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Abstract: In this paper, a unified optimization model for medical image fusion based on tensor
decomposition and the non-subsampled shearlet transform (NSST) is proposed. The model is
based on the NSST method and the tensor decomposition method to fuse the high-frequency (HF)
and low-frequency (LF) parts of two source images to obtain a mixed-frequency fused image. In
general, we integrate low-frequency and high-frequency information from the perspective of tensor
decomposition (TD) fusion. Due to the structural differences between the high-frequency and low-
frequency representations, potential information loss may occur in the fused images. To address this
issue, we introduce a joint static and dynamic guidance (JSDG) technique to complement the HF/LF
information. To improve the result of the fused images, we combine the alternating direction method
of multipliers (ADMM) algorithm with the gradient descent method for parameter optimization.
Finally, the fused images are reconstructed by applying the inverse NSST to the fused high-frequency
and low-frequency bands. Extensive experiments confirm the superiority of our proposed TDFusion
over other comparison methods.

Keywords: medical image; multimodal fusion; guided filtering; ADMM

1. Introduction

Medical image fusion plays a pivotal role in contemporary medical research and holds
profound significance for medical treatments [1]. With the advancements in medical imag-
ing, a diverse array of imaging technologies has emerged. Prominent modalities encompass
cardiac angiography, computed tomography (CT), positron emission tomography (PET),
magnetic resonance imaging (MRI), and single photon emission computed tomography
(SPECT), among others. Each of these modalities focuses on distinct aspects of the human
body or various pathologies. Early medical images predominantly captured the anatomical
structure through morphological imaging techniques such as CT and MR images. Although
both of these modalities provide anatomical information, their emphasis differs. CT effec-
tively reveals bone tissue and blood vessels, while MRI excels in visualizing soft tissue.
The advent of PET and SPECT has enhanced the emphasis on functional and metabolic
information. Nonetheless, the information conveyed by these individual images remains
fragmented, limiting their utility in medical observation and diagnosis. Consequently, med-
ical image fusion technology [2,3], which integrates multiple images of diverse modalities
into a single composite image that encompasses a range of complementary information,
has achieved increasing attention. This technique mitigates randomness and redundancy,
enhancing the clinical applicability of medical images for the diagnosis and assessment of
medical conditions.

The prevailing medical image fusion methodologies [4–9] primarily adopt a multiscale
transformation (MST) framework. In general, MST-based fusion methods entail the fol-
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lowing three steps: Firstly, the source images are decomposed into a domain of multiscale
transforms. Subsequently, the transformed coefficients are merged utilizing a fusion rule.
Finally, the fused image is reconstructed by applying the inverse transform to the merged
coefficients. Within this framework, fusion approaches that incorporate diverse transfor-
mation methods and fusion strategies have been proposed, including the nonsubsampled
contourlet transform (NSCT) [10] and the nonsubsampled shearlet transform (NSST) [11].
While the implementation process of the shearlet transform (ST) method utilized in NSST
shares similarities with the contourlet transform (CT), the ST employs shear filters instead
of directional filters found in the CT. This distinction liberates ST from the limitations
associated with the number of directions, enabling it to capture a greater level of detail and
functional information across various orientations. The ST exhibits a heightened directional
sensitivity and accommodates diverse geometric shapes, thereby proficiently capturing
the intrinsic geometric features of multidimensional phenomena. The NSST incorporates
the nonsubsampled ST within nonsubsampled pyramid filters (NSPFs) [12] and the shift-
invariant shearlet filters (SFBs) [11]. This integration endows the NSST with an enhanced
robustness to distortion, courtesy of the shift variance property. Furthermore, the NSST
inherits the advantages of multiscale and multidirectional characteristics, rendering it a
highly effective image decomposition method. Given these compelling attributes, the NSST
is selected as the preferred multiscale transform for our model. Consequently, our model
adheres to the fundamental MST-based fusion framework.

In the context of MST-based fusion methods, the fusion strategy for high-frequency
and low-frequency components represents a pivotal challenge. Although the human visual
system is more sensitive to high-frequency components, a significant portion of informa-
tion in the source images is embedded within the low-frequency domain. Thus, achieving
meaningful fusion outcomes necessitates careful consideration of both high-frequency and
low-frequency fusion processes. Regrettably, existing MST-based fusion methods often
address these two problems separately and treat them disparately and independently. The
integration of neural networks holds considerable promise for data fusion tasks. Notably,
recent works [13–15] have leveraged deep neural networks to fuse multimodal information
for predicting interactions. Specifically, a fusion strategy based on the fuzzy adaptive
reduced pulse-coupled neural network (RPCNN) [16] has demonstrated effective han-
dling of the primary low-frequency and high-frequency fusion problems. By employing
RPCNNs with fuzzy-adaptive linking strengths, both the low-frequency subband (LFS)
and high-frequency subband (HFS) coefficients are fused in a similar manner. This ap-
proach significantly enhances the image fusion performance. However, one limitation
remains, which is the presence of free parameters in the pulse-coupled neural network
(PCNN). To overcome the challenge of setting free parameters in the traditional PCNN
model, Ming et al. [7] introduced the parameter adaptive pulse-coupled neural network
(PA-PCNN) model to fuse high-frequency coefficients using adaptive PCNN parameters.
While this method addresses the parameter selection issue, the fusion strategy for the high-
frequency component remains conventional, adhering to the traditional high-frequency
fusion approach. Xu et al. [17] exploited the component separation setting, but its com-
plex computation degrades its practicability. In order to equally emphasize the high-
and low-frequency components, we propose a cross-fusion technique that integrates the
high-frequency and low-frequency components from the source images. In our model, we
employ tensor decomposition to effectively fuse the high-frequency and low-frequency
components, thereby extracting more pertinent information.

Tensors, as a branch of mathematical research and a generalization of vector concepts,
offer great convenience in handling high-dimensional data. With the advancements in com-
putational imaging like hyperspectral imaging and magnetic resonance imaging, tensors
have gradually found practical applications. Tensor decomposition serves as a higher-order
generalization of matrix decomposition, sharing similarities with matrix factorization. It
serves three main purposes: dimension reduction, missing data filling, and implicit rela-
tion mining. In the context of multi-dimensional images, the Tucker decomposition [18]
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has been extensively utilized for various purposes, such as image denoising, selecting
image features through tensor subspace, and compressing data. Building upon Tucker
decomposition, Li et al. proposed a multiband image fusion method based on tensor
decomposition [19]. This approach approximates the three-dimensional tensor as a nuclear
tensor multiplied by a three-order dictionary, expressing the fusion problem as an estima-
tion of the kernel tensor and the three-mode dictionary. Through iterative decomposition
steps until convergence, the dictionary and core tensor are updated to achieve accurate
estimation. In our proposed method, we construct an image fusion strategy based on tensor
decomposition, leveraging the fusion of tensor information from different dimensions
(with high frequency being three-dimensional and low frequency being two-dimensional).
By cross-fusing the high- and low-frequency components in the source images, we aim
to achieve equal attention to the high- and low-frequency components. In our paper, we
combine the tensor-decompositon-based fusion strategy with the nonsubsampled shearlet
transform (NSST) to develop a novel optimization model for medical image fusion, named
tensor decomposition in the nonsubsampled shearlet transform domain (TDFusion).

