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Efficient Exact and Approximate Betweenness Centrality
Computation for Temporal Graphs

Anonymous Author(s)

ABSTRACT
Betweenness centrality of a vertex in a graph evaluates how often
the vertex occurs in the shortest paths. It is a widely used metric of
vertex importance in graph analytics. While betweenness centrality
on static graphs has been extensively investigated, many real-world
graphs are time-varying andmodeled as temporal graphs. Examples
include social networks, telecommunication networks, and trans-
portation networks, where a relationship between two vertices
occurs at a specific time. Hence, in this paper, we target efficient
methods for temporal betweenness centrality computation. We
firstly propose an exact algorithm with the new notion of time
instance graph, based on which, we derive a temporal dependency
accumulation theory for iterative computation. To reduce the size
of the time instance graph and improve the efficiency, we propose an
additional optimization, which compresses the time instance graph
with equivalent vertices and edges, and extends the dependency
theory to the compressed graph. Since it is theoretically complex
to compute temporal betweenness centrality, we further devise a
probabilistically guaranteed, high-quality approximate method to
handle massive temporal graphs. Extensive experimental results
on real-world temporal networks demonstrate the superior per-
formance of the proposed methods. In particular, our exact and
approximate methods outperform the state-of-the-art methods by
up to two and five orders of magnitude, respectively.
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Relevance toWeb Research: Calculating or estimating the vertex
importance of web-based temporal social networks is a critical and
challenging task. Our work uses temporal betweenness centrality to
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Figure 1: A toy social network

measure the importance of nodes, which is widely used in the study
of influential node identification, information dissemination, and
epidemic research. We provide exact and approximate algorithms
for calculating vertex importance on temporal graphs, which make
up for the shortcomings of previous algorithms in terms of time
efficiency and spatial efficiency.

1 INTRODUCTION
Betweenness centrality (BC) measures the extent to which a vertex
lies on the shortest paths between other vertices. Vertices with high
betweenness centrality scores usually have a great influence on
controlling the flow of information or dominating other entities’
behavior. Currently, a vast majority of existing efforts are devoted
to static graphs, in which the important temporal character is not
considered. However, a substantial number of real-world graphs
are time-varying and thus are usually modeled as temporal graphs,
where edges are endowed with timestamps. Hence, in this paper,
we focus on computing betweenness centrality for temporal graphs,
which can be applied in epidemiology research [13], transmission
of information [43], and brain disease research [23], to name but a
few.

Example 1. Figure 1 shows a toy social network, which is used
for the study of epidemic. Vertices represent individuals and edges
refer to the contacts. Considering that many possibly infective con-
tacts between individuals are fleeting (e.g., people in the street or the
marketplace) [19], each edge in Figure 1 is attached with a timestamp,
denoting the fleeting contact. Naturally, epidemics can only flow along
temporal paths, e.g., in Figure 1, diseases spread only from 𝑣1 to 𝑣5 via
𝑣2, but not from 𝑣1 to 𝑣5 via 𝑣4 because the link (𝑣1, 𝑣4) occurs after
(𝑣4, 𝑣5). Temporal betweenness centrality measures the importance
of a vertex based on the number of times that the vertex appears in
an “optimal” temporal path between any pair of vertices [16]. The
determination of the “optimal” temporal paths might depend either on
time-related properties (e.g. earliest arrival time) or on the topological
length. Vertices with high betweenness centrality scores (such as node
𝑣1, 𝑣2, 𝑣3) are crucial for identifying super-spreaders to control the
spreading of infectious diseases [13].

When an extra dimension of time is added, BC computation on
temporal networks is more challenging than on static graphs.
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(i) The various definitions of optimal temporal paths [38] on tempo-
ral graphs. BC is a path-based metric. On static graphs, the straight-
forward definition of the shortest path is employed. On temporal
graphs, however, various definitions of “optimal” temporal paths
are used. Commonly used optimal temporal paths include the short-
est and earliest temporal paths. They are defined over different
criteria and applied in different applications. Thus, how to design a
unifying approach that adapts to work with variants of "optimal"
temporal paths is challenging. (ii) Existing methods for static graphs
are based on recursive dependency accumulation, which is invalidated
on temporal graphs. For temporal graphs, the optimal temporal path
loses a critical property, i.e., subpath optimality property, that is,
the subpath of a shortest (optimal) path is still shortest (optimal).
It is the key for computing BC in static graphs based on the pair
dependency formulation proposed by Brandes [4]. Hence, existing
theories and methods for static graphs cannot be directly applied
to temporal graphs, new Temporal Betweenness Centrality (TBC)
computation theory should be derived. (iii) Exact algorithms have
theoretically been proved to have high time complexity [6]. The time
complexity of computing exact TBC on a directed temporal graph is
at least𝑂 (𝑛3T 2) (𝑛 refers to the number of vertices and T refers to
the total number of timestamps), counting earliest temporal paths
is even #P-hard [6]. Such computational complexity is prohibitive
for massive graphs.

To tackle the above challenges, we derive a new recursive tempo-
ral dependency formulation and present an exact algorithm ETBC
(Exact Temporal Betweenness Centrality) to compute the TBC val-
ues. The theory is applied to the transformed time instance graph
and is suitable for diverse optimal temporal paths. In order to re-
duce the scale of the time instance graph and thus speed up the
computation, we further design a lossless compression method
that compresses the time instance graph with equivalent vertices
and edges, and then propose an optimized calculation theory and
the optimized algorithm OTBC (Optimized Temporal Betweenness
Centrality). Note that, though the state-of-the-art method [6] is also
based on the idea of transformation, our proposed time instance
graph is more dominant in three aspects. (i) The time instance graph
is independent of the types of optimal temporal paths. That is
to say, whether the optimal temporal path is shortest or earliest,
the transformed time instance graph is the same. In contrast, the
transformation of the predecessor graph proposed in the previous
study [6] is strongly coupled with the types of optimal temporal
paths, which means that different optimal temporal paths require
constructing different predecessor graphs. (ii) The theory derived
from the time instance graph adapts to work with shortest, earliest,
and shortest earliest temporal paths, and can be easily extended to
other types of optimal temporal paths. While the theory derived
from the predecessor graph has limited adaptability, it cannot be
applied to the earliest temporal path. (iii) The size of time instance
graph is much smaller than that of the predecessor graph. Experi-
ments show that on the infectious dataset, the predecessor graph is
dozens of times larger than the time instance graph, and it consumes
90%+ memory.

In addition, to handle massive graphs, we propose an approxi-
matemethod ATBC (Approximate Temporal Betweenness Centrality).
The general idea of ATBC is to utilize the sampling method, which
considers only a subset of vertices or temporal paths. To reach

a certain accuracy with probabilistic guarantees and control the
number of iterations, we utilize a tight error upper bound derived
by Rademacher averages and integrate the optimized calculation
theory with ATBC.In brief, our contributions are summarized as
follows.

• We define a transformed time instance graph, which has
characteristics of versatility and adaptivity. Then we de-
rive a new recursive temporal dependency formulation and
present an exact algorithm ETBC to compute TBC based on
various optimal temporal paths.

• We devise a lossless compressionmethod to reduce the scale
of the time instance graph, and then propose an optimized
calculation theory and the optimized algorithm OTBC to
accelerate the TBC computation.

• To compute TBC in massive graphs, we devise a proba-
bilistically guaranteed, high-quality approximate method
ATBC, which utilizes a tight error upper bound derived by
Rademacher averages and integrates the optimized calcula-
tion theory.

• Experiments conducted on 13 real temporal networks demon-
strate the superior performance of the proposed methods.
In particular, compared with the state-of-the-art exact and
approximate methods, OTBC and ATBC are capable of up
to two and five orders of magnitude speedup, respectively,
and ATBC can scale to the large-scale graphs with 1.25M
vertices and 20.26M edges.

Due to space restrictions, all proofs can be found in Appendix B.

2 RELATEDWORK
BC computation on static graphs. Brandes’ algorithm [4] and its
improved versions, such as Brandes++ [10], BADIOS [32], are clas-
sic algorithms for computing exact BC values on static graphs. The
main idea is to recursively compute the dependencies of a vertex 𝑣
on others. To alleviate the cost of BC computation, a set of works
propose approximation methods [1, 5, 18, 27, 37] and distributed
approaches [2, 9, 14, 31, 33, 33, 35, 36]. Ziyad et al. [1] propose a
benchmark, called BeBeCA, for approximate BC computation. By
the ways of sampling, the approximation algorithms are mainly
divided into two categories, i.e., source sampling and node-pair
sampling. Source sampling [5, 18] selects pivots with the highest
degree, maximum or minimum distance strategies, then uses all
pair dependencies that start from the selected pivots to approxi-
mate BC values. Node-pair sampling [3, 8, 25, 27, 28] either uses
fixed-size sampling or progressive sampling to sample node-pairs
at random uniformly, and then computes the pair dependencies
of sampling node-pairs to approximate BC values. Another line
of research defines variants of BC, e.g., 𝑘-BC [26], ^-path central-
ity [21], ego-BC [11], which are easier to compute. Recently, Graph
Neural Network based inductive frameworks [12, 24] are presented,
but they have no probabilistic guarantees on the output. In sum-
mary, either exact or approximate BC computation algorithms for
static graphs are based on the subpath optimality property, which is
invalid on temporal graphs.

BC computation on temporal graphs. Researches investi-
gate queries or analysis tasks [17, 22, 29, 38, 40–42] on temporal
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graphs [7, 15, 20, 39]. Here, we focus on related works on tem-
poral paths and TBC calculation. Wang et al. [38] explored three
types (i.e., earliest arrival path, latest departure path, shortest du-
ration path) of route planning queries on timetable graphs. Wu
et al. [40, 41] studied minimum temporal paths computation and
temporal reachability queries. Buß et al. [6] theoretically investi-
gate algorithmic aspects of temporal betweenness variants based
on strict and non-strict shortest, the combination of shortest and
earliest temporal paths. They construct a predecessor graph and
adapt the approach of Brandes’ algorithm to the predecessor graph.
However, the proposed algorithm [6] cannot be applied to the earli-
est temporal path. Tsalouchidou et al. [34] consider the combination
of the path length and time duration as an optimality criterion, and
compute the exact TBC with static snapshots. These two methods
have the defects of large memory consumption and low efficiency.
ONBRA [30] is the first TBC approximation algorithm. It leverages
empirical Bernstein bound to guarantee the accuracy, and estimates
the TBC values based on the method proposed in [6].

3 PRELIMINARIES
Definition 1. (Temporal Graph). A directed un-weighted tem-

poral graph is denoted by 𝐺 = (𝑉 , 𝐸,𝑇 ), where (i) 𝑉 is a vertex set;
(ii) 𝐸 is a directed temporal edge set, 𝑒𝑖 = (𝑢, 𝑣, 𝑡𝑣) ∈ 𝐸 represents a
temporal edge from node 𝑢 to 𝑣 , indicating an instantaneous event
from 𝑢 to 𝑣 takes place at time 𝑡𝑣 ∈ 𝑇 ; and (iii) 𝑇 is a finite temporal
domain. ∀𝑤 ∈ 𝑉 , 𝑇𝑤 = {𝑡𝑖 | 1 ≤ 𝑖 ≤ ℎ} is the set of distinct times-
tamps attached with the incoming edges of𝑤 and ℎ is the number of
distinct timestamps attached with the incoming edges of𝑤 .

Let 𝑁𝑜𝑢𝑡 (𝑢) = {𝑣 | (𝑢, 𝑣, 𝑡𝑣) ∈ 𝐸} refer to the set of 𝑢’s out-
neighbors; 𝑁𝑖𝑛 (𝑢) = {𝑤 | (𝑤,𝑢, 𝑡𝑢 )} refer to the set of 𝑢’s in-
neighbors; and𝑁 (𝑢) = 𝑁𝑖𝑛 (𝑢)∪𝑁𝑜𝑢𝑡 (𝑢) be the set of𝑢’s neighbors.

Definition 2. (Temporal Path). A temporal path 𝑝 = 𝑢
𝑡1−→

𝑤1 · · ·
𝑡𝑚−1−→ 𝑤𝑚−1

𝑡𝑚−→ 𝑣 , is defined as a sequence of contacts with
non-decreasing time from 𝑢 to 𝑣 , where for 1 ≤ 𝑖 < 𝑚, 𝑡𝑖 ≤ 𝑡𝑖+1. We
refer to 𝑆𝑝 = 𝑡1 as the start time of 𝑝 , and 𝐸𝑝 = 𝑡𝑚 as the end time of
𝑝 . Further, we refer to 𝑑 (𝑝) = 𝑚 ( for unweighted temporal graphs,
𝑑 (𝑝) is the number of edges in 𝑝 ; for weighted temporal graphs, 𝑑 (𝑝)
is the sum of the weights of the edges in 𝑝) as the length of 𝑝 .

Based on the definition of the temporal graph and temporal
path, we introduce a function TP𝐺 (𝑠 , 𝑢) on a temporal graph𝐺 that
returns all directed temporal paths 𝑝 from a vertex 𝑠 to another
vertex 𝑢. Then, we define two common types of optimal temporal
paths, namely, shortest temporal path and earliest temporal path
below.

Definition 3. (Shortest Temporal Path). The set of shortest
temporal paths from 𝑠 to 𝑢 on 𝐺 , denoted as STP (𝑠,𝑢), includes the
paths 𝑝 with the minimal length 𝑚𝑖𝑛(𝑑 (𝑝′)) among all paths 𝑝′

returned by TP𝐺 (𝑠 , 𝑢).

