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ABSTRACT
Many large-scale knowledge bases simultaneously represent two
views of knowledge graphs (KGs): an ontology view for abstract and
commonsense concepts, and an instance view for specific entities
that are instantiated from ontological concepts. Existing KG embed-
ding models, however, merely focus on representing one of the two
views alone. In this paper, we propose a novel two-view KG em-
bedding model, JOIE, with the goal to produce better knowledge
embedding and enable new applications that rely on multi-view
knowledge. JOIE employs both cross-view and intra-view mod-
eling that learn on multiple facets of the knowledge base. The
cross-view association model is learned to bridge the embeddings
of ontological concepts and their corresponding instance-view en-
tities. The intra-view models are trained to capture the structured
knowledge of instance and ontology views in separate embedding
spaces, with a hierarchy-aware encoding technique enabled for
ontologies with hierarchies. We explore multiple representation
techniques for the twomodel components and investigate with nine
variants of JOIE. Our model is trained on large-scale knowledge
bases that consist of massive instances and their corresponding
ontological concepts connected via a (small) set of cross-view links.
Experimental results on public datasets show that the best variant of
JOIE significantly outperforms previous models on instance-view
triple prediction task as well as ontology population on ontology-
view KG. In addition, our model successfully extends the use of KG
embeddings to entity typing with promising performance.
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1 INTRODUCTION
Knowledge bases (KBs), such as DBpedia [18], YAGO [23] and Con-
ceptNet [34], have incorporated large-scale multi-relational data
and motivated many knowledge-driven applications. These KBs
store knowledge graphs (KGs) that can be categorized as two views:
(i) the instance-view knowledge graphs that contain relations
between specific entities in triples (for example, “Barack Obama”,
“isPoliticianOf ”, “United States”) and (ii) the ontology-viewknowl-
edge graphs that constitute semantic meta-relations of abstract
concepts (such as “polication”, “is leader of ”, “city”). In addition, KBs
also provide cross-view links that connect ontological concepts
and instances, denoting whether an instance is an instantiation
from a specific concept. Figure 1 shows a snapshot of such a KB.

Barack 

Obama

Person

Politician City

at_location

Honolulu

Singer

Pablo 

Alborán

State

Donald 

Trump

at_location

Place

was_born_in

Columbia 

University

New York 

City

is_located_in

graduated_from

is_a

is_a

Ontology-view Knowledge Graph

Instance-view Knowledge Graph

University

Michelle 

Obama
has_spouse

Nobel Peace 

Prize

has_award

Richard 

Hofstadter

graduated_from

at_location

Artist

is_a

is_a is_a

is_a

has_album

Institution

is_a

leader

Type Links

Concept

Entity

Relation

Meta-Relation

was_born_in

lives_in
related_to

has_award

has_spouse

Figure 1: An example of two-view KB. Regular meta-
relations and hierarchical meta-relations are denoted as or-
ange and black dashed lines respectively in the ontology
view.

In the past decade, KG embedding models have been widely
investigated. These models, which encode KG structures into low-
dimensional embedding spaces, are vital to capturing the latent
semantic relations of entities and concepts, and support relational
inferences in the form of vector algebra. They have provided an effi-
cient and systematic solution to various knowledge-driven machine
learning tasks, such as relation extraction [40], question answer-
ing [3], dialogues agents [14], knowledge alignment [6] and visual
semantic labeling [10]. Existing embedding models, however, are
limited to only one single view, either on the instance-view graph
[2, 25, 42] or on the ontology-view graph [5, 13].
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Learning to represent a KB from both views will no doubt pro-
vide more comprehensive insights. On one hand, instance embed-
dings provide detailed and rich information for their corresponding
ontological concepts. For example, by observing many individual
musicians, the embedding of its corresponding concept “Musician”
can be largely determined. On the other hand, a concept embedding
provides a high-level summary of its instances, which is extremely
helpful when an instance is rarely observed. For example, for a mu-
sician who has few relational facts in the instance-view graph, we
can still tell his or her rough position in instance embedding space
because he or she should not be far away from other musicians.

In this paper, we propose to jointly embed the instance-view
graph and the ontology-view graph, by leveraging (1) triples in both
graphs and (2) cross-view links that connect the two graphs. It is a
non-trivial task to effectively combine representation learning tech-
niques on both views of a KB together, which faces the following
challenges: (1) the vocabularies of entities and concepts, as well as
relations and meta-relations, are disjoint but semantically related in
these two views of the KB, and the semantic mappings from entities
to concepts and from relations to meta-relations are complicated
and difficult to be precisely captured by any current embedding
models; (2) the known cross-view links often inadequately cover
a vast number of entities, which leads to insufficient information
to align both views of the KB, and curtails discovering new cross-
view links; (3) the scales and topological structures are also largely
different in the two views, where the ontological views are often
sparser, provide fewer types of relations, and form hierarchical
substructures, and the instance view is much larger and with much
more relation types.

To address the above issues, we propose a novel KG embedding
model named JOIE, which jointly encodes both the ontology and
instance views of a KB. JOIE contains two components. First, a
cross-view association model is designed to associate the instance
embedding to its corresponding concept embedding. Second, the
intra-view embedding model characterizes the relational facts of
ontology and instance views in two separate embedding spaces.
For the cross-view association model, we explore two techniques
to capture the cross-view links. The cross-view grouping technique
assumes that the two views can be forced into the same embed-
ding space, while the cross-view transformation technique enables
non-linear transformations from the instance embedding space to
the ontology embedding space. As for the intra-view embedding
model, in particular, we use three state-of-the-art translational or
similarity-based relational embedding techniques to capture the
multi-relational structures of each view. Additionally, for some KBs
where ontologies contain hierarchical substructures, we employ
a hierarchy-aware embedding technique based on intra-view non-
linear transformations to preserve such substructures. Accordingly,
we investigate nine variants of JOIE and evaluate these models
on two tasks: the triple completion task and the entity typing task.
Experimental results on the triple completion task confirm the effec-
tiveness of JOIE for populating knowledge in both ontology and
instance-view KGs, which has significantly outperformed various
baseline models. The results on the entity typing task show that
our model is competent in discovering cross-view links to align the
ontology-view and the instance-view KGs.