In the field of medical image fusion, the concept of tensors has been previously
explored but has not been considered a sufficiently novel idea. For instance, Liu et al. [20]
proposed the use of structure tensors for analyzing image properties. However, it is
important to note that the structure tensor differs fundamentally from the tensor employed
in our model. Our tensor representation serves as a method to effectively represent image
data and facilitates improved fusion outcomes. During the Tucker decomposition process,
there is a potential risk of damaging certain information in the source material due to the
sparse prior. To address this issue, we introduce the joint static and dynamic guidance
filtering (JSDG) technique proposed by Ham et al. [21] to supplement the corresponding
high-frequency information. Unlike the multi-modal deep guided filtering approach
proposed by Bernhard et al. [22], which combines a local linear guided filter with a
guided image obtained from multimodal input, JSDG incorporates the concept of dynamic
and static guidance and utilizes the output as the dynamic guidance of the image. This
approach not only focuses on the structural information of the static guidance but also
considers the properties of the input image. The JSDG model we employ combines static
and dynamic guidance structures, effectively incorporating high-frequency components
while preserving the results of mixed-frequency fusion. Furthermore, we adopt the low-
frequency information completion strategy from the PA-PCNN method, which defines two
new activity level measures, namely weighted local energy (WLE) and the weighted sum
of an eight-neighborhood-based modified Laplacian (WSEML). In this method, the fusion
of low-frequency components from two images is accomplished through the utilization of
WLE and WSEML as the foundation of the NSST. This successfully completes the fusion of
low-frequency images and information, thereby enhancing the overall fusion performance.

In conclusion, this paper proposes a novel unified optimization model for multimodal
medical image fusion, leveraging tensor decomposition and the NSST. By integrating the
low-frequency and high-frequency components using the tensor decomposition method,
we obtain a mixed-frequency fusion image as illustrated in Figure 1. The main contributions
of our method can be summarized as follows:

• Our TDFusion model is a unified optimization model. On the basis of the NSST
method and the tensor decomposition method, the mixed-frequency fusion image
is obtained by fusing the high-frequency and low-frequency components of two
source images.

• Considering the structural differences between high-frequency and low-frequency
components, some information will be lost during fusion. We embed the framework
into the guided filter to optimize and complete the knowledge from low frequencies
to high frequencies.

• We combine the ADMM algorithm with the gradient descent method to improve
the performance of the fusion image. Through a large number of experiments, the
effectiveness of our model in five benchmark datasets of image fusion problems (T1
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and T2, T2 and PD, CT and MRI, MRI and PET, and MR and SPECT) is verified.
Compared with the other five medical image fusion methods, our model also achieves
better results.

TD

TD

Figure 1. This is the image fusion process of the TDFusion model. Firstly, the source images S1 and S2

are decomposed into low-frequency L1 and L2 and high-frequency H1 and H2 by the NSST method.
Then, high-frequency H1 and low-frequency L2 are fused by the tensor decomposition method to
obtain Ga, and low-frequency L1 and high-frequency H2 are fused by the same method to obtain Gb.
The obtained Ga and Gb are added to the JSDG guided filter and the corresponding information from
high-frequency H1 and H2 is added, while the WLE and WSEML methods are used to complete the
low-frequency part information. Finally, the fused image is reconstructed by performing the inverse
NSST on the fused high-frequency H f and low-frequency L f .

The paper structure is arranged as follows. Section 1 is the introduction of the paper
and details some methods used in our model. In Section 3, the notation and preliminaries
of tensors are briefly introduced. Section 4 discusses the solution process of our model in
detail. Then, the specific experimental results and a comparative analysis are shown in
Section 5. Finally, Section 6 gives a brief summary.

2. Related Work

In recent years, many well-known approaches based on machine learning, deep
learning, or some other methods for brain tumor detection and identification have emerged.
Diwakar et al. [23] used the non-subsampling shearlet transform (NSST) to extract low-
and high-frequency image components in multimodal medical images and proposed a new
method for low frequency component fusion based on an improved and modified Laplacian
(MSML) clustering dictionary learning technique. In the NSST domain, directional contrast
can be used to fuse high-frequency coefficients while using the inverse NSST method to
obtain multimodal medical images. Two-dimensional medical image segmentation models
are popular among researchers using traditional and new machine learning and deep
learning techniques. However, because so much work has been done in recent years to
create 3D volumes, 3D volumetric data have just become more widely available. The
new architecture developed by Nodirov et al. [24] is based on a 3D U-Net model that
employs numerous skip connections, cost-effective pre-trained 3D MobileNetV2 blocks,
and attention modules. They employ 3D brain image data. In order to maximize the use of
features, additional skip connections are also introduced between the encoder and decoder
blocks to streamline the exchange of extracted features between the two blocks. The skip
connection’s irrelevant aspects are also filtered out using the attention module, which keeps
more processing power while achieving improved accuracy. Biomedical image processing
makes it simpler to find and localize brain cancers using MRI. In order to detect brain
tumor locations, Arif et al. [25] suggested a method using MRI sequence pictures as the
input images. This method is extremely challenging due to the huge range of tumor tissues
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present in different patients. To enhance the effectiveness of medical image segmentation
and streamline the segmentation process, researchers used the Berkeley wavelet transform
(BWT) and a deep learning classifier as the foundation for their work. Using the gray-level
co-occurrence matrix (GLCM) approach, the important features of each tissue were also
identified and the features were subsequently improved using genetic algorithms.

3. Notation and Preliminaries of Tensors

We summarize the notation and preliminaries of tensors widely used in this paper
in Table 1. The scalars, vectors, matrices, and tensors are, respectively, denoted by the
lowercase letters, bold lowercase letters, bold uppercase letters, and calligraphic letters.
E means the identity matrix.
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Table 1. Symbols and meanings.

Symbols Meanings

aijk Scalar

A Matrix

AT Conjugate transpose of a matrix

A Third-order tensor

A(i, :, :) Horizontal slice of the tensor A

A(:, j, :) Side slices of tensor A

A(:, :, k) The front slice of the tensor A

A(i, j, :) Tube of Tensor A

An M-dimensional tensor is denoted as A ∈ RN1×N2×...×NM . Its entries are denoted
as an1n2,...,nM or A(n1, n2, . . . , nM), where (1 ≤ nm ≤ Nm). The m-mode unfolding matrix
A(m) ∈ RNm×N1 N2,...,Nm−1 Nm+1,...,NM is defined by arranging all the m-mode unfolding vec-
tors as the rows of the matrix.

Based on the definitions above, we also provide the definition for the multiplication
of a tensor and a matrix. Given an M-dimensional tensor A ∈ RN1×N2×...×NM and a
matrix B ∈ REm×Nm , the m-mode product can be denoted by A ×m B. We record it as
C ∈ RN1×...×Nm−1×Em×Nm+1×...×NM , which is an M-dimensional tensor whose entries are
computed by:

cn1n2,...,nm−1,em ,nm+1,...,nM =
Nm

∑
nm=1

an1n2,...,nm−1,nm ,nm+1,...,nM bem ,nm (1)

Utilizing the m-mode unfolding matrix, the m-mode product can also be computed in
the form of matrix multiplication:

C(m) = BA(m) = unfoldm(A×m B) (2)

The m-mode product also has many properties. We list some of them which will be
used in the following deduction.

Property 1. A series of tensor products are exchangeable for distinct modes (matrices Bm1 ∈
REm1×Nm1 , Bm2 ∈ REm2×Em2 ):

A×m1 Bm1 ×m2 Bm2 = A×m2 Bm2 ×m1 Bm1(m1 6= m2) (3)
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Property 2. A series of tensor products are mergeable for the same mode (matrices B1 ∈ REm×Nm ,
B2 ∈ RLm×Em ):

A×m B1 ×m B2 = A×m (B2B1) (4)

Property 3. Given a collection of matrices Bm ∈ REm×Nm (m = 1, 2, . . . , M), we define an M-
dimensional tensor G = A×1 B1 ×2 B2 ×3 . . .×M BM. Then, for tensor G ∈ RE1×E2×...×EM ,
we have:

g = (BM ⊗ BM−1 ⊗ . . .⊗ B1)a (5)

where ⊗ means the Kronecker product and g, a are the vectorization of tensors G,A, which are
obtained by stacking all the one-mode vectors of the tensors.