Definition 4. (Earliest Temporal Path). The set of earliest tem-
poral path from 𝑠 to 𝑢 on 𝐺 , denoted as ETP (𝑠,𝑢), retrieves the paths
𝑝 with the earliest end time𝑚𝑖𝑛(𝐸𝑝′ ) among all paths 𝑝′ returned by
TP𝐺 (𝑠 , 𝑢).

Definition 5. (TBC). Given a temporal graph𝐺 = (𝑉 , 𝐸,𝑇 ), the
normalized temporal betweenness centrality value 𝑇𝐵𝐶 (𝑣) of any
vertex 𝑣 ∈ 𝑉 is defined as:

𝑇𝐵𝐶 (𝑣) = 1
|𝑉 | ( |𝑉 | − 1)

∑︁
∀𝑠≠𝑣≠𝑧∈𝑉

𝜎𝑠𝑧 (𝑣)
𝜎𝑠𝑧

where |𝑉 | is the number of vertices in 𝐺 ; 𝜎𝑠𝑧 denotes the num-
ber of optimal temporal paths from 𝑠 to 𝑧; and 𝜎𝑠𝑧 (𝑣) denotes the
number of optimal temporal paths from 𝑠 to 𝑧 that 𝑣 goes though.
For every vertex 𝑣 in 𝐺 , 𝑇𝐵𝐶 (𝑣) is proportional to the sum of the
fractions of optimal temporal paths that go through 𝑣 . The more
the temporal paths pass through 𝑣 , the higher the 𝑇𝐵𝐶 (𝑣) value.

Table 5 in Appendix A summarizes our notation.

4 EXACT TBC COMPUTATION
4.1 TBC Iterative Accumulation
Optimal temporal path counting on temporal graphs is much harder
than that on static graphs, because the recursive dependency ac-
cumulation proposed by Brandes [4] does not work. The key foun-
dation of the recursive dependency accumulation holds is that the
subpaths of shortest paths are still the shortest. Unfortunately, it is
not satisfied in temporal graphs, i.e., the subpaths of optimal tempo-
ral paths may not be optimal. Hence, new techniques specialized for
temporal graphs urgently need to be developed. Inspired by [44],
we want to transform the temporal graph into a static graph first,
and then try to derive a new temporal dependency accumulation
based on the transformed graph to efficiently compute TBC values.
The transformed graph is named as time instance graph.

Time instance graph. Given a temporal graph 𝐺 = (𝑉 , 𝐸,𝑇 ),
the time instance graph of𝐺 , denoted by𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ), is defined
as:

Vertices in 𝑽𝒕 . Each vertex 𝑣 ∈ 𝑉 is transformed into a set of
vertices 𝑆 (𝑣) in 𝑉𝑡 , where 𝑆 (𝑣) = {(𝑣, 𝑡𝑣) | 𝑡𝑣 ∈ 𝑇𝑣}. Here, 𝑇𝑣 is the
set of distinct time instances attached with the incoming edges of 𝑣 .
To distinguish vertex 𝑣 in original temporal graph, in the following,
we call the vertex (𝑣, 𝑡𝑣) in the time instance graph vertex instance of
𝑣 . Note that, for any edge (𝑢, 𝑣, 𝑡𝑣) ∈ 𝐸, if the timestamps associated
with the incoming edges of 𝑢 are all greater than 𝑡𝑣 , i.e., ∀𝑡𝑢 ∈ 𝑇𝑢 ,
𝑡𝑢 > 𝑡𝑣 holds, then 𝑢 is called a source vertex. Specially, if a vertex
𝑣 ∈ 𝑉 has no incoming temporal edges, 𝑣 is also a source vertex. For
each source vertex 𝑣 , in the time instance graph, there is a vertex
instance (𝑣, 𝑀𝐼𝑁 ) of 𝑣 , (𝑣, 𝑀𝐼𝑁 ) ∈ 𝑆 (𝑣), where 𝑀𝐼𝑁 denotes the
minimum timestamp.

Edge in 𝑬𝒕 . For each edge (𝑢, 𝑣, 𝑡𝑣) ∈ 𝐸, for each vertex instance
(𝑢, 𝑡𝑢 ) ∈ 𝑆 (𝑢), we create an edge {(𝑢, 𝑡𝑢 ), (𝑣, 𝑡𝑣)} from (𝑢, 𝑡𝑢 ) to
(𝑣, 𝑡𝑣) if 𝑡𝑢 ≤ 𝑡𝑣 .

The graph transformation algorithm is outlined in Appendix C.1.

Lemma 1. The optimal temporal paths from any vertex 𝑢 to 𝑣 in𝐺
can be exactly computed by traversing the paths from 𝑢 to all vertex
instances of 𝑣 in 𝐺 ′𝑠 time instance graph 𝐺𝑡 .

Brandes [4] defines the dependency of 𝑠 ∈ 𝑉 on a vertex 𝑣

as 𝛿𝑠. (𝑣) =
∑
𝑠≠𝑣≠𝑧∈𝑉 𝛿𝑠𝑧 (𝑣) =

∑
𝑠≠𝑣≠𝑧∈𝑉

𝜎𝑠𝑧 (𝑣)
𝜎𝑠𝑧

, i.e., the ratio of
shortest paths from 𝑠 that 𝑣 lies on. In this paper, similarly, we
introduce the temporal dependency below.
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Figure 2: Example of a temporal graph, time instance graph, and the compressed time instance graph

Definition 6. The temporal dependency of 𝑠 on a vertex instance
(𝑣, 𝑡𝑣) is defined as 𝛿𝑠. (𝑣, 𝑡𝑣) =

∑
𝑠≠𝑣≠𝑧∈𝑉 𝛿𝑠𝑧 (𝑣, 𝑡𝑣) =

∑
𝑠≠𝑣≠𝑧∈𝑉

𝜎𝑠𝑧 (𝑣,𝑡𝑣 )
𝜎𝑠𝑧

, where 𝜎𝑠𝑧 (𝑣, 𝑡𝑣) is the number of optimal temporal paths
from 𝑠 to 𝑧 via 𝑣 at time 𝑡𝑣 . 𝜎𝑠𝑧 is the number of optimal temporal
paths from 𝑠 to 𝑧.

Lemma 2. The temporal dependency 𝛿𝑠. (𝑣, 𝑡𝑣) of 𝑠 on (𝑣, 𝑡𝑣) obeys:

𝛿𝑠. (𝑣, 𝑡𝑣 ) =
∑︁

𝑠≠𝑣≠𝑧∈𝑉
𝛿𝑠𝑧 (𝑣, 𝑡𝑣 ) =

∑︁
𝑠≠𝑣≠𝑧∈𝑉

𝜎𝑠𝑧 (𝑣, 𝑡𝑣 )
𝜎𝑠𝑧

=
∑︁

(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )
(

𝜎𝑠 (𝑣,𝑡𝑣 ) ·𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 )∑
𝑡 ′∈𝑇𝑤 𝜎𝑠 (𝑤,𝑡 ′ ) ·𝐹𝑙𝑎𝑔 (𝑤, 𝑡 ′ )

+
𝜎𝑠 (𝑣,𝑡𝑣 )
𝜎𝑠 (𝑤,𝑡𝑤 )

· 𝛿𝑠. (𝑤, 𝑡𝑤 ) ),

where 𝜎𝑠 (𝑣,𝑡𝑣 ) is the number of local optimal paths from 𝑠 to the vertex
instance (𝑣, 𝑡𝑣). Note that, we refer to the optimal path from 𝑠 to the
vertex instance (𝑣, 𝑡𝑣), obtained by traversing the time instance graph
𝐺𝑡 , as the “local optimal path” for the sake of distinction, because
the local optimal path may not be the real optimal path from 𝑠 to
𝑣 . 𝑃𝑠 (𝑤, 𝑡𝑤) is the list of predecessors of a vertex instance (𝑤, 𝑡𝑤)
on local optimal paths from 𝑠 . As the local optimal paths from 𝑠 to
(𝑤, 𝑡𝑤) computed in 𝐺𝑡 may not be the optimal temporal paths from
𝑠 to 𝑤 , 𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤) is used to indicate whether the vertex instance
(𝑤, 𝑡𝑤) is the end vertex of an optimal temporal path from 𝑠 to 𝑤 .
𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤) is either 0 or 1, 𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤) = 1 means that (𝑤, 𝑡𝑤) is
the end vertex, otherwise 𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤) = 0.

Lemma 2 shows that the dependency of 𝑠 on the vertex instance
(𝑣, 𝑡𝑣) can be computed using the dependencies of 𝑠 on the succes-
sors of (𝑣, 𝑡𝑣). Note that, not all the successors have contribution to
the temporal dependency score. Only successors (𝑤, 𝑡𝑤) that are
end vertices of optimal temporal paths from 𝑠 contribute to 𝛿𝑠. (𝑣, 𝑡𝑣).
For instance, in Figure 2(b), 𝑎→ (𝑏, 1) (or (𝑏, 3))→ (𝑐, 5) → (𝑦, 6)
is a local shortest path, and 𝑎→ (𝑥, 1) → (𝑦, 2) is the optimal short-
est path from 𝑎 to 𝑦, which show that (𝑦, 2) is the end vertex of
an optimal temporal path from 𝑎 to 𝑦, while (𝑦, 6) is not. Hence,
𝐹𝑙𝑎𝑔(𝑦, 6) = 0 and (𝑦, 6) has no contribution to 𝛿𝑎. (𝑐, 5), 𝛿𝑎. (𝑏, 1)
(or 𝛿𝑎. (𝑏, 3)). The dependency scores of all vertex instances can be
iteratively accumulated by traversing the time instance graph in
non-increasing distances from 𝑠 .

Lemma 3. The TBC value of a vertex 𝑣 in the temporal graph 𝐺
is the sum of temporal dependencies of all vertices in 𝐺 on 𝑣 ′𝑠 vertex
instances.

𝑇𝐵𝐶 (𝑣) = 1
|𝑉 | ( |𝑉 | − 1)

∑︁
𝑠∈𝑉

∑︁
𝑡𝑣 ∈𝑇𝑣

𝛿𝑠. (𝑣, 𝑡𝑣)

Algorithm 1: ETBC algorithm
Input: time instance graph𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 )
Output:𝑇𝐵𝐶 (𝑣) for each vertex 𝑣 ∈ 𝑉

1: foreach 𝑠 ∈ 𝑉 do
2: 𝑑 (𝑠, (𝑤, 𝑡𝑤 ) ) , 𝑑 (𝑠, 𝑤 ) , 𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 ) , 𝑃𝑠 (𝑤, 𝑡𝑤 ) , 𝜎𝑠 (𝑤,𝑡𝑤 ) ,𝑄

← SSSP(𝐺𝑡 , 𝑠)
3: while𝑄 is not empty do
4: dequeue (𝑤, 𝑡𝑤 ) ←𝑄

5: foreach (𝑣, 𝑡𝑣 ) ∈ 𝑃𝑠 (𝑤, 𝑡𝑤 ) do
6: compute 𝛿𝑠 (𝑤,𝑡𝑤 ) (𝑣, 𝑡𝑣 ) , 𝛿𝑠. (𝑣, 𝑡𝑣 ) ← 𝛿𝑠. (𝑣, 𝑡𝑣 ) +

𝛿𝑠 (𝑤,𝑡𝑤 ) (𝑣, 𝑡𝑣 ) by Lemma 2

7: TBC (𝑤 )← 1
|𝑉 | ( |𝑉 |−1) (TBC (𝑤 ) +𝛿𝑠. (𝑤, 𝑡𝑤 ) ) by Lemma 3

8: return𝑇𝐵𝐶 (𝑣) for each vertex 𝑣 ∈ 𝑉

4.2 Exact Algorithm
Lemma 2 together with Lemma 3 allows us to iteratively compute
the𝑇𝐵𝐶 (𝑣) by traversing the time instance graph. We propose an Ex-
act TBC computation algorithm ETBC based on the definition of STP,
while calculating TBC based on ETP is similar. The pseudo-code of
ETBC is shown in Algorithm 1. ETBC consists of two phases. In the
first phase, ETBC runs a single-source shortest path SSSP algorithm
(e.g., breadth-first search (BFS) for un-weighted temporal graph;
Dijkstra’s algorithm for weighted temporal graph) from every ver-
tex 𝑠 to compute the shortest paths to all the other vertex instances,
and maintains (i) the local shortest path distance 𝑑 (𝑠, (𝑤, 𝑡𝑤)) from
𝑠 to any vertex instance (𝑤, 𝑡𝑤); (ii) the shortest temporal path
distance 𝑑 (𝑠,𝑤) =𝑚𝑖𝑛𝑡𝑤 ∈𝑇𝑤𝑑 (𝑠, (𝑤, 𝑡𝑤)) from 𝑠 to𝑤 ; (iii) the flag
𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤) that indicates whether (𝑤, 𝑡𝑤) is the end vertex of an
optimal temporal path from 𝑠 to𝑤 ; (iv) the list 𝑃𝑠 (𝑤, 𝑡𝑤) of prede-
cessors for (𝑤, 𝑡𝑤) on all local shortest paths from 𝑠; (v) the queue
𝑄 that stores the vertex instances in nondecreasing shortest path
distance from 𝑠; and (vi) the count 𝜎𝑠 (𝑤,𝑡𝑤 ) of local shortest paths
from 𝑠 to (𝑤, 𝑡𝑤) (line 2). Lemma 1 shows that traversing the time
instance graph correctly finds all the shortest temporal paths from 𝑠

to any vertex𝑤 . In the second phase, ETBC iteratively dequeues the
vertex instances from 𝑄 and accumulates temporal dependencies
by applying Lemma 2 (lines 3-6). At the end of each iteration, the
temporal dependencies of 𝑠 on each other vertex instance (𝑧, 𝑡𝑧)
are added to corresponding 𝑇𝐵𝐶 (𝑧) according to Lemma 3 (line 7).