2 RELATEDWORK
To the best of our knowledge, there is no previous work on learning
to embed two-view knowledge of a KB. We discuss the following
three lines of research work that are closely relevant to this paper.
Knowledge Graph Embeddings. Recent work has put extensive
efforts in learning instance-view KG embeddings. Given triples
(h, r , t), where r represents the relation between the head entity
h and the tail entity t , the key of KG embeddings is to design a
plausibility scoring function fr (h, t) as the optimization objective
(h and t are embeddings of h and t ). A recent survey [38] catego-
rizes the majority of KG embedding models into translational mod-
els and similarity-based models. The representative translational
model, TransE [2], adopts the score function fr (h, t) = −||h+ r− t| |
to capture the relation as a translation vector r between two en-
tity vectors. Follow-ups of TransE typically vary the translation
processes in different forms of relation-specific spaces, so as to
improve the performance of triple completion. Examples include
TransH [40], TransR [19], TransD [15] and TransA [16], etc. As
for the similarity-based models, DistMult [42] associates related
entities using Hadamard product of embeddings, and HolE [25] sub-
stitutes Hadamard product with circular correlation to improve the
encoding of asymmetric relations, and achieves the state-of-the-art
performance in KG completion. ComplEx [37] migrates DistMult
in a complex space and offers comparable performance. Besides,
there are other forms of models, including tensor-factorization-
based RESCAL [26], and neural models NTN [33] and ConvE [8].
These approaches also achieve comparable performances on triple
completion tasks at the cost of high model complexity.

It is noteworthy that a few approaches have been proposed to
incorporate complex type information of entities into above KG
embedding techniques [17, 21, 22, 41], from which our settings
are substantially different in two perspectives: (i) These studies
utilize the proximity of entity types to strengthen the learning of
instance-level entity similarity, while do not capture the semantic
relations between such types; (ii) They mostly focus on improving
instance-view triple completion, but do not leverage instance-view
knowledge to improve ontology population, nor support cross-view
association to bridge instances and ontological concepts. Another
related branch on leveraging logic rules [9, 12, 31] requires addi-
tional information that typically is not provided in two-view KBs.
Multi-graph Embeddings for KGs. More recent studies have
extended embedding models to bridge multiple KG structures, typi-
cally for multilingual learning. MTransE [6] thereof, jointly learns a
transformation across two separate translational embedding spaces,
which can be adopted to our problem. However, since this mul-
tilingual learning approach partly relies on similar structures of
KGs, it unsurprisingly falls short of capturing the associations be-
tween the two views of KB with disjoint vocabularies and different
topologies, as we show in the experiments. Later extensions of this
model family, such as KDCoE [4] and JAPE [35], require additional
information of literal descriptions [4] and numerical attributes of
entities [35] that are typically not available in the ontology views of
the KB. Other models depend on the use of neural machine transla-
tion [27], causal reasoning [43] and bootstrapping of strictly 1-to-1
matching of inter-graph entities [36, 44] that do not apply to the
nature of our corpora and tasks.



Ontology Population. Traditional ontology population is mostly
based on extensive manual efforts, or requires large annotated text
corpora for the mining of the meta-relation facts [7, 11, 24, 39].
These previous approaches rely on intractable parsing or human
efforts, which generate massive relation facts that are subject to
frequent conflicts [28]. A few studies extend embedding techniques
to general cross-domain ontologies like ConceptNet. Examples of
such include On2Vec [5] that extends translational embeddings
to capture the relational properties and hierarchies of ontological
relations, and Gutiérrez-Basulto and Schockaert [13] propose to
learn second-order proximity of concepts by combining chained
logic rules with ontology embeddings. This shows the benefits of KG
embeddings on predicting relational facts for ontology population,
while we argue that such a task can be simultaneously enhanced
with the characterization of the instance knowledge.

3 MODELING
In this section, we introduce our proposed model JOIE, which
jointly embed entities and concepts using two model components:
cross-view association model and intra-view model. We start with
the formalization of two-view knowledge bases.
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Figure 2: JOIE learns two aspects of a KB. The cross-view
association model learns embeddings from cross-view links
(dash arrows in green “category” box). The default intra-
view model learns embeddings from triples (grey box) in
each view; Besides, hierarchy-aware intra-view models the
meta-relation facts that formhierarchies in the ontology (or-
ange “Hierarchy” trapezoid).

3.1 Formalization of Knowledge Bases
In a KB, we use GI and GO to denote the instance-view KG and
ontology-view KG respectively. The instance-view KG is denoted
as GI , which is formed with E, the set of entities, and RI , the
set of relations. The set of concepts and meta-relations in the
ontology-view graph GO are similarly denoted as C and RO re-
spectively. Note that E and C (or RI and RO ) are disjoint sets.
(h(I ), r (I ), t (I )) ∈ GI and (h(O ), r (O ), t (O )) ∈ GO denote triples in
the instance-view KG and the ontology-view KG respectively, such
that h(I ), t (I ) ∈ E,h(O ), t (O ) ∈ C, r (I ) ∈ RI , and r (O ) ∈ RO . Specifi-
cally, for each view in the KB, a dedicated low-dimensional space

is assigned to embed nodes and edges. Boldfaced h(I ), t(I ), r(I ) rep-
resent the embedding vectors of head entity h(I ), tail entity t (I )

and relation r (I ) in instance-view triples. Similarly, h(O ), t(O ), and
r(O ) denote the embedding vectors for the corresponding concepts
and their meta-relation in the ontology-view graph. Besides the
notations for two views, S is used to denote the set of known cross-
view links in the KB, which contains associations between instances
and concepts such as “type_of”. We use (e, c) ∈ S to denote a link
between e ∈ E and its corresponding concept c ∈ C. For example,
(e: Los Angeles International Airport, c: airport) denotes that “Los
Angeles International Airport” is an instance of the concept “airport”.
Looking into the nature of the ontology view, we also have hier-
archical substructures identified by “subclass_of” (or other similar
meta-relations). That is, we can observe concept pairs (cl , ch ) ∈ T
that indicates a finer (more specific) concept belongs to a coarser
(more general) concept. One aforementioned example is (cl : singer,
ch : person).

