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ABSTRACT

Understanding human emotions in spoken conversations is a key challenge in af-
fective computing, with applications in empathetic Al, human-computer interac-
tion, and mental health monitoring. Existing datasets lack scale, tightly aligned
modalities, and balance in emotion diversity, thereby limiting robust multimodal
models. To address this, we propose SpEmoC, a large-scale Speaking segment
Emotion dataset for Conversations. SpEmoC comprises 306,544 clips from 3,100
English-language videos, featuring synchronized visual, audio, and textual modal-
ities annotated for seven emotions, and yields a refined set of 30,000 high-quality
clips. It focuses on speaking segments under diverse conditions like low lighting
and resolution, with a threshold-based filtering and human annotation ensuring a
balanced dataset. SpEmoC is class-balanced, which enables fair learning across
all emotions and leads to comparably balanced performance across all classes.
We introduce a lightweight CLIP-based baseline model with a fusion network and
a novel multimodal contrastive loss to enhance emotion alignment. We conduct
a series of experiments demonstrating strong results, establishing SpEmoC as a
reliable benchmark for advancing multimodal emotion recognition research.
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Figure 1: (a) Emotion class distribution comparison between SpEmoC, MELD, and CAER datasets
across train, test, and validation splits. The proposed SpEmoC dataset shows a more balanced
distribution across all seven emotion classes, whereas the MELD [Poria et al.| (2018) and CAER |Lee
et al.| (2019) datasets are skewed toward the Neutral class. Subfigure (b) Class-wise recognition
performance of the baseline model on SpEmoC. Unlike prior datasets where minority emotions
(e.g., fear, disgust) are poorly recognized, the balanced distribution of SpEmoC enables comparably
robust F1-score across all emotion classes.

1 INTRODUCTION

Understanding human emotion from multimodal cues is a fundamental task in affective comput-
ing, with wide-ranging applications in human-computer interaction, mental health, pain detection
for medical diagnostics |Lucey et al.| (2011), and social robotics [Picard (2000). Emotion is inher-
ently multimodal, manifested through facial expressions, speech prosody, and linguistic content,
making the integration of visual, audio, and textual modalities essential for comprehensive emotion
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recognition. Recent advances in large-scale pretrained models, such as CLIP [Radford et al.| (2021},
wav2vec|Baevski et al.|(2020), and BERT Devlin et al.|(2018)), have significantly enhanced unimodal
feature extraction, yet leveraging these models for fine-grained, multimodal emotion understanding
in real-world conversational settings remains underexplored.

Multimodal Emotion Recognition (MER) faces significant challenges that hinder its deployment in
dynamic, dialogue-driven contexts. Most existing benchmarks focus on unimodal settings, such as
facial expressions (L1 et al.|(2017);|Zeng et al.|(2018)) or audio (Schuller et al.| (201 1)); El Ayadi et al.
(2011))). They suffer from limited modality alignment and annotation scale (Poria et al.| (2017a);
Zadeh et al.| (2018)); [Albanie et al.| (2018])). Datasets like the Multimodal EmotionLines Dataset
(MELD) |Poria et al.| (2018)), with 13,000 utterances from the TV series Friends, and CAER |Lee
et al.| (2019), which includes 13,201 video clips from 79 TV shows with audio and visual tracks,
offer multimodal annotations at limited scales. Similarly, EmoWOZ [Feng et al.| (2021) provides
11,000+ task-oriented dialogue utterances with multimodal labels. However, these datasets are con-
strained by relatively small sizes and imbalanced emotion distributions, with MELD and CAER
dominated by “Neutral” emotions and underrepresentation of “Fear” and “Disgust” (see Figure [I).
These datasets lack real-world diversity and, being built from TV series, often reuse characters
across splits, making test sets not truly unseen. Similarly, the M3ED dataset|Zhao et al.| (2022) of-
fers 9,000 utterances from TV series but falls short in capturing the breadth of emotional expressions
needed for generalization. Furthermore, the reliance on expensive human annotations and the ab-
sence of synchronized multimodal alignment limit the scalability and applicability of these datasets.
Fusing heterogeneous modalities also remains challenging due to differences in data representation,
temporal dynamics, and emotional relevance across text, audio, and visual streams (Zadeh et al.
(2018); ' Wollmer et al.| (2013)).

To address these limitations, we introduce SpEmoC : a large-scale Speaking segment Emotion
dataset for Conversations designed to support emotion recognition in real-world, multimodal inter-
actions. SpEmoC comprises 30,000 refined clips, curated from 306,544 raw video segments sourced
from 3,100 English-language movies and TV series across diverse genres, including drama, comedy,
horror, thriller, romance, and history. This dataset captures a wide range of emotional expressions in
naturalistic settings, with temporally aligned video, audio, and text data. This enables the study of
cross-modal emotion alignment and fusion. Notably, SpEmoC is balanced across all seven emotion
classes through targeted filtering and refinement, as illustrated in Figure[I} Inspired by recent efforts
like EmotionCLIP Zhang et al.| (2023), which utilizes large-scale TV series data for emotion repre-
sentation learning, SpEmoC significantly improves scale, diversity, and real-world applicability for
conversational MER.Our contributions are four-fold:

* SpPEmoC Dataset.We introduce SpEmoC, a large-scale multimodal dataset with 30,000
temporally aligned video, audio, and text clips from 3,100 movies and TV series. Unlike
prior datasets, SpEmoC provides a balanced distribution across all seven emotion classes.
This enables robust recognition not only of the dominant classes (e.g., Neutral) but also of
underrepresented ones such as Fear and Disgust.

* Automatic Annotation Pipeline. We propose a scalable annotation methodology that em-
ploys pretrained emotion recognition models for text and audio to generate emotion labels,
using a fusion algorithm based on emotion logits to infer video-level emotions.

* Multimodal Contrastive Loss. We develop an Extended Re-weighted Multimodal Con-
trastive Loss (ERMC), enhanced with KL-divergence-based weighting, to align emotional
embeddings across modalities using predicted unimodal sentiment distributions.

 Efficient Baseline Model. We propose a lightweight model integrating pretrained CLIP
encoders for video and text, a compact HuBERT-based audio encoder, and a fusion MLP
classifier, achieving strong performance with minimal trainable parameters. Despite its
compact size, the model achieves balanced per-class accuracy.

SpEmoC significantly improves the scale, diversity, and real-world applicability of conversational
MER, and by mitigating class imbalance through targeted filtering, it enables models to learn pre-
viously underrepresented emotions such as fear and disgust (see Figure [1| (a)). As demonstrated
by the balanced distribution in Figure[I] (b), SpEmoC provides a stronger benchmark for advancing
multimodal emotion recognition, with potential for balanced performance across classes pending
further evaluation. Together, SpEmoC, our annotation pipeline, and our baseline model provide
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a foundation for scalable, weakly supervised, and modality-aware emotion recognition, paving the
way for future research in affective computing.

2 RELATED WORK

Emotion recognition research relies on multimodal datasets, each enhancing understanding of emo-
tional expressions across modalities. IEMOCAP [Busso et al.| (2008) offers 10,039 utterances with
audio, video, and motion data for categorical and dimensional affect, while MELD |Poria et al.|(2018)
provides 13,000 utterances from Friends with text, audio, and visual annotations using Ekman’s
classes. CAER [Lee et al.| (2019) includes 13,201 video clips from 79 TV shows, manually anno-
tated for seven emotions with context emphasis, whereas RAVDESS |Livingstone & Russo| (2018)
delivers 7,356 audio-video files of scripted emotions, and EmoReact Nojavanasghari et al.| (2016)
features 1,102 clips of children’s reactions for six emotions. These datasets, though foundational,
are limited by scale, diversity, and consistency, hindering broader applicability. Recent advances
include CMU-MOSEI [Zadeh et al.| (2018)) with 22,856 video segments for monologue sentiment,
AffWild2 Kollias & Zafeiriou (2020) with 564 in-the-wild valence-arousal annotations, EmoWQOZ
Feng et al.[(2021)) with 11,000+ dialogue utterances, and M3ED [Zhao et al.| (2022} with 9,000 TV
series utterances, evolving from controlled settings (IEMOCAP Busso et al.| (2008)) to naturalistic
ones with CMU-MOSEI [Zadeh et al.| (2018)), PanoSent [Luo et al.| (2024}, and MELD |Poria et al.
(2018)) across text, speech, and visual cues.