Time Complexity. The core part of ETBC is single-source short-
est path computation, which can be determined in𝑂 ( |𝑉𝑡 | + |𝐸𝑡 |) for
un-weighted temporal graphs or 𝑂 ( |𝐸𝑡 | + |𝑉𝑡 |𝑙𝑜𝑔 |𝑉𝑡 |) for weighted
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graphs. Therefore, the computational complexity for ETBC is𝑂 ( |𝑉𝑡 |
( |𝐸𝑡 | + |𝑉𝑡 | 𝑙𝑜𝑔 |𝑉𝑡 |)) for weighted temporal graphs and𝑂 ( |𝑉𝑡 | ( |𝑉𝑡 |+
|𝐸𝑡 |)) for un-weighted temporal graphs, where |𝑉𝑡 | and |𝐸𝑡 | are the
number of vertex instances and edges in 𝐺𝑡 , respectively.

4.3 Optimization Techniques
We present compression techniques to reduce the number of vertex
instances and edges in the time instance graph, and thus optimize
TBC computation.

Rule 1: Vertex instance compression.We define equivalent
vertex instances whose temporal dependencies are the same and
compress these vertex instances to avoid extra computation.

Equivalent vertex instances. For the vertex instances (𝑤, 𝑡1),
(𝑤, 𝑡2) of the same vertex 𝑤 , (𝑤, 𝑡1) and (𝑤, 𝑡2) are equivalent if
and only if their in-neighbors and out-neighbors are same, i.e.,
𝑁𝑖𝑛 (𝑤, 𝑡1) = 𝑁𝑖𝑛 (𝑤, 𝑡2), 𝑁𝑜𝑢𝑡 (𝑤, 𝑡1) = 𝑁𝑜𝑢𝑡 (𝑤, 𝑡2). The equiva-
lent vertex instances (𝑤, 𝑡1), (𝑤, 𝑡2) are compressed into a vertex
instance (𝑤, {𝑡1, 𝑡2}). Let 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤) denote the number of equiva-
lent vertex instances. Initially, 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤) = 1 for all (𝑤, 𝑡𝑤) ∈ 𝑉𝑡 .

Rule 2: Edge compression. For the vertex instances (𝑤, 𝑡1),
(𝑤, 𝑡2), · · · , (𝑤, 𝑡𝑛) of the same vertex𝑤 , if 𝑁𝑖𝑛 (𝑤, 𝑡1) = 𝑁𝑖𝑛 (𝑤, 𝑡2)
· · · = 𝑁𝑖𝑛 (𝑤, 𝑡𝑛), then do the following edge compression: We sort
the vertex instances (𝑤, 𝑡1), (𝑤, 𝑡2), · · · , (𝑤, 𝑡𝑛) in nondecreasing
timestamp, and then create virtual edges between adjacent vertex
instances. At the same time, (i) For each in-neighbor (𝑢, 𝑡𝑢 ) in
𝑁𝑖𝑛 (𝑤, 𝑡𝑖 ) (1 ≤ 𝑖 ≤ 𝑛), we remove all the edges from (𝑢, 𝑡𝑢 ) to
(𝑤, 𝑡𝑖 ) (1 ≤ 𝑖 ≤ 𝑛) except edge {(𝑢, 𝑡𝑢 ), (𝑤, 𝑡 𝑗 )} having 𝑡 𝑗 =𝑚𝑖𝑛{𝑡 |
𝑡 ≥ 𝑡𝑢 , 𝑡 ∈ {𝑡1, 𝑡2, · · · , 𝑡𝑛}}; (ii) For the same out-neighbor (𝑣, 𝑡𝑣) in
𝑁𝑜𝑢𝑡 (𝑤, 𝑡𝑖 ) (1 ≤ 𝑖 ≤ 𝑛), we remove all the edges from (𝑤, 𝑡𝑖 ) (1 ≤
𝑖 ≤ 𝑛) to (𝑣, 𝑡𝑣) except edge {(𝑤, 𝑡𝑖 ), (𝑣, 𝑡𝑣)} having 𝑡𝑘 = 𝑚𝑎𝑥{𝑡 |
𝑡 ≤ 𝑡𝑣, 𝑡 ∈ {𝑡1, 𝑡2, · · · , 𝑡𝑛}}.

Note that, the weights of virtual edges are 0. On one hand, virtual
edges pass the value of 𝜎𝑠 (𝑤,𝑡1 ) to (𝑤, 𝑡2), · · · , (𝑤, 𝑡𝑛); on the other
hand, the temporal dependencies on successors are propagated to
(𝑤, 𝑡𝑛), as well as (𝑤, 𝑡𝑛−1), · · · , (𝑤, 𝑡1) along virtual edges. How-
ever, the temporal dependency on (𝑤, 𝑡𝑛) should not be propagated
to (𝑤, 𝑡1), (𝑤, 𝑡2), · · · ,(𝑤, 𝑡𝑛−1) via virtual edges, because (𝑤, 𝑡1),
(𝑤, 𝑡2), · · · , (𝑤, 𝑡𝑛) are the instances of the same vertex𝑤 .

Example 2. Take Figure 2 as an example. Figure 2(b) shows the
time instance graph 𝐺𝑡 of the temporal graph 𝐺 depicted in Fig-
ure 2(a). The final compressed time instance graph is shown in Fig-
ure 2(c). First, (𝑏, 1), (𝑏, 3) are equivalent and are compressed into
(𝑏, {1, 3}), as 𝑁 (𝑏, 1) = 𝑁 (𝑏, 3) = {(𝑎,𝑀𝐼𝑁 ), (𝑐, 5), (𝑐, 7), (𝑚, 4)}.
Then, for (𝑐, 5) and (𝑐, 7), 𝑁𝑖𝑛 (𝑐, 5) = 𝑁𝑖𝑛 (𝑐, 7) = {(𝑏, {1, 3})}, hence
we do edge compression. A virtual edge (shown in red dotted in Fig-
ure 2(c)) {(𝑐, 5), (𝑐, 7)} is created, {(𝑏, {1, 3}), (𝑐, 7)}, {(𝑐, 5), (𝑑, 8)},
{(𝑐, 5), (𝑑, 9)}, {(𝑐, 5), (𝑑, 10)} are removed. In the sequel, (𝑑, 8),
(𝑑, 9), (𝑑, 10) are identified as equivalent vertex instances, then they
are compressed into (𝑑, {8, 9, 10}), and 𝐼𝑑𝑒𝑛𝑡 (𝑑, {8, 9, 10}) = 3.

Lemma 4. After compression, the temporal dependency 𝛿𝑠. (𝑣, 𝑡𝑣)
of 𝑠 on (𝑣, 𝑡𝑣) is optimized as:

𝛿𝑠. (𝑣, 𝑡𝑣 ) =
∑︁

(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )
(

𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 )∑
𝑡 ′∈𝑇𝑤 𝜎𝑠 (𝑤,𝑡 ′ ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡 ′ )

·𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 ) +
𝜎𝑠 (𝑣,𝑡𝑣 ) ·𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 )

𝜎𝑠 (𝑤,𝑡𝑤 )
·𝛿𝑠. (𝑤, 𝑡𝑤 ) ),

where

𝜎𝑠 (𝑤,𝑡𝑤 ) =


∑︁

∀(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )
𝜎𝑠 (𝑣,𝑡𝑣 ) ·𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 ), 𝑠≠𝑣

𝜎 ′
𝑠 (𝑤,𝑡𝑤 ) · 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜎′
𝑠 (𝑤,𝑡𝑤 ) is the number of local optimal paths from 𝑠 to (𝑤, 𝑡𝑤)

computed by traversing the compressed time instance graph.

Based on 𝐺𝑡 , we present OTBC algorithm, which optimizes the
ETBC (𝛿𝑠. (𝑣, 𝑡𝑣) computation in line 6) with Lemma 4. In addition,
the calculation of optimal temporal paths from different sources and
the summation of the temporal dependencies to compute the TBCs
are independent, and thus they could be completely parallel (i.e.,
lines 1-7 of Algorithm 1 are paralleled computed) using OpenMP.
OpenMP delegates a user-specified number of threads to compute
the number of optimal temporal paths from different sources to
other vertices in parallel. During the computation, different threads
create their own local memory capacity, and they do not share any
local data. At the end, different threads need to add the TBCs of
vertex instances to the global TBCs, which are maintained by an
array.

Due to limited space, an example that shows how 𝛿𝑠. (𝑣, 𝑡𝑣) is com-
puted by Lemma 4 is detailed in Appendix D. The graph compres-
sion algorithm and theoretical complexity analyses are provided
in Appendix C. The compression ratios, how to support various
optimal paths, and how to handle graph updates are discussed in
Appendix E.

5 APPROXIMATE TBC COMPUTATION
Today’s temporal networks are massive, maintaining the TBC value
on temporal graphs with millions of nodes and tens of millions of
temporal edges is prohibitive. A high-quality approximate com-
putation is more feasible. Hence, based on the compressed time
instance graph, we further propose an approximate TBC computa-
tion method, called ATBC, which guarantees that all approximate
TBC values are within an additive factor 𝜖 ∈ (0, 1) from the real
values, with probability at least 1 − 𝛿 . i.e.,

𝑃𝑟 (∀𝑤 ∈ 𝑉 , |�𝑇𝐵𝐶 (𝑤) −𝑇𝐵𝐶 (𝑤) | ≤ 𝜖) ≥ 1 − 𝛿.

ATBC is inspired by the idea of ABRA [28], which exploits Rademacher
Averages to derive an upper bound to the maximum deviation of
the approximate values from exact ones, and then uses progressive
random sampling to iterative compute approximate TBC value that
is an (𝜖, 𝛿)-approximation. Fortunately, the upper bound derived by
Rademacher Averages is also suitable for TBC estimation. Here we
directly present the upper bound. While the in-depth proof and dis-
cussion are not elaborated.We refer the readers to the literature [28]
for details.

Let the finite domain R be the pairs of different nodes, and 𝑓𝑤 :
R → [0, 1] be the function, which is defined as 𝑓𝑤 (𝑠, 𝑧) = 𝜎𝑠𝑧 (𝑤 )

𝜎𝑠𝑧
.

F = {𝑓𝑤 ,𝑤 ∈ 𝑉 } is a family of functions from R to [0, 1]. Let S
be a set of vertex pairs sampled from R. For each sampled vertex
pair (𝑢𝑖 , 𝑣𝑖 ) ∈ S, v𝑤 = (𝑓𝑤 (𝑢1, 𝑣1), 𝑓𝑤 (𝑢2, 𝑣2), · · · , 𝑓𝑤 (𝑢 |S | , 𝑣 |S | ))
is a vector, andVS = {v𝑤 ,𝑤 ∈ 𝑉 }. [ ∈ (0, 1) is a parameter. Then,
the upper bound 𝑢𝑏 = 𝑠𝑢𝑝 |𝑇𝐵𝐶 (𝑤) − �𝑇𝐵𝐶 (𝑤) | to the maximum
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deviation is:

𝑢𝑏 ≤ 𝜔∗

1 − 𝛼 +
𝑙𝑛 2

[

2 |S |𝛼 (1 − 𝛼 ) +

√︄
𝑙𝑛 2

[

2 |S |

𝛼 =
𝑙𝑛 2

[

𝑙𝑛 2
[ +

√︃
(2|S|𝜔∗ + 𝑙𝑛 2

[ )𝑙𝑛
2
[

𝜔∗ =𝑚𝑖𝑛𝑐∈R+
1
𝑐
𝑙𝑛

∑︁
v∈VS

𝑒𝑥𝑝 (𝑐2 | |v| |2/2|S|2) (1)

Based on the derived upper bound, ATBC is developed. In sum-
mary, ATBC is an iterative algorithm, which samples vertex pairs
and iteratively computes �𝑇𝐵𝐶 (𝑤) = | |v𝑤 | |/|S| (∀𝑤 ∈ 𝑉 ) by the op-
timized calculation theory until a (𝜖, 𝛿)-approximation is achieved.
In each iteration, ATBC first sample a set of original vertex pairs. For
each pair (𝑢, 𝑣), ATBC performs the single-source shortest path al-
gorithm from 𝑢 to all 𝑣 ′s vertex instances (𝑣, 𝑡𝑣) on the compressed
temporal graph. For all the traversed vertex instances (𝑧, 𝑡𝑧), ATBC
computes predecessors, the shortest temporal path distance, the flag
𝐹𝑙𝑎𝑔(𝑣, 𝑡𝑣) that indicates whether (𝑣, 𝑡𝑣) is the end vertex of an opti-
mal temporal path from 𝑢 to 𝑣 , and the count 𝜎𝑢 (𝑧,𝑡𝑧 ) of local short-
est paths by Eq. 1. If all the vertex instances of 𝑣 are traversed, ATBC
computes 𝜎𝑢𝑣 , starts backtracking (𝑤, 𝑡𝑤) from all vertex instances
(𝑣, 𝑡𝑣) of 𝑣 having 𝐹𝑙𝑎𝑔(𝑣, 𝑡𝑣) = 1 to 𝑢 along the computed short-
est paths, computes 𝜎𝑢𝑣 (𝑤) =

∑
(𝑤,𝑡𝑤 ) ∈𝑆 (𝑤 ),𝐹𝑙𝑎𝑔 (𝑣,𝑡𝑣 )=1 𝜎𝑢 (𝑣,𝑡𝑣 )

(𝑤, 𝑡𝑤), 𝑓𝑤 (𝑢, 𝑣) =
𝜎𝑢𝑣 (𝑤 )
𝜎𝑢𝑣

, and updates vector v𝑤 . Thereafter,
ATBC checks whether (𝜖, 𝛿)-approximation is satisfied (i.e., the
stopping condition 𝑢𝑏 ≤ 𝜖 holds). The pseudocode of ATBC and
complexity analysis are provided in Appendix C.