Our model JOIE consists of two model components that learn
embeddings from the two views: the cross-view association model
enables the connection and information flow between the two
views by capturing the instantiation of entities from corresponding
concepts, and the intra-view model encodes the entities/concepts
and relations/meta-relations on each view of the KB. The illustration
of these model components for learning different aspects of the KB
is shown in Figure 2. In the following subsections, we first discuss
the cross-view association model and intra-view model for each
view, then combine them into variants of proposed JOIE model.

3.2 Cross-view Association Model
The goal of the cross-view association model is to capture the as-
sociations between the entity embedding space and the concept
embedding space, based on the cross-view links in KBs, which will
be our key contributions. We propose two techniques to model such
associations: Cross-view Grouping (CG) and Cross-view Transforma-
tion (CT). These two techniques are based on different assumptions
and thus optimize different objective functions.
Cross-viewGrouping (CG).The cross-view groupingmethod can
be considered as grouping-based regularization, which assumes
that the ontology-view KG and instance-view KG can be embedded
into the same space, and forces any instance e ∈ E to be close
to its corresponding concept c ∈ C, as shown in Figure 3a. This
requires the embedding dimensionalities for the instance-view and
ontology-view graphs to be the same, i.e. d = dc = de . Specifically,
the categorical association loss for a given pair of cross-view link
(e, c) is defined as the distance between the embeddings of e and c
compared with margin γCG, and the loss is defined as,

JCGCross =
1
|S|

∑
(e,c)∈S

[
| |c − e| |2 − γCG

]
+
, (1)

where [x]+ is the positive part of the input x , i.e. [x]+ = max{x , 0}.
This penalizes the case where the embedding of e falls out the γCG-
radius1 neighborhood centered at the embedding of c . CG has a
strong clustering effect that makes entity embeddings close to their
concept embeddings in the end.

1Typically, margin hyperparameter γ in the hinge loss can be chosen as 0.5 or 1 for
different model settings. However, it is not a sensitive hyperparameter in our models.
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Cross-view Transformation (CT).We also propose a cross-view
transformation technique, which seeks to transform information
between the entity embedding space and the concept space. Unlike
CG that requires the two views to be embedded into the same
space, the CT technique allows the two embedding spaces to be
completely different from each other, which will be aligned together
via a transformation, as shown in Figure 3b. In other words, after
the transformation, an instance will be mapped to an embedding in
the ontology-view space, which should be close to the embedding
of its corresponding concept:

c← fCT (e) ,∀(e, c) ∈ S, (2)

where fCT(e) = σ (Wct ·e+bct) is a non-linear affine transformation.
Wct ∈ Rd2×d1 thereof is a weight matrix and bct is a bias vector.
σ (·) is a non-linear activation function, for which we adopt tanh.

Therefore, the total loss of the cross-view association model is
formulated as Equation 3, which aggregates the CT objectives for
all concepts involved in S.

JCTCross =
1
|S|

∑
(e,c)∈S
∧(e,c ′)<S

[
γCT + | |c − fCT(e)| |2 −

����c′ − fCT(e)
����
2

]
+

(3)

3.3 Intra-view Model
The aim of intra-view model is to preserve the original structural
information in each view of the KB separately in two embedding
spaces. Because of the different semantic meanings of relations in
the instance view and meta-relations in the ontology view, it helps
to give each view separate treatment rather than combining them
into a single representation schema, improving the performance of

downstream tasks, as shown in Section 4.2. In this section, we pro-
vide two intra-view model techniques for encoding heterogeneous
and hierarchical graph structures.
Default Intra-view Model. To embed such a triple (h, r , t) in one
KG, a score function f (h, r, t) measures the plausibility of it. A
higher score indicates a more plausible triple. Any triple embed-
ding technique is applicable in our intra-view framework. In this
paper, we adopt three representative techniques, i.e. translations [2],
multiplications [42] and circular correlation [25]. The score func-
tions of these techniques are given as follows.

fTransE(h, r, t) = −||h + r − t| |2
fMult(h, r, t) = (h ◦ t) · r

fHolE(h, r, t) = (h⋆ t) · r
(4)

where ◦ is the Hadamard product and · is the dot product. ⋆ :
Rd × Rd → Rd denotes circular correlation defined as [a⋆ b]k =∑d
i=0 aib(k+i) mod d .
To learn embeddings of all nodes in one graph G, a hinge loss is

minimized for all triples in the graph:

J GIntra =
1
|G|

∑
(h,r,t )∈G
∧(h′,r,t ′)<G

[
γ G + f (h′, r, t′) − f (h, r, t)

]
+
, (5)

where γ G > 0 is a positive margin, and (h′, r , t ′) is one sample from
the set of corrupted triples which replace either head or tail entity
and does not exist in G.

The aforementioned techniques, losses and learning objectives
for embedding graphs are naturally applicable for both instance-
view graph and ontology-view graph. In the default intra-view
model setting, for triples (h(I ), r (I ), t (I )) ∈ GI or (h(O ), r (O ), t (O )) ∈
GO , we can compute fI (h(I ), r(I ), t(I )) and fO (h(O ), r(O ), t(O )) with
the same techniques when optimizing J GIIntra and J GOIntra. Combining
the loss from instance-view and ontology-view graphs, the joint
loss of the intra-view model is given as below,

JIntra = J GIIntra + α1 · J
GO
Intra, (6)

where a positive hyperparameter α1 weighs between the structural
loss of the instance-view graph and ontology-view graph.

In JOIE deployed with the default Intra-view model, we employ
the same triple encoding technique to represent both views of the
KB. The purpose of doing so is to enforce the same paradigm of
characterizing relational inferences in both views. It is noteworthy
that there are other triple encoding techniques for KG embeddings,
which can potentially be used in our intra-view model. Since ex-
ploring different triple encoding techniques is not the focus of our
paper, we leave them as future work.
Hierarchy-Aware Intra-viewModel for the Ontology. It is ob-
served that the ontology view of some KBs form hierarchies, which
is typically constituted by a meta-relation with the hierarchical
property, such as “subclass_of ” and “is_a” [18, 23]. We can define
such meta-relation facts as (cl , rmeta = “subclass_of ”, ch ). For exam-
ple, “musician” and “singer” belong to “artist” and “artist” is also
subclass of “person”. Such semantic ontological features requires
additional modeling than other meta-relations. In other words, we
further distinguish between meta-relations that form the ontology



hierarchy and those regular semantic relations (such as “related_to” )
in our intra-view model.