The symbols used in this section like A, B, C,G represent general tensors or matrices.

4. The Proposed Method

After Section 3 introduced the related theorems and other knowledge, in this section,
we introduce the NSST, tensor decomposition, and other related content and list the
optimization process and the solution process of subproblems.

4.1. Nonsubsampled Shearlet Transform (NSST)

A shearlet is able to capture the intrinsic geometrical features of multidimensional
phenomena effectively [11]. Owing to the shift invariance given by the nonsubsampled
process, the NSST is more robust than other multiscale transforms. As a result, we adopt
the NSST in our MST framework, which involves two basic steps:

Multiscale Decomposition: Given the n-th source picture Sn ∈ RI×J in our fusion
method, nonsubsampled pyramid filters (NSPFs) are used to obtain multiscale represen-
tations of the picture. In total, K levels of NSPFs are used, so the source image Sn is
decomposed into K high-frequency maps Hk

n ∈ RI×J(k = 1, . . . , K), whose scale ranges
from fine to coarse. The rest of picture after filtering is denoted as a low-frequency map
Ln ∈ RI×J .

Multidirectional Representation: We let the high-frequency map Hk
n pass through the

shift-invariant shearlet filter banks (SFBs) to obtain its multidirectional representations.
If we decompose the k-th level of the map in Dk directions, the result can be denoted as
Hk,dk

n ∈ RI×J(dk = 1, . . . , Dk).
After the two steps, we obtain the multiscale and multidirectional representations

of the source image Sn: Hk,dk
n , Ln(k = 1, . . . , K, dk = 1, . . . , Dk). It is worth noting that

every decomposed high-frequency map Hk,dk
n ∈ RI×J is of the same size as the source

image Sn ∈ RI×J . Thus, we can combine all maps along the third dimension and form a
three-dimensional tensorHn ∈ RI×J×D, where D = ∑k dk. The low-frequency map Ln can
also be seen as a two-dimensional tensor Ln. Then, the whole NSST can be represented by
the following equation:

NSST(Sn) = {Hn,Ln} (6)

For simplicity, we call Hn ∈ RI×J×D and Ln ∈ RI×J the high-frequency and low-
frequency maps, respectively, in the following deduction. As can be seen in Figure 2, the
high-frequency maps (Figure 2(b1,b2)) contain rich detail and edge information. Human
eyes are also more sensitive to the high-frequency information. The low-frequency maps
(Figure 2(c1,c2)) mainly preserve the shape and strength information. They keep the
majority of information from the source images. Thus, both the high-frequency and low-
frequency fusion processes are of great importance to the purpose of medical image fusion,
preserving all valid and useful pattern information from the source images.
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Figure 2. This figure displays the intermediate results of the fusion process. (a1,a2) are the source
images; (b1,b2) are slices of the high-frequency maps H1, H2; (c1,c2) are the low-frequency maps
L1, L2; (d1,d2) are the slices of the mixed-frequency maps.

4.2. Tensor Decomposition Based Fusion

In contrast to conventional MST-based fusion strategies, which typically handle high-
frequency and low-frequency components individually, we employ a mixed-frequency fu-
sion of the outcomes of the NSST. Specifically, given N source images Sn(n = 1, . . . , N), we
perform cross-fusion on their high-frequency mapsHn(n = 1, . . . , N) and low-frequency
maps Ln(n = 1, . . . , N). The rule of cross-fusion is that a high-frequency map should not
be fused with the low-frequency map from the same image. For instance, in the case of
two source images, the fusion strategy isH1&L2,H2&L1. Mixed-frequency fusion breaks
down the information barrier between the low-frequency and high-frequency components
in traditional MST-based strategies and promotes a better fusion of different multiscale
information. It also means our model gives equal attention to the high-frequency and
low-frequency representations, which are often unequally treated in most medical im-
age fusion methods. Noting that Hn ∈ RI×J×D and Ln ∈ RI×J are tensors of different
dimensions, we adopt the tensor-decomposition-based method in [19] to perform our
mixed-frequency fusion. Denoting the mixed-frequency maps as Ga,b ∈ RI×J×D, they can
be modeled as a core tensor multiplied by the factor matrix along each mode using the
Tucker decomposition [18]:

Ga = TD(H1,L2) = Ca ×1 Ia ×2 Ja ×3 Da (7)

Gb = TD(H2,L1) = Cb ×1 Ib ×2 Jb ×3 Db (8)

where Ia,b ∈ RI×Ni (Ni < I), Ja,b ∈ RJ×Nj
(

Nj < J
)
, and Da,b ∈ RD×Nd(Nd < D) are dictio-

naries of the I-mode, J-mode, and D-mode, respectively. Tensors Ca,b ∈ RNi×Nj×Nd hold
the coefficients over the three dictionaries. It is noteworthy that although we exclusively
discuss the fusion of two images in this context (which is the most prevalent scenario), it is
straightforward to extend the model to encompass the fusion of multiple images. From
Equations (7) and (8), we can see that they share the same iteration process. For simplifica-
tion, we delete the subscript to show the generality. Thus, we present our proposed model
by the following equation:

G = TD(H,L) = C ×1 I ×2 J ×3 D (9)

According to Property 3 in Section 3, the cost function for the mixed-frequency fusion
problem F(I, J, D, C) can be written as:

argmin
I,J,D,C

‖H − C ×1 I ×2 J ×3 D‖2
F + γ‖L − C ×1 I ×2 J ×3 D∗‖2

F + λ‖C‖1

s.t.D∗ = PD
(10)



Sensors 2023, 23, 6616 8 of 21

where γ is the fusion control parameter, and λ is the sparsity regularization parameter. The
high-frequency mapH ∈ RI×J×D is the same size as the mixed-frequency map G ∈ RI×J×D.
The low-frequency mapL ∈ RI×J can be viewed as the down-sampled version of the mixed-
frequency map G along the third dimension. P ∈ R1×D can be understood as the proportion
of low-frequency information each direction contains in the mixed-frequency map. In order
to solve problem (10), we use the proximal alternating optimization (PAO) algorithm [26],
which is guaranteed to converge to a critical point under specific circumstances.

I = argmin
I

F(I, J, D, C) + β‖I − Ipre‖2
F

J = argmin
J

F(I, J, D, C) + β‖J − Jpre‖2
F

D = argmin
D

F(I, J, D, C) + β‖D− Dpre‖2
F

C = argmin
C

F(I, J, D, C) + β‖C − C pre‖2
F

(11)

where F(I, J, D, C) is the objective function in problem (10); β is a positive model parameter;
and variables with the superscript pre mean the corresponding variables in the previous
iteration. ‖ · ‖F denotes the Forbenius norm. We will provide the solving process of the
four subproblems briefly.

