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ABSTRACT

Understanding human emotions in spoken conversations is a key challenge in af-
fective computing, with applications in empathetic AI, human-computer interac-
tion, and mental health monitoring. Existing datasets lack scale, tightly aligned
modalities, and balance in emotion diversity thereby limiting robust multimodal
models. To address this, we propose SpEmoC, a large-scale Speaking segment
Emotion dataset for Conversations. SpEmoC comprises 306,544 clips from 3,100
English-language videos, featuring synchronized visual, audio, and textual modal-
ities annotated for seven emotions, and yields a refined set of 30,000 high-quality
clips. It focuses on speaking segments under diverse conditions like low lighting
and resolution, with a threshold-based filtering and human annotation ensuring a
balanced dataset. SpEmoC is class-balanced, which enables fair learning across
all emotions and leads to comparably balanced performance across all classes.
We introduce a lightweight CLIP-based baseline model with a fusion network and
a novel multimodal contrastive loss to enhance emotion alignment. We conduct
a series of experiments demonstrating strong results, establishing SpEmoC as a
reliable benchmark for advancing multimodal emotion recognition research.
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Figure 1: (a) Emotion class distribution comparison between SpEmoC, MELD, and CAER datasets
across train, test, and validation splits. The proposed SpEmoC dataset shows a more balanced
distribution across all seven emotion classes, whereas the MELD Poria et al. (2018) and CAER Lee
et al. (2019) datasets are skewed toward the Neutral class. Subfigure (b) Class-wise recognition
performance of the baseline model on SpEmoC. Unlike prior datasets where minority emotions
(e.g., fear, disgust) are poorly recognized, the balanced distribution of SpEmoC enables comparably
robust F1-score across all emotion classes.

1 INTRODUCTION

Understanding human emotion from multimodal cues is a fundamental task in affective comput-
ing, with wide-ranging applications in human-computer interaction, mental health, pain detection
for medical diagnostics Lucey et al. (2011), and social robotics Picard (2000). Emotion is inher-
ently multimodal, manifested through facial expressions, speech prosody, and linguistic content,
making the integration of visual, audio, and textual modalities essential for comprehensive emotion
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recognition. Recent advances in large-scale pretrained models, such as CLIP Radford et al. (2021),
wav2vec Baevski et al. (2020), and BERT Devlin et al. (2018), have significantly enhanced unimodal
feature extraction, yet leveraging these models for fine-grained, multimodal emotion understanding
in real-world conversational settings remains underexplored.

Multimodal Emotion Recognition (MER) faces significant challenges that hinder its deployment in
dynamic, dialogue-driven contexts. Most existing benchmarks focus on unimodal settings, such
as facial expressions (Li et al. (2017); Zeng et al. (2018)) or audio (Schuller et al. (2011); El Ayadi
et al. (2011)). They suffer from limited modality alignment and annotation scale (Poria et al. (2017);
Zadeh et al. (2018); Albanie et al. (2018)). Datasets like the Multimodal EmotionLines Dataset
(MELD) Poria et al. (2018), with 13,000 utterances from the TV series Friends, and CAER Lee
et al. (2019), which includes 13,201 video clips from 79 TV shows with audio and visual tracks,
offer multimodal annotations at limited scales. Similarly, EmoWOZ Feng et al. (2021) provides
11,000+ task-oriented dialogue utterances with multimodal labels. However, these datasets are con-
strained by relatively small sizes and imbalanced emotion distributions, with MELD and CAER
dominated by “Neutral” emotions and underrepresentation of “Fear” and “Disgust” (see Figure 1).
These datasets lack real-world diversity and, being built from TV series, often reuse characters
across splits, making test sets not truly unseen. Similarly, the M3ED dataset Zhao et al. (2022) of-
fers 9,000 utterances from TV series but falls short in capturing the breadth of emotional expressions
needed for generalization. Furthermore, the reliance on expensive human annotations and the ab-
sence of synchronized multimodal alignment limit the scalability and applicability of these datasets.
Fusing heterogeneous modalities also remains challenging due to differences in data representation,
temporal dynamics, and emotional relevance across text, audio, and visual streams (Zadeh et al.
(2018); Wollmer et al. (2013)).