6 EXPERIMENTAL EVALUATION
Datasets. We employ 13 real temporal graphs. The statistics are
summarized in columns 2-4 of Table 1, where |𝑉 |, |𝐸 | and |𝑇 | are
the number of vertices, the number of edges, and the number of
distinct timestamps, respectively. The datasets from highschool-
2011 to infectious are from SocioPatterns1; emails, wikivoyage-
it, and wikiedits-se are from Konect2; mathoverflow, superuser,
wikitalk are from the SNAP3. For every dataset, we performed ten
runs for each combination of parameters and randomly reported
the results for a run as the variance between the different runs was
essentially insignificant.

Methods. We compare the proposed exact algorithm ETBC, op-
timized algorithm OTBC, and approximate algorithm ATBC with
the following exact approaches: (i) sliding temporal window based
method TBC [34]4, which considers the combination of the path
length and the time duration as an optimality criterion; (ii) state-
of-the-art exact TBC computation method, called KDD-TBC [6]5;
and (iii) state-of-the-art approximate TBC computation method
ONBRA [30]6.

1SocioPatterns is available at http://www.sociopatterns.org/datasets/.
2Konect is available at http://konect.cc/
3SNAP is available at https://snap.stanford.edu/data/.
4Code of TBC is available at https://goo.gl/PAAJvp.
5Code of KDD-TBC is available at http://fpt.akt.tu-berlin.de/software/
temporal_betweenness/.
6Code of ONBRA is available at https://github.com/iliesarpe/ONBRA.

All methods were implemented in C++, and run on a Ubuntu ma-
chine of 128G memory and two Intel(R) Xeon(R) E5-2640 2.40GHz
CPU. Particularly, in each experiment, we use parallel techniques
based on OpenMP to speed up centrality computation, and set the
number of threads to 24 to achieve good performance. Note that
we use bold values in the tables to highlight the best results, “—” to
indicate that an algorithm cannot return the result within 24 hours,
and “OOM” to represent that a method runs out of memory.

6.1 Statistics of Time Instance Graph
Table 1 presents the scale of the transformed and compressed time
instance graphs, as well as the compression ratios. Specifically, com-
pression ratios includes vertex compression ratio 𝑣𝑐-𝑟𝑎𝑡𝑖𝑜 and edge
compression ratio 𝑒𝑐-𝑟𝑎𝑡𝑖𝑜 , which are defined as 𝑣𝑐-𝑟𝑎𝑡𝑖𝑜 = 1− |𝑉

′
𝑡 |
|𝑉𝑡 |

and 𝑒𝑐-𝑟𝑎𝑡𝑖𝑜 = 1 − |𝐸
′
𝑡 |
|𝐸𝑡 | . The larger the compression ratio is, the

more effective the compression strategies are. First, it is observed
that the number of vertices in the transformed time instance graphs
is from 4 to 505 times larger than that in the original temporal
graphs, and the number of edges in the transformed time instance
graphs is from 6 to 651 times larger. Second, as shown in Table 1,
vc-ratio and ec-ratio are in the range of (0.1, 0.8) and (0.2, 1), respec-
tively, which shows the effectiveness of the compression strategies
and the estimation method proposed in Section 4.3.

6.2 Performance of Exact Methods
TBC Performance based on STP. Following KDD-TBC [6], we
distinguish strict (-Str) and non-strict (-Nstr) temporal paths by
whether the timestamps of consecutive edges in a temporal path are
strictly ascending or non-strictly ascending. Note that, onwikivoyage-
it, wikiedits-se, mathoverflow, superuser, and wikitalk, KDD-TBC
runs out of memorywith a single thread. On infectious, the reported
time is obtained using a single thread, because KDD-TBC requires
120.9 GB of RAM peak in the single-threaded environment, and
thus cannot run in the multi-threaded environment. As shown in
Table 2, the first observation is that the performance of TBC compu-
tation based on non-strict and strict temporal paths are very similar,
ETBC and OTBC are clearly faster than comparable approaches over
different datasets. For example, the computation cost of OTBC-Str
is between 9 and 525 times less than that of KDD-TBC-Str; the run-
ning time of ETBC-Str is between 4 and 310 times less than that of
KDD-TBC-Str. The reason is that our defined time instance graph
preserves all temporal reachabilities, based on which, temporal
dependency formulations proposed by Lemmas 2 and 4, and multi-
thread technique enables ETBC and OTBC iteratively accumulate the
temporal dependencies for fast computing TBC values. The second
observation is that OTBC outperforms ETBC on all datasets due
to the effective compression strategies as analyzed in Section 6.1
and the optimized temporal dependency enabled by Lemma 4. The
third observation is that KDD-TBC runs out of memory on massive
datasets, TBC cannot return the result within 24 hours on most
of the datasets. In contrast, on mathoverflow, OTBC can complete
the TBC computation in 26min. This is because TBC needs to set a
large window size when the timestamps of the dataset have a great
dispersion, resulting in lots of time to copy the graph data in the
static window. KDD-TBC needs to construct predecessor graphs.
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Table 1: Statistics of the datasets, transformed and compressed time instance graphs, and the compression ratio

Datasets Temporal graph Time instance graph Compressed time instance graph Compression
|𝑽 | |𝑬 | |𝑻 | |𝑽𝒕 | |𝑬𝒕 | Size (MB) Time(s) |𝑽 ′

𝒕 | |𝑬 ′
𝒕 | Size (MB) Time (s) 𝒗𝒄-𝒓𝒂𝒕 𝒊𝒐 𝒆𝒄-𝒓𝒂𝒕 𝒊𝒐

highschool-2011 126 28,560 5,609 25,665 1,904,005 14.82 0.3 8,068 232,712 1.9 0.37 0.686 0.878
highschool-2012 180 45,047 11,272 41,042 6,189,685 47.69 0.8 12,874 462,442 3.73 1.32 0.686 0.925
highschool-2013 327 188,508 7,375 165,715 39,991,015 307 19.54 62,924 4,528,189 35.42 11.83 0.620 0.887

hypertext 113 20,818 5,246 18,603 1,684,899 13.06 0.86 9,045 399,944 3.15 1.17 0.514 0.763
hospital-ward 75 32,424 9,453 27,875 10,161,230 77.84 1.36 14,141 1,842,198 14.21 4.15 0.493 0.819
primaryschool 242 125,773 3,100 98,836 21,985,732 168.86 8.86 69,768 8,345,334 64.31 20.75 0.294 0.620
infectious 10,972 415,912 76,944 339,836 7,343,768 59.91 2.09 209,145 3,094,542 25.72 4.74 0.385 0.579
emails 167 82,927 57,791 82,543 54,108,283 413.75 8.86 73,089 40,416,483 308.94 20.75 0.115 0.253

wikivoyage-it 31,501 419,474 404,760 417,258 20,709,922 162.77 0.57 96,059 571,135 6.31 4.82 0.770 0.972
wikiedits-se 18,055 261,169 258,625 261,188 1,861,159 17.18 3.01 132,318 543,915 5.65 11.32 0.493 0.708
mathoverflow 24,818 506,550 389,952 398,563 95,730,373 734.92 16.08 325,399 56,302,782 432.34 31.07 0.184 0.412
superuser 194,085 1,443,339 1,437,199 1,196,237 240,817,065 1850.98 52.68 1,053,956 148,487,326 1141.79 113.61 0.119 0.383
wikitalk 1,140,149 7,833,140 7,375,042 6,143,193 2,013,180,452 15429.65 661.23 4,766,098 1,228,161,722 9423.41 3078.4 0.224 0.390

Table 2: TBC computation time based on STP (in seconds)

Datasets ETBC-Str OTBC-Str KDD-TBC-Str TBC-Str ETBC-Nstr OTBC-Nstr KDD-TBC-Nstr TBC-Nstr

highschool-2011 0.21 0.07 0.84 4,397.62 0.23 0.07 0.86 4,407.68
highschool-2012 0.64 0.17 4.15 35,421.35 0.66 0.17 4.2 35,633.62
highschool-2013 5.48 1.61 40.59 — 5.52 1.62 40.63 —

hypertext 0.38 0.16 1.55 4,460.36 0.38 0.18 1.54 4,473.61
hospital-ward 0.82 0.25 6.72 4,018.29 0.84 0.25 6.83 4,038.44
primaryschool 3.15 2.12 20.77 8,067.85 3.58 2.13 20.93 8,235.78
infectious 5.09 3.01 1,583.62 — 5.12 3.08 1,590.58 —
emails 10.05 9.55 109.44 — 11.05 10.23 109.53 —

wikivoyage-it 31.42 7.01 OOM — 32.63 7.46 OOM —
wikiedits-se 5.37 2.53 OOM — 6.89 2.56 OOM —
mathoverflow 1,709.55 1,517.13 OOM — 1,717.96 1,522.64 OOM —
superuser 30,926 27,030.7 OOM — 31,100.5 27,069.8 OOM —

Table 3: TBC computation time based on ETP, and the com-
binations of STP and ETP (STP&ETP) (in seconds)

Datasets ETP STP&ETP
ETBC OTBC ETBC OTBC KDD-TBC

highschool-2011 12.08 1.24 0.23 0.08 0.89
highschool-2012 732.07 6.81 0.69 0.17 4.42
highschool-2013 OOM 134.39 5.92 1.62 42.61

hypertext 345.77 17.43 0.38 0.18 1.72
hospital-ward 244.54 28.93 0.91 0.25 7.68
primaryschool 1,582.80 358.56 3.61 2.21 21.78
infectious OOM 3,375.48 5.75 3.36 1,597.59
emails OOM OOM 11.77 10.61 104.59

wikivoyage-it 119.35 11.13 36.71 7.47 OOM
wikiedits-se 8.24 4.71 7.02 2.75 OOM
mathoverflow OOM — 1,743.09 1,538.79 OOM
superuser OOM OOM 31,173.3 27,126.5 OOM

TBC Performance based on ETP and the combinations of
STP and ETP. KDD-TBC cannot be applied to ETP, and thus it is
excluded for the case of ETP. As shown in Table 3, first, it is seen
that the performance based on STP, the combinations of STP and
ETP, is comparable; while ETP takes longer computation time than
STP. Second, it is observed that, the improvement of OTBC on STP
in Table 2 is not as significant as that on ETP in Table 3. This is
because, either ETP or STP finds all the local optimal temporal
paths by traversal. For STP, the first time the vertex instance (𝑣, 𝑡𝑣)
is visited during the traversal, all the shortest paths from the source
vertex to (𝑣, 𝑡𝑣) are found, other paths to (𝑣, 𝑡𝑣) are pruned and
would not be extended. While this does not hold for ETP. During
traversal, every time (𝑣, 𝑡𝑣) is visited, the path to (𝑣, 𝑡𝑣) is the ETP
and should be extended, thus paths will be repeatedly traversed.
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Figure 3: Performance versus the number of threads

Compared to STP, OTBC acceleration of this part is amplified, and
hence the improvement of OTBC on ETP is more significant. Last,
we observe that OTBC achieves the highest efficiency, with ETBC in
the second place, and then KDD-TBC.

Effect of the number of threads. We vary the number of
threads from 1 to 32, and report the performance of ETBC and
OTBC on wikiedits-se and infectious in Figure 3. As expected, mem-
ory usage linearly increases with the growth of the number of
threads. In addition, it is observed that, the computation cost first
sharply drops and then increases or stays stable when the number
of threads (denoted by #thread) grows. The reason is that with more
threads, there is more parallelism. But when the number of threads
increases to a certain number, the thread overhead dominates the
overall computing cost, and the costs of thread switching and data
consistency guarantee increase. As tested, the optimal number of
threads is decided by the scale of the input graph. For the small-
scale or middle-scale datasets (such as wikivoyage-it, wikiedits-se),
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Table 4: Efficiency and accuracy of ATBC (in seconds, 𝛿 = 0.1)