To address this problem, we propose the hierarchy-aware (HA)
intra-view model by extending a similar method to that of cross-
view transformation as defined in Equation 2. Given concept pairs
(cl , ch ), we model such hierarchies into a non-linear transformation
between coarser concepts and associated finer concepts by

дHA(ch ) = σ (WHA · cl + bHA) (7)

where WHA ∈ R
d2×d2 and bHA ∈ Rd2 are defined similarly. Also,

we use tanh function as σ (·) option. This will introduce a new loss
term, ontology hierarchy loss inside the ontology view, which is
similar to Equation 3,

JHAIntra =
1
|T |

∑
(cl ,ch )∈T
∧(cl ,c ′h )<T

[
γHA + | |ch − д(cl )| |2 −

����ch ′ − д(cl)����2]+
(8)

Therefore, the total training loss of the hierarchy-aware intra-view
model for both views changes slightly to,

JIntra = J GIIntra + α1 · J
GO \T
Intra + α2 · J

HA
Intra (9)

where positive α1 and α2 are two weighing hyperparameters. In
Equation 9, J GO \TIntra refers to the loss of the default intra-view model
that is only trained on triples with regular semantic relations. JHAIntra
is explicitly trained on the triples with meta-relations that form the
ontology hierarchy, which is a major difference from Equation 6.

As the conclusion of this subsection, in JOIE, the basic assump-
tion is that KGs have ontology hierarchy and rich semantic rela-
tional features compared to social or citation networks. JOIE is
able to encode such KG properties in its model architecture. Note
that we are also aware of the fact that there are more comprehen-
sive properties of relations and meta-relations in the two views
such as logical rules of relations and entity types. Incorporating
such properties into the learning process is left as future work.

3.4 Joint Training on Two-View KBs
Combining the intra-view model and cross-view association model,
JOIE minimizes the following joint loss function:

J = JIntra + ω · JCross, (10)

where ω > 0 is positive hyperparameter that balances between
JIntra and JCross.

Instead of directly updating J , our implementation optimizes
J GIIntra, J

GO
Intra and JCross alternately. In detail, we optimize θnew ←

θold − η∇JIntra and θnew ← θold − (ωη)∇JCross in successive steps
within one epoch.η is the learning rate, andω differentiates between
the learning rates for intra-view and cross-view losses.

We use the AMSGrad optimizer [30] to optimize the joint loss
function. We initialize vectors by drawing from a uniform distri-
bution on the unit spherical surface, and initialize matrices using
random orthogonal initialization [32]. During the training, we en-
force the constraint that the L2 norm of all entity and concept
vectors to be 1, in order to prevent them from shrinking to zero.
This follows the setting by [2, 25, 40, 42]. Negative sampling is used
on both intra-view model and cross-view association model with a

ratio of 1 (number of negative samples per positive one). A hinge
loss is applied for both models with all variants.

3.5 Variants of JOIE and Complexity
Without considering the HA technique, we have six variants of
JOIE given two options of cross-view association models in Sec-
tion 3.2 and three options of intra-view models in Section 3.3. For
simplicity, we use the names of its components to denote specific
variants of JOIE, such as “JOIE-TransE-CT” represents JOIE
with the cross-view transformation and TransE-based default intra-
view embeddings. In addition, we incorporate the hierarchy-aware
intra-view model for the ontology view into cross-view transfor-
mation model2, which produces three additional model variants
denoted as JOIE-HATransE-CT, JOIE-HAMult-CT, and JOIE-
HAHolE-CT.

The model complexity depends on the cross-view association
model and intra-view model for learning two-view KBs. We de-
note ne ,nc ,nr ,nm as the number of total entities, concepts, rela-
tions and meta-relations (typically ne ≫ nc ) and de ,dc as embed-
ding dimensions (de = dc if CG is used). The model complexity of
parameter sizes is O(nede + ncdc ) for all CG-based variants and
O(nede + ncdc + dedc ) for all CT-based variants. An additional
parameter size of O(d2c ) is needed if the hierarchy-aware intra-view
model applies. Because of n ≫ de (or dc ), the parameter complexity
is approximately proportional to the number of entities and the
model training runtime complexity is proportional to the number
of triples in the KG. For the task of triple completion in the KG, the
time complexity for all variants is O(nede ) for the instance-view
graph or O(ncdc ) for the ontology-view graph. To process each
prediction case in the entity typing task, the time complexity is
O(ncde ) for CG and O(ncdcde ) for CT. Details about each task are
curated in Section 4.2 and 4.3.

4 EXPERIMENTS
In this section, we evaluate JOIE with two groups of tasks: the
triple completion task (Section 4.2) on both instance-view and
ontology-view KGs and the entity typing task (Section 4.3) to bridge
two views of the KB. Besides, we provide a case study in Section
4.4 on ontology population and long-tail entity typing. We also
present hyperparameter study, effects of cross-view sufficiency and
negative samples in Appendix A.

4.1 Datasets
To the best of our knowledge, existing datasets for KG embeddings
consider only an instance view (e.g. FB15k [2]) or an ontology view
(e.g. WN18 [1]). Hence, we prepare two new datasets: YAGO26K-
906 and DB111K-174, which are extracted from YAGO [23] and
DBpedia [18] respectively. The detailed dataset construction process
is described in Appendix B.

Table 1 provides the statistics of both datasets. Normally, the
instance-view KG is significantly larger than the ontology-view
graph. Also, we notice that the two KBs are different in the density
of type links, i.e., DB111K-174 has a much higher entity-to-concept

2We later show in the experiments that CT-based variants consistently outperform
CG-based variants and thus we only apply HA intra-view model settings to CT-based
model variants.



Table 1: Statistics of datasets.

Dataset Instance Graph GI Ontology Graph GO Type Links S#Entities #Relations #Triples #Concepts #Meta-relations #Triples
YAGO26K-906 26,078 34 390,738 906 30 8,962 9,962
DB111K-174 111,762 305 863,643 174 20 763 99,748

ratio (643.4) than YAGO26K-906 (28.7). Datasets are available at
https://github.com/JunhengH/joie-kdd19.