To address these limitations, we introduce SpEmoC : a large-scale Speaking segment Emotion
dataset for Conversations designed to support emotion recognition in real-world, multimodal inter-
actions. SpEmoC comprises 30,000 refined clips, curated from 306,544 raw video segments sourced
from 3,100 English-language movies and TV series across diverse genres, including drama, comedy,
horror, thriller, romance, and history. This dataset captures a wide range of emotional expressions in
naturalistic settings, with temporally aligned video, audio, and text data. This enables the study of
cross-modal emotion alignment and fusion. Notably, SpEmoC is balanced across all seven emotion
classes through targeted filtering and refinement, as illustrated in Figure 1. Inspired by recent efforts
like EmotionCLIP Zhang et al. (2023), which utilizes large-scale TV series data for emotion repre-
sentation learning, SpEmoC significantly improves scale, diversity, and real-world applicability for
conversational MER.Our contributions are four-fold:

• SpEmoC Dataset.We introduce SpEmoC, a large-scale multimodal dataset with 30,000
temporally aligned video, audio, and text clips from 3,100 movies and TV series. Unlike
prior datasets, SpEmoC provides a balanced distribution across all seven emotion classes.
This enables robust recognition not only of the dominant classes (e.g., Neutral) but also of
underrepresented ones such as Fear and Disgust.

• Automatic Annotation Pipeline. We propose a scalable annotation methodology that em-
ploys pretrained emotion recognition models for text and audio to generate emotion labels,
using a fusion algorithm based on emotion logits to infer video-level emotions.

• Multimodal Contrastive Loss. We develop an Extended Re-weighted Multimodal Con-
trastive Loss (ERMC), enhanced with KL-divergence-based weighting, to align emotional
embeddings across modalities using predicted unimodal sentiment distributions.

• Efficient Baseline Model. We propose a lightweight model integrating pretrained CLIP
encoders for video and text, a compact HuBERT-based audio encoder, and a fusion MLP
classifier, achieving strong performance with minimal trainable parameters. Despite its
compact size, the model achieves balanced per-class accuracy.

SpEmoC significantly improves the scale, diversity, and real-world applicability of conversational
MER, and by mitigating class imbalance through targeted filtering, it enables models to learn pre-
viously underrepresented emotions such as fear and disgust (see Figure 1 (a)). As demonstrated
by the balanced distribution in Figure 1 (b), SpEmoC provides a stronger benchmark for advancing
multimodal emotion recognition, with potential for balanced performance across classes pending
further evaluation. Together, SpEmoC, our annotation pipeline, and our baseline model provide
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a foundation for scalable, weakly supervised, and modality-aware emotion recognition, paving the
way for future research in affective computing.

2 RELATED WORK

Emotion recognition research relies on multimodal datasets, each enhancing understanding of emo-
tional expressions across modalities. IEMOCAP Busso et al. (2008) offers 10,039 utterances with
audio, video, and motion data for categorical and dimensional affect, while MELD Poria et al. (2018)
provides 13,000 utterances from Friends with text, audio, and visual annotations using Ekman’s
classes. CAER Lee et al. (2019) includes 13,201 video clips from 79 TV shows, manually anno-
tated for seven emotions with context emphasis, whereas RAVDESS Livingstone & Russo (2018)
delivers 7,356 audio-video files of scripted emotions, and EmoReact Nojavanasghari et al. (2016)
features 1,102 clips of children’s reactions for six emotions. These datasets, though foundational,
are limited by scale, diversity, and consistency, hindering broader applicability. Recent advances
include CMU-MOSEI Zadeh et al. (2018) with 22,856 video segments for monologue sentiment,
AffWild2 Kollias & Zafeiriou (2020) with 564 in-the-wild valence-arousal annotations, EmoWOZ
Feng et al. (2021) with 11,000+ dialogue utterances, and M3ED Zhao et al. (2022) with 9,000 TV
series utterances, evolving from controlled settings (IEMOCAP Busso et al. (2008)) to naturalistic
ones with CMU-MOSEI Zadeh et al. (2018), PanoSent Luo et al. (2024), and MELD Poria et al.
(2018) across text, speech, and visual cues.
Further progress is evident with newer datasets and model-level innovations. EmotionTalk Sun et al.
(2025), a Chinese multimodal dataset with 19,250 utterances and rich annotations, and EMOVOME
Gómez-Zaragozá et al. (2024), featuring 999 spontaneous Spanish voice messages, enhance cross-
lingual and real-world diversity. EmotionLLAMA’s MERR Cheng et al. (2024) offers 28,618 coarse-
grained and 4,487 fine-grained samples, while EmotionCLIP Zhang et al. (2023) leverages large-
scale TV series data for emotion representation learning, advancing annotation scalability. At the
model level, the Multimodal Transformer (MuIT) Tsai et al. (2019) integrates cross-modal atten-
tion, the Dynamic Fusion Graph Network (Chen & Shi (2025); Wang et al. (2025); Zhao et al.
(2025)) models contextual relationships, and Contrastive Emotion Alignment (Zhang et al. (2025);
Wu et al. (2025)) aligns multimodal embeddings for robustness. Despite these efforts, challenges in
data scale, annotation scalability, and handling real-world noise persist, motivating the development
of SpEmoC as a larger, more diverse, and validated resource.