Datasets 𝝐 ATBC Speedup w.r.t. Sample size Absolute Error(×10−5 )
KDD-TBC ONBRA OTBC max min avg stddev

infectious

0.005 0.431 4,082 3,745 5.984 66,312 6.380 0 0.128 0.355
0.010 0.179 9,835 4,336 15.816 17,657 11.084 0 0.171 0.705
0.015 0.135 13,011 3,889 21.296 8,245 22.559 0 0.211 1.113
0.020 0.104 16,909 3,684 27.942 5,034 57.514 0 0.246 1.701

|𝑉 ′𝑡 | = 215, 006 0.025 0.071 24,636 3,921 41.394 3,239 30.642 0 0.185 1.372
|𝐸′𝑡 | = 3, 207, 294 0.030 0.062 28,447 3,783 47.548 2,414 80.907 0 0.221 2.074

wikivoyage-it

0.005 6.586

OOM OOM

0.064 73,753 4.483 0 0.003 0.073
0.010 3.496 1.005 18,718 22.343 0 0.005 0.178
0.015 2.167 2.235 9,005 13.492 0 0.005 0.190
0.020 1.439 3.871 5,172 44.946 0 0.008 0.380

|𝑉 ′𝑡 | = 124, 371 0.025 0.741 8.460 3,338 26.536 0 0.005 0.224
|𝐸′𝑡 | = 658, 702 0.030 0.553 11.676 2,339 43.699 0 0.005 0.306

wikiedits-se

0.010 2.325

OOM

>35,542 0.088 17,657 7.190 0 0.009 0.158
0.015 1.196 >69,067 1.115 8,051 18.090 0 0.012 0.286
0.020 0.812 >101,781 2.116 4,929 36.926 0 0.013 0.420

|𝑉 ′𝑡 | = 148, 788 0.025 0.797 >103,623 2.174 3,215 31.054 0 0.020 0.568
|𝐸′𝑡 | = 669, 513 0.030 0.425 >194,263 4.953 2,332 42.662 0 0.014 0.511

mathoverflow

0.010 1,291.45

OOM

27.09 0.175 35,723 82.493 0 0.581 2.654
0.015 697.164 34.23 1.176 16,108 155.582 0 0.867 4.205
0.020 458.66 33.83 2.308 10,035 185.204 0 1.022 4.939

|𝑉 ′𝑡 | = 342, 044 0.025 285.127 49.87 4.321 6,111 236.944 0 1.264 6.168
|𝐸′𝑡 | = 56, 386, 288 0.030 218.605 37.72 5.940 4,429 252.458 0 1.445 7.323

superuser

0.005 12,351.8

OOM

>5 2.188 119,378 98.310 0 0.092 0.605
0.010 4,500.52 >17 5.006 31,968 77.100 0 0.153 0.920
0.015 1,996.57 >39 12.539 14,284 144.020 0 0.195 1.345
0.020 1,357.91 >58 18.906 8,787 224.380 0 0.228 1.788

|𝑉 ′𝑡 | = 841, 242 0.025 817.101 >97 32.081 5,435 217.150 0 0.267 2.452
|𝐸′𝑡 | = 181, 514, 409 0.030 624.973 >127 42.251 4,127 347.330 0 0.282 2.611

wikitalk

0.005 45,695.30

OOM OOM

>14 99,251 — — — —
0.010 26,779.00 >22 24,958 — — — —
0.015 14,477.50 >41 11,035 — — — —
0.020 8,326.55 >72 6,855 — — — —

|𝑉 ′𝑡 | = 5, 855, 430 0.025 5,930.35 >101 4,177 — — — —
|𝐸′𝑡 | = 1, 231, 309, 541 0.030 3,227.01 >187 3,020 — — — —

#thread =8 or 16 is sufficient to enable the best performance. For
massive-scale datasets (such as infectious, mathoverflow), #thread
=24 or 32 is sufficient to enable the best performance.

6.3 Performance of ATBC
Table 4 plots the experimental results. We do not report the results
on small-scale graphs because in these datasets, OTBC performs
better than ATBC. The results for 𝜖 = 0.005 are missing for math-
overflow and wikiedits-se because ATBC is little slower than OTBC.
For ONBRA, the sample size 𝑙 is user-specified, we set 𝑙 properly
such that the theoretical accuracy parameter 𝜖 computed by ONBRA
is similar to ATBC. From Table 4, first it is observed that, KDD-
TBC runs out of memory on most of datasets. ONBRA runs out of
memory on wikivoyage-it and wikitalk, and does not finish within
23 hours on wikiedits-se and superuser when 𝜖 ≈ 0.03. ATBC is
from several times to hundreds of times faster than OTBC; and it
outperforms KDD-TBC and ONBRA by up to 28,447x and 194,263x,
respectively. This is because, as shown in column 7 of Table 4, the
sample size of ATBC is far less than the number of vertices in the
time instance graphs, and ATBC integrates the optimized calculation
theory, resulting in less computation cost. The different speedups
for different 𝜖 are due to the different reduction in the sample size.
Second, it is seen that, OTBC does not finish on wikitalk, but ATBC
could complete the computation in 2 hours when 𝜖 ≥ 0.025. Third,

it is observed that, the running time of ATBC decreases quadratically
with the growth of 𝜖 . The reason is that, the larger the value of 𝜖 is,
the smaller the sample size is, leading to less running time. Last, as
depicted in columns 8-11 of Table 4, it is seen that, the minimum
error is always 0; the maximum absolute error is at least an order of
magnitude smaller than 𝜖 (not just with probability > 1 − 𝛿) with a
very small standard deviation. These findings indicate that ATBC is
an efficient, scalable, and an accurate (more that what is guaranteed
by theoretical analysis) approach.

7 CONCLUSIONS
In this paper, we develop a new temporal dependency accumula-
tion theory and design ETBC for efficiently computing exact TBC
values. To improve the efficiency, we further propose optimized
and approximate techniques. Extensive experiments with 13 real
datasets demonstrate the efficiency and accuracy of our proposed
approaches. In the future, we plan to extend our proposed methods
to the distributed pregel-like systems. Another promising direction
is to investigate more efficient approximate methods (including
sampling method design, more stronger stopping condition deriva-
tion, and ego-temporal betweenness centrality computation).

REFERENCES
[1] Ziyad AlGhamdi, Fuad T. Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017.

A Benchmark for Betweenness Centrality Approximation Algorithms on Large

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Efficient Exact and Approximate Betweenness Centrality Computation for Temporal Graphs WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Graphs. In Proceedings of the 29th International Conference on Scientific and
Statistical Database Management. ACM, New York, NY, 1–12. https://doi.org/10.
1145/3085504.3085510

[2] Francesco Bonchi, Gianmarco De Francisci Morales, and Matteo Riondato. 2016.
Centrality Measures on Big Graphs: Exact, Approximated, and Distributed Algo-
rithms. In Proceedings of the 25th International Conference on World Wide Web.
ACM, New York, NY, 1017–1020. https://doi.org/10.1145/2872518.2891063

[3] Michele Borassi and Emanuele Natale. 2019. KADABRA is an ADaptive Algo-
rithm for Betweenness via Random Approximation. ACM J. Exp. Algorithmics
24, 1 (2019), 1–35.

[4] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

[5] Ulrik Brandes and Christian Pich. 2007. Centrality Estimation in Large Networks.
Int. J. Bifurc. Chaos 17, 7 (2007), 2303–2318.

[6] Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. 2020. Al-
gorithmic Aspects of Temporal Betweenness. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
ACM, New York, NY, 2084–2092. https://doi.org/10.1145/3284359

[7] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
2012. Time-varying graphs and dynamic networks. IJPEDS 27, 5 (2012), 387–408.

[8] Cyrus Cousins, Chloe Wohlgemuth, and Matteo Riondato. 2021. Bavarian: Be-
tweenness Centrality Approximation with Variance-Aware Rademacher Av-
erages. In Proceedings of the 27th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, New York, NY, 196–206. https:
//doi.org/10.1145/3447548.3467354

[9] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. 2020. Simple and Fast
Distributed Computation of Betweenness Centrality. In Proceedings of the 39th
IEEE International Conference on Computer Communications. IEEE, New York,
NY, 337–346. https://doi.org/10.1109/INFOCOM41043.2020.9155354

[10] Dóra Erdös, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. 2015. A Divide-
and-Conquer Algorithm for Betweenness Centrality. In Proceedings of the 2015
SIAM International Conference on Data Mining. SIAM, Philadelphia, PA, 433–441.
https://doi.org/10.1137/1.9781611974010.49

[11] Martin G. Everett and Stephen P. Borgatti. 2005. Ego network betweenness. Soc.
Networks 27, 1 (2005), 31–38.

[12] Changjun Fan, Li Zeng, Yuhui Ding, Muhao Chen, Yizhou Sun, and Zhong Liu.
2019. Learning to Identify High Betweenness Centrality Nodes from Scratch:
A Novel Graph Neural Network Approach. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. ACM, New
York, NY, 559–568. https://doi.org/10.1145/3357384.3357979

[13] Dekker A H. 2013. Network centrality and super-spreaders in infectious disease
epidemiology. In Proceedings of the 20th International Congress on Modelling and
Simulation. MSSANZ, Christchurch, New Zealand, 331–337.

[14] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You,
Keshav Pingali, and Vijaya Ramachandran. 2019. A round-efficient distributed
betweenness centrality algorithm. In Proceedings of the 24th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM, New York,
NY, 272–286. https://doi.org/10.1145/3293883.3295729

[15] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3
(2012), 97–125.

[16] Mohammad Mehdi Hosseinzadeh, Mario Cannataro, Pietro Hiram Guzzi, and
Riccardo Dondi. 2023. Temporal networks in biology and medicine: a survey on
models, algorithms, and tools. Netw. Model. Anal. Health Informatics Bioinform.
12, 1 (2023), 10.

[17] Silu Huang, James Cheng, and Huanhuan Wu. 2014. Temporal Graph Traversals:
Definitions, Algorithms, and Applications. CoRR abs/1401.1919 (2014).

[18] Riko Jacob, Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, and Dag-
mar Tenfelde-Podehl. 2005. Algorithms for Centrality Indices. Network Analysis
3418 (2005), 62–82.

[19] Hyoungshick Kim and Ross Anderson. 2012. Temporal node centrality in complex
networks. Physical Review E 85, 2 (2012), 026107.

[20] Vassilis Kostakos. 2009. Temporal graphs. Physica A: Statistical Mechanics and
Its Applications 388, 6 (2009), 1007–1023.

[21] Nicolas Kourtellis, Tharaka Alahakoon, Ramanuja Simha, Adriana Iamnitchi,
and Rahul Tripathi. 2017. Identifying high betweenness centrality nodes in large
social networks. CoRR abs/1702.06087 (2017).

[22] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast
Computation of Dense Temporal Subgraphs. In Proceedings of the IEEE 33rd
International Conference on Data Engineering. IEEE, New York, NY, 361–372.
https://doi.org/10.1109/ICDE.2017.95

[23] Vladimir V. Makarov, Maxim O. Zhuravlev, Anastasija E. Runnova, Pavel Pro-
tasov, Vladimir A. Maksimenko, Nikita S. Frolov, Alexander N. Pisarchik, and
Alexander E. Hramov. 2018. Betweenness centrality in multiplex brain network

during mental task evaluation. Physical Review E 98, 6 (2018), 062413.
[24] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. 2019. Fast Approximations

of Betweenness Centrality with Graph Neural Networks. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
ACM, New York, NY, 2149–2152. https://doi.org/10.1145/3357384.3358080

[25] Leonardo Pellegrina and Fabio Vandin. 2021. SILVAN: Estimating Betweenness
Centralities with Progressive Sampling and Non-uniform Rademacher Bounds.
CoRR abs/2106.03462 (2021).

[26] Jürgen Pfeffer and Kathleen M. Carley. 2012. K-Centralities: Local approxima-
tions of Global Measures Based on Shortest Paths. In Proceedings of the 21st
International Conference on World Wide Web. ACM, New York, NY, 1043–1050.
https://doi.org/10.1145/2187980.2188239

[27] Matteo Riondato and Evgenios M. Kornaropoulos. 2016. Fast approximation of
betweenness centrality through sampling. Data Min. Knowl. Discov. 30, 2 (2016),
438–475.

[28] Matteo Riondato and Eli Upfal. 2016. ABRA: Approximating Betweenness Cen-
trality in Static and Dynamic Graphs with Rademacher Averages. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, New York, NY, 1145–1154. https://doi.org/10.1145/2939672.
2939770

[29] Maciej Rymar, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. 2023.
Towards Classifying the Polynomial-Time Solvability of Temporal Betweenness
Centrality. J. Graph Algorithms Appl. 27, 3 (2023), 173–194.

[30] Diego Santoro and Ilie Sarpe. 2022. ONBRA: Rigorous Estimation of the Tem-
poral Betweenness Centrality in Temporal Networks. In Proceedings of the 31st
International Conference on World Wide Web. 1579–1588.

[31] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. 2013.
Betweenness centrality on GPUs and heterogeneous architectures. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units.
ACM, New York, NY, 76–85. https://doi.org/10.1145/2458523.2458531

[32] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. 2017.
GraphManipulations for Fast Centrality Computation. ACMTrans. Knowl. Discov.
Data 11, 3 (2017), 1–25.

[33] Kshitij Shukla, Sai Charan Regunta, Sai Harsh Tondomker, and Kishore Kothapalli.
2020. Efficient parallel algorithms for betweenness- and closeness-centrality
in dynamic graphs. In Proceedings of the 34th ACM International Conference on
Supercomputing. ACM, New York, NY, 1–12.

[34] Ioanna Tsalouchidou, Ricardo Baeza-Yates, Francesco Bonchi, Kewen Liao, and
Timos Sellis. 2020. Temporal betweenness centrality in dynamic graphs. Int. J.
Data Sci. Anal. 9, 3 (2020), 257–272.

[35] Alexander van der Grinten, Eugenio Angriman, and Henning Meyerhenke. 2019.
Parallel Adaptive Sampling with Almost No Synchronization. In Proceedings of
the 25th International Conference on Parallel and Distributed Computing. Springer,
Berlin, Germany, 434–447. https://doi.org/10.1007/978-3-030-29400-7_31

[36] Alexander van der Grinten and HenningMeyerhenke. 2020. Scaling Betweenness
Approximation to Billions of Edges by MPI-based Adaptive Sampling. In Proceed-
ings of the 34th IEEE International Parallel and Distributed Processing Symposium.
IEEE, New York, NY, 527–535. https://doi.org/10.1109/IPDPS47924.2020.00061

[37] Vladimir N. Vapnik and A. Ya Chervonenkis. 2015. On the uniform convergence
of relative frequencies of events to their probabilities. In Measures of complexity.
Springer, Berlin, Germany, 11–30.

[38] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 2015. Effi-
cient Route Planning on Public Transportation Networks: A Labelling Approach.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, New York, NY, 967–982. https://doi.org/10.1145/2723372.2749456

[39] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang. 2019. Time-dependent
graphs: Definitions, Applications, and Algorithms. Data Science and Engineering
4, 4 (2019), 352–366.