Further progress is evident with newer datasets and model-level innovations. EmotionTalk|Sun et al.
(2025)), a Chinese multimodal dataset with 19,250 utterances and rich annotations, and EMOVOME
Gomez-Zaragoza et al.| (2024)), featuring 999 spontaneous Spanish voice messages, enhance cross-
lingual and real-world diversity. EmotionLLAMA’s MERR |Cheng et al.|(2024) offers 28,618 coarse-
grained and 4,487 fine-grained samples, while EmotionCLIP [Zhang et al.| (2023) leverages large-
scale TV series data for emotion representation learning, advancing annotation scalability. At the
model level, the Multimodal Transformer (MulT) [Tsai et al.| (2019)) integrates cross-modal atten-
tion, the Dynamic Fusion Graph Network (Chen & Shi| (2025); [Wang et al.| (2025); Zhao et al.
(2025)) models contextual relationships, and Contrastive Emotion Alignment (Zhang et al.[ (2025));
Wau et al.|(2025)) aligns multimodal embeddings for robustness. Despite these efforts, challenges in
data scale, annotation scalability, and handling real-world noise persist, motivating the development
of SpEmoC as a larger, more diverse, and validated resource.

Table 1: Comparison with existing multimodal emotion recognition datasets. Modalities: A = Au-
dio, V = Visual, T = Text.

Dataset Samples Modalities No. of Emotions  Source

IEMOCAP [Busso et al. 10,039 V, A, T, Motion 8 Acted dialogues
(2008)

MELD Poria et al.|(2018) 13,000 V,A, T 7 Friends TV show
CAER |Lee et al.[(2019) 13201 V, A 7 TV shows .
RAVDESS |Livingstone & 7,356 8 Studio-acted clips
Russo|(2018)

EmoReact |Nojavanasghari. 1,102 8 YouTube videos

et al.|(2016)

SpEmoC(Proposed) SRS () V,A, T 7 Movies & TV series

30,000 (refined)

3 SPEMOC DATASET CONSTRUCTION

We introduce SpEmoC, a large-scale multimodal dataset for emotion recognition, focused on
speaking segments and containing synchronized video, text, and audio samples. Clips are ex-
tracted from 3,100 publicly available English-language movies and TV series, capturing natural,
emotionally diverse content across genres (drama, comedy, horror, etc.), formats (color, black-and-
white), and conditions (low-light, varying resolutions). SpEmoC preserves authentic speech and
facial expressions while avoiding dubbed content and subtitles while reducing cultural bias. We
showecase the diversity of our dataset in terms of visual style and emotional expression in Figure
A detailed explanations provided in the Appendix [A]

Motivation

Existing datasets often lack scale, synchronization, and emotional diversity. Most of them provide
either short, caption-based content or acted emotions recorded in constrained settings, and they also
suffer from severe class imbalance, with the neutral class heavily overrepresented and minority
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emotions (e.g., fear, disgust) largely neglected. In contrast, SpEmoC offers real-world emotion-rich
scenarios with tightly aligned modalities and a balanced distribution across all emotion classes. It is
designed to support the development of robust, generalizable emotion recognition models that can
learn from vocal tone, facial expressions, and contextual language. Table [2] provides an overview of
the proposed SpEmoC dataset for multimodal emotion recognition, detailing its source, structure,
modalities, annotation process, splitting policy, and emotion coverage, while Table [I] compares it
with existing multimodal emotion recognition datasets.

fi fa f3 fa fs fe fr f3

Figure 2: Examples from SpEmoC showing variation in genre, lighting, color, and expression. Each
row displays 8 sampled frames from a distinct clip.

3.1 DATA COLLECTION AND PROCESSING PIPELINE

We present a scalable multi-stage pipeline that processes long videos into synchronized multimodal
emotion clips. Let V' = {V;,V5,...,V3100} be the set of source videos, each Vj, with duration
t;, > 40 minutes.

1. Dialogue Segmentation: We use the Whisper ASR model Radford et al.| (2023) to transcribe
each video with word-level timestamps. Segments are retained if they: (i) contain at least 12 words,

ensuring sufficient context, and (ii) ended with terminal punctuation (e.g.,., !, ?) Each video Vj,
yields segments {vg, , Uk,, . . . }, each defined by start/end times and transcript T},, totaling:
3100 ™M
Nelips = Z Z 1~ 306,544. [

k=1 1i=1
2. Multimodal Extraction: For each segment vy, we extract:
» Text: T}, the transcribed dialogue text, directly obtained from the Whisper model.

* Audio: Ayg,, from the interval [tﬁ;t, tfﬁd]’ using |FFrnpeg Developers| (12025b. Duration of
audio clip: AtFi = toq — tyar. Where tyay is start time and tenq is end time.

* Visual: vy,, video segment from the same interval [t ¥ ], with frame count: N =~

AtFi x FPS. This results in 30 million video frames across all clips.

* Human and Face detection: To focus analysis on subjects in the clips, each frame is
processed with YOLOVS [Varghese & Sambath| (2024) to detect Auman and face bounding
boxes. We retain only these regions, ensuring consistent alignment across modalities and
directing the model’s attention to subjects’ facial and bodily cues. The bounding box co-
ordinates are defined as B; ; = [Zmin, Ymin, Tmaxs Ymax), Where Bj 1, denotes the box for
the j-th person in the k-th frame. By emphasizing subject-specific regions, this strategy
improves synchronization of audio, text, and visual cues, thereby enhancing recognition of
person-centered emotions.

3. Synchronization Check: We verify alignment between modalities using timestamp consistency:
[Duration(Ax) — (t5g — tstart)| < € within a tolerance € = 0.1 sec. @

Clips failing this check are reprocessed or flagged.

4. Metadata Generation: For each clip ¢, = {vi(t), Ax(t), Tk(t)}, we save metadata includ-

ing timestamps, file paths, and transcription in a JSON file to support downstream annotation and
training.
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This pipeline yields a high-quality, synchronized multimodal dataset optimized for fine-grained
emotion understanding across realistic scenarios.

Table 2: Overview of the Proposed Multimodal Emotion Recognition SpEmoC Dataset, Highlight-
ing Source, Structure, Modalities, Annotation, Splitting policy, and Emotion Coverage.

Data Source and Composition
Source

Number of Videos

Video Length

Video Types

Video genres

Total Number of Clips

Average Clip Duration

Total Frames

Focus Per Clip

Modalities and Preprocessing
Modalities

Face/Human Detection

YouTube (Movies and TV Series)

3,100

> 40 minutes each

Color and Black-and-White , English language , Non-dubbing, Subtitle independent
Drama, Comedy, Horror, Thriller, Romance, History, etc.

306,544

3-6 seconds

30 million+

Speaking segments only

Video, Audio, Text
YOLOv8|Varghese & Sambath|(2024)

Face Presence Threshold
Annotation and Labeling Strategy
Annotation Models

Face detected in > 90% of frames

DistilRoBERTa (Text)|Sanh et al.|(2019), Wav2Vec 2.0 (Audio) Baevski et al.|(2020)
Label Type Single dominant emotion per clip

Label Fusion Logit-Based Fusion from Text and Audio modalities

Dataset Spliting Strategy

Movie/franchise-level All clips from the same movie, sequel, or multi-episode series are assigned exclusively to

one split (train, validation, or test) to ensure a fully unseen test set.
Emotion Classes
Categories Anger, Disgust, Fear, Joy, Sadness, Surprise, Neutral

3.2 ANNOTATION METHODOLOGY

We adopted seven discrete emotion classes to ensure comparability with established benchmarks,
aligning with Ekman’s basic emotions framework |[Ekman| (1992). We used domain-specific pre-
trained models to annotate each modality. To avoid any conflicts between the labels, we selected
models that use the same set of emotion classes across text and audio. These classes include: Anger,
Disgust, Fear, Joy, Sadness, Surprise, and Neutral. This ensures that the annotations are consis-
tent when combining information from all three modalities. E = [Anger, Disgust, Fear, Joy, Sadness,
Surprise, Neutral]

Text Annotation: We apply a fine-tuned DistilRoBERTa [Sanh et al.| (2019) model for emotional
content analysis of dialogue text. For each utterance, we obtain a vector of real-valued scores called
sentiment logits, representing the unnormalized model confidence for each emotion class in F.