Table 1: Comparison with existing multimodal emotion recognition datasets. Modalities: A = Au-
dio, V = Visual, T = Text.

Dataset Samples Modalities No. of Emotions Source
IEMOCAP Busso et al.
(2008)

10,039 V, A, T, Motion 8 Acted dialogues

MELD Poria et al. (2018) 13,000 V, A, T 7 Friends TV show
CAER Lee et al. (2019) 13201 V, A 7 TV shows
RAVDESS Livingstone &
Russo (2018)

7,356 V, A 8 Studio-acted clips

EmoReact Nojavanasghari
et al. (2016)

1,102 V, A 8 YouTube videos

SpEmoC(Proposed) 306,544 (raw),
30,000 (refined) V, A, T 7 Movies & TV series

3 SPEMOC DATASET CONSTRUCTION

We introduce SpEmoC, a large-scale multimodal dataset for emotion recognition, focused on
speaking segments and containing synchronized video, text, and audio samples. Clips are ex-
tracted from 3,100 publicly available English-language movies and TV series, capturing natural,
emotionally diverse content across genres (drama, comedy, horror, etc.), formats (color, black-and-
white), and conditions (low-light, varying resolutions). SpEmoC preserves authentic speech and
facial expressions while avoiding dubbed content and subtitles while reducing cultural bias. We
showcase the diversity of our dataset in terms of visual style and emotional expression in Figure 2.
A detailed explanations provided in the Appendix A

Motivation
Existing datasets often lack scale, synchronization, and emotional diversity. Most of them provide
either short, caption-based content or acted emotions recorded in constrained settings, and they also
suffer from severe class imbalance, with the neutral class heavily overrepresented and minority
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emotions (e.g., fear, disgust) largely neglected. In contrast, SpEmoC offers real-world emotion-rich
scenarios with tightly aligned modalities and a balanced distribution across all emotion classes. It is
designed to support the development of robust, generalizable emotion recognition models that can
learn from vocal tone, facial expressions, and contextual language. Table 2 provides an overview of
the proposed SpEmoC dataset for multimodal emotion recognition, detailing its source, structure,
modalities, annotation process, splitting policy, and emotion coverage, while Table 1 compares it
with existing multimodal emotion recognition datasets.

Figure 2: Examples from SpEmoC showing variation in genre, lighting, color, and expression. Each
row displays 8 sampled frames from a distinct clip.

3.1 DATA COLLECTION AND PROCESSING PIPELINE

We present a scalable multi-stage pipeline that processes long videos into synchronized multimodal
emotion clips. Let V = {V1, V2, . . . , V3100} be the set of source videos, each Vk with duration
tk ≥ 40 minutes.
1. Dialogue Segmentation: We use the Whisper ASR model Radford et al. (2023) to transcribe
each video with word-level timestamps. Segments are retained if they: (i) contain at least 12 words,
ensuring sufficient context, and (ii) ended with terminal punctuation (e.g.,., !, ?) Each video Vk

yields segments {vk1
, vk2

, . . . }, each defined by start/end times and transcript Tki
, totaling:

Nclips =

3100∑
k=1

mk∑
i=1

1 ≈ 306,544. (1)

2. Multimodal Extraction: For each segment vki , we extract:
• Text: Tki

, the transcribed dialogue text, directly obtained from the Whisper model.