4.2 KG Triple Completion
The objective of triple completion is to construct the missing re-
lation facts in a KG structure, which directly tests the quality of
learned embeddings. In our experiment, this task spans into two
sub-tasks for instance-view KG completion and ontology popula-
tion. We perform the sub-tasks on both datasets with all JOIE
variants compared with baseline models.
Evaluation Protocol First, we separate the instance-view triples
into training set GtrainI , validation set GvalidI and test set GtestI , as
well as separate similarly the ontology-view triples to GtrainO , GvalidO
and GtestO . The percentage of the training, validation and test cases
is approximately 85%, 5% and 10%, which is consistent to that of
the widely used benchmark dataset [2] for instance-only KG em-
beddings. Each JOIE variant is trained on GtrainI and GtrainO triples
along with all cross-view links S. In the testing phase, given each
query (h, r , ?t), the plausibility scores f (h, r, t̃) for triples formed
with every t̃ in the test candidate set are computed and ranked by
the intra-view model. We report three metrics for testing: mean
reciprocal ranks (MRR), accuracy (Hits@1) and the proportion of
correct answers ranked within the top 10 (Hits@10). All three
metrics are preferred to be higher, so as to indicate better triple
completion performance. Also, we adopt the filtered metrics as
suggested in previous work which are aggregated based on the
premise that the candidate space has excluded the triples that have
been seen in the training set [2, 42].

As for the hyperparameters in training, we select the dimension-
ality d among {50, 100, 200, 300} for concepts and entities, learning
rate among {0.0005, 0.001, 0.01}, margin γ among {0.5, 1}. We also
use different batch sizes according to the sizes of graphs. We fix
the best configuration de = 300,dc = 50 for CT and de = dc = 200
for CG with α1 = 2.5,α2 = 1.0. We set γ GI = γ GO = 0.5 as the
default for all TransE variants and γ GI = γ GO = 1 for all Mult and
HolE variants. The training processes on all datasets and models
are limited to 120 epochs.
BaselinesWe compare our model with TransE, DistMult and HolE
as well as TransC [20]. We deploy the following variants of base-
lines: (i) We train these mono-graph models (TransE, DistMult
and HolE) either on instance-view triples or ontology-view triples
separately, denoted as (base) in Table 2; (ii) We also train TransE,
DistMult and HolE based on all triples in both GtrainI and GtrainO .
For the second setting thereof, we incorporate cross-view links by
adding one additional relation “type_of ” to them, denoted as (all)
in Table 2. (iii) TransC is trained on both views of a KB. TransC
is a recent work that differentiates between the encoding process
of concepts from instances. Note that TransC is equivalent to a
simplified case of our JOIE-TransE-CG where no semantic meta

relations in the ontology view are included. For that reason, TransC
does not apply to the completion of the ontology view.
Results As reported in Table 2, we categorize the results into three
different groups based on the intra-viewmodels. Though three intra-
view models have different capabilities, among all the baselines in
same group,JOIE notably outperforms others by 6.8% onMRR, and
14.8% onHit@10 on average. A significant improvement is achieved
on the ontology-view of DB111K-174 with JOIE compared to con-
cept embeddings trained with only ontology-view triples and even
10.4% average increment compared to “all”-setting baselines and
34.97% compared to “base”-setting baselines. These results indicate
that JOIE has better ability to utilize information from the instance
view to promote the triple completion in ontology view. Compar-
ing different intra-view models, translation based models performs
better than similarity based models on ontology population and
instance-view KG completion on the DB111K-174dataset. This is
because these graphs are sparse, and TransE is less hampered by
the sparsity in comparison to the similarity-based techniques [29].
By applying the HA technique in the intra-view models with CT,
the performance on instance-view triple completion is noticeably
improved in most cases in comparison to the default intra-view CT-
based models, especially in variants with translation and circular
correlation based intra-view models.

Generally, JOIE provides an effective method to train two-view
KB separately and both GI and GO benefit each other in learn-
ing better embeddings, producing promising results in the triple
completion task.

4.3 Entity Typing
The entity typing task seeks to predict the associating concepts of
certain given entities. Similar to the triple completion task, we rank
all candidates and report the top-ranked answers for evaluation.
Evaluation Protocol We separate the cross-view links of each
dataset into training and test sets with the ratio of 60% to 40%,
denoted as Strain and Stest respectively. Each model is trained on
the entire instance-view and ontology-view graphs with cross-view
links Strain. Hyperparameters are carried forward from the triple
completion task, in order to evaluate under controlled variables.
In the test phase, given a specific entity eq , we rank the concepts
based on their embedding distances from the projection of eq in the
concept embedding space. and calculateMRR,Hit@1 (i.e. accuracy)
andHit@3 on the test queries. We perform the entity typing task on
both datasets with all JOIE variants compared with these baselines.
BaselinesWe compare with TransE, DistMult, HolE and MTransE.
For baselines other than MTransE, we convert the cross-view links
(e, c) to triples (e , rT =“type_of”, c). Therefore, entity typing is equiv-
alent to the triple completion task for these baseline models. For
MTransE, we treat concepts and entities as different views (orig-
inally input as knowledge bases of two languages in [6]) in their
model and test with distance-based ranking.

https://github.com/JunhengH/joie-kdd19


Table 2: Results of KG triple completion. H@1 and H@10 denoteHit@1 andHit@10 respectively. For each group of model vari-
ants with the same intra-view model, the best results are bold-faced. The overall best results on each dataset are underscored.