[40] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.
Path Problems in Temporal Graphs. PVLDB 7, 9 (2014), 721–732.

[41] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016.
Reachability and time-based path queries in temporal graphs. In Proceedings of
the IEEE 32nd International Conference on Data Engineering. IEEE, New York, NY,
145–156. https://doi.org/10.1109/ICDE.2016.7498236

[42] Yi Yang, Da Yan, HuanhuanWu, James Cheng, Shuigeng Zhou, and John C. S. Lui.
2016. Diversified Temporal Subgraph Pattern Mining. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, New York, NY, 1965–1974. https://doi.org/10.1145/2939672.2939848

[43] Silvia Zaoli, Piero Mazzarisi, and Fabrizio Lillo. 2021. Betweenness centrality for
temporal multiplexes. Scientific reports 11, 1 (2021), 1–9.

[44] Tianming Zhang, Yunjun Gao, Lu Chen,Wei Guo, Shiliang Pu, Baihua Zheng, and
Christian S. Jensen. 2019. Efficient distributed reachability querying of massive
temporal graphs. VLDB J. 28, 6 (2019), 871–896. https://doi.org/10.1007/s00778-
019-00572-x

9

https://doi.org/10.1145/3085504.3085510
https://doi.org/10.1145/3085504.3085510
https://doi.org/10.1145/2872518.2891063
https://doi.org/10.1145/3284359
https://doi.org/10.1145/3447548.3467354
https://doi.org/10.1145/3447548.3467354
https://doi.org/10.1109/INFOCOM41043.2020.9155354
https://doi.org/10.1137/1.9781611974010.49
https://doi.org/10.1145/3357384.3357979
https://doi.org/10.1145/3293883.3295729
https://doi.org/10.1109/ICDE.2017.95
https://doi.org/10.1145/3357384.3358080
https://doi.org/10.1145/2187980.2188239
https://doi.org/10.1145/2939672.2939770
https://doi.org/10.1145/2939672.2939770
https://doi.org/10.1145/2458523.2458531
https://doi.org/10.1007/978-3-030-29400-7_31
https://doi.org/10.1109/IPDPS47924.2020.00061
https://doi.org/10.1145/2723372.2749456
https://doi.org/10.1109/ICDE.2016.7498236
https://doi.org/10.1145/2939672.2939848
https://doi.org/10.1007/s00778-019-00572-x
https://doi.org/10.1007/s00778-019-00572-x


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A NOTATION
Table 5 shows our commonly used symbols and their definitions.

Table 5: Symbols and description

Notation Description

𝐺 ,𝐺𝑡 a temporal graph and the time instance graph

𝑇𝑤
the set of distinct timestamps attached with the
incoming edges of vertex 𝑤

(𝑣, 𝑡𝑣 ) a vertex instance of vertex 𝑣

𝑁𝑖𝑛 (𝑢 ) , 𝑁𝑜𝑢𝑡 (𝑢 ) ,
𝑁 (𝑢 )

the set of in-neighbors, out-neighbors and neigh-
bors of vertex 𝑢

𝑝 =𝑢
𝑡1→ 𝑤1 · · ·

𝑡𝑚→ 𝑣 a temporal path from 𝑢 to 𝑣

𝑆𝑝 , 𝐸𝑝 , 𝑑 (𝑝 ) the start time, the end time, and the length of path
𝑝

𝑆𝑇𝑃 (𝑠,𝑢 ) the set of shortest temporal paths from 𝑠 to 𝑢

𝐸𝑇𝑃 (𝑠,𝑢 ) the set of earliest temporal paths from 𝑠 to 𝑢

𝑇𝐵𝐶 (𝑣) the normalized temporal betweenness centrality
value of 𝑣�𝑇𝐵𝐶 (𝑣) the normalized approximate temporal betweenness
centrality value of 𝑣

𝑆 (𝑣) = { (𝑣, 𝑡𝑣 ) | 𝑡𝑣 ∈
𝑇𝑣 } the set of all vertex instances of 𝑣

𝜎𝑠𝑧 (𝑣, 𝑡 ) the number of optimal temporal paths from 𝑠 to 𝑧
via 𝑣 at time 𝑡

𝜎𝑠𝑧 (𝑣) the number of optimal temporal paths from 𝑠 to 𝑧
via 𝑣

𝜎𝑠𝑧 the number of optimal temporal paths from 𝑠 to 𝑧

𝜎𝑠 (𝑣,𝑡𝑣 )
the number of local optimal temporal paths from 𝑠

to the vertex instance (𝑣, 𝑡𝑣 ) (see Lemma 2)

𝛿𝑠. (𝑣, 𝑡𝑣 ) the temporal dependency of 𝑠 on a vertex instance
(𝑣, 𝑡𝑣 ) (see Definition 6)

𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 ) a flag indicates whether (𝑤, 𝑡𝑤 ) is the end of the
optimal temporal path from a source vertex 𝑠 to 𝑤

𝑃𝑠 (𝑤, 𝑡𝑤 ) the list of predecessors of the vertex instance
(𝑤, 𝑡𝑤 ) on local optimal paths from 𝑠

𝑑 (𝑠, (𝑤, 𝑡𝑤 ) ) the local optimal temporal path from 𝑠 to (𝑤, 𝑡𝑤 )
𝑑 (𝑠, 𝑤 ) = 𝑚𝑖𝑛𝑡𝑤 ∈𝑇𝑤

𝑑 (𝑠, (𝑤, 𝑡𝑤 ) ) the optimal temporal path from 𝑠 to 𝑤

𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 ) the number of equivalent vertex instances of
(𝑤, 𝑡𝑤 )

B OMITTED PROOFS
PROOF OF LEMMA 1.

Proof. To guarantee the exactness of any optimal temporal path
from 𝑢 to 𝑣 , the core is that function TP𝐺 (𝑢, 𝑣) finds all directed
temporal paths 𝑝 from 𝑢 to 𝑣 . Obviously, TP𝐺 (𝑢, 𝑣) = ∪∀(𝑣,𝑡𝑣 ) ∈𝑆 (𝑣)
P𝐺𝑡
((𝑢), (𝑣, 𝑡𝑣)). Here function P𝐺𝑡

((𝑢), (𝑣, 𝑡𝑣)) returns the set of
paths from 𝑢 to (𝑣, 𝑡𝑣) in𝐺𝑡 , where all the vertex instances of 𝑢 are
reverted to the original vertex𝑢, and the edges from different vertex
instances of 𝑢 to another vertex instance (𝑤, 𝑡𝑤) are reduced to an
edge from 𝑢 to (𝑤, 𝑡𝑤). Hence, the optimal temporal path from any
vertex 𝑢 to 𝑣 in 𝐺 can be exactly computed. □

PROOF OF LEMMA 2.

Proof.
𝛿𝑠. (𝑣, 𝑡𝑣 ) =

∑︁
𝑠≠𝑣≠𝑧∈𝑉

𝛿𝑠𝑧 (𝑣, 𝑡𝑣 )

=
∑︁

𝑠≠𝑣≠𝑧

∑︁
(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )

𝛿𝑠𝑧 ( (𝑣, 𝑡𝑣 ), { (𝑣, 𝑡𝑣 ), (𝑤, 𝑡𝑤 ) } )

=
∑︁

( (𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )

∑︁
𝑧∈𝑉

𝜎𝑠𝑧 ( (𝑣, 𝑡𝑣 ), { (𝑣, 𝑡𝑣 ), (𝑤, 𝑡𝑤 ) } )
𝜎𝑠𝑧

where 𝛿𝑠𝑧 ((𝑣, 𝑡𝑣), {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}) is the temporal pair depen-
dency that includes the edge {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}. 𝜎𝑠𝑧 ((𝑣, 𝑡𝑣), {(𝑣, 𝑡𝑣),
(𝑤, 𝑡𝑤)}) is the number of optimal temporal paths from 𝑠 to 𝑧 via 𝑣
at time 𝑡𝑣 and the edge (𝑣,𝑤, 𝑡𝑤). There are two cases:

(i) 𝑧 = 𝑤 . Then of the 𝜎𝑠𝑤 optimal temporal paths from 𝑠 to𝑤 , if
(𝑤, 𝑡𝑤) is one of the end vertices of optimal temporal paths from 𝑠

to𝑤 , only 𝜎𝑠 (𝑣,𝑡𝑣 ) first goes from 𝑠 to (𝑣, 𝑡𝑣), and then reach (𝑤, 𝑡𝑤)
via edge {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}, hence:

𝛿𝑠𝑧 ((𝑣, 𝑡𝑣), {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}) =
𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐹𝑙𝑎𝑔(𝑤, 𝑡𝑤)∑

𝑡 ′∈𝑇𝑤 𝜎𝑠 (𝑤,𝑡 ′ ) · 𝐹𝑙𝑎𝑔(𝑤, 𝑡 ′)
(ii) 𝑧 ≠ 𝑤 . Then of the 𝜎𝑠𝑧 optimal temporal paths from 𝑠 to 𝑧,

𝜎𝑠 (𝑣,𝑡𝑣 ) many first go from 𝑠 to (𝑣, 𝑡𝑣) and then use {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}.
Consequently, 𝜎𝑠 (𝑣,𝑡𝑣 )

𝜎𝑠 (𝑤,𝑡𝑤 )
· 𝜎𝑠𝑧 (𝑤, 𝑡𝑤) optimal temporal paths from 𝑠

to some 𝑧 ≠ 𝑤 contain (𝑣, 𝑡𝑣) and {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}. Hence:

𝛿𝑠𝑧 ((𝑣, 𝑡𝑣), {(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)}) =
𝜎𝑠 (𝑣,𝑡𝑣 )
𝜎𝑠 (𝑤,𝑡𝑤 )

· 𝜎𝑠𝑧 (𝑤, 𝑡𝑤)
𝜎𝑠𝑧

Considering both cases (i) and (ii), we have:

∑︁
(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )

∑︁
𝑧∈𝑉

𝜎𝑠𝑧 ( (𝑣, 𝑡𝑣 ), { (𝑣, 𝑡𝑣 ), (𝑤, 𝑡𝑤 ) } )
𝜎𝑠𝑧

=
∑︁

(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )
(

𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 )∑
𝑡 ′∈𝑇𝑤 𝜎𝑠 (𝑤,𝑡 ′ ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡 ′ )

+
𝜎𝑠 (𝑣,𝑡𝑣 )
𝜎𝑠 (𝑤,𝑡𝑤 )

· 𝛿𝑠. (𝑤, 𝑡𝑤 ) )

The proof completes. □

PROOF OF LEMMA 3.

Proof. According to Definition 5 and Definition 6,

𝑇𝐵𝐶 (𝑣) = 1
|𝑉 | ( |𝑉 | − 1)

∑︁
∀𝑠≠𝑣≠𝑧∈𝑉

𝜎𝑠𝑧 (𝑣)
𝜎𝑠𝑧

=
1

|𝑉 | ( |𝑉 | − 1)
∑︁
𝑠∈𝑉

𝛿𝑠. (𝑣)

=
1

|𝑉 | ( |𝑉 | − 1)
∑︁
𝑠∈𝑉

∑︁
𝑡𝑣 ∈𝑇𝑣

𝛿𝑠. (𝑣, 𝑡𝑣 )

The proof completes. □

PROOF OF LEMMA 4.

Proof. When traversing the compressed 𝐺𝑡 , the edge {(𝑣, 𝑡𝑣),
(𝑤, 𝑡𝑤)} leads to 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤) paths, and thus,

𝜎𝑠 (𝑤,𝑡𝑤 ) =
∑︁

∀(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 ),𝑠≠𝑣
𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 )

otherwise we multiply the number of local optimal paths from 𝑠

to (𝑤, 𝑡𝑤) by 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤). According to Lemma 2, there are two
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cases, whether in the first case or in the second case, the prop-
agation of the temporal dependencies on (𝑤, 𝑡𝑤) along the edge
{(𝑣, 𝑡𝑣), (𝑤, 𝑡𝑤)} should be considered 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤) times, hence
we have:

𝛿𝑠. (𝑣, 𝑡𝑣 ) =
∑︁

(𝑣,𝑡𝑣 ) ∈𝑃𝑠 (𝑤,𝑡𝑤 )
(

𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡𝑤 )∑
𝑡 ′∈𝑇𝑤 𝜎𝑠 (𝑤,𝑡 ′ ) · 𝐹𝑙𝑎𝑔 (𝑤, 𝑡 ′ )

· 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 ) +
𝜎𝑠 (𝑣,𝑡𝑣 ) · 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤 )

𝜎𝑠 (𝑤,𝑡𝑤 )
· 𝛿𝑠. (𝑤, 𝑡𝑤 ) )

The proof completes. □

C OMITTED ALGORITHMS AND
COMPLEXITY ANALYSIS

C.1 Graph Transformation Algorithm

Algorithm 2: GTA algorithm
Input: original graph𝐺 = (𝑉 , 𝐸 )
Output: time instance graph𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 )

1: 𝑉𝑡 ← ∅, 𝐸𝑡 ← ∅
2: foreach (𝑢, 𝑣, 𝑡𝑣 ) ∈ 𝐸 do
3: 𝑉𝑡 ← 𝑉𝑡 ∪ (𝑣, 𝑡𝑣 )
4: if 𝑡 < the minimum timestamp among those associated with the

incoming edges of 𝑢 or 𝑁𝑖𝑛 (𝑢 ) = ∅ then
5: 𝑉𝑡 ← 𝑉𝑡 ∪ (𝑢,𝑀𝐼𝑁 )

6: foreach (𝑣, 𝑡𝑣 ) ∈ 𝑉𝑡 and each 𝑣’s outgoing edge (𝑣, 𝑤, 𝑡𝑤 ) do
// edges are sorted by timestamps

7: if 𝑡𝑣 ≤ 𝑡𝑤 then
8: 𝐸𝑡 ← 𝐸𝑡 ∪ { (𝑣, 𝑡𝑣 ), (𝑤, 𝑡𝑤 ) }

9: return𝐺𝑡

The graph transformation algorithm GTA is outlined in Algo-
rithm 2. GTA generates the transformed graph by simply traversing
𝐺 . The time complexity is𝑂 ( |𝐸 | +∑𝑣∈𝑉 |𝑆 (𝑣) |

∑
𝑤∈𝑁𝑜𝑢𝑡 (𝑣) |𝑆 (𝑤) |).