• Audio: Aki
, from the interval [tki

start, t
ki

end], using FFmpeg Developers (2025). Duration of
audio clip: ∆tki = tend − tstart. Where tstart is start time and tend is end time.

• Visual: vki , video segment from the same interval [tki
start, t

ki

end], with frame count: Nki

frames ≈
∆tki × FPS. This results in 30 million video frames across all clips.

• Human and Face detection: To focus analysis on subjects in the clips, each frame is
processed with YOLOv8 Varghese & Sambath (2024) to detect human and face bounding
boxes. We retain only these regions, ensuring consistent alignment across modalities and
directing the model’s attention to subjects’ facial and bodily cues. The bounding box co-
ordinates are defined as Bj,k = [xmin, ymin, xmax, ymax], where Bj,k denotes the box for
the j-th person in the k-th frame. By emphasizing subject-specific regions, this strategy
improves synchronization of audio, text, and visual cues, thereby enhancing recognition of
person-centered emotions.

3. Synchronization Check: We verify alignment between modalities using timestamp consistency:
|Duration(Ak) − (t

k
end − t

k
start)| ≤ ϵ, within a tolerance ϵ = 0.1 sec. (2)

Clips failing this check are reprocessed or flagged.

4. Metadata Generation: For each clip ck = {vk(t), Ak(t), Tk(t)}, we save metadata includ-
ing timestamps, file paths, and transcription in a JSON file to support downstream annotation and
training.

4
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This pipeline yields a high-quality, synchronized multimodal dataset optimized for fine-grained
emotion understanding across realistic scenarios.

Table 2: Overview of the Proposed Multimodal Emotion Recognition SpEmoC Dataset, Highlight-
ing Source, Structure, Modalities, Annotation, Splitting policy, and Emotion Coverage.

Data Source and Composition
Source YouTube (Movies and TV Series)
Number of Videos 3,100
Video Length ≥ 40 minutes each
Video Types Color and Black-and-White , English language , Non-dubbing, Subtitle independent
Video genres Drama, Comedy, Horror, Thriller, Romance, History, etc.
Total Number of Clips 306,544
Average Clip Duration 3–6 seconds
Total Frames 30 million+
Focus Per Clip Speaking segments only
Modalities and Preprocessing
Modalities Video, Audio, Text
Face/Human Detection YOLOv8 Varghese & Sambath (2024)
Face Presence Threshold Face detected in ≥ 90% of frames
Annotation and Labeling Strategy
Annotation Models DistilRoBERTa (Text) Sanh et al. (2019), Wav2Vec 2.0 (Audio) Baevski et al. (2020)
Label Type Single dominant emotion per clip
Label Fusion Logit-Based Fusion from Text and Audio modalities
Dataset Spliting Strategy
Movie/franchise-level All clips from the same movie, sequel, or multi-episode series are assigned exclusively to

one split (train, validation, or test) to ensure a fully unseen test set.
Emotion Classes
Categories Anger, Disgust, Fear, Joy, Sadness, Surprise, Neutral

3.2 ANNOTATION METHODOLOGY

We adopted seven discrete emotion classes to ensure comparability with established benchmarks,
aligning with Ekman’s basic emotions framework Ekman (1992). We used domain-specific pre-
trained models to annotate each modality. To avoid any conflicts between the labels, we selected
models that use the same set of emotion classes across text and audio. These classes include: Anger,
Disgust, Fear, Joy, Sadness, Surprise, and Neutral. This ensures that the annotations are consis-
tent when combining information from all three modalities. E = [Anger, Disgust, Fear, Joy, Sadness,
Surprise, Neutral]

Text Annotation: We apply a fine-tuned DistilRoBERTa Sanh et al. (2019) model for emotional
content analysis of dialogue text. For each utterance, we obtain a vector of real-valued scores called
sentiment logits, representing the unnormalized model confidence for each emotion class in E.