4.3. The Optimization Solution
4.3.1. Solution of I

Substituting function F into the first subequation in Equation (11) and discarding the
terms irrelevant to the optimization objective, we obtain the following Equation (12):

argmin
I
‖H − C ×1 I ×2 J ×3 D‖2

F + γ‖L − C ×1 I ×2 J ×3 D∗‖2
F + β‖I − Ipre‖2

F (12)

Utilizing the one-mode unfolding matrix and Property 1 of the tensor product in
Section 3, we can write Equation (12) in an equivalent form:

argmin
I

∥∥∥H(1) − IAi

∥∥∥2

F
+ γ

∥∥∥L(1) − IBi

∥∥∥2

F
+ β‖I − Ipre‖2

F (13)

where Ai = (C ×2 J ×3 D)(1), Bi = (C ×2 J ×3 D∗)(1)·(·)(1) denotes the one-mode unfold-
ing matrix. Equation (13) is quadratic and we can solve the derivative of it:

I
(

Ai A
T
i + γBiB

T
i + βE

)
= H(1)AT

i + γL(1)B
T
i + βIpre (14)

According to [19], the unique solution of Equation (14) can be efficiently found by the
conjugate gradient (CG) algorithm [26].

4.3.2. Solution of J

Substituting function F into the second subequation of (11), we obtain problem (15):

argmin
J
‖H − C ×1 I ×2 J ×3 D‖2

F + γ‖L − C ×1 I ×2 J ×3 D∗‖2
F + β‖J − Jpre‖2

F (15)

Utilizing the two-mode unfolding matrix and Property 1 of the tensor product in
Section 3, we can write Equation (15) in an equivalent form:

argmin
J

∥∥∥H(2) − JAj

∥∥∥2

F
+ γ

∥∥∥L(2) − JBj

∥∥∥2

F
+ β‖J − Jpre‖2

F (16)
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where Aj = (C ×1 I ×3 D)(2), Bj = (C ×1 I ×3 D∗)(2)·(·)(2) denotes the two-mode unfold-
ing matrix. Problem (16) is quadratic and we can solve the derivative of it:

J
(

Aj A
T
j + BjB

T
j + βE

)
= H(2)AT

j + γL(2)B
T
j + βJpre (17)

Considerting to the solving process of I, the unique solution of Equation (17) can be
efficiently found by the conjugate gradient (CG) algorithm.

4.3.3. Solution of D

Substituting function F into the third subequation of Equation (11), we obtain Equation (18):

argmin
D
‖H − C ×1 I ×2 J ×3 D‖2

F + γ‖L − C ×1 I ×2 J ×3 D∗‖2
F + β‖D− Dpre‖2

F (18)

Utilizing the three-mode unfolding matrix in Section 3, we can write Equation (18) in
an equivalent form:

argmin
D

∥∥∥H(3)−DAd

∥∥∥2

F
+ γ

∥∥∥L(3)−PDAd

∥∥∥2

F
+ β‖D− Dpre‖2

F (19)

where Ad = (C ×1 I ×2 J)(3)·(·)(3) denotes the three-mode unfolding matrix. Equation (19)
is quadratic and we can solve the derivative of it:

D
(

Ad AT
d + βE

)
+ γPTPDAd AT

d

= H(3)AT
d + γPT L(3)AT

d + βDpre
(20)

The unique solution of Equation (20) can also be efficiently found by the conjugate
gradient (CG) algorithm.

4.3.4. Solution of C
Substituting function F into the fourth subproblem in Equation (11), we obtain Equation (21):

argmin
C
‖H − C ×1 I ×2 J ×3 D‖2

F + γ‖L − C ×1 I ×2 J ×3 D∗‖2
F + λ‖C‖1 + β‖C − C pre‖2

F (21)

By introducing the splitting variables C1 = C2 = C ∈ RNi×Nj×Nd , the problem above
can be rewritten as follows:

argmin
C,C1,C2

G(C) + G1(C1) + G2(C2)

s.t. C1 = C2 = C
(22)

where 
G(C) = λ‖C‖1 + β‖C − C pre‖2

F
G1(C1) = ‖H − C ×1 I ×2 J ×3 D‖2

F
G2(C2) = γ‖L − C ×1 I ×2 J ×3 D∗‖2

F

(23)

Equation (22) can be solved by the alternating direction method of multipliers (ADMM)
algorithm [27], the details of which are described in [19]. The optimized Ia,b, Ja,b, Da,b, Ca,b
can be obtained after the execution of the PAO algorithm (the convergence of which will
be verified in Section 4). Then, we can count the mixed-frequency maps Ga,Gb using
Equations (7) and (8). As can be seen in Figure 2(d1,d2), the mixed-frequency maps retain
the texture information of high-frequency maps as the basics and simultaneously introduce
the features of low-frequency maps. However, it is inevitable that information will be
lost in the process of tensor optimization [28]. Thus, we use joint static and dynamic
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guidance (JSDG) and WLE and WSEML low-frequency fusion to complete the information
and promote a better fusion of knowledge. We verify the importance of this process in the
ablation analysis.

4.4. High-Frequency Completion
4.4.1. Joint Static and Dynamic Guidance

We use joint static and dynamic guidance (JSDG) to complete the high-frequency
information in mixed-frequency maps Ga,Gb. JSDG is able to jointly leverage the structural
information of guidance and input images, so we achieve our purpose of preserving the
results of mixed-frequency fusion and perform high-frequency completion at the same
time. We also demonstrate its advantages over ordinary guided filtering in the ablation
analysis. Denoting the completed mixed-frequency maps as Ua,b ∈ RI×J×D, the problem
can be written as:

Ua = JSDG(H1,Ga) (24)

Ub = JSDG(H2,Gb) (25)

where the mixed-frequency maps Ga,b serve as the static guidance. The high-frequency
mapsH1,2 serve as the input image and dynamic guidance. Since Equations (24) and (25)
share the same solving process, we delete the subscript to show the generality. Thus, the
purpose of our model is studying the following problem:

U = JSDG(H,G) (26)

Since all variables in the problem above are three-dimensional tensors, we extend
JSDG from 2D signals in [21] to 3D signals. Utilizing the definition of an m-mode unfolding
vector in Section 2, the cost function of Equation (26) can be denoted as:

argmin
U

E(U ) = ∑
d
‖ud − hd‖2

F + α ∑
1≤m,n≤I J

φδ[gd(m)− gd(n)]ψv[ud(m)− ud(n)] (27)

where φδ(x) = e−δx2
, ψv(x) = (1− φv(x))/v,ψv(x) is Welsch’s function, which is noncon-

vex. α is a regularization parameter and δ, v are parameters that control the smoothness
bandwidth. ud ∈ R1×I J(d = 1 . . . D) is the three-mode unfolding vector of tensor U , and
hd, gd have the same meaning. Without loss of generality, we give the same confidence to
every pixel. The problem can also be written in an equivalent form:

argmin
U

E(U ) =
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Table 1. Symbols and meanings.

Symbols Meanings

aijk Scalar

A Matrix

AT Conjugate transpose of matrix

A Third-order tensor

A(i, :, :) Horizontal slice of the tensor A

A(:, j, :) Side slices of tensor A

A(:, :, k) The front slice of the tensor A

A(i, j, :) Tube of Tensor A

A M-dimensional tensor is denoted as A ∈ RN1×N2×...×NM . Its entries are denoted 183

as an1n2,...,nM or A(n1, n2, . . . , nM), where (1 ≤ nm ≤ Nm). The m-mode unfolding matrix 184

A(m) ∈ RNm×N1 N2,...,Nm−1 Nm+1,...,NM is defined by arranging all the m-mode unfolding vec- 185
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Based on the definitions above, we also provide the definition for the multiplica- 187

tion of a tensor and a matrix. Given a M-dimensional tensor A ∈ RN1×N2×...×NM and a 188

matrix B ∈ REm×Nm , the m-mode product can be denoted by A ×m B. We record it as 189

C ∈ RN1×...×Nm−1×Em×Nm+1×...×NM , which is a M-dimensional tensor whose entries are 190

computed by: 191

cn1n2,...,nm−1,em ,nm+1,...,nM =
Nm

∑
nm=1

an1n2,...,nm−1,nm ,nm+1,...,nM bem ,nm (1)