1 = logitsiex (Tk) € RIZ! 3)

Audio Annotation: Similarly, the acoustic segment Ay, is analyzed using a wav2vec 2.0 Baevski
et al.|(2020) pretrained model:

189410 Jogits, gio (Ak) € RIZ “)
Sentiment Logits for Fusion: The sentiment logits '™ and 12“%° serve as input to our logit-based
fusion mechanism. Rather than relying solely on the top-class prediction, we use the full logit
distributions to capture detailed emotion signals and uncertainty across modalities. The detailed
explanation is given below.

Logit-Based Multimodal Fusion for Supervised Emotion Labeling: To annotate emotions with-
out relying on the noisy visual modality, we propose a logit-based fusion strategy using pre-
trained emotion classifiers for Text and Audio. For a fixed emotion label set £ = {ey,...,er},
each clip produces two 7-dimensional logit vectors: L; = [lz1, ..., ] from the text model and
L, = [lg1,---,la7] from the audio model. These are unnormalized scores, i.e., {,,; € R where
m € {t,a}.

Assuming a uniform prior P(e;) = 1/|E)|, the posterior over emotion class e; is modeled as:
P(e;|Lt, Ly) o< P(L¢le;) - P(Lqlei) )
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where likelihoods are softmax-normalized:

exp(lm,i)

P(es) = —XPm)
m (61) 25:1 exp(lm‘j)

» me{ta} ©

To encourage modality agreement, we introduce a KL-divergence penalty:

51 = S B mei))
D (PHPG): Pt(ez)10'<~ 7)
KL 2 E\ Pulen)

This yields a fused decision score:
S(el) = log Pt(ei) +10g Pa(ei) — ADKL(IStHPa) (8)
where A = 0.5. The final emotion label is:

= S(e; 9
e arg;}:g}é (eq) ()]

and its confidence is normalized using:

1

P = Tremose)y’

F(e*) € [0,1] (10)
This formulation captures full distributional uncertainty from both modalities and enforces semantic
coherence between textual and acoustic cues. Unlike majority voting or hard max fusion, the KL
divergence regularizer penalizes disagreements and rewards confident, aligned predictions.

For example, if L; = [0.02,...,0.75] and L, = [0.05,...,0.75] both peak at ”surprise,” we obtain
S (surprise) ~ —2.60 and F' =~ 0.07, compared to S ~ —3.18 and F' ~ 0.04 in cases of disagree-
ment. Thus, the framework promotes high-confidence, consistent labeling across modalities.

We further use the agreement condition arg max L; = argmax L, and confidence score F'(e*) to
filter noisy labels. As both logit vectors come from pretrained emotion models (DistilRoBERTa
and Wav2Vec 2.0), the approach scales efficiently across large unlabeled datasets and acts as a
pseudo-supervisor for high-quality emotion annotation. The overall dataset annotation pipeline is
summarized in Algorithm[T} which details the multimodal annotation procedure. Figure [3]illustrates
the construction pipeline of the SpEmoC dataset, outlining the key steps involved in its development.
Further information on annotaion file is detailed in the AppendixB]

Algorithm 1 Multimodal Dataset Annotation Procedure

Input: Video clips V = {v1, v2, ..., vn } with synchronized text T, audio A, and visual frames F’
Output: Annotated dataset D with final emotion labels e; for each clip
Step 1: Preprocessing Initialize D < () foreach clip v; € V do
Extract text T}, audio A;, and visual frames F; from v; Detect face and human bounding boxes using
‘ YOLOV8:  (zy,ys,wy, hy) and (zn,Yn, wn, hn)

end

Step 2: Annotation of Modalities foreach clip (T, A;, F;) do

Compute text emotion logits /'™ using DistilRoBERTa: I = logits,., (7;) € RI®! Compute audio
emotion logits /2% using Wav2Vec: 12 = logits, ;. (4;) € RIZ!

end

Step 3: Multimodal Fusion Fuse logits across modalities to compute final emotion score: S(ei) =
log Pi(e;) + ADki(Pi||P2%°) where A = 0.5 Assign final label: ¢ = argmax S(e;)

Step 4: Dataset Construction Construct annotated dataset entry: D < DU {(T3, A;, Fi, ef)}

return D

3.3 DATASET REFINEMENT

The initial 306,544 annotated clips were analyzed for class distribution, revealing a significant im-
balance, with the neutral class dominating, as shown in Figure |4 This imbalance could bias model
training, as neutral emotion appeared more frequently in the dataset. To address this, we applied
threshold-based filtering to reduce the number of neutral clips, resulting in a refined dataset of
50,000 clips. After this filtering, we perform the human validation of labels. Thereafter, we ob-
tained 30,000 coarse-grained refined clips (which is still relatively high as compared to the existing
datasets) with a more balanced distribution across the seven emotion categories as shown in Figure
(a). The detailed analysis of this refinement process is further elaborated in Appendix
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Figure 3: Overview of the SpEmoC dataset construction pipeline. Raw videos are processed to ex-
tract synchronized text (T} ), audio (A), and visual clips (vy). Human and face bounding boxes are
detected using YOLOV8: Human Box = (zp, yn, ws, k), Face Box = (xy,yr, wys, hy). Emotion
logits I\ and l;“dio are computed using pretrained classifiers and fused to produce the final emotion
label e . This process is applied across all Njps to construct the dataset.
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Figure 4: Emotion class distribution before (see right plot in blue) and after filtering (left plot in
green). The initial 306,544 clips are heavily dominated by the neutral class (over 186,000 samples),
with underrepresentation in fear. A two-step filtering process was applied: (i) threshold-based fil-
tering, retaining clips with face presence in at least 90% of frames to enhance emotional salience,
and (ii) human annotation validation to remove ambiguous cases and confirm label reliability. The
refined 30,000-clip dataset shows a more balanced distribution across all seven emotion classes.

Human Validation of Labels To validate the reliability of SpEmoC, we conducted a human an-
notation study on 50,000 clips, detailed explanation provided in the Appendix

Dataset Splitting Strategy: To ensure realistic evaluation and prevent content leakage, we adopt
a movie-level splitting strategy, assigning entire movies exclusively to training (70%), validation
(10%), or test (20%) sets, ensuring no overlap of scenes, characters, or dialogue contexts. This
movie-independent approach, applied even to franchise sequels or multi-episode series, places all
related episodes in one split, guaranteeing an unseen test set free of recurring patterns or actors for
robust real-world generalization. The 30,000 refined clips are distributed accordingly, with robust-
ness enhanced by this strategy, while emotion class distributions are compared with MELD and
CAER in Figure ] (a) and Table [3| detailing class distributions across splits. Refer to Appendix D]
for details on clip distribution across splits and Appendix E] for dataset demographic .

Table 3: Comparison of emotion class distribution between the MELD dataset|Poria et al.|(2018)), the
CAER dataset |Lee et al.| (2019), and the proposed SpEmoC dataset across training, development,
and test splits. Red-highlighted indicates underrepresented classes (e.g., Disgust, Fear) with low
sample counts, while Blue-highlighted denotes the overrepresented Neutral class with the highest
sample counts in the existing datasets.

