for sentiment control task with the GPT-2-Large are presented in Table 3.

F.5 GENERATED EXAMPLES

Examples for the detoxification and sentiment control are presented in the Table 7, Table 8 and
Table 9.
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Figure 12: Detoxification results reported in Deng & Raffel (2023) with Perspective API with
GPT-2-Large model (API queries made between May and June 2023).
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Figure 13: Additional results for sentiment control task with k = 40. For this plot with
average perplexity, we include the results from Deng & Raffel (2023) for other baselines
for reference.
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Figure 14: Detoxification results with Perspective API toxicity classifier and LLaMa-2 model. RAD
and ARM distill demonstrate similar performance w.r.t. two fluency metrics: average perplexity and
MAUVE. Performance remains consistent across different models sizes of base LLaMa-2 model.
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Figure 15: Detoxification results with finetuned RoBERTa toxicity classifier (Corrêa, 2023) and the
GPT-2-Large base model.
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Figure 16: Detoxification results with finetuned RoBERTa toxicity classifier (Corrêa, 2023) and the
LLaMa-2 family of models.
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% Toxicity (↓) Fluency Diversity (↑)
Model β Avg. Max Toxic PPL (↓) MAUVE (↑) Dist 2 Dist 3

β Toxicity Rate

ARM distill

k=20

10 0.301 0.139 11.70 0.96 0.81 0.84
20 0.270 0.096 11.73 0.96 0.81 0.84
30 0.246 0.071 11.77 0.96 0.81 0.84
50 0.212 0.043 11.98 0.95 0.81 0.84

100 0.160 0.019 12.67 0.95 0.80 0.83
200 0.117 0.005 15.78 0.88 0.78 0.81
300 0.097 0.002 24.53 0.75 0.75 0.79

k=40

10 0.304 0.137 14.68 0.97 0.83 0.85
20 0.270 0.092 14.73 0.97 0.83 0.85
30 0.245 0.064 14.90 0.97 0.83 0.85
50 0.210 0.039 15.14 0.96 0.83 0.85

100 0.158 0.013 16.26 0.94 0.83 0.84
200 0.112 0.003 21.28 0.86 0.81 0.83
300 0.095 0.002 32.27 0.68 0.78 0.80

ARM resp. only

k=20

10 0.278 0.097 11.71 0.96 0.81 0.84
20 0.241 0.053 11.81 0.97 0.81 0.84
30 0.218 0.029 12.02 0.96 0.81 0.84
50 0.185 0.014 12.26 0.96 0.81 0.84

100 0.143 0.004 14.79 0.93 0.80 0.83
200 0.113 0.002 25.31 0.82 0.76 0.79
300 0.102 0.002 45.82 0.65 0.72 0.75

k=40

10 0.280 0.091 14.72 0.97 0.83 0.85
20 0.242 0.046 14.92 0.96 0.83 0.85
30 0.217 0.028 15.09 0.96 0.83 0.85
50 0.185 0.013 15.69 0.96 0.83 0.85

100 0.142 0.003 18.84 0.92 0.82 0.84
200 0.111 0.002 39.53 0.77 0.79 0.80
300 0.103 0.002 83.36 0.54 0.74 0.76

RAD

k=20

10 0.265 0.077 11.73 0.96 0.81 0.84
20 0.231 0.040 11.81 0.96 0.81 0.84
30 0.211 0.024 11.87 0.96 0.81 0.84
50 0.184 0.014 12.09 0.95 0.81 0.84

100 0.149 0.005 12.64 0.93 0.81 0.83
200 0.115 0.002 14.98 0.84 0.79 0.81
300 0.099 0.001 19.08 0.69 0.76 0.78

k=40

10 0.267 0.072 14.86 0.96 0.83 0.85
20 0.232 0.036 14.87 0.96 0.83 0.85
30 0.211 0.021 14.99 0.95 0.83 0.85
50 0.185 0.011 15.26 0.95 0.83 0.85

100 0.146 0.005 16.30 0.93 0.83 0.84
200 0.114 0.002 20.69 0.80 0.82 0.83
300 0.098 0.001 30.36 0.60 0.79 0.80

Table 2: Results for detoxification task with the Perspective API as a toxicity classifier. Calls to the
Perspective API were performed in June-July 2024.
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% Positive Rate (↑) Fluency Diversity (↑)
Model β Negative Neutral PPL (↓) MAUVE (↑) Dist 2 Dist 3

ARM distill

k=20

10 12.94 81.08 12.16 0.96 0.76 0.78
20 24.87 91.00 12.85 0.94 0.75 0.78
30 35.18 94.87 14.11 0.92 0.75 0.78
40 43.60 96.60 15.74 0.89 0.75 0.78
50 49.84 97.38 18.03 0.86 0.74 0.78
60 55.34 97.87 20.09 0.81 0.73 0.77

k=40

10 13.50 80.97 15.53 0.95 0.78 0.79
20 26.66 91.45 17.20 0.94 0.78 0.79
30 39.12 95.32 18.29 0.90 0.78 0.80
40 48.28 96.98 20.57 0.86 0.77 0.79
50 55.94 97.80 24.36 0.82 0.76 0.79
60 61.39 98.21 28.20 0.77 0.75 0.78