Utilizing the m-mode unfolding matrix, the m-mode product can also be computed in the 192

form of matrix multiplication: 193

C(m) = BA(m) = unfoldm(A×m B) (2)

The m-mode product also have many properties. We list some of them which will be 194

used in the following deduction. 195

Property 1: A series of tensor products are exchangeable for distinct modes (matrices Bm1 ∈ 196

REm1×Nm1 , Bm2 ∈ REm2×Em2 ): 197

A×m1 Bm1 ×m2 Bm2 = A×m2 Bm2 ×m1 Bm1(m1 ̸= m2) (3)

Property 2: A series of tensor products are mergeable for the same mode: (matrices B1 ∈ 198

REm×Nm , B2 ∈ RLm×Em ) 199

A×m B1 ×m B2 = A×m (B2B1) (4)

D

(
U(3) − H(3)

)(
U(3) − H(3)

)T
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T
D +

α

v
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I J ∑
d

wg
d −wg

d ⊗wu
d

Version July 2, 2023 submitted to Journal Not Specified 5 of 21

3. Notations and Preliminaries on Tensors 176

We summary the notations and preliminaries on tensors widely used in this paper 177

here. The scalars, vectors, matrices and tensors are respectively denoted by the lowercase 178

letters, bold lowercase letters, bold uppercase letters and calligraphic letters. E means 179

the identity matrix. 1 denotes matrix filled with 1. Variables with the superscript pre 180

mean the corresponding variables in the previous iteration. The superscript T denotes the 181

transposition operation. 182

Table 1. Symbols and meanings.

Symbols Meanings

aijk Scalar

A Matrix

AT Conjugate transpose of matrix

A Third-order tensor

A(i, :, :) Horizontal slice of the tensor A

A(:, j, :) Side slices of tensor A

A(:, :, k) The front slice of the tensor A

A(i, j, :) Tube of Tensor A

A M-dimensional tensor is denoted as A ∈ RN1×N2×...×NM . Its entries are denoted 183

as an1n2,...,nM or A(n1, n2, . . . , nM), where (1 ≤ nm ≤ Nm). The m-mode unfolding matrix 184

A(m) ∈ RNm×N1 N2,...,Nm−1 Nm+1,...,NM is defined by arranging all the m-mode unfolding vec- 185

tors as the rows of the matrix. 186

Based on the definitions above, we also provide the definition for the multiplica- 187

tion of a tensor and a matrix. Given a M-dimensional tensor A ∈ RN1×N2×...×NM and a 188

matrix B ∈ REm×Nm , the m-mode product can be denoted by A ×m B. We record it as 189

C ∈ RN1×...×Nm−1×Em×Nm+1×...×NM , which is a M-dimensional tensor whose entries are 190

computed by: 191

cn1n2,...,nm−1,em ,nm+1,...,nM =
Nm

∑
nm=1

an1n2,...,nm−1,nm ,nm+1,...,nM bem ,nm (1)

Utilizing the m-mode unfolding matrix, the m-mode product can also be computed in the 192

form of matrix multiplication: 193

C(m) = BA(m) = unfoldm(A×m B) (2)

The m-mode product also have many properties. We list some of them which will be 194

used in the following deduction. 195

Property 1: A series of tensor products are exchangeable for distinct modes (matrices Bm1 ∈ 196

REm1×Nm1 , Bm2 ∈ REm2×Em2 ): 197

A×m1 Bm1 ×m2 Bm2 = A×m2 Bm2 ×m1 Bm1(m1 ̸= m2) (3)

Property 2: A series of tensor products are mergeable for the same mode: (matrices B1 ∈ 198

REm×Nm , B2 ∈ RLm×Em ) 199

A×m B1 ×m B2 = A×m (B2B1) (4)

T
I J (28)

where wd
g(m, n) ∈ RI J×I J = φδ(gd(m)− gd(n)), wu

d(m, n) ∈ RI J×I J = φv(ud(m)− ud(n))
(m, n = 1, . . . , I J). ⊗ represents the Hadamard product of the matrices.
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x ∈ R1×x denotes
a vector filled with ones. Equation (28) is a nonconvex optimization problem, which can be
solved by the majorization-minimization algorithm presented in [21]. Firstly, we built the
surrogate objective function Q(U ):

Q(U ) =
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D

(
δU(3)Z

preUT
(3) − 2H(3)U

T
(3) + H(3)HT

(3) −δU pre
(3)ZpreU preT

(3)

)
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T
I J (29a)

Z = ∑
d

Od −wg
d ⊗wu

d (29b)

Od = diag
(

od
1, . . . , od

I J

)
(29c)
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od
m =

I J

∑
n=1

φδ[gd(m)− gd(n)]φv[ud(m)− ud(n)] (29d)

The surrogate function Q(U ) is a convex approximate function of nonconvex optimiza-
tion problem E(U ). If a U pre with E is given, the following U can be obtained by solving
Equation (29).

After the iteration, we obtain the complete mixed-frequency maps Ua,b. A comparison
between high-frequency maps U1,2(a1,2), original mixed-frequency maps Ga,b(b1,2), and
completed mixed-frequency maps Ua,b(c1,2) can be seen in Figure 3. The blue frames show
that Ua,b completes the lost high-frequency information in Ga,b, while the red frames show
that U1,2 preserves and consolidates the product of mixed-frequency fusion. In a word, our
JSDG method achieves the purpose of retaining both the structure of the input image and
static guidance.

Figure 3. A comparison between the slices of high-frequency maps U1,2 (a1,a2), original mixed-
frequency maps Ga,b (b1,b2), and complete mixed-frequency maps Ua,b (c1,c2). The blue and red
boxes are shown the enlarged details of each frequency map.

4.4.2. Fusion of Complete Mixed-Frequency Maps

To retain as much detail as possible and reduce randomness and redundancy, we
chose the components with a relatively high activity level in Ua/b ∈ RI×J×D to form our
fused mixed-frequency map H f ∈ RI×J×D. For each coefficient, we used the activity
fusion strategy in [29] with independent parameter settings. For notation simplicity, we
use k(k ∈ a, b) to universally denote the source mix-frequency maps. Given the source
sparse maps Uk, the corresponding initial activity level maps Mk ∈ RI×J can be calculated
as follows:

Mk(i, j) =
D

∑
d=1

uk(i, j, d), (1 ≤ i ≤ I, 1 ≤ j ≤ J) (30)

The final activity level map can be calculated by taking the average process:

M f
k(i, j) =

∑r
p=−r ∑r

q=−r Mk(i + p, j + q)
(2r + 1)2 , (1 ≤ i ≤ I, 1 ≤ j ≤ J) (31)

where the parameter r is the window radius. Then, the fused mixed-frequency map H f

can be calculated by:

H f (i, j, :) = Uk∗(i, j, :), k∗ = argmax
k

M f
k (i, j), (1 ≤ i ≤ I, 1 ≤ j ≤ J) (32)
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4.5. Low-Frequency Completion

We processed the low-frequency maps L1,2 by the WLE and WSEML method in [7]
to obtain a fused low-frequency map L f ∈ I×J . This is used as the base of the inverse
nonsubsampled shearlet transform (INSST) in order to complete the lost low-frequency in-
formation. According to [7], because the amount of NSST decomposition is usually limited,
low-frequency maps L1,2 still contain some detailed information. Thus, to fully utilize the
details from source images, we use the WLE method to fuse the low-frequency information
and use the WSEML method to extract the remaining high-frequency information after the
NSST. Thus, the fused low-frequency map L f can be calculated by the following equations:

L f (i, j) = Ln∗ (i, j), n∗ = argmax
n

WLEn(i, j) ·WSEMLn(i, j), (1 ≤ i ≤ I, 1 ≤ j ≤ J) (33)

where 
WLEn(i, j) =

t

∑
p=−t

t

∑
q=−t

V(p + t + 1, q + t + 1)Ln(i + p, j + q)

WSEMLn(i, j) =
t

∑
p=−t

t

∑
q=−t

V(p + t + 1, q + t + 1)EMLn(i + p, j + q)

(34)

where V is a weighting matrix, t is the window radius, and EML means the Euclidean
modified Laplacian.