Size of the time instance graph 𝐺𝑡 . The number of vertices
in 𝐺𝑡 is |𝑉𝑡 | =

∑
𝑣∈𝑉 |𝑆 (𝑣) |. The number of edges in 𝐺𝑡 depends

on the temporal connectivity. The stronger the temporal connec-
tivity, the more the number of edges. If 𝐺 is weakly temporal
connected, |𝐸𝑡 | may be less than |𝐸 |. The upper bound of |𝐸𝑡 | is∑

𝑣∈𝑉 |𝐸𝑖𝑛 (𝑣) | |𝐸𝑜𝑢𝑡 (𝑣) | +𝐸𝑜𝑢𝑡 (𝑆𝑜𝑢𝑟𝑐𝑒) if all the paths in𝐺 are tem-
poral paths, where |𝐸𝑖𝑛 (𝑣) | and |𝐸𝑜𝑢𝑡 (𝑣) | are the number of in-
coming and outgoing edges of 𝑣 , respectively; 𝐸𝑜𝑢𝑡 (𝑆𝑜𝑢𝑟𝑐𝑒) is the
number of outgoing edges of all source vertices.

C.2 Graph Compression Algorithm
The graph compression algorithm GCA is outlined in Algorithm 3,
which compresses the time instance graph by traversing 𝐺𝑡 once.
The time complexity ofGCA is𝑂 (∑𝑣∈𝑉 ,(𝑣,𝑡𝑣 ) ∈𝑆 (𝑣) |𝑆 (𝑣) |

2 ( |𝑁𝑖𝑛 (𝑣, 𝑡𝑣) |
+ |𝑁𝑜𝑢𝑡 (𝑣, 𝑡𝑣) |)), and the space overhead is 𝑂 ( |𝑉𝑡 | + |𝐸𝑡 |).

C.3 Complexity of OTBC
Time and space complexities ofOTBC.OTBC takes𝐺 ′𝑡 as an input,
and optimizes ETBC with Lemma 4. But it still needs to compute all-
pairs optimal temporal paths, hence the time complexity of OTBC is
𝑂 ( |𝑉 ′𝑡 | ( |𝐸′𝑡 | + |𝑉 ′𝑡 |𝑙𝑜𝑔|𝑉 ′𝑡 |)); the space complexity is 𝑂 ( |𝐸′𝑡 | + |𝑉 ′𝑡 |)

since we need to store matrices of size |𝑉 ′𝑡 | for the temporal path
counts and the temporal dependencies.

Algorithm 3: GCA algorithm
Input: time instance graph𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 )
Output: compressed graph𝐺 ′𝑡 = (𝑉 ′𝑡 , 𝐸′𝑡 )

1: foreach (𝑣, 𝑡1 ) and other vertex instances (𝑣, 𝑡𝑖 ) ∈ 𝑆 (𝑣) do
// 𝑆 (𝑣) is sorted by timestamps

2: if 𝑁𝑖𝑛 (𝑣, 𝑡1 ) = 𝑁𝑖𝑛 (𝑣, 𝑡𝑖 ) and 𝑁𝑜𝑢𝑡 (𝑣, 𝑡𝑖 ) = 𝑁𝑜𝑢𝑡 (𝑣, 𝑡𝑖 ) then
// Rule 1

3: compress (𝑣, 𝑡1 ) and (𝑣, 𝑡𝑖 ) to (𝑣, {𝑡1, 𝑡𝑖 })
4: compress corresponding adjacent edges
5: else if 𝑁𝑖𝑛 (𝑣, 𝑡1 ) = 𝑁𝑖𝑛 (𝑣, 𝑡𝑖 ) then
6: compress edges by Rule 2

7: return𝐺 ′𝑡

C.4 Approximate Algorithm
The pseudocode of ATBC is shown in Algorithm 4. ATBC takes as in-
puts the compressed time instance graph𝐺𝑡 , an accuracy parameter
𝜖 , and a confidential parameter 𝛿 ∈ (0, 1). It outputs the approxi-
mate TBC values �𝑇𝐵𝐶 (𝑤) (∀𝑤 ∈ 𝑉 ) that is an (𝜖, 𝛿)-approximation

Algorithm 4: ATBC algorithm
Input: compressed time instance graph𝐺 ′𝑡 = (𝑉 ′𝑡 , 𝐸′𝑡 ) , accuracy

parameter 𝜖 ∈ (0, 1) , confidence parameter 𝛿 ∈ (0, 1)
Output: �𝑇𝐵𝐶 (𝑤 ) for each vertex 𝑤 ∈ 𝑉

1: |S0 | ← 0, |S1 | ← (1+8𝜖+
√

1+16𝜖 )𝑙𝑛 (2/𝛿 )
4𝜖2 , v𝑤 ← {0}

2: 𝑖 ← 1, 𝑗 ← 1, [ ← 𝛿/2𝑖
3: while True do
4: foreach 𝑗 = 1 to |S𝑖 | − |S𝑖−1 | do
5: sample (𝑢, 𝑣) from R
6: foreach vertex instance (𝑣, 𝑡𝑣 ) in 𝑆 (𝑣) do
7: 𝑑 (𝑢, (𝑧, 𝑡𝑧 ) ) , 𝑃𝑢 (𝑧, 𝑡𝑧 ) , 𝜎𝑢 (𝑧,𝑡𝑧 ) , 𝑑 (𝑢, 𝑣) , 𝐹𝑙𝑎𝑔 (𝑣, 𝑡𝑣 ) ←

SSSP(𝐺𝑡 , 𝑢,(𝑣, 𝑡𝑣 )) // (𝑧, 𝑡𝑧 ) is the traversed

vertex, 𝜎 is computed by Eq. 1

8: 𝜎𝑢𝑣 ←
∑
(𝑣,𝑡𝑣 ) ∈𝑆𝑣 ,𝐹𝑙𝑎𝑔 (𝑣,𝑡𝑣 )=1 𝜎𝑢 (𝑣,𝑡𝑣 )

9: foreach vertex instance (𝑣, 𝑡𝑣 ) having 𝐹𝑙𝑎𝑔 (𝑣, 𝑡𝑣 )=1 do
10: ∀(𝑧, 𝑡𝑧 ) ∈ 𝑃𝑢 (𝑣, 𝑡𝑣 ) , 𝜎 (𝑧,𝑡𝑧 ) (𝑣,𝑡𝑣 ) ← 1
11: foreach (𝑤, 𝑡𝑤 ) on the shortest path from 𝑢 to (𝑣, 𝑡𝑣 ) ,

in reverse order by 𝑑 (𝑢, 𝑣) do
12: 𝜎𝑢 (𝑣,𝑡𝑣 ) (𝑤, 𝑡𝑤 ) ← 𝜎𝑢 (𝑤,𝑡𝑤 )𝜎 (𝑤,𝑡𝑤 ) (𝑣,𝑡𝑣 ) ;

𝜎𝑢𝑣 (𝑤 ) ← 𝜎𝑢𝑣 (𝑤 ) + 𝜎𝑢 (𝑣,𝑡𝑣 ) (𝑤, 𝑡𝑤 )
13: if all vertex instances (𝑤, 𝑡𝑤 ) in 𝑆 (𝑤 ) is computed

then
14: v𝑤 ← {v𝑤 ∪ { 𝜎𝑢𝑣 (𝑤)

𝜎𝑢𝑣
}}

15: 𝑗 ← 𝑗 + 1

16: compute 𝜔∗𝑖 , 𝛼𝑖 , 𝑢𝑏𝑖 by Eq. 1, 1, 1
17: if 𝑢𝑏𝑖 > 𝜖 then
18: |S𝑖+1 | is the minimal positive root of the equation

−8( (𝑖 + 2)𝑙𝑛 2
𝛿
)3 + ( (𝑖 + 2)𝑙𝑛 2

𝛿
)2 (−16𝜔∗𝑖 + (1 +

4𝜖 )2 )𝑥−4( (𝑖+2)𝑙𝑛 2
𝛿
) (𝜔∗𝑖 −𝜖 )2 (1+4𝜖 )𝑥2+4(𝑏− 𝑓 )4𝑥3 = 0;

19: 𝑖 ← 𝑖 + 1
20: else
21: return �𝑇𝐵𝐶 (𝑤 ) ← | |v𝑤 | |/|S𝑖 | for each vertex 𝑤 ∈ 𝑉
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Figure 5: An example of how to compute vc-ratio(𝑣) and
ec-ratio(𝑣)

of the exact values. First, ATBC initializes variables and sample
size |S0 |, |S1 |, and samples original vertex pairs (lines 1-5). Then,
ATBC computes �𝑇𝐵𝐶 (𝑤) for each𝑤 ∈ 𝑉 (lines 6-16). The method
used in this step is customized for temporal graphs. Specifically,
for each sampled original vertex pair (𝑢, 𝑣), ATBC performs the
single-source shortest path SSSP algorithm from 𝑢 to all 𝑣 ′s vertex
instances (𝑣, 𝑡𝑣). For all the traversed vertex instances (𝑧, 𝑡𝑧), ATBC
records the local shortest path distance 𝑑 (𝑢, (𝑧, 𝑡𝑧)), predecessors
𝑃𝑢 (𝑧, 𝑡𝑧), the count 𝜎𝑢 (𝑧,𝑡𝑧 ) of local shortest paths, the shortest tem-
poral path distance 𝑑 (𝑢, 𝑣), and the flag 𝐹𝑙𝑎𝑔(𝑣, 𝑡𝑣) that indicates
whether (𝑣, 𝑡𝑣) is the end vertex of an optimal temporal path from𝑢

to 𝑣 (lines 6, 7). Note that,𝐺𝑡 is the compressed time instance graph,
which includes the equivalent vertices, hence 𝜎𝑢 (𝑧,𝑡𝑧 ) is computed
by Eq. 1. If all the vertex instances of 𝑣 are traversed, ATBC computes
𝜎𝑢𝑣 , starts backtracking (𝑤, 𝑡𝑤) from all vertex instances (𝑣, 𝑡𝑣) of
𝑣 having 𝐹𝑙𝑎𝑔(𝑣, 𝑡𝑣) = 1 to 𝑢 along the computed shortest paths,
computes 𝜎𝑢𝑣 (𝑤) =

∑
(𝑤,𝑡𝑤 ) ∈𝑆 (𝑤 ),𝐹𝑙𝑎𝑔 (𝑣,𝑡𝑣 )=1 𝜎𝑢 (𝑣,𝑡𝑣 ) (𝑤, 𝑡𝑤) and

updates vector v𝑤 (lines 9-16). Thereafter, ATBC checks whether
(𝜖, 𝛿)-approximation is satisfied (i.e., the stopping condition 𝑢𝑏 ≤ 𝜖

holds). If not, ATBC proceeds to sample and iteratively compute�𝑇𝐵𝐶 (𝑤) until (𝜖, 𝛿)-approximation is achieved (lines 17-21). Note
that, ATBC adopts the same progressive sampling as ABRA[28],
the sample size |S𝑖 | is computed by a heuristic approach. Here we
only directly give the sample size (lines 1, 18) and omit the detailed
derivation.

Time and space complexities of ATBC. ATBC iteratively sam-
ples vertex pairs and then performs optimal temporal path compu-
tation. In each iteration, optimal temporal paths between the vertex
pairs with the same start vertex are all obtained by a single-source
shortest path computation. Hence, the time complexity of ATBC is
𝑂 (∑𝑙

𝑖=1𝐶𝑜𝑢𝑛𝑡 (𝐴𝑔𝑔𝑟 (𝑆𝑖 )) ( |𝐸′𝑡 | + |𝑉 ′𝑡 | |𝑙𝑜𝑔|𝑉 ′𝑡 |)), where 𝑙 is the num-
ber of iterations; 𝐴𝑔𝑔𝑟 (𝑆𝑖 ) denotes the aggregation operation on

𝑆𝑖 . The condition of aggregation is that the start vertices of the
vertex pairs are the same. After aggregation, we use the Count
function to get 𝐶𝑜𝑢𝑛𝑡 (𝐴𝑔𝑔𝑟 (𝑆𝑖 )). The space complexity of ATBC is
𝑂 ( |𝐸′𝑡 | + |𝑉 ′𝑡 |).

D EXAMPLES
An example that shows how 𝛿𝑠. (𝑣, 𝑡𝑣) is computed by Lemma 4 is
detailed below.