l
text
k = logitstext(Tk) ∈ R|E| (3)

Audio Annotation: Similarly, the acoustic segment Ak is analyzed using a wav2vec 2.0 Baevski
et al. (2020) pretrained model:

l
audio
k = logitsaudio(Ak) ∈ R|E| (4)

Sentiment Logits for Fusion: The sentiment logits ltext
k and laudio

k serve as input to our logit-based
fusion mechanism. Rather than relying solely on the top-class prediction, we use the full logit
distributions to capture detailed emotion signals and uncertainty across modalities. The detailed
explanation is given below.

Logit-Based Multimodal Fusion for Supervised Emotion Labeling: To annotate emotions with-
out relying on the noisy visual modality, we propose a logit-based fusion strategy using pre-
trained emotion classifiers for Text and Audio. For a fixed emotion label set E = {e1, . . . , e7},
each clip produces two 7-dimensional logit vectors: Lt = [lt,1, . . . , lt,7] from the text model and
La = [la,1, . . . , la,7] from the audio model. These are unnormalized scores, i.e., lm,i ∈ R where
m ∈ {t, a}.
Assuming a uniform prior P (ei) = 1/|E|, the posterior over emotion class ei is modeled as:

P (ei|Lt, La) ∝ P (Lt|ei) · P (La|ei) (5)

5
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where likelihoods are softmax-normalized:

P̃m(ei) =
exp(lm,i)∑7

j=1 exp(lm,j)
, m ∈ {t, a} (6)

To encourage modality agreement, we introduce a KL-divergence penalty:

DKL(P̃t||P̃a) =
7∑

i=1

P̃t(ei) log

(
P̃t(ei)

P̃a(ei)

)
(7)

This yields a fused decision score:

S(ei) = log P̃t(ei) + log P̃a(ei) − λDKL(P̃t||P̃a) (8)

where λ = 0.5. The final emotion label is:
e
∗
= arg max

ei∈E
S(ei) (9)

and its confidence is normalized using:

F (e
∗
) =

1

1 + exp(−S(e∗))
, F (e

∗
) ∈ [0, 1] (10)

This formulation captures full distributional uncertainty from both modalities and enforces semantic
coherence between textual and acoustic cues. Unlike majority voting or hard max fusion, the KL
divergence regularizer penalizes disagreements and rewards confident, aligned predictions.

For example, if Lt = [0.02, . . . , 0.75] and La = [0.05, . . . , 0.75] both peak at ”surprise,” we obtain
S(surprise) ≈ −2.60 and F ≈ 0.07, compared to S ≈ −3.18 and F ≈ 0.04 in cases of disagree-
ment. Thus, the framework promotes high-confidence, consistent labeling across modalities.

We further use the agreement condition argmaxLt = argmaxLa and confidence score F (e∗) to
filter noisy labels. As both logit vectors come from pretrained emotion models (DistilRoBERTa
and Wav2Vec 2.0), the approach scales efficiently across large unlabeled datasets and acts as a
pseudo-supervisor for high-quality emotion annotation. The overall dataset annotation pipeline is
summarized in Algorithm 1, which details the multimodal annotation procedure. Figure 3 illustrates
the construction pipeline of the SpEmoC dataset, outlining the key steps involved in its development.
Further information on annotaion file is detailed in the AppendixB

Algorithm 1 Multimodal Dataset Annotation Procedure
Input: Video clips V = {v1, v2, . . . , vN} with synchronized text T , audio A, and visual frames F
Output: Annotated dataset D with final emotion labels e∗i for each clip
Step 1: Preprocessing Initialize D ← ∅ foreach clip vi ∈ V do