4.6. Reconstruction Fused Image by the INSST

The INSST can reconstruct the fused image F in two steps, which are actually the in-
verse processes of multidirectional representation and multiscale decomposition in Section
A. We use the fused mixed-frequency map H f ∈ RI×J×D and fused low-frequency map
L f ∈ RI×J as inputs. Firstly, the nonsubsampled pyramid H f ,k ∈ RI×J(k = 1, . . . , K)
is generated by accumulating the filtered results in all directions. Secondly, the im-
age is reconstructed from coarse to fine. The whole INSST can be represented by the
following equation:

F = INSST
(
L f ,H f

)
(35)

5. Experiments

In this section, we first introduce the experimental settings, objective metrics, and
comparison methods in detail. The proposed method is compared with other approaches
in two aspects: a fused result analysis and a quantitative metrics analysis. To enrich the
experimental content and improve the readability, we also carried out a parameter analysis,
a convergence analysis, and an ablation analysis. All experiments were carried out using
MATLAB R2016b on a computer with a dual-core Intel Core i5 processor (1.8 GHz) and
8GB 1600 MHz DDR3.

5.1. Experimental Settings

In this section, we discuss the experimental setup, including the images of the dataset
used for the experiment, the selection of the comparison method, and the setting of the
parameters. Other experimental details are shown in Table 2.

5.1.1. Experimental Images

Medical image fusion technology widely uses four kinds of medical imaging, includ-
ing computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), and single photon emission tomography (SPECT). In our experiment,
the five most common multi-modal medical image fusion problems based on different
modes were selected, including T1-T2, T2-PD and CT-MRI, MRI-PET, and MRI-SPECT.
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T1, T2, and PD are all MRI images based on different weights. The source images of
our experiment were selected from the whole brain atlas database [30], and the spatial
resolution was 256 × 256.

Table 2. Experimental detailed specifications.

Experimental Environment Parameters

Experimental equipments Intel Core i5 dual-core processor
8GB 1600 MHz DDR3

Compiling software MATLAB 2016b

5.1.2. Objective Metrics

To verify the performance superiority of our method, we selected a total of seven
metrics to analyze the image fusion effect from different aspects. These metrics are divided
into four categories in [29], namely information-theory-based metrics, image-feature-based
metrics, image-structure-similarity-based metrics, and human-perception-inspired met-
rics. ChenBlum is a human visual system (HVS)-based metric [31] belonging to human-
perception-inspired metrics, the purpose of which is to obtain the average value of the
quality map of the whole image. Image-feature-based metrics include Qab f [32] and spatial
frequency (SF) [33]. Qab f reflects the quality of the visual information obtained from the
input image fusion, mainly the degree of edge information protection, and the SF mea-
sures the overall activity level of an image. The multi-scale structural similarity metric
(MS-SSIM) [34] is an improved version of the SSIM [35]. Information-theory-based metrics
include feature mutual information (FMI-pixel) and the nonlinear correlation coefficient
(NCC) [36]. FMI-pixel calculates the mutual information of the image features and the
NCC measures the general relationships among a group of images. The last one is the
standard deviation (STD). It measures the contrast information of the fused image quality
using variance.

5.1.3. Comparison Methods

Our TDFusion model was compared with five existing medical image fusion methods,
including ASR [37], NSST-PAPCNN [7], NSCT-PCDC [38], GFF [5], CS-MCA [29], and
FCFusion [17]. Since CS-MCA is not designed for color image fusion, CA-MCA was not
included in the comparison of color image fusion. In order to compare the fusion results of
each method more objectively, all parameters in these methods are set to default values.

5.2. Visual Effects Analysis

Our comparative experiment was carried out on five medical image fusion problems,
and three groups of results are selected for each problem. Then, we compared and analyzed
the visual effects of various fusion methods in detail.

5.2.1. Fusion Analysis on T1-T2

The anatomical structure can be better observed in T1 images and T2 images are
able to show tissue lesions more effectively. Figure 4(a1–a3) contains T1 images and
T2 images are shown in Figure 4(b1–b3). The fusion of T1 and T2 images can lead to a
more comprehensive anatomical structure and soft tissue information, which is of great
significance in the clinical diagnosis and treatment of soft tissue lesions.

As shown in Figure 4, our TDFusion (i1–i3) model achieves the best visual effect of the
fusion image, clearly shows the texture information of the original image, and excellently
extracts the detailed information. ASR (f1–f3) and FCFusion (h1–h3) methods achieved
good results in brightness and structure processing with the source image, but compared
with our TDFusion model, the details are still not clear enough. CS-MCA (g1–g3) and GFF
(e1–e3) methods lead to a lot of energy loss while extracting the corresponding details. In
addition, NSCT-PCDC (d1–d3) and NSST-PAPCNN (c1–c3) methods not only have the
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problem of energy loss, but the detailed information extracted is also insufficient, resulting
in the the non-ideal fusion image effect.

Figure 4. The visual effects of various fusion methods on T1 and T2 images. Each image has two
close-ups. The first two columns of each group are the source images T1 (a1–a3) and T2 (b1–b3).
The fused images are obtained by NSST-PAPCNN (c1–c3), NSCT-PCDC (d1–d3), GFF (e1–e3),
ASR (f1–f3), CS-MCA (g1–g3), FCFusion (h1–h3), and TDFusion (i1–i3). The red boxes are shown
the enlarged details of fused result.

5.2.2. Fusion Analysis on T2-PD

PD images mainly reflect the proton content of different tissues in the image; thus, the
fusion with T2 images can better preserve the edge information and textural features of the
source images and improve the efficiency of medical images for diagnosis.

As we can see in Figure 5, T2 source images and PD source images are shown in
Figure 5(a1–a3,b1–b3), respectively. The fused images of NSST-PAPCNN (c1–c3) and NSCT-
PCDC (d1–d3) are seriously interfered with by noise, many artifacts are produced, and
the edges and details of the source image are not retained well, where c1 and d1 show
these problems more obviously. This is not conducive to medical observation and research.
Moreover, ASR (f1–f3) does not extract the information of the source image well, and the
visual information quality of the fused image is not very good. In addition, the GFF (e1–e3)
method suffers from information loss, the contrast of fusion image quality is poor, and
the overall acquisition level is low. Although CS-MCA (g1–g2) and FCFusion (h1–h3) are
relatively close to our TDFusion (i1–i3) fused image, our model has a better performance in
terms of detail processing. In general, our method is very effective at removing noise and
avoiding artifacts and achieves the best visual effect in all methods.

Figure 5. The visual effects of various fusion methods on T2 and PD images. Each image has two
close-ups. The first two columns of each group are the source images T2 (a1–a3) and PD (b1–b3).
The fused images were obtained by NSST-PAPCNN (c1–c3), NSCT-PCDC (d1–d3), GFF (e1–e3),
ASR (f1–f3), CS-MCA (g1–g3), FCFusion (h1–h3), and TDFusion (i1–i3). The red boxes are shown
the enlarged details of fused result.
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5.2.3. Fusion Analysis on CT-MRI

Both MR images and CT images belong to anatomical imaging technology. CT images
have a high-density spatial resolution, which can better reflect bone and other dense
structures, while MRI can clearly reflect the soft tissue information. The fusion of MRI
and CT images solves the problem of the poor representation of soft tissue lesions, which
greatly improves the efficiency and accuracy of medical diagnosis.