Example 3. Consider Figure 2. Take the computation of 𝛿𝑎. (𝑧, 𝑡𝑧)
(∀(𝑧, 𝑡𝑧) ∈ 𝑉𝑡 ) as an example. First traversing the compressed 𝐺𝑡 (as
plotted in Figure 2(c)) from 𝑎, we get 𝑃𝑎 (𝑧, 𝑡𝑧), 𝜎𝑎 (𝑧,𝑡𝑧 ) and 𝐹𝑙𝑎𝑔(𝑧, 𝑡𝑧).
For any (𝑧, 𝑡𝑧) ∈ 𝑉𝑡\{𝑦, 6}, 𝐹𝑙𝑎𝑔(𝑧, 𝑡𝑧) = 1. The values of 𝑃𝑎 (𝑧, 𝑡𝑧)
and 𝜎𝑎 (𝑧,𝑡𝑧 ) are illustrated in Figure 4. For instance,

𝜎𝑎 (𝑏,{1,3}) = 1 × 𝐼𝑑𝑒𝑛𝑡 (𝑏, {1, 3}) = 2.
𝜎𝑎 (𝑑,{8,9,10}) = (𝜎𝑎 (𝑐,5) + 𝜎𝑎 (𝑐,7) ) × 𝐼𝑑𝑒𝑛𝑡 (𝑑, {8, 9, 10}) = 12.

Next, computing 𝛿𝑎. (𝑧, 𝑡𝑧), 𝛿𝑎. (𝑧) by Lemma 4 and Lemma 3, respec-
tively, then we have:

𝛿𝑎. (𝑑, 6) =
4
16

=
1
4

;𝛿𝑎. (𝑑, {8, 9, 10}) = 12
16

=
3
4

;𝛿𝑎. (𝑑 ) = 1;

𝛿𝑎. (𝑥, 1) =
1
1
= 1; 𝛿𝑎. (𝑥 ) = 1;

𝛿𝑎. (𝑐, 5) = (
2×3
16
+ 3

4
× 2×3

12
) + ( 2

16
+ 2

4
× 4

16
) =1;

𝛿𝑎. (𝑐, 7) =
2×3
16
+ 3

4
× 2×3

12︸              ︷︷              ︸
(𝑑,{8,9,10}),(𝑓 ,11) ’s contribution

=
3
4

; 𝛿𝑎. (𝑐 ) = 1
3
4

;

𝛿𝑎. (𝑚, 4) = 2
16
+ 2

4
× 1

4︸         ︷︷         ︸
(𝑑,6),(𝑓 ,11) ’s contribution

=
1
4

; 𝛿𝑎. (𝑚) =
1
4

;

𝛿𝑎. (𝑏, {1, 3}) = (
2
4
+ 1× 2

2
) + ( 2

4
+ 3

4
× 2

2
) + ( 2

2
+ 1

4
× 2

2
) = 4.

E DISCUSSIONS
E.1 Compression Ratio Estimation
Compression ratios include vertex compression ratio vc-ratio and
edge compression ratio ec-ratio, which are defined as vc-ratio = 1−
|𝑉 ′𝑡 |
|𝑉𝑡 | and ec-ratio = 1− |𝐸

′
𝑡 |
|𝐸𝑡 | . Intuitively, graph temporal connectivity

and distribution of timestamps have effects on the compression
ratios, while it is difficult to give a specific formula for the com-
pression ratios. So we define the compression ratios of vertex 𝑣 and
𝑣 ’s adjacent edges as vc-ratio(𝑣) and ec-ratio(𝑣), respectively, and
use vc-ratio(𝑣) (resp. ec-ratio(𝑣)) to estimate vc-ratio (resp. ec-ratio).
Considering that vertex or edge compression depends on the sets
of neighbors, we define an ego-graph of vertex 𝑣 as a subgraph of
𝐺𝑡 induced by the vertex set ∪∀(𝑣,𝑡𝑣 ) ∈𝑆 (𝑣)𝑁 (𝑣, 𝑡𝑣) ∪ 𝑆 (𝑣). We map
the vertex instances in the ego-graph of 𝑣 into a time axis according
to the timestamps. For convenience of explanation, in the time axis,
let ♠, △, □ denote 𝑣 ’s instances, in-neighbors, and out-neighbors,
respectively. All the 𝑣 ’s instances consist of ♠ space. Based on this,
vc-ratio(𝑣) and ec-ratio(𝑣) are easily computed, as stated below.

vc-ratio(𝑣): Let 𝐼1,𝐼2, · · · , 𝐼𝑛 denote the ♠ subspaces divided by
△ and □. Take Figure 5 as an example. Figure 5(a) and Figure 5(b)
depict the original temporal graph𝐺 and the time instance graph𝐺𝑡 ,
respectively. Figure 5(c) illustrates the ego-graph of 𝑐 . Figure 5(d)
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plots the mapped time axis. △ and □ divide the ♠ space into 3
subspaces, each of which is surrounded by a red dashed rectangle.
According to the vertex compression rule, the vertex instances in
the same subspaces are compressed into an equivalent vertex, then
vc-ratio(𝑣) = 1− 𝑛

|𝑆 (𝑣) | .
ec-ratio(𝑣): There are two cases involving edge compression.

(i) When equivalent vertex instances (𝑣, 𝑡) are compressed into a
vertex instance (above-mentioned vertex compression), the corre-
sponding edges are compressed. The reduced number of edges is
𝑁1 =

∑𝑛
𝑖=1 (𝐶𝑜𝑢𝑛𝑡 (𝐼𝑖 ) − 1) |𝑁 (𝑣, 𝑡𝑣) |, where 𝐶𝑜𝑢𝑛𝑡 (𝐼𝑖 ) is the num-

ber of 𝑣 ’s instances in subspace 𝐼𝑖 . (ii) When the in-neighbors of
𝑣 ’s instances are the same, we do edge compression. Let 𝐼 ′1,𝐼

′
2, · · · ,

𝐼 ′𝑚 denote the ♠ subspaces divided by △. According to the edge
compression rule, 𝑁2 =

∑𝑚
𝑖=1 (𝐶𝑜𝑢𝑛𝑡 (𝐼 ′𝑖 ) − 1) virtual edges are cre-

ated, 𝑁3 =
∑𝑚
𝑖=1 (𝑀𝑖𝑛 (𝑣,𝑡𝑣 ) ∈𝐼 ′𝑖 |𝑁 (𝑣, 𝑡𝑣) | (𝐶𝑜𝑢𝑛𝑡 (𝐼

′
𝑖
) − 1)) edges are

reduced at most. Then ec-ratio(𝑣) ≈ 𝑁1−𝑁2+𝑁3∑
(𝑣,𝑡𝑣 ) ∈𝑆 (𝑣) |𝑁 (𝑣,𝑡𝑣 ) |

.
We could uniform randomly sample a subset 𝑆 of vertices, and

use
∑

𝑣∈𝑆 vc-ratio(𝑣)
|𝑆 | and

∑
𝑣∈𝑆 ec-ratio(𝑣)

|𝑆 | as vc-ratio and vc-ratio esti-
mation (denoted as �vc-ratio and �ec-ratio), respectively.
E.2 Support for Other Paths
(i) Calculating TBC based on ETP is similar to that based on STP.
The difference is that in the first phase of ETBC or OTBC, calculating
TBC based on ETP maintains the earliest end time instead of the
shortest temporal path distance.

(ii) The optimization techniques are suitable for weighted tem-
poral graphs as long as a new condition (edge weights are equal) is
added to the vertex instance and edge compression.

(iii) The proposed techniques are also applicable to other types
of optimal temporal paths, such as the fastest temporal path (FTP),
which is the path with the minimum duration (i.e., minimum 𝐸𝑝 −
𝑆𝑝 ). Calculating TBC based on FTP is equivalent to that based on
STP over the weighted time instance graph. The edge weight from
vertex instance (𝑢, 𝑡𝑢 ) to (𝑣, 𝑡𝑣) is the time duration 𝑡𝑣 − 𝑡𝑢 .

(iv) The combination of STP and ETP, i.e., shortest earliest be-
tweenness, is directly supported by the proposed method.

(v) For the latest departure path (LDP), the proposed method
needs to do the following adaption to support it. (a) In Eq. 1,
otherwise 𝑠 = 𝑣 , 𝜎𝑠 (𝑤,𝑡𝑤 ) = 𝜎′

𝑠 (𝑤,𝑡𝑤 ) · 𝐼𝑑𝑒𝑛𝑡 (𝑤, 𝑡𝑤) changes to
𝜎𝑠 (𝑤,𝑡𝑤 )=𝜎

′
𝑠 (𝑤,𝑡𝑤 ) . (b) A vertex instance (𝑤, 𝑡𝑤) needs to record

and constantly update the predecessors and corresponding latest
departure time until it finds the final latest departure time and
predecessors.

In summary, if the local optimal temporal path (i.e., optimal
temporal path between the time instances) satisfies the subpath
optimality property in the time instance graph, then it could be sup-
ported by the proposed method; but the proposed method may need
to make a little adaption work by the characteristics of different
paths to support iterative TBC computation.

E.3 Dynamic Update
Considering that vertex insertion and deletions are often accompa-
nied by edge insertion and deletions, we discuss the insertion and
deletions of a new temporal edge 𝑒 = (𝑢, 𝑣, 𝑡𝑣).

Edge insertion. If (𝑣, 𝑡𝑣) is not in the time instance graph 𝐺𝑡 ,
then we create (𝑣, 𝑡𝑣). If 𝑢 is a new vertex or the timestamps associ-
ated with the incoming edges of 𝑢 are all greater than 𝑡 , then we
create (𝑢,𝑀𝐼𝑁 ) in 𝐺𝑡 . ∀ (𝑢, 𝑡𝑢 ) ∈ 𝑆 (𝑢), if 𝑡𝑢 ≤ 𝑡𝑣 , then we insert
an edge from (𝑢, 𝑡𝑢 ) to (𝑣, 𝑡𝑣). ∀𝑤 ∈ 𝑁𝑜𝑢𝑡 (𝑣), (𝑤, 𝑡𝑤) ∈ 𝑆 (𝑤), if 𝑡𝑣
≤ 𝑡𝑤 , then we insert an edge from (𝑣, 𝑡𝑣) to (𝑤, 𝑡𝑤). All the time
instances of 𝑢, 𝑣 and𝑤 are the affected vertices, we compress these
vertices and their adjacent edges by the compression rules 1 and 2,
and then the updated compressed time instance graph is obtained.

Edge deletion. The process of edge deletion is similar to that
of edge insertion, except that we delete edges rather than insert
edges.

TBC update. Let 𝑅𝑖𝑛 (𝑣) be the set of vertices that can reach
𝑣 , and 𝑅𝑜𝑢𝑡 (𝑢) be the set of vertices that 𝑢 can reach. 𝑅𝑖𝑛 (𝑣) and
𝑅𝑜𝑢𝑡 (𝑢) can be obtained by a 2-hop labeling index. Then the poten-
tial affected vertices are those lying on the paths from any vertex in
𝑅𝑖𝑛 (𝑣) to the ones in 𝑅𝑜𝑢𝑡 (𝑢). We update TBC values of the affected
vertices 𝑦 by recomputing 𝛿𝑥. (𝑦) (∀𝑥 ∈ 𝑅𝑖𝑛 (𝑣)).
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Figure 6: TBC distribution histogram

Table 6: Statistics of the real and estimated compression ra-
tios

Datasets Compression Estimation
𝒗𝒄-𝒓𝒂𝒕 𝒊𝒐 𝒆𝒄-𝒓𝒂𝒕 𝒊𝒐 �𝒗𝒄-𝒓𝒂𝒕 𝒊𝒐 �𝒆𝒄-𝒓𝒂𝒕 𝒊𝒐

highschool-2011 0.686 0.878 0.716 0.867
highschool-2012 0.686 0.925 0.603 0.890
highschool-2013 0.620 0.887 0.609 0.886

hypertext 0.514 0.763 0.481 0.765
hospital-ward 0.493 0.819 0.465 0.845
primaryschool 0.294 0.620 0.234 0.608
infectious 0.385 0.579 0.411 0.564
emails 0.115 0.253 0.116 0.230

wikivoyage-it 0.770 0.972 0.791 0.955
wikiedits-se 0.493 0.708 0.521 0.651
mathoverflow 0.184 0.412 0.228 0.394
superuser 0.119 0.383 0.142 0.404
wikitalk 0.224 0.390 0.266 0.427

F ADDITIONAL RESULTS
F.1 TBC Distribution
We distribute the vertices to 8 evenly distributed buckets between
0 and the highest temporal betweenness value. Figure 6 shows the
experimental results on datasets highschool-2011 and hypertext,
others are omitted due to limited space. It is observed that, no
matter what types of optimal temporal paths, the TBC values still
follow a power-law like distribution.
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Figure 7: Performance versus graph size

F.2 Compression Ratio Estimation
As depicted in Table 6, it is seen that the estimated values are close to
the true values. For example, on hypertext, �vc-ratio = 0.481 (vc-ratio
= 0.514) and �ec-ratio = 0.765 (ec-ratio = 0.763); on emails, �vc-ratio
= 0.116 (vc-ratio = 0.115) and �ec-ratio = 0.230 (ec-ratio = 0.253).
These show the effectiveness of the compression strategies and the
estimation method proposed in Section 4.3.

F.3 Scalability
We vary the size of the temporal graph and report the performance
of ETBC and OTBC on wikiedits-se and infectious in Fig 7. It is seen
that the computation costs and memory consumption grow with

the increase in the graph size. This is consistent with the complexity
analyses in Section 4.

F.4 Performance of Dynamic Update
We evaluate the insertion (resp. deletion) performance when chang-
ing the number of inserted (resp. deleted) edges from 10K to 50K
in 10K increments. Figure 8 shows the results. As observed, the
update cost ascends with the number of inserted or deleted edges
increases because of the growing size of the affected vertex pairs,
and it is up to 2 times faster than the re-computation cost.
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Figure 8: Performance versus TBC update
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