Datasets YAGO26K-906 DB111K-174
Graphs GI KG Completion GO KG Completion GI KG Completion GO KG Completion
Metrics MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE (base) 0.195 14.09 34.51 0.145 12.29 20.59 0.327 22.26 49.01 0.313 23.22 46.91
TransE (all) 0.187 13.73 35.05 0.189 14.72 24.36 0.318 22.70 48.12 0.539 47.90 61.84
TransC 0.252 15.71 37.79 – – – 0.359 24.83 49.31 – – –

JOIE-TransE-CG 0.264 16.38 35.45 0.189 11.16 29.44 0.394 27.75 51.20 0.598 53.84 71.79
JOIE-TransE-CT 0.292 18.72 44.14 0.240 14.49 33.47 0.443 32.10 67.89 0.622 58.10 72.97

JOIE-HATransE-CT 0.306 18.62 51.72 0.263 16.72 38.46 0.473 33.79 71.37 0.591 52.07 79.65
DistMult (base) 0.253 22.91 28.76 0.197 17.72 25.08 0.265 25.95 27.63 0.235 15.18 29.11
DistMult (all) 0.288 24.06 31.24 0.156 14.32 16.54 0.280 27.24 29.70 0.501 45.52 64.73
JOIE-Mult-CG 0.274 18.80 37.45 0.198 11.16 27.91 0.320 23.44 49.49 0.532 46.15 68.91
JOIE-Mult-CT 0.309 20.40 46.15 0.207 14.71 30.43 0.404 26.55 60.86 0.563 50.50 71.62

JOIE-HAMult-CT 0.296 19.39 45.48 0.202 13.72 31.10 0.369 24.82 55.86 0.521 38.46 77.25
HolE (base) 0.265 25.90 28.31 0.192 18.70 20.29 0.301 29.24 31.51 0.227 18.91 32.83
HolE (all) 0.252 24.22 26.56 0.138 11.29 14.43 0.295 28.70 30.32 0.432 38.80 56.05

JOIE-HolE-CG 0.253 18.75 34.11 0.167 13.04 22.33 0.361 24.13 46.15 0.469 41.89 62.16
JOIE-HolE-CT 0.313 20.40 47.80 0.229 20.85 28.42 0.425 29.09 66.88 0.514 43.24 69.23

JOIE-HAHolE-CT 0.327 22.42 52.41 0.236 16.72 30.96 0.464 33.11 69.56 0.503 40.80 71.03

Table 3: Results of entity typing.
Datasets YAGO26K-906 DB111K-174
Metrics MRR Acc. Hit@3 MRR Acc. Hit@3
TransE 0.144 7.32 35.26 0.503 43.67 60.78
MTransE 0.689 60.87 77.64 0.672 59.87 81.32

JOIE-TransE-CG 0.829 72.63 93.35 0.828 70.58 95.11
JOIE-TransE-CT 0.843 75.31 93.18 0.846 74.41 94.53

JOIE-HATransE-CT 0.897 85.60 95.91 0.857 75.55 95.91
DistMult 0.411 36.07 55.32 0.551 49.83 68.01

JOIE-Mult-CG 0.762 62.62 87.82 0.764 60.83 91.80
JOIE-Mult-CT 0.805 70.83 89.25 0.791 65.30 93.47

JOIE-HAMult-CT 0.865 81.63 91.83 0.778 69.38 85.71
HolE 0.395 34.83 54.79 0.504 44.75 65.38

JOIE-HolE-CG 0.777 65.30 87.89 0.784 66.75 89.37
JOIE-HolE-CT 0.813 72.27 88.71 0.805 68.84 91.22

JOIE-HAHolE-CT 0.888 83.67 93.87 0.808 72.51 89.79

Results Results are reported in Table 3. All JOIE variants perform
significantly better than the baselines. The best JOIE model, i.e.
JOIE-TransE-CT, outperforms the best baseline model MTransE by
15.4% in terms of accuracy and 14.4% in terms ofMRR on YAGO26K-
906. The improvement on accuracy andMRR are 14.3% and 14.5% on
DB111K-174 compared to MTransE. The results by other baselines
confirm that the cross-view links, which apply to all entities and
concepts, cannot be properly captured as a regular relation and
requires a dedicated representation technique.

Considering different JOIE variants, our observation is that
using translation based intra-view model and CT as the cross-view
association model (JOIE-TransE-CT) is consistently better than
other settings on both datasets. It has an average of 4.1% perfor-
mance gain inMRR over JOIE-HolE-CT and JOIE-DistMult-CT,
and an average of 2.17% performance gain in accuracy over the
best of the rest variants (JOIE-TransE-CG). We believe that, com-
pared with similarity-based intra-view models, translation based
intra-viewmodel better differentiates between different entities and
different concepts in KGs with directed relations and meta-relations

in the KB [29]. The results by CT-based model variants are generally
better than those by CG-based ones. We believe this is due to two
reasons: (i) CT allows the two embedding spaces have different
dimensionalties, and hence better characterizes the ontology-view
that is smaller and sparser than the instance view; (ii) As the topo-
logical structures of the two views may exhibit some inconsistency,
CT adapts well and is less sensitive to such inconsistency than CG.

In terms of different intra-view models, it is also observed that
HA intra-view model with CT settings can drastically enhance en-
tity typing task and achieve the best performance especially for
YAGO26K-906 with relatively rich ontology, which improves an
average of 6.0% onMRR and 10.5% in accuracy compared with the
default intra-view settings. The reason that the HA technique does
not have similar effects on DB111K-174 is because DB111K-174 con-
tains a small ontology with much smaller hierarchical structures3.
Comparing the two datasets, our experiments show that, JOIE gen-
erally achieves similar accuracies andMRR scores on YAGO26K-906
and DB111K-174, but slightly better Hit@3 on DB111K-174 due to
its smaller candidate space.

Ourmethod opens up a new direction that the learned embedding
may help guide labeling entities with unknown types. In Section
4.4 and Appendix A, we provide more experiments and insights on
the benefits of representation learning with JOIE.

4.4 Case Study
In this section, we provide two case studies for ontology population
and entity typing for long-tail entities.
Ontology Population By embedding the meta-relations and con-
cepts in the ontology view, the triple completion process can al-
ready populate the ontology view with seen meta-relations, by
answering the query like (“Concert”,“Related to”,?t ) in the KG com-
pletion task. Given the top answers of the query, we can reconstruct

3DB111K-174 contains 164 ontology-view triples for meta-relations with the hierarchi-
cal property, while YAGO26K-906 contains 1,411.



triples like (“Concert”,“Related to”,“Ballet”) and (“Concert”,“Related
to”,“Musical”) with high confidence. However, this process does
not resolve the zero-shot cases where some concepts may satisfy
some meta-relations that have not pre-existed in the vocabulary of
meta-relations.We cannot predict the potentially newmeta-relation
"is Politician of" directly with triple completion by answering the
following query: (“Office Holder”, ?r , “Country”).