Figure 6 shows the fusion results of three sets of CT (a1–a3) and MR (b1–b3) images.
As can be seen from Figure 6, NSCT-PCDC (d1-d3) and GFF (e1–e2) produce a large amount
of energy loss, which greatly reduces the intensity and contrast of many fused images.
The ASR (f1–f3) method overcomes most of the noise interference, but the problem of
losing information still exists. In addition, NSST-PAPCNN (c1–c3) performs well in detail
extraction and energy preservation, but it is not as good as CS-MCA (g1–g3) and TDFusion
(i1–i3) at preserving texture information. Our TDFusion method has achieved good results
in structure information extraction and contrast.

Figure 6. The visual effects of various fusion methods on CT and MR-T2 images. Each image has
two close-ups. The first two columns of each group are the source images CT (a1–a3) and T2 (b1–b3).
The fused images were obtained by NSST-PAPCNN (c1–c3), NSCT-PCDC (d1–d3), GFF (e1–e3),
ASR (f1–f3), CS-MCA (g1–g3), FCFusion (h1–h3), and TDFusion (i1–i3). The red boxes are shown
the enlarged details of fused result.

5.2.4. Fusion Analysis on MRI-PET

PET belongs to functional imaging technology, which can well reflect the metabolic
information of the human body, but the spatial resolution of functional images is often
low. Therefore, the fusion of MR and PET can better combine anatomical and functional
information, which is more conducive to medical observation and diagnosis. In addition,
PET images provide information through color changes, so it is regarded as a color image
which can be summarized by color fusion.

In Figure 7, the first two columns are the MR and PET source images. NSCT-PCDC
and GFF suffer from severe color distortion, resulting in a low color fidelity. In Figure 7e2,
no color information is extracted. The structural and textural information provided by
ASR is not sufficient for final fused results, leading to much information loss and result-
ing in brightness. In addition, NSST-PAPCNN and FCFusion methods handle the color
information well and achieve a higher visual quality than other methods, but they are still
insufficient compared with TDFusion. Although our TDFusion is not particularly good at
retaining source image information, it has greatly improved the extraction of details and
structural information.

5.2.5. Fusion Analysis on MR-SPECT

Similar to PET images, SPECT produces a three-dimensional color medical image that
can reveal metabolic changes without structural information. At the same time, the color
image fusion strategy combined with MR tissue structure information is used to locate
functional information.
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The three sets of fusion results are shown in Figure 8, and the visual effects of the
fused images are also similar to MRI-PET fusion in the previous section. NSCT-PCDC,
GFF, and ASR have different degrees of color distortion. Some important functional
information contained in SPECT is lost, making medical diagnosis extremely difficult. In
addition, FCFusion and our TDFusion have good structure and color information retention;
however, NSST-PAPCNN is not as good as our model in edge information protection. The
performance proves that our TDFusion has a good fusion effect on MRI and SPECT images.

a1 b1 c1 d1 e1 f1 h1

a2 b2 c2 d2 e2 f2 h2

a3 b3 c3 d3 e3 f3 h3

g1

g2

g3

Figure 7. The visual effects of various fusion methods on MRI and PET images. Each image
has two close-ups. The first two columns of each group are the source images MRI (a1–a3) and
PET (b1–b3). The fused images are obtained by NSCT-PCDC (c1–c3), GFF (d1–d3), ASR (e1–e3),
NSST-PAPCNN (f1–f3), FCFusion (g1–g3), and TDFusion (h1–h3). The red boxes are shown the
enlarged details of fused result.

a1 b1 c1 d1 e1 f1 h1

a2 b2 c2 d2 e2 f2 h2

a3 b3 c3 d3 e3 f3 h3

g1

g2

g3

Figure 8. The visual effects of various fusion methods on MRI and SPECT images. Each image
has two close-ups. The first two columns of each group are the source images MRI (a1–a3) and
GFF (b1–b3). The fused images are obtained by PET (c1–c3), ASR (d1–d3), NSST-PAPCNN (e1–e3),
NSCT-PCDC (f1–f3), FCFusion (g1–g3), and TDFusion (h1–h3). The red boxes are shown the enlarged
details of fused result.

5.3. Objective Metrics Analysis

In order to objectively analyze the performance of the fusion method, we randomly
selected a total of 95 sets of image pairs, including 28 sets of T1–T2 image pairs, 23 sets
of T2–PD image pairs, 12 sets of CT–MRI image pairs, 10 sets of MRI–PET image pairs,
and 22 sets of MRI–SPECT image pairs. From Table 3, we can clearly see the performance
results of the seven selected indicators for each fusion method. The top three results for
each indicator are marked with red, blue, and green, respectively.
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In grayscale fusion (T1–T2, T2–PD, CT–MRI), the performance of our TDFusion is the
best in all indicators, whether this is in the extraction of details and structural information
or in the processing of noise and energy loss. The similarity between the fusion images
and the source images is very high, the visual effect is better, and the reliability of medical
observations and diagnoses is improved.

In color fusion (MRI–PET and MRI–SPECT), ChenBlum, MS-SSIM, and SF are lower
than other indexes, but remain in the top three. Regarding ChenBlum, the GFF method
achieves the best results for the whole image quality, but at the same time, the color fidelity
is low and the fused image is not ideal. MS-SSIM is an improvement of the SSIM method.
The contrast is the maximum of all layers and the structure is related to all layers. The gap
between our TDFusion and NSCT-PCDC is also very low; in addition, when SF is used as a
measure of the overall level of activity, it is determined that our model results in a certain
lack of information, which has been well improved by JSDG. From the previous part of the
visual effect analysis, we can see that the image fused by our model has achieved good
results in detail extraction, denoising, and color fidelity. The visual quality is also excellent.
Although it has not reached the best results, it still remains the second or third best.

Table 3. Objective performance of different fusion methods on seven metrics over T1–T2, T2–PD,
CT–MRI, MRI–PET, and MRI–SPECT. The top three for each metric are marked in red, blue, and green.

Methods ChenBlum FMI-Pixel MS-SSIM NCC QAB/F SF Std

TDFusion 0.6514 0.8676 0.9667 0.8106 0.6605 −0.0776 0.3277
FCFusion 0.6260 0.8422 0.9146 0.8080 0.6390 −0.1547 0.2533

ASR 0.6370 0.8351 0.9261 0.8054 0.5960 −0.2086 0.2292
CS-MCA 0.6261 0.8430 0.9525 0.8058 0.6399 −0.1457 0.2550

GFF 0.6106 0.8477 0.9234 0.8067 0.6438 −0.1526 0.2606
NSCT-PCDC 0.5449 0.8275 0.8792 0.8042 0.5467 −0.1383 0.2427

NSST-PAPCNN 0.4459 0.8064 0.8679 0.8050 0.4031 −0.3536 0.2956

TDFusion 0.7622 0.8924 0.9813 0.8069 0.6450 −0.0882 0.2249
FCFusion 0.7486 0.8790 0.9622 0.8054 0.6330 −0.1447 0.1933