Categories MELD CAER SpEmoC (Ours)

g Train ~ Val Test | Train  Val  Test | Train _ Val Test
Anger 1109 153 345 1136 162 325 | 3980 392 1271
Disgust 271 22 68 500 71 145 | 4946 551 1298
Fear 268 40 50 358 51 102 | 2378 226 729
Joy 1743 163 402 1905 272 544 | 2506 340 578
Neutral 4710 470 1256 | 3202 457 915 | 2804 320 895
Sadness 683 111 208 1028 146 294 | 1612 195 474
Surprise 1205 150 281 1093 157 315 | 3181 376 811
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3.4 SUMMARY AND FUTURE DIRECTIONS

We presented SpEmoC, a large-scale multimodal emotion recognition dataset comprising 306,544
clips from 3,100 English-language movies and TV series. Each clip includes synchronized video,
audio, and text, focusing on speaking segments with at least 12 words and terminal punctuation
to ensure emotional richness. Using pretrained models DistilRoBERTa (text), Wav2Vec 2.0 (au-
dio), and YOLOVS (visual) we automatically annotated and filtered the data to a high-quality, class
balanced subset of 30,000 clips. SpEmoC emphasizes modality alignment and authenticity by ex-
cluding dubbed or subtitled content and includes diverse real-world conditions (e.g., grayscale, low-
light, variable resolution). It supports robust learning from integrated visual, auditory, and linguistic
signals. In the future, we plan to add more emotion classes, include continuous labels such as va-
lence—arousal, and give more focus to real, non-acted samples to make the dataset more authentic
and useful.

Ethical Considerations: We prioritize copyright and responsible use in constructing SpEmoC. The
dataset is derived from publicly available movies and TV series and will be released strictly under
fair-use provisions for non-commercial research. Distribution will be governed by an End User Li-
cense Agreement (EULA), requiring researchers to apply for access and comply with clearly defined
terms. To ensure transparency, the dataset repository will provide detailed documentation on usage
boundaries, licensing conditions, and ethical safeguards.

Dataset and code link : The dataset (test set for evaluation) and code are available in the anony-
mous link provided here : https://github.com/emouser2023/emodata.git

4 BASELINE MODEL

Our baseline model integrates video, text, and audio modalities using pretrained encoders followed
by a lightweight fusion classifier as shown in Figure 5]

: - ler]@
r o
i CLIP Video & ran
Encoder @ |2
Modality  ea]® | 2
Fusion e 8 Lok
! les|® | &
1 (=3
CLIP Text ! = ! leg|w@ [&.
Encoder H H lez]=) ®
: Similarity matrix
Audio : E—» —> Lgruc
Encoder | |
: Video Embedding : Text Embedding : Audio Embedding

Figure 5: Illustration of the proposed multimodal emotion recognition framework. Video, text, and
audio inputs are encoded with modality-specific encoders, while face and body bounding boxes
provide subject-focused attention. Embeddings are fused to produce emotion logits optimized with
cross-entropy loss (Lcg). In parallel Extended Reweighted Multimodal Contrastive Loss (Lgrmc)
aligns cross-modal embeddings for robust recognition.

The video encoder uses CLIP-ViT with temporal adaptation via AIM |Yang et al.| (2023); the text
encoder is adapted with T2L|Ahmad et al., Audio features are extracted using a pretrained HuBERT
model Hsu et al.[(2021). Let v, t,a € R? be the modality embeddings. These are concatenated and
passed through a two-layer MLP:

z = [v||t||]a], y = W2ReLU(Wiz + b1) + b2 (11)

yielding logits y € R¥ over emotion classes. Full encoder adaptation equations (AIM and T2L) are
provided in Appendix

4.1 PROPOSED EXTENDED REWEIGHTED MULTIMODAL CONTRASTIVE L0oSs (ERMC)

To align video, audio, and text embeddings semantically and emotionally, we propose an Extended
Reweighted Multimodal Contrastive (ERMC) Loss. It computes cosine similarities across modal-
ity pairs and adjusts them using sentiment-based reweighting derived from unimodal classifiers.
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Similarity Scores: For a batch of N samples, we compute scaled cosine similarity between all
pairs of modalities using a learnable temperature parameter 7:
LG = Z(vity), LG = L(viay), LED = Z(toay) 12
T T T

Sentiment-Based Reweighting: We compute reweighting factors based on the Kullback-Leibler
(KL) divergence between sentiment distributions:

® _ 1 (a) _ 1 (ta) _ 1

S T (13)

i KL(s(" || s§7) + e i KL(s{" || s(") + e i KL(s{") || s$*) +

where ¢ is a small constant for numerical stability.

Adjusted Similarity Logits: The reweighted similarity logits are adjusted as follows:
EGP =100 ), E00 =L el E00 =10 as
Here, ) is a hyperparameter that controls the effect of sentiment reweighting.

Contrastive Loss: For each modality pair (z,y) € {(v,t), (v,a), (¢,a)}, we define the standard
cross-entropy contrastive loss:

1 & exp(L{,Y
Lay =+ > —log pr(i{()” (15)
=1 Zj:l exp(LaMJ )
Final Objective: The complete ERMC loss is the average of all six symmetric modality pair
losses:

1
LErRMC = 5 (Lot + Ltv + Loa + Lav + Lta + Lat) (16)
The final training objective is:
Liotal = £CE + LERMC an
where Lcg is standard cross-entropy, and Lgryc ensures modality consistency.

5 EXPERIMENTS AND RESULTS

In Table [l] we compare per-class recognition performance across MELD, CAER, and SpEmoC,
where MELD and CAER show high scores for Neutral and Joy but poor results for minority classes
like Fear (0.00 in MELD, 13.58 in CAER) and Disgust (2.90 in MELD, 12.24 in CAER). SpEmoC
achieves consistent F1-scores above 64% for Sadness, Joy, Disgust, and Anger, with significant
improvements for Fear (68.84) and Disgust (67.13), reflecting its effective class balance. With the
highest overall weighted F1-score (67.84) compared to MELD (57.61) and CAER (44.04), SpEmoC
proves a robust benchmark. In addition, the comparision of State-of-the-Art Methods on MELD and
the stronger-baseline experiments are provided in Appendix [F2]and Appendix[F1].

Table 4: Per-class emotion recognition performance (F1-scores) on MELD |Poria et al| (2018),
CAERLee et al.| (2019), and the proposed SpPEmoC dataset. SpEmoC achieves more balanced
performance across all emotion categories, particularly improving underrepresented classes such as
Fear, Disgust, and Anger, while also yielding the highest weighted F1 (W-F1) score. An upward
arrow (7) signifies that higher values are better.

Datasets Neutral Surprise Fear Sadness Joy Disgust Anger W-F11
MELD 76.37 52.05 0.00 20.77 55.27 2.90 38.06 57.61
CAER 57.01 32.58 13.58 27.85 60.20 12.24 29.33 44.04
SpEmoC (Ours)  53.11 76.51 68.84 64.56 82.62 67.13 67.28 67.84

Cross-Dataset (Out-of-Domain) Evaluation: We have conducted cross-dataset (Train — Test )
evaluations. We have trained a multimodal model (TLC-MAP) [Zhou et al.| (2024)) solely on SpE-
moC and directly tested it on MELD and CAER without any fine-tuning. This evaluates out-of-
domain robustness, and the results are summarized in Table[5] We observe that models trained on
SpEmoC generalize better to MELD and CAER than models trained directly on those datasets. In
contrast, MELD — SpEmoC and CAER — SpEmoC transfers show substantial performance drops,
indicating limited representational richness in MELD and CAER. Meanwhile, SpEmoC — MELD
and SpEmoC — CAER maintain moderate and stable performance, demonstrating that SpEmoC
supports upward transfer to smaller benchmarks. Finally, SpEmoC — SpEmoC achieves strong
in-domain performance, reflecting the dataset’s internal consistency and high-quality annotations.
Additional cross-dataset results for the proposed model are provided in Appendix (Table[T7).
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Table 5: Cross-dataset generalization across SpEmoC (ours), MELD, and CAER using the TLC-
MAP Zhou et al.|(2024) model.