Our proposed JOIE provides a feasible solution by leveraging
the cross-view association model that bridges the two views of
the KG, and migrate proper instance-view relations to ontology-
view meta-relations. This is realized by transforming the concept
embeddings in the query to the entity embedding space, and se-
lecting candidate relations from the instance-view. Considering the
previous query (“Office Holder”, ?r , “Country”), we first find the
concept embeddings of “Office Holder” and “Country” (denoted as
coffice and ccountry respectively ), and then transform them to the
entity space. Specifically, for JOIE variants with translational intra-
view model, we find the instance-view relations that are closest to
f invCT (ccountry) − f invCT (coffice). Figure 4 shows the PCA projections
of the top 10 relation prediction results for this query. The top 3
relations are “is Politician of ”, “is Leader of ” and “is Citizen of ”,
which are all reasonable answers.
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Query target: Office holder - Country
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Figure 4: Examples of ontology population by finding the
closest relations in the instance view for the query "Of-
fice Holder-Country". Top 10 predicted relations are plotted
with their ranks.

Table 4 shows some examples of newly discovered meta-relation
facts that have not pre-existed in the ontology views of the two
datasets. Five predictions with the highest plausibility (smallest dis-
tance) are provided for each query from the ontology-view graph.
From these top predictions, we observe that most populated ontol-
ogy triples migrated from the instance view are meaningful.
Long-tail entity typing In KGs, the frequency of entities and
relations often follow a long-tail distribution (Zipf’s law). As shown
in Figure 8a and Figure 8b (in Appendix B), both YAGO26K-906 and
DB111K-174 discover such a property. Over 75% of total entities
has less than 15 occurrences. Those long-tails entities, types and

Table 4: Examples of ontology population from JOIE-
TransE-CT. Top 5 Populated Triples with smallest L2-norm
distances are provided with reasonable answers bold-faced.

Query Top 5 Populated Triples with distances

(scientist,?r ,
university)

scientist, graduated from, university (0.499)
scientist, isLeaderOf, university (1.082)
scientist, isKnownFor, university (1.098)
scientist, created, university (1.119)
scientist, livesIn, university (1.141)

(boxer, ?r ,
club)

boxer, playsFor, club (1.467)
boxer, isAffiliatedTo, club (1.474)

boxer, worksAt, club (1.479)
boxer, graduatedFrom, club (1.497)
boxer, isConnectedTo, club (1.552)

(TV station, ?r ,
country)

TV station, headquarter, country (1.221)
TV station, parentOrganisation, country (1.246)

TV station, appointer, country (1.253)
TV station, broadcastArea, country (1.266)
TV station, principalArea, country (1.271)

(scientist, ?r ,
scientist)

scientist, deputy, scientist (0.204)
scientist,doctoralAdvisor, scientist (0.218)
scientist, doctoralStudent, scientist (0.221)

scientist, relative, scientist (0.228)
scientist, spouse, scientist (0.230)

Table 5: Results of long-tail entities typing.
Datasets YAGO26K-906 DB111K-174
Metrics MRR Acc. Hit@3 MRR Acc. Hit@3
DistMult 0.156 10.89 25.33 0.219 16.48 33.71
MTransE 0.526 46.45 67.25 0.505 46.67 64.36

JOIE-TransE-CG 0.708 59.97 79.80 0.741 64.45 83.05
JOIE-TransE-CT 0.737 62.05 82.60 0.758 66.35 83.80

JOIE-HATransE-CT 0.802 69.66 87.75 0.760 67.34 89.79

relations are difficult for representation learning algorithms to
capture due to being few-shot in training cases.

In this case study, we select the entities with considerably low
frequency4, which involve around 15%-30% of total entities in the
instance view of the two KB datasets. Then, we evaluate the entity
typing task for these long-tail entities. Table 5 shows the results
by the best baselines (DistMult, MTransE) and a groups of our best
JOIE variants. Similar to our previous observation, JOIE signifi-
cantly outperforms other baselines. Compared with the results in
Section 4.3, we observe the depletion of performance for all models,
while JOIE variants only have an average of 12.5% decrease in
MRR with CG models and 12.3% decrease inMRR with CT models
while other baselines suffer over 20% on long-tail entity predic-
tion. There is also an interesting observation that, for long-tails
entities, smaller embeddings for both CG (d1 = d2 = 100) and CT
(d1 = 100,d2 = 50) models are beneficial for associated concept
prediction. We hypothesize that this is caused by overfitting on
long-tail entities if high dimensionality is used for training without
enough training data.

In Table 6, we include some examples of top 3 predicted cate-
gories of long-tail entities by DistMult, MTransE and JOIE (using
JOIE-HATransE-CT variant) from DB111K-174, when the instance-
view graph and ontology-view graph are relatively sparser. JOIE is
4In this experiment, we select entities in YAGO26K-906 which occurs less than 8 times
and entities in DB111K-174 which occurs less than 3 times.



Table 6: Examples of long-tail entity typing. Top 3 predic-
tions are provided with the correct type bold-faced.

Entity Model Top 3 Concept Prediction

Laurence
Fishburne

DistMult football team, club, team
MTransE writer, person, artist
JOIE person, artist, philosopher

Warangal
City

DistMult country, village,city
MTransE administrative region, city, settlement
JOIE city, town, country

Royal Victor
-ian Order

DistMult person, writer, administrative region
MTransE election, award, order
JOIE award, order, election

still able to make correct predictions of low-frequency entities while
other baselines models can only output inaccurate predictions.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel model JOIE aiming to jointly
embed real-world entities and ontological concepts.We characterize
a two-view knowledge base. In the embedding space, our approach
jointly captures both structured knowledge of each view, and cross-
view links that bridges the two views. Extensive experiments on
the tasks of KG completion and entity typing show that our model
JOIE can successfully capture latent features from both views in
KBs, and outperforms various state-of-the-art baselines.

We also point out future directions and improvements. Particu-
larly, instead of optimizing structure loss with triples (first-order
neighborhood) locally, we plan to adopt more complex embedding
models which leverage information from higher order neighbor-
hood, logic paths or even global knowledge graph structures. We
also plan to explore the alignment on relations and meta-relations
like entity-concept.
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A ABLATION STUDY
In this section, we provide some insights on several critical factors
that affect the performance of the model. These include the embed-
ding dimensionality, sufficiency of cross-view links in training, and
the effect of adopting negative sampling in cross-view association
models.