ASR 0.7606 0.8745 0.9669 0.8054 0.6167 −0.2392 0.1842
CS-MCA 0.7480 0.8821 0.9785 0.8055 0.6447 −0.1495 0.1976

GFF 0.7325 0.8793 0.9584 0.8056 0.6332 −0.1951 0.1881
NSCT-PCDC 0.6627 0.8674 0.9441 0.8046 0.5675 −0.1309 0.1838

NSST-PAPCNN 0.5787 0.8608 0.9520 0.8051 0.5434 −0.2473 0.2126

TDFusion 0.7122 0.9101 0.9328 0.8065 0.5957 −0.1014 0.3282
FCFusion 0.6860 0.8922 0.9146 0.8063 0.5390 −0.2547 0.2533

ASR 0.7114 0.9033 0.9081 0.8058 0.5468 −0.2691 0.2621
CS-MCA 0.6936 0.9080 0.9256 0.8059 0.5468 −0.2342 0.2887

GFF 0.6956 0.9054 0.8263 0.8061 0.5835 −0.2906 0.2529
NSCT-PCDC 0.6075 0.8961 0.8369 0.8052 0.5350 −0.1789 0.2695

NSST-PAPCNN 0.5449 0.8850 0.8911 0.8058 0.5168 −0.2833 0.3264

TDFusion 0.6398 0.8970 0.999994 0.8115 0.8188 −0.0148 0.2526
FCFusion 0.6365 0.8852 0.99994 0.8114 0.8090 −0.0127 0.2536

ASR 0.6386 0.8533 0.999947 0.8043 0.7545 −0.1419 0.1656
GFF 0.6569 0.8928 0.999996 0.8112 0.8136 −0.0263 0.2427

NSCT-PCDC 0.5970 0.8952 0.999996 0.8106 0.8146 −0.0136 0.2470
NSST-PAPCNN 0.6438 0.8958 0.999995 0.8113 0.7811 −0.0120 0.2524

TDFusion 0.6588 0.8972 0.999983 0.8094 0.7719 −0.0302 0.2627
FCFusion 0.6510 0.8962 0.999980 0.8086 0.7310 −0.0547 0.2413

ASR 0.6511 0.8655 0.999955 0.8049 0.6826 −0.1884 0.1803
GFF 0.6845 0.8959 0.999986 0.8091 0.7682 −0.0469 0.2438

NSCT-PCDC 0.6261 0.8967 0.999992 0.8084 0.7315 −0.0310 0.2521
NSST-PAPCNN 0.6454 0.8960 0.999987 0.8088 0.7215 −0.0278 0.2618
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5.4. Analysis and Discussion
5.4.1. Analysis of Computational Running Time

We further compare the computational efficiency of the task using the average running
time presented in Table 4. As shown in Table 4, the proposed TDFusion achieves the best
performance regarding the average running times, which demonstrates the superiority of
the proposed TDFusion in efficiency.

Table 4. The average running time of different methods.

Methods CS-MCA GFF NSCT-RPCNN NSCT-PCDC NSST-PAPCNN FCFusion TDFusion

Times 137.38 0.06 8.43 15.14 6.86 56.89 20.66

5.4.2. Convergence Analysis

As can be seen from Figure 9a,b, which shows the cost fusion of TD and JSDG,
respectively, our objective function converges after six iterations both in grayscale fusion or
color fusion, indicating that our TDFusion model has good convergence.

0 2 4 6 8 10 12 14

The Number of Iterations

0

5000

10,000

15,000

The Value of F

(a)

0 2 4 6 8 10 12 14

The Number of Iterations

2382

2384

2386

2388

2390

2392
The Value of F

(b)

Figure 9. The convergence chain diagram of grayscale fusion and color fusion. From Equation (10),
we present the converged value of F of grayscale fusion and color fusion in (a) and (b) respectively.

5.4.3. Ablation Analysis

A total of 91 groups of images (including five kinds of mode fusion) were selected.
The results are shown in Figure 10. Common GF, JSDG, and None Filter were chosen
for the ablation experiment as a comparison. The experimental results show that after
supplementing the high-frequency information with JSDG, each index is significantly better
than that without JSDG, but the performance of the universal filter is somewhat inferior
to that of none filter in terms of index, which indicates that it cannot compensate for the
high-frequency information of the image well.
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Figure 10. Ablation experimental data results. The indicators are ChenBlum, FM-pixel, MS-SSIM,
NCC, QAB/F, SF, and STD.

5.4.4. Parameter Analysis

There are two influential free parameters in our model, α and γ, which are the regular-
ization parameter and fusion control parameter, respectively. They are related to the main
cost functions of the two main optimization processes in our model: JSDG and TD. We used
the control variable method to determine the parameter values, then tested the impacts of
these values on the selected seven metrics. As can be seen from Table 5, except for Qab f ,
the top three performances are obtained when γ = 1, which shows that it is reasonable
to fix γ as 1. Then, we compared the results when γ is fixed to 1. It is easy to observe
that the performance is similar in all indicators except Qab f . Although the parameter
combination of γ = 1 and α = 1 performs slightly better than other combinations of other
indicators, the deterioration in Qab f is too significant, which leads to a decline in visual
quality. Therefore, considering these data comprehensively, we set γ as 1 and α as 2. In the
selection of parameters, we chose the average of 10 data images, not an individual image,
and for the same values of α and γ, the impact on the overall results is not significant, so it
does not lead to the problem of overfitting.

Table 5. The comparison of metric values with different parameter values.

ChenBlum FMI-Pixel MS-SSIM NCC QAB/F SF std

γ = 1, α = 1 0.6167 0.89140 0.965741 0.80886 0.5990 −0.0855 0.25175
γ = 1, α = 2 0.6137 0.89136 0.965740 0.80877 0.6033 −0.0865 0.25174
γ = 1, α = 3 0.6117 0.89124 0.965731 0.80874 0.6065 −0.0871 0.25173
γ = 10, α = 1 0.6054 0.89081 0.965602 0.80850 0.6295 −0.0911 0.25164
γ = 10, α = 2 0.5981 0.89045 0.965476 0.80815 0.6309 −0.0978 0.25149
γ = 10, α = 3 0.5927 0.89007 0.965344 0.80793 0.6321 −0.1043 0.25132
γ = 0.1, α = 1 0.5919 0.89053 0.965139 0.80802 0.6145 −0.0941 0.25155
γ = 0.01, α = 1 0.5867 0.89038 0.964926 0.80791 0.6115 −0.0957 0.25150
γ = 0.1, α = 2 0.5788 0.89026 0.964749 0.80778 0.6052 −0.0980 0.25142
γ = 0.01, α = 2 0.5704 0.89008 0.964429 0.80766 0.6022 −0.1003 0.25132
γ = 0.1, α = 3 0.5702 0.89006 0.964499 0.80765 0.6009 −0.1008 0.25130
γ = 0.01, α = 3 0.5603 0.88983 0.964045 0.80752 0.5985 −0.1036 0.25117
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6. Conclusions

The non-downsampled shearlet transform domain tensor decomposition (TDFusion)
approach for fusing medical images is proposed in this research. The source image is split
into high-frequency and low-frequency components using the NSST method. The two
components are fused independently using two different fusion techniques. The high-
frequency and low-frequency parts are first combined using the TD method, and then the
low-frequency part is subsequently combined using the WLE and WSEML methods in
NSST-PAPCNN. Since HF and LF have different structural characteristics, some informa-
tion will be lost during the fusion process. To lessen the negative impact of this information
loss in the fusion process and enhance the fusion quality, we introduce JSDG. Finally, NSST
reconstruction is used to obtain the final fusion results. The model exhibits notable advan-
tages in detail and structural information extraction, energy preservation, and denoising
according to a large number of successful experiments, including a parametric analysis,
comparative experiments, and a visual effect analysis. In future research, we will consider
using different methods to achieve low and high frequency separation to further optimize
the model.
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