Train — Test Surprise  Joy Fear Disgust Anger Neutral Sadness W-F11 A Gain

MELD — MELD 56.04 56.44 17.07 2222 46.05 717.75 33.93 62.68 -11.95
SpEmoC — MELD 45.19 29.37  3.96 16.72 39.71 69.59 25.24 50.73

SpEmoC — SpEmoC 75.51 7436 71.13 7225 75.55 70.84 73.76 73.67 -37.67
MELD — SpEmoC 44.83 5347 392 18.21 51.28 3491 30.77 36.00

CAER — CAER 13.24 28.73 10.85 7.51 23.37 44.79 12.98 28.26 +2.49
SpEmoC — CAER 21.31 1792 10.78  13.30 20.30 46.69 11.36 30.75
SpEmoC — SpEmoC 75.51 7436 71.13 7225 75.55 70.84 73.76 73.67 -49.03
CAER — SpEmoC 21.14 3479 349 5.47 40.94 25.89 17.07 24.64
MELD — MELD 56.04 56.44 17.07 22.22 46.05 717.75 33.93 62.68 -28.06
CAER — MELD 19.46 17.44 513 1.14 16.09 50.71 13.56 34.62
CAER — CAER 13.24 28.73 10.85 7.51 23.37 44.79 12.98 28.26 +35.95
MELD — CAER 53.27 5732 15.58 17.82 44.59 79.91 34.06 64.21

Evaluation of State-of-the-Art Methods on SpEmoC: We evaluate our baseline model against
several state-of-the-art (SOTA) multimodal fusion frameworks, including MulT [Tsai et al.[(2019),
MISA Hazarika et al.| (2020), EmotionCLIP |Zhang et al.| (2023) and TLC-MAP [Zhou et al.| (2024)).
All models are trained and tested on the SpEmoC dataset using identical train-validation-test splits
(70%/10%/20%) and optimization settings for a fair comparison. As shown in Table[6] our model
outperforms existing methods across most emotion categories, with notable gains for underrepre-
sented emotions such as Fear (68.84 F1) and Disgust (67.13 F1). Our baseline also achieves the
highest weighted F1-score (67.84), outperforming MulT (53.37), MISA (50.78), and EmotionCLIP
(51.30), and is surpassed only by the TLC-MAP (73.67). These findings demonstrate that SpE-
moC effectively addresses class imbalance, establishing it as a reliable benchmark for multimodal
emotion recognition.

Table 6: Per-class Fl-scores of state-of-the-art multimodal emotion recognition methods on the
proposed SpEmoC dataset.

Methods Neutral Surprise Fear Sadness Joy  Disgust Anger W-F171
MulT |[Tsai et al.|(2019) 35.13 47.10 4044 6047 7526  60.06 60.05 53.37
MISA [Hazarika et al.[(2020) 32.40 41.30 36.00 51.70 6640  49.80 50.90 50.78
EmotionCLIP|Zhang ef al.[(2023) ~ 31.76 52.63 5049 4847 6693  55.82 51.60 51.30
TLC-MAP|Zhou et al.[{2024) 75.51 74.36 71.13  72.25 75.55  70.84 73.76 73.67
SpEmoC (Ours) 53.11 76.51 68.84 6456  82.62 67.13 67.28 67.84

5.1 ABLATION STUDY

Low-Resource Fine-Tuning: We conducted low-resource finetuning experiments on MELD and
CAER using only 10%, 30%, and 50% of the training data (Table[7). SpEmoC-pretrained models
consistently outperformed non-pretrained baselines, confirming its value for data-efficient learn-
ing. Additional unimodal and multimodal backbone improvements, along with ablations on transfer
learning, loss functions, neutral-class removal, and modality analysis, are provided in Appendix[G]

Table 7: SpEmoC pretraining boosts MELD and CAER performance in low-data settings. Results
for MELD are highlighted in red, and CAER results are shown in green.

Training Split Baseline +SpEmoC Pretraining (W-F1 1)

10% 51.13/ 53.23/
30% 53.88/ 56.54 /
50% 55.14/ 57.60 /

6 CONCLUSION AND FUTURE WORK

We introduced SpEmoC, a large-scale multimodal dataset with 30,000 refined clips from 306,544
segments across 3,100 English-language movies and TV series, offering synchronized visual, au-
dio, and text modalities annotated for seven emotions. Unlike existing datasets, SpEmoC is class-
balanced, enabling fair learning and balanced F1-scores across all emotions, including underrepre-
sented ones like fear and disgust. We developed an automated annotation pipeline using pretrained
models (Wav2Vec, DistilRoBERTa) with human validation, and a lightweight baseline model with
Extended Reweighted Multimodal Contrastive (ERMC) Loss, achieving a 67.84% F1-score with
8.68M parameters. This foundation addresses scale, modality alignment, imbalance, and efficiency,
paving the way for future enhancements including non-acted real-world videos, continuous valence-
arousal labels, and physiological signals.
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Appendix

Dataset and Code Availability : The dataset (test set for evaluation) and code are available in the
anonymous link provided here: https://github.com/emouser2023/emodata.git

A  DATA COLLECTION

The videos for the SpEmoC dataset were collected using a Python-based implementation of the
YouTube API, specifically youtube-search-python Mercer| (2021)), which replicates the search be-
havior of the YouTube web interface. We used search queries such as “TV series”, “movies,” and
“TV shows” to identify long-form content rich in emotional expression. To maintain linguistic con-
sistency, we filtered the results to include only English-language videos without dubbing. Addition-
ally, to exclude short or irrelevant clips and ensure meaningful emotional content, we retained only
videos longer than 40 minutes. This filtering process resulted in a curated set of 3,100 videos from
diverse TV shows and movies, covering a wide range of demographics, genres, and authenticity of
affect, as summarized in Table [S]

Multi-Modalities Deep
Facial : ")
c X Learning Anger | | &
& Expression a Model - E
- a4 % Happy = g.
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Collection q Processin N _Audio RXR e
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Figure 6: Overview of the multi-modal emotion recognition pipeline. Videos are collected from on-
line sources (e.g., YouTube) and undergo preprocessing to extract three primary modalities: visual,
speech audio, and textual transcripts. Each modality is analyzed individually and then fused through
a deep learning model to perform emotion classification into seven categories: Anger, Happy, Fear,
Sad, Neutral, Surprise, and Disgust.

Table 8: Demographic, genre, and authenticity distribution of the 3100 videos.

Category Distribution (approx.) Notes

Ethnicity Western/White: 60%, Asian: 20%, Skewed toward Western me-
African/Black: 12%, Other: 8% dia; noted as a limitation

Genres Drama: 30%, Comedy: 20%, Romance: 15%, Wide genre diversity, re-
Thriller: 15%, Horror: 10%, History: 10% flecting emotional variation

Authenticity of Affect Acted (Movies/TV): ~85%, Genuine (Inter- Mix of acted and sponta-
views, Documentaries, Reactions): ~15% neous expressions; genuine

subset improves authenticity

B ANNOTATION FILE INFORMATION

The table 0] provides an annotation summary for a 4-second clip (1230.1s to 1234.02s) from “STHE
BRIEF Blame,” clip 43, containing 74 frames. It includes metadata such as the text “I don’t doubt
that you were genuinely alarmed by what you saw,” emotion scores with text logits showing a high
probability for a specific emotion (0.9532) and a neutral score of 0.0141, and audio logits with a
neutral score of -0.0092. Detection and fusion results indicate perfect confidence in face and human
detection (1.0), a final emotion label of “Fear,” inconsistency between modalities (False), and a
fusion score of 0.0411. The clip meets the filtering criteria (f* > 0.9, wf < 0.05, w* < 0.05),
ensuring its suitability for multimodal emotion analysis in the SpEmoC dataset. Figure [7] visualizes
the synchronization process, showing the alignment of video frames, audio, and transcripts, along
with human and face bounding boxes over a representative 4-second clip from the SpEmoC dataset.
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@ " In other words, it's most likely the car was deliberately driven off the road. "
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Figure 7: Synchronization of modalities for a 4-second clip v from the SpEmoC dataset, with
tsaart = 2179 seconds and te,q = 2183 seconds. The clip includes frames f; ... fg, aligned with
corresponding audio and transcript text, and annotated with human and face bounding boxes to sup-
port multimodal emotion recognition.

v A

Table 9: Annotation summary of a sample clip from STHE BRIEF Blame, clip 43.