A.1 Dimensionality
Dimensionality is a key hyperparameter that affects the quality
of the obtained embeddings. Figure 5a shows the MRR of model
variants with the CG-based cross-view association according to
different embedding dimensions d . It is observed in Figure 5a that
the performance of CG variants are generally improving from d =
50 to d = 200, however, after reaching the optimal dopt = 200,MRR
begins to drop at d = 300. Similarly we plot MRR scores for both
dataset with CT model variants in Figure 5b.

We compare four different dimensionality settings of (d1,d2):
(100, 20),(100, 50),(300, 50) and (300, 100)5. Most of the JOIE vari-
ants achieve their best performance under the embedding setting
(d1,d2) = (300, 50) rather than (d1,d2) = (300, 100) (except JOIE-
Mult-CT on DB111K-174). The reason is that, JOIE set with low
dimensionalities easily falls short of capturing latent features of
entities and concepts, while too high dimensionalities lead to over-
fitting on the ontology view of KG, as well as inefficient training
and prediction processes.

A.2 Sufficiency of Type Information
Cross-view links between the instance-view graph and the ontology-
view graph are key components, which bridge and enable the infor-
mation flow between two views to generate embeddings. We also
investigate the influence of cross-view links and their sufficiency
in training.

We define the train set ratio ν = {0.2, 0.4, 0.6, 0.8}, which means
the proportions of the cross-view links that are used for training
JOIE. MRR score is reported in Figure 6a on YAGO26K-906 and
Figure 6b on DB111K-174. As expected, when the proportion of
cross-view links used for training increasing from 20% to 80%, the
performance improves by 3.2% on YAGO26K-906 and by 2.9% on
DB111K-174 in terms ofMRR. It is noteworthy that JOIE trained
with 20% cross-view links still outperforms MTransE trained with
60% cross-view links, which indicates that one advantage of JOIE
is its outstanding generalization ability to other untyped entities,
given limited knowledge on entity-concept pairs.

One interesting observation is that, when ν increases from 0.6 to
0.8, the performance of CG variants does not necessarily improve,
while the performance of CT variants still has significant improve-
ments. We hypothesize that this is because the strong clustering-
based constraint in CG can be sensitive to even minor inconsisten-
cies between the topological structures of the two KG views, giving
too much supervision. CT, on the contrary, is more robust against
the inconsistency between the two views. There is a trade-off be-
tween the robustness of CT and the efficiency of CG.

5(d1, d2) = (100, 20) denotes that entities are embedded with d1 = 100 dimensional
vectors and concepts are embedded with d2 = 20 dimensional vectors
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Figure 5: Performances of entity typing task on both
datasets with different entity and concept embedding di-
mensionalities
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Figure 6: The effect of training the model using different
proportions of cross-view links on (a) YAGO26K-906 and (b)
DB111K-174

A.3 Effects of Negative Sampling
Negative sampling is widely applied in the encoding process of a
single KG structure [2, 42]. One interesting question is whether to
use negative sampling for capturing the cross-view links between
two structures, i.e. to provide corrupted entity-concept pairs such
as (“Barack Obama”,“state”). We compare the results of entity typing
task by JOIE variants with and without cross-view link negative



Table 7: Effects of negative sampling in type links
Datasets YAGO26K-906 DB111K-174
Setting W/O NS W/ NS W/O NS W/ NS

JOIE-TransE-CG 0.657 0.805 0.815 0.864
JOIE-Mult-CG 0.627 0.762 0.761 0.797
JOIE-HolE-CG 0.682 0.777 0.783 0.815
JOIE-TransE-CT 0.501 0.847 0.667 0.883
JOIE-Mult-CT 0.490 0.829 0.494 0.811
JOIE-HolE-CT 0.508 0.821 0.560 0.821

samples in Table 7. It is our finding that there is a significant perfor-
mance drop if negative sampling is disabled in CT, while negative
sampling has less effect on CG. We hypothesize that the difference
is attributed to the fact that strong clustering-based constraint of
CG is already effective in separating irrelevant concepts.

We show the effects of negative sampling by visualizing the re-
sults of one query, which are plotted as PCA projections in Figure
7. For the displayed query which targets at the concept “music”, we
plot the 10 nearest neighbors of concepts. Although related con-
cepts such as “classic music”, “concert” and “artist movement” still
stay close by “music” in both settings, other irrelevant concepts in-
cluding “decoration” and “architect” intercept in JOIE-TransE-CT
without negative sampling. We find such phenomenon frequently
exist in the JOIE embeddings trained without negative sampling,
which no-doubt impairs the performance of the entity typing task.

B DATASETS
We use YAGO26K-906 and DB111K-174, which are extracted from
the connected subsets of YAGO [23] and DBpedia [18] respectively,
for experimental purpose. The datasets are constructed through
the following steps:

(1) We first filter out all attribute triples, since such triples do
not represent the relations of entities or concepts. After
randomly sample some relational triples from the rest of the
filtered dataset since original YAGO and DBpedia both have
large collections of instance-view triples.

(2) After we obtain the entity set of instance view, we extract
cross-view alignment of those entities to the ontology view
of the two KBs. As a result, a portion of entities are linked
to the associated concepts, which are naturally the nodes in
the ontology view.

(3) Given all the associated concepts from step (2), we construct
the corresponding ontology views base on the intersecting
subgraph of the original ontologies.

It is noteworthy that the original YAGO has a taxonomical on-
tology with only three types of semantic relations, which casts
limitation on semantic relations among concepts. Therefore, we
enrich the ontology view of YAGO using the knowledge from Con-
ceptNet [34], another KB which contains a large collection of meta-
relations among concepts. The concepts in ConceptNet and YAGO
are easily aligned by the shared WordNet-based IDs or concept
names. Consequently, we obtain two datasets that are much larger
than FB15K – the widely adopted instance KG benchmark dataset
by many recent works [2, 19, 25, 42].
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Figure 7: Visualize effects on embeddings of negative sam-
pling on cross-view links

As stated in Section 4.4, the frequency of entities and relations
often follow a long-tail distribution (Zipf’s law) in both YAGO26K-
906 and DB111K-174 datasets, which is confirmed by the histogram
in Figure 8.
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Figure 8: Long-tail distribution holds on entity frequency
from both YAGO26K-906(a) and DB111K-174(b)
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