Extract text Ti, audio Ai, and visual frames Fi from vi Detect face and human bounding boxes using
YOLOv8: (xf , yf , wf , hf ) and (xh, yh, wh, hh)

end
Step 2: Annotation of Modalities foreach clip (Ti, Ai, Fi) do

Compute text emotion logits ltext
i using DistillRoBERTa: ltext

i = logitstext(Ti) ∈ R|E| Compute audio
emotion logits laudio

i using Wav2Vec: laudio
i = logitsaudio(Ai) ∈ R|E|

end
Step 3: Multimodal Fusion Fuse logits across modalities to compute final emotion score: S(ei) =
logPi(ei) + λDKL(P

text
i ||P audio

i ) where λ = 0.5 Assign final label: e∗i = argmaxS(ei)
Step 4: Dataset Construction Construct annotated dataset entry: D ← D ∪ {(Ti, Ai, Fi, e

∗
i )}

return D

3.3 DATASET REFINEMENT

The initial 306,544 annotated clips were analyzed for class distribution, revealing a significant im-
balance, with the neutral class dominating, as shown in Figure 4. This imbalance could bias model
training, as neutral emotion appeared more frequently in the dataset. To address this, we applied
threshold-based filtering to reduce the number of neutral clips, resulting in a refined dataset of
50,000 clips. After this filtering, we perform the human validation of labels. Thereafter, we ob-
tained 30,000 coarse-grained refined clips (which is still relatively high as compared to the existing
datasets) with a more balanced distribution across the seven emotion categories as shown in Figure
1 (a). The detailed analysis of this refinement process is further elaborated in Appendix C.

6
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Figure 3: Overview of the SpEmoC dataset construction pipeline. Raw videos are processed to ex-
tract synchronized text (Tk), audio (Ak), and visual clips (vk). Human and face bounding boxes are
detected using YOLOv8: Human Box = (xh, yh, wh, hh), Face Box = (xf , yf , wf , hf ). Emotion
logits ltext

k and laudio
k are computed using pretrained classifiers and fused to produce the final emotion

label e∗i . This process is applied across all Nclips to construct the dataset.
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Figure 4: Emotion class distribution before (see right plot in blue) and after filtering (left plot in
green). The initial 306,544 clips are heavily dominated by the neutral class (over 186,000 samples),
with underrepresentation in fear. A two-step filtering process was applied: (i) threshold-based fil-
tering, retaining clips with face presence in at least 90% of frames to enhance emotional salience,
and (ii) human annotation validation to remove ambiguous cases and confirm label reliability. The
refined 30,000-clip dataset shows a more balanced distribution across all seven emotion classes.

Human Validation of Labels To validate the reliability of SpEmoC, we conducted a human an-
notation study on 50,000 clips, detailed explanation provided in the Appendix C.1

Dataset Splitting Strategy: To ensure realistic evaluation and prevent content leakage, we adopt
a movie-level splitting strategy, assigning entire movies exclusively to training (70%), validation
(10%), or test (20%) sets, ensuring no overlap of scenes, characters, or dialogue contexts. This
movie-independent approach, applied even to franchise sequels or multi-episode series, places all
related episodes in one split, guaranteeing an unseen test set free of recurring patterns or actors for
robust real-world generalization. The 30,000 refined clips are distributed accordingly, with robust-
ness enhanced by this strategy, while emotion class distributions are compared with MELD and
CAER in Figure 1 (a) and Table 3 detailing class distributions across splits. Refer to Appendix D
for details on clip distribution across splits.

Table 3: Comparison of emotion class distribution between the MELD dataset Poria et al. (2018), the
CAER dataset Lee et al. (2019), and the proposed SpEmoC dataset across training, development,
and test splits. Red-highlighted indicates underrepresented classes (e.g., Disgust, Fear) with low
sample counts, while Blue-highlighted denotes the overrepresented Neutral class with the highest
sample counts in the existing datasets.