Metadata

Clip Identifier 5THE BRIEF Blame, Clip 43

Duration (s) (Start: 1230.1, End: 1234.02)

Text “I don’t doubt that you were genuinely alarmed by what you saw.”
Number of Frames 74

Emotion Scores

Text Emotion Logits [0.0062, 0.0026, 0.9532, 0.0015, 0.0141, 0.0024, 0.0200]

Text Neutral Score 0.0141

Audio Emotion Logits [-0.0500, 0.0340, 0.0282, 0.0154, -0.0092, -0.0892, 0.0115]
Audio Neutral Score -0.0092

Detection and Fusion
Face Detection Confidence (f*) | 1.0

Human Detection Confidence 1.0

Final Emotion Label Fear

Is Consistent? False

Fusion Score 0.0411

Filtering Status

Filtering Criteria | (f* > 0.9, wf < 0.05, ws <0.05)

C DATSET FILTERING

Filtering Process: To obtain a refined dataset for a balanced class distribution, we curated the data
using a multi-step filtering strategy. We implemented a meticulous filtering process to address the
dominance of neutral clips observed in the initial 306,544 clips, focusing on evaluating neutral score
thresholds for text and audio modalities. This ensures the presence of faces in visual frames to retain
clips with strong emotional signals. This process was informed by manual experimentation with
multiple thresholds and validated through performance analysis, as detailed below. Consequently,
we observed that many clips, particularly those labeled as neutral, contained text and audio with high
neutral scores, indicating weak emotional content. Whereas these scores, derived from pretrained
models DistilRoBERTa for text|Sanh et al.|(2019) and Wav2Vec 2.0 for audio |[Baevski et al.| (2020),
represent the probability of neutrality after applying a sigmoid transformation to the logits.

For a clip ¢, let:
s IF = text_neutral logit(7},) € R: the neutral logit for text,
* ¥ = audio_neutral logit(Ay) € R: the neutral logit for audio,

* f¥ = has_face(vy) € [0,1]: the confidence score indicating the presence of a face in the
visual frames.

These logits are converted to probabilities via the sigmoid function:

; : £ = o(th) = —

wt:U(lf):m» Wy, —m,
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where w¥, w” € [0, 1] represent the probability that the text or audio expresses a neutral sentiment.

To filter the dataset, we manually tested multiple neutral score thresholds for text (6;) and audio
(0,), alongside a face detection threshold (6¢).
We retained a clip ¢ if the following conditions were met:

Retai if f* = o

el ek 1 wf < 0y and wh < 4, if e} # neutral
where e is the final emotion label.
Here, 0y = 0.9 ensures that a face is detected in at least 90% of the video frames, while 6,0, =
0.05 filter out samples with weak emotional content in text and audio. For class balancing, we
included a small subset of neutral clips, approximately 15% relative to the number of non-neutral
clips, by relaxing these thresholds. Our filtering strategy substantially shifts the distribution of
neutral probabilities toward lower values, resulting in a refined 50,000 clips with stronger emotional
cues across all modalities.

C.1 HUMAN ANNOTATION

To validate the reliability of SpEmoC, we conducted a human annotation study on this filtered subset
(50,000 clips), ensuring high quality and balance. Twenty expert annotators, proficient in English
and trained on standardized guidelines based on Ekman’s framework [Ekman| (1992), were selected.
Each clip was independently reviewed by at least three annotators using all modalities (text, au-
dio, visual), and final labels were assigned via majority voting. Inter-annotator agreement reached
a Fleiss’ Kappa of 0.62 (substantial agreement [Landis & Koch| (1977)). This process eliminated
ambiguous clips, yielding the final 30,000 balanced clips, as shown in Figure ] This combined
threshold-based filtering and human annotation not only mitigates class imbalance but also enhances
label reliability.

C.2 LIMITATION OF HUMAN ANNOTATION

Although human annotation provides valuable ground truth for emotion labeling in SpEmoC, it is
inherently subject to limitations that can impact reliability. Annotators bring their own subjective
perspectives, shaped by personal experiences, cultural backgrounds, and interpretive biases, which
may lead to inconsistent classifications of the same multimodal clip. Furthermore, distinguishing
between closely related emotions such as surprise and joy, fear and anger, or disgust and fear
is particularly challenging due to overlapping expressive cues in facial, vocal, and textual modal-
ities, making clear boundaries between categories difficult to establish. These ambiguities often
result in misclassifications, especially in subtle or low-intensity cases. To mitigate these challenges,
our pipeline integrates pretrained model predictions with human annotations, leveraging automated
consistency to complement human judgment in assigning final labels, and underscoring the need for
hybrid approaches in the construction of large-scale emotion datasets.

C.3 NEUTRAL SCORE DISTRIBUTION BEFORE AND AFTER FILTERING

Figure []illustrates the distribution of neutral class probabilities from text and audio modalities in
the full dataset (left) and the filtered 30k subset (right). The filtering process removes clips with high
neutral scores, yielding a dataset with more emotionally salient and less ambiguous samples across
both modalities.

D DATASET SPLIT STRATEGY

The 30,000 refined clips are distributed as follows: 70% for training, 10% for validation (used for
tuning), and 20% for testing (used for evaluating generalization to novel movies), as detailed in Ta-
ble[TI0} This strategy enhances the robustness of performance metrics and better simulates real-world
deployment by ensuring diverse representation across splits. To prevent content leakage and ensure
realistic evaluation, we adopt a movie-level splitting approach, where entire movies are assigned ex-
clusively to one of the three sets, avoiding overlap of scenes, characters, or dialogue contexts. This
method is particularly effective for handling franchise sequels or multi-episode series, as all related
episodes are confined to a single split, minimizing the risk of recurring visual or conversational pat-
terns influencing model performance. This rigorous splitting strategy, combined with the balanced
dataset design, supports the development of generalizable emotion recognition models.
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Figure 8: Distribution of neutral class probabilities from text and audio before (left) and after (right)
filtering. Filtering removes emotionally ambiguous clips, shifting the distribution toward lower
neutral scores and enhancing signal richness across modalities.

Table 10: Dataset Splitting Information of refined 30,000 clips

Split Percentage (%) Number of Clips
Training Set 70% 21,000
Validation Set 10% 24,00
Test Set 20% 60,00
Total 100% 30,000

D.1 BALANCED EMOTION CLASS DISTRIBUTION IN SPEMOC

The class distribution of the proposed SpEmoC dataset, alongside existing datasets, is illustrated in
Figure [0 which presents the percentage-wise distribution of emotion classes. This figure highlights
SpEmoC’s balanced representation across the seven categories (Anger: 18.8%, Disgust: 22.8%,
Fear: 11.2%, Joy: 11.5%, Neutral: 13.5%, Sadness: 7.6%, Surprise: 14.6%), contrasting with the
imbalanced distributions in datasets like MELD (Neutral: 47.0%) and CAER (Neutral: 34.7%),
where the neutral class dominates.

MELD (Total:13708) 47.0
CAER (Total:13178)
SpEmMoC (Ours) (Total:30000)
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Figure 9: Comparison of emotion label distributions across MELD, CAER, and SpEmoC (Ours).
While MELD and CAER exhibit strong class imbalance (e.g., Neutral dominating with 47.0% and
34.7%, respectively), SpEmoC achieves a more balanced distribution across all seven emotions,
reducing bias toward majority classes.

E SPEMOC DEMOGRAPHICS

This section presents the demographic composition of the dataset (30K refined clips) across age,
gender, and ethnic groups. As shown in Tables and the dataset includes a broad age
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range from children to seniors, with substantial representation of young and middle-aged adults.
The gender distribution includes both male and female participants, and the dataset spans multiple
ethnic groups, providing useful diversity for analysis. These demographics give a clear overview of
the dataset’s population coverage.

Table 11: Age Distribution Table 12: Ethnic Group Distribution
Age Group Range Count % Ethnic Group Count %0
G Tswom oo Wee w0 g
Young Adult  20-35 13,366 44.88 ‘Asian 1083 6.66
adult oy e 1089 Middle Eastern 1,000 3.36

Table 13: Gender Distribution
Gender Percentage

Male 68.4%
Female 31.6%

F MORE EXPERIMENTS AND RESULTS

F.1 RESULT ON STRONGER BASELINE

We evaluated a strong SOTA multimodal transformer, TCL-MAP]Zhou et al. (2024: (AAAI 2024),
under the same preprocessing and training pipeline. TCL-MAP Zgou et al| (2024) achieves sub-
stantially higher performance across all datasets (see Table[I4)and|[5)), demonstrating that:SpEmoC
supports stronger baseline models.