ARM resp. only

k=20

10 12.13 80.02 12.19 0.96 0.75 0.78
20 21.24 89.06 13.67 0.95 0.75 0.78
30 29.94 92.66 15.29 0.93 0.74 0.78
40 37.38 94.62 17.06 0.89 0.74 0.78
50 43.19 95.65 20.11 0.85 0.72 0.77
60 47.19 96.20 23.07 0.82 0.71 0.76

k=40

10 12.17 79.49 15.58 0.95 0.78 0.79
20 22.82 89.40 17.12 0.94 0.77 0.79
30 32.63 93.22 19.46 0.91 0.77 0.79
40 41.58 95.15 24.36 0.87 0.76 0.79
50 47.98 96.10 27.48 0.81 0.75 0.79
60 53.76 96.58 30.91 0.76 0.74 0.78

RAD

k=20

10 19.94 86.06 12.61 0.95 0.75 0.78
20 35.37 92.70 14.87 0.92 0.75 0.78
30 43.87 94.82 17.36 0.87 0.74 0.78
40 48.51 95.74 20.35 0.83 0.73 0.77
50 50.96 96.20 23.78 0.80 0.72 0.76
60 52.99 96.62 28.36 0.76 0.71 0.75

k=40

10 22.03 86.56 16.20 0.95 0.78 0.79
20 40.09 93.14 19.90 0.91 0.78 0.80
30 50.61 95.16 23.45 0.85 0.77 0.79
40 55.77 96.05 27.74 0.80 0.76 0.79
50 58.69 96.54 33.55 0.76 0.75 0.78
60 60.66 96.81 41.57 0.72 0.74 0.77

Table 3: Results for sentiment control task with GPT-2 model.
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Toxicity (↓) Fluency Diversity (↑)
Model Base LM β Avg. Max Toxic PPL (↓) MAUVE (↑) Dist 2 Dist 3

Toxicity Rate

ARM distill

LLaMa-2-7b

10 0.260 0.092 21.88 0.99 0.79 0.81
50 0.181 0.022 23.16 0.97 0.79 0.81

100 0.142 0.010 25.28 0.95 0.79 0.81
200 0.103 0.003 37.92 0.87 0.77 0.79
300 0.082 0.002 47.13 0.75 0.74 0.76

LLaMa-2-13b

10 0.268 0.104 22.74 0.99 0.79 0.81
50 0.188 0.027 23.58 0.97 0.79 0.80

100 0.148 0.013 27.59 0.95 0.78 0.80
200 0.108 0.004 36.87 0.87 0.76 0.78
300 0.086 0.003 55.53 0.76 0.73 0.75

RAD

LLaMa-2-7b

10 0.244 0.069 21.76 0.99 0.79 0.81
50 0.162 0.010 22.62 0.96 0.79 0.81

100 0.123 0.004 27.69 0.94 0.79 0.80
200 0.088 0.002 41.27 0.83 0.77 0.78
300 0.072 0.002 53.68 0.65 0.74 0.75

LLaMa-2-13b

10 0.252 0.079 22.15 0.99 0.79 0.80
50 0.169 0.012 23.74 0.97 0.79 0.80

100 0.128 0.004 31.25 0.94 0.78 0.80
200 0.091 0.002 48.09 0.83 0.76 0.77
300 0.075 0.001 60.82 0.69 0.73 0.74

Table 4: Results for detoxification task with LLaMa-2 base models. Toxicity metrics are computed
with Perspective API.
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Avg. Max Toxicity
Model β Toxicity Rate

ARM distill

k=20

10 0.286 0.270
20 0.239 0.220
30 0.209 0.190
50 0.160 0.140
100 0.089 0.070
200 0.038 0.025
300 0.022 0.011

k=40

10 0.297 0.282
20 0.247 0.232
30 0.209 0.192
50 0.154 0.133

100 0.084 0.066
200 0.034 0.020
300 0.021 0.009

ARM responses only

k=20

10 0.257 0.238
20 0.212 0.192
30 0.178 0.158
50 0.135 0.112

100 0.084 0.063
200 0.056 0.035
300 0.050 0.029

k=40

10 0.267 0.249
20 0.214 0.193
30 0.179 0.157
50 0.133 0.109

100 0.083 0.061
200 0.060 0.036
300 0.054 0.031

RAD

k=20

10 0.242 0.223
20 0.189 0.167
30 0.159 0.137
50 0.118 0.097
100 0.072 0.052
200 0.039 0.021
300 0.027 0.011

k=40

10 0.245 0.225
20 0.189 0.166
30 0.159 0.137
50 0.116 0.090

100 0.071 0.048
200 0.037 0.019
300 0.025 0.008

Table 5: Additional results for detoxification task with the GPT-2 and the RoBERTa (Corrêa, 2023)
as toxicity classifier. Other metrics are the same as in Table 2.
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Toxicity (↓)
Model Base LM β Avg. Max Toxic

Toxicity Rate

ARM distill

LLaMa-2-7b

10 0.273 0.256
50 0.160 0.139

100 0.110 0.090
200 0.069 0.050
300 0.051 0.030

LLaMa-2-13b

10 0.285 0.266
50 0.176 0.151

100 0.122 0.103
200 0.074 0.052
300 0.054 0.035

RAD

LLaMa-2-7b

10 0.254 0.233
50 0.135 0.112

100 0.091 0.070
200 0.055 0.033
300 0.044 0.024

LLaMa-2-13b

10 0.267 0.246
50 0.150 0.125

100 0.098 0.072
200 0.061 0.040
300 0.048 0.028

Table 6: Additional results for the detoxification task with the LLaMa-2 base models with the
RoBERTa (Corrêa, 2023) as toxicity classifier.
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