Table 14: Performance Comparison: Original Baseline vs. Stronger Baseline (TCL-MAP
(2024).

Dataset  Original Baseline Stronger Baseline (TCL-MAP ?) Improvement

MELD 57.61 62.68 +5.07
CAER 44.04 28.26 -15.78*
SpEmoC 67.84 73.67 +5.83

Table 15: Stronger Baseline (TCL-MAP [Zhou et al, (2024)- Per-Class Performance of MELD ,
CAER and SpEmoC.

Dataset Surprise Joy Fear  Disgust Anger Neutral Sadness W-F1

MELD 56.04 56.44  17.07 2222 46.05 71.75 33.93 62.68
CAER 13.24 28.73  10.85 7.51 23.37 44.79 12.98 28.26
SpEmoC 75.51 7436 71.13 72.25 75.55 70.84 73.76 73.67

F.2 EVALUATION OF STATE-OF-THE-ART METHODS ON MELD

We have tabulated the performance comparison of state-of-the-art methods on the MELD dataset
(see Table[I6). Furthermore, we deliberately exclude CAER-S from our compar-
isons. Since CAER-S contains only static images, and prior work reports results exclusively on this
image-based benchmark. Since our model is explicitly designed for video-based emotion recog-
nition and relies heavily on temporal information, comparing it directly with CAER-S would be
neither meaningful nor technically consistent.

F.3 ADDITIONAL CROSS-DATASET (OUT-OF-DOMAIN) EVALUATION

As shown in Table the cross-dataset results indicate a performance drop for our baseline model.
Since model design is not the primary focus of this work, we view this limitation as an opportunity
to explore stronger baseline architectures in future work.

G ADDITIONAL ABLATION STUDY
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Table 16: Performance comparison of state-of-the-art methods on the MELD dataset. Per-class F1
scores and overall weighted F1 (W-F1) are reported.

Methods Neutral Surprise  Fear  Sadness Joy Disgust Anger W-F1
bc-LSTM |Poria et al.|(2017b) 73.8 47.7 5.4 25.1 51.32 52 38.4 55.8
DialogueGCN|Ghosal et al.|(2019) 72.1 41.7 2.8 21.1 442 6.7 36.5 52.85
A-DMN [Xing et al.|(2020] 78.9 55.3 8.6 24.9 57.4 34 40.9 60.4
RGAT [Ishiwatari et al.|[(2020) 78.1 41.5 2.4 30.7 58.6 2.2 44.6 59.6
CTNet|Lian et al.|(2021) 774 50.3 10.0 325 56.0 11.2 44.6 60.2
MMGCN Hu et al.[(2021) 77.1 53.9 0.0 17.7 56.9 0.0 42.6 59.4
TCL-MAFZhou et al.|(2024) on MELD 77.75 56.04 17.07 33.93 56.44 2222 46.05 62.68
Ours 76.3 52.0 0.0 20.7 55.2 2.9 38.0 57.6

Table 17: Cross-dataset across SpEmoC (ours), MELD, and CAER on proposed model.

Train — Test Surprise  Joy Fear  Disgust Anger Neutral Sadness W-F1
SpEmoC — MELD 40.84 7.49 2.60 1.65 18.58 3.43 7.20 10.33
SpEmoC — CAER 17.25 8.01 3.29 5.13 19.82 3.93 12.94 9.31
MELD — SpEmoC 10.20 0.00 21.08 7.94 3.93 2.35 0.00 6.79

Transfer Learning to External Datasets: To evaluate cross-dataset generalisation, we pre-trained
the same multimodal encoder used in baseline on SpEmoC and then fine-tuned it on two widely
used emotion benchmarks: MELD and CAER. In both cases, SpEmoC pretraining led to higher
weighted-F1 scores, as shown in Table [I8] All experiments were conducted with a batch size of
35 and trained for 20 epochs. Per-class improvements are also consistent , indicating that SpEmoC
helps representations capture fine-grained affective cues are provided in in Table[20] In contrast, as
shown in Table[T9] pretraining on MELD does not improve SpEmoC , suggesting that SpEmoC is a
richer corpus for representation learning.

Table 18: Performance gains on MELD and CAER obtained through SpEmoC pretraining.
Dataset Baseline +SpEmoC Pretraining (W-F171) A (gain)

MELD 57.6% 60.0% +2.4
CAER 44.0% 47.28 % +3.28

Table 19: Performance comparison on SpEmoC with MELD-pretrained finetuning.
Dataset  Baseline +MELD Pretraining (W-F11) A (gain)
SpEmoC  67.84% 65.13% -2.71

Table 20: Class-wise and weighted F1 improvements on MELD and CAER after finetuning with
SpEmoC-pretrained weights.

Dataset Neutral Surprise Fear Sadness Joy Disgust Anger W-F1
MELD Training 76.37 52.05 0.00 20.77 5527 2.90 38.06 57.61
MELD Finetuning (SpEmoC Pretraining)  77.66 53.95 11.11 22773 5545  16.09 43.79  60.00
CAER Training 57.01 32.58 1358  27.85 6020 1224 2933 44.04

CAER Finetuning (SpEmoC Pretraining) 60.04 13.95 8.76 37.04 7248 1293 36.42  47.28

Unimodal / Multimodal Backbone Improvement: To further validate the representational ben-
efits of SpEmoC, we evaluate both unimodal (text-only, audio-only) and multimodal (text + audio)
backbones on MELD after pretraining on SpEmoC. Specifically, we first train the text-only encoder
on SpEmoC and then fine-tune this pretrained text model on MELD; the same pretraining—finetuning
procedure is applied to the audio-only and the combined text—audio configurations. As shown in
Table 21} SpEmoC pretraining provides consistent gains across all settings, improving text-only,
audio-only, and multimodal models alike. These results demonstrate that SpEmoC strengthens both
modality-specific encoders and joint multimodal representations.

Ablation On Neutral Class Removal: Table |T_Z| reports the performance of MELD, CAER, and
SpEmoC after excluding the Neutral class. In MELD and CAER show modest increases in certain
minority categories (e.g., Sadness rises from 20.77 to 49.10 in MELD, and Joy rises from 60.20
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to 74.37 in CAER), but their performance remains inconsistent and unbalanced across categories,
highlighting that their reported gains are largely inflated by the presence of Neutral. By contrast,
SpEmoC achieves consistently strong recognition across all categories, with substantial gains in
Fear (66.56), Disgust (68.92), and Anger (67.97). This demonstrates that SpEmoC does not rely on
the Neutral class for performance gains and instead provides a balanced benchmark for evaluating
non-neutral emotional states, reflected in the highest W-F1 score (71.03), as illustrated in Fig. @

Table 21: MELD performance gains from SpEmoC pretraining across unimodal (T: Text, A: Audio)
and multimodal inputs.

Dataset Model Init W-F1 Gain
MELD (T) baseline 47.1 —
MELD (T) baseline + Pretrained SpEmoC ~ 49.3  +2.2
MELD (A) baseline 448 —
MELD (A) baseline + Pretrained SpEmoC ~ 46.1  +1.3
MELD (T + A) baseline 55.7 —

MELD (T + A) Dbaseline + Pretrained SpEmoC ~ 57.4 +1.7

Table 22: Ablation study Neutral class removal: Per-class F1-scores on MELD, CAER, and SpE-
moC (ours) after removing the dominant Neutral class. This analysis highlights how SpEmoC

achieves balanced improvements across all remaining emotions, resulting in the highest weighted
F1 (W-F1).

Datasets Surprise Fear Sadness Joy Disgust Anger W-F11
MELD 56.95 0.00 49.10 66.20 0.00 45.10 50.38
CAER 39.87 27.18 35.16 7437  20.66 42.88 48.19

SpEmoC (Ours) 74.99 66.56 66.96 85.62  68.92 67.97 71.03

Figure [10| effectively demonstrates the strength of our proposed model, showcasing its ability to
distinctly separate all emotion classes within the embedding space, highlighting the strength of its
multimodal fusion approach. Furthermore, the removal of the neutral class enhances the model’s
performance, enabling it to learn all emotional classes (Anger, Disgust, Fear, Joy, Sadness, Surprise)
effectively without bias toward the previously dominant neutral class, ensuring robust and balanced
emotion recognition.
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Figure 10: 2-Dimensional t-SNE visualization of feature embeddings from multimodal fusion on
the SpEmoC dataset. The left plot shows clustering with all seven classes (including Neutral), while
the right plot presents the distribution without the Neutral class, highlighting improved separation
of minority emotions. These visualizations demonstrate clear class-wise boundaries and validate the
effectiveness of the proposed model.

Modality Ablation Study: Table@]reports results across individual modalities (Text, Video, Au-
dio) and their combinations. Single-modality performance is moderate, with text (T) performing
best among unimodal inputs (W-F1 = 56.12). Pairwise fusion (T+V, T+A, V+A) consistently im-
proves recognition, with text-based combinations yielding stronger results. The full fusion of all
three modalities (T+V+A) achieves the highest per-class F1-scores and overall weighted F1 (67.84),
confirming the complementary role of multimodal signals in emotion recognition.
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Figure 11: Comparison of F1-Scores across emotion categories with and without the Neutral class.
SpEmoC achieves consistently strong recognition across all categories. This shows that SpEmoC
does not depend on the Neutral class for performance gains, instead offering a balanced benchmark
for non-neutral emotions. The highest weighted F1-score is observed without Neutral (71.0).

Table 23: Modality ablation study on the SpEmoC dataset, reporting per-class F1 scores, overall
weighted F1 score (W-F1). SpEmoC (T+A+V) outperforms all unimodal and bimodal configura-
tions, with significant improvements in underrepresented classes such as Fear and Disgust. Bold
values indicate the best performance in each column.

Modality Neutral Surprise Fear Sadness Joy  Disgust Anger W-F171

T 45.32 62.47 51.16 48.25 5538  49.82 58.67 56.12
v 41.76 59.28 48.39 45.73 5024 47.15 54.92 53.48
A 39.84 57.13 46.75 44.62 48.91 45.08 53.26 52.12
T+V 48.91 67.52 55.27 50.83 57.61 52.14 61.38 60.47
T+A 50.37 69.14 56.93 52.12 5848  53.26 62.87 62.04
V+A 47.28 65.87 54.16 49.97 56.24  51.03 60.12 59.72

T+V+A 53.11 76.51 68.84 64.56 82.62  67.13 67.28  67.84

Impact of the Extended Reweighted Multimodal Contrastive Loss: We evaluate the effect of
our Extended Reweighted Multimodal Contrastive (ERMC) loss by comparing it against widely
used alternatives, including cross-entropy, weighted cross-entropy, focal loss |Lin et al.|(2017)), and
class-balanced loss|Cui et al | 2019). As shown in Table[24} incorporating ERMC alongside the stan-
dard cross-entropy improves overall F1-score, validating the benefit of sentiment-guided embedding
alignment.

Table 24: Performance comparison of different loss functions.

Loss Function W-F11
Cross Entropy 65.80
Weighted Cross Entropy 66.42
Focal Loss|Lin et al.| (2017) 66.10
Class-Balanced Loss |Cui et al.| (2019) 66.70
ERMC (Ours) + CE 67.84

H DETAILED ENCODER ADAPTATIONS

H.1 VIDEO ENCODER VIA AIM

The video encoder in Figure [Radford et al.| (2021) adapts a pre-trained ViT-B/16 (CLIP) backbone
for video understanding, following the AIM framework Yang et al.|(2023). It processes a video clip
by sampling frames at a fixed resolution (H x W x C). Each frame is split into N = (H X WL/ P?
patches (with patch size P), mapped to D-dimensional embeddings, yielding xp € RTXN x
[class] token is prepended per frame, and positional embeddings Epos € RVFDXD are added,
resulting in zg € RTX(N+1)xD Thig input is fed into a series of transformer blocks, modified for
spatiotemporal reasoning while keeping the ViT backbone frozen.
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The AIM mechanism Yang et al.| (2023)) introduces lightweight spatial and temporal adapters within
CLIP-ViT layers |[Radford et al.| (2021),which introduces lightweight adapters into the transformer
as shown in Fig. [I2] (a). Spatial adaptation adds an adapter after the self-attention (S-MSA) layer

in each transformer block, using a bottleneck structure to fine-tune spatial features, producing zf €
RTx* (N+1)xD .

For temporal adaptation, the pre-trained self-attention layer is reused as T-MSA to model temporal
relationships across frames. The input z € RT>*(N+DxD g reshaped to z7 € RNVHIXTxD
enabling T-MSA to capture dependencies among the 7" frames. A temporal adapter is appended to
adapt temporal features, yielding z] € RT*(N+1)xD,

Joint adaptation adds an adapter parallel to the MLP layer, scaled by a factor s, for spatiotemporal
tuning, resulting in z; € RT*(N+UxD  Oply adapters are updated during training, and the final
video representation is obtained by averaging [class] tokens across frames, producing an embedding
€ RP for emotion classification.

 Spatial adaptation:

2{%) = Adapterg (MSA (LN(2_1))) + 201 (18)
* Temporal adaptation:
2" = Adapter;, (MSA (LN(z7))) (19)
* Joint adaptation:
2 = MLP (IN((") ) + 5 - Adapter, (LN(2(™)) + 2(" 20)

Where s is a scaling factor to control the weight of the output from Adapter.
The final video embedding v € R” is computed by averaging the [CLS] tokens across frames:

1 T
V= > AT (1)
t=1

H.2 TEXT ENCODER

We use the CLIP text encoder Radford et al.|(2021)) adapted with T2L |/Ahmad et al.| which modifies
each self-attention weight matrix by injecting trainable low-rank projections for efficient fine-tuning,
as shown in the [-th transformer block in Fig. [I2(b).

W, + W, + A B, A, eRP*" B, e R™P (22)

where r < d. Only A, and B, are trainable, enabling efficient adaptation. The final embedding is
extracted from the [EOS] token:
t = fex(T) € RP (23)

H.3 AuUDIO ENCODER VIA PRETRAINED HUBERT

Raw audio waveform x € R, sampled at 16kHz, is padded or truncated to a fixed duration of
S = 240,000 samples (15 seconds). The waveform is then fed into a pretrained HuBERT-Base
encoder Hsu et al.[(2021) ¢yyperT to extract frame-level speech representations:

H = ¢pyuperr(x) € RT*768 24)

where T is the number of time steps and 768 is the dimensionality of HuBERT-Base hidden repre-
sentations. These frame-wise features are mean-pooled across the temporal dimension and passed
through a lightweight projection head fi;:

1 T
a= fooj (T > Ht> eR” (25)

t=1
where fproj is a two-layer MLP mapping from 768 to d = 512 dimensions. The final embedding a
is used as the audio representation.
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Figure 12: Architecture of the video and text encoder modules used in SpEmoC. Module (a) depicts
the I block of the video encoder, which uses a transformer-based approach with temporal shift
operations to capture spatio-temporal dependencies in frame embeddings, adapted from the AIM
framework |Yang et al.| (2023). Module (b) shows the I transformer block of the text encoder,
adapted with low-rank projections (T2L) |[Ahmad et al.| for efficient fine-tuning, where only the
adapter parameters are updated during training, while other layers remain frozen.

I TRAINING CONFIGURATION AND HYPERPARAMETERS

We utilize ViT-B/16-based CLIP as the visual encoder, extracting 8 sparsely sampled frames per
video at 224x224 resolution, while audio features are derived using the HuBERT-Base model from
torchaudio onraw 16 kHz audio with a maximum clip length of 15 seconds, where the HuBERT
outputs (768-dim) are mean-pooled and projected to 512 dimensions via a two-layer MLP. For the
training setup, we employ the AdamW optimizer with a learning rate of 5 x 107°, a weight decay
of 0.2, a cosine decay scheduler with a 5-step warmup, and train for 50 epochs using a batch size of
20 on a single NVIDIA RTX A6000 GPU.

Model Parameters:

Table 25: Trainable parameters of each component in our model.

Component Trainable Parameters
CLIP Visual Encoder 8.681M
Audio Projection MLP 0.656M
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