Categories MELD CAER SpEmoC (Ours)
Train Val Test Train Val Test Train Val Test

Anger 1109 153 345 1136 162 325 3980 392 1271
Disgust 271 22 68 500 71 145 4946 551 1298
Fear 268 40 50 358 51 102 2378 226 729
Joy 1743 163 402 1905 272 544 2506 340 578
Neutral 4710 470 1256 3202 457 915 2804 320 895
Sadness 683 111 208 1028 146 294 1612 195 474
Surprise 1205 150 281 1093 157 315 3181 376 811
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3.4 SUMMARY AND FUTURE DIRECTIONS

We presented SpEmoC, a large-scale multimodal emotion recognition dataset comprising 306,544
clips from 3,100 English-language movies and TV series. Each clip includes synchronized video,
audio, and text, focusing on speaking segments with at least 12 words and terminal punctuation
to ensure emotional richness. Using pretrained models DistilRoBERTa (text), Wav2Vec 2.0 (au-
dio), and YOLOv8 (visual) we automatically annotated and filtered the data to a high-quality, class
balanced subset of 30,000 clips. SpEmoC emphasizes modality alignment and authenticity by ex-
cluding dubbed or subtitled content and includes diverse real-world conditions (e.g., grayscale, low-
light, variable resolution). It supports robust learning from integrated visual, auditory, and linguistic
signals. In the future, we plan to add more emotion classes, include continuous labels such as va-
lence–arousal, and give more focus to real, non-acted samples to make the dataset more authentic
and useful.
Ethical Considerations: We prioritize copyright and responsible use in constructing SpEmoC. The
dataset is derived from publicly available movies and TV series and will be released strictly under
fair-use provisions for non-commercial research. Distribution will be governed by an End User Li-
cense Agreement (EULA), requiring researchers to apply for access and comply with clearly defined
terms. To ensure transparency, the dataset repository will provide detailed documentation on usage
boundaries, licensing conditions, and ethical safeguards.
Dataset and code link : The dataset (test set for evaluation) and code are available in the anony-

mous link provided here : https://github.com/emouser2023/emodata.git

4 BASELINE MODEL

Our baseline model integrates video, text, and audio modalities using pretrained encoders followed
by a lightweight fusion classifier as shown in Figure 5.

CLIP Video
Encoder

CLIP Text
Encoder

Audio
Encoder

: Video Embedding : Text Embedding : Audio Embedding

Modality
Fusion

"The kids have had
freshest on their teacher

since the beginning of
time."

"The kids have had
freshest on their teacher

since the beginning of
time."

"The kids have had
freshest on their teacher
since the beginning of

time."

 Em
otion  Logits

Similarity matrix 

Figure 5: Illustration of the proposed multimodal emotion recognition framework. Video, text, and
audio inputs are encoded with modality-specific encoders, while face and body bounding boxes
provide subject-focused attention. Embeddings are fused to produce emotion logits optimized with
cross-entropy loss (LCE). In parallel Extended Reweighted Multimodal Contrastive Loss (LERMC)
aligns cross-modal embeddings for robust recognition.

The video encoder uses CLIP-ViT with temporal adaptation via AIM Yang et al. (2023); the text
encoder is adapted with T2L Ahmad et al.. Audio features are extracted using a pretrained HuBERT
model Hsu et al. (2021). Let v, t,a ∈ Rd be the modality embeddings. These are concatenated and
passed through a two-layer MLP:

z = [v∥t∥a], y = W2 ReLU(W1z + b1) + b2 (11)

yielding logits y ∈ RK over emotion classes. Full encoder adaptation equations (AIM and T2L) are
provided in Appendix F.

4.1 PROPOSED EXTENDED REWEIGHTED MULTIMODAL CONTRASTIVE LOSS (ERMC)

To align video, audio, and text embeddings semantically and emotionally, we propose an Extended
Reweighted Multimodal Contrastive (ERMC) Loss. It computes cosine similarities across modal-
ity pairs and adjusts them using sentiment-based reweighting derived from unimodal classifiers.
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Similarity Scores: For a batch of N samples, we compute scaled cosine similarity between all
pairs of modalities using a learnable temperature parameter τ :

L
(i,j)
vt =

1

τ
⟨vi, tj⟩, L

(i,j)
va =

1

τ
⟨vi, aj⟩, L

(i,j)
ta =

1

τ
⟨ti, aj⟩ (12)

Sentiment-Based Reweighting: We compute reweighting factors based on the Kullback-Leibler
(KL) divergence between sentiment distributions:

w
(t)
ij =

1

KL(s(t)i ∥ s
(t)
j ) + ϵ

, w
(a)
ij =

1

KL(s(a)
i ∥ s

(a)
j ) + ϵ

, w
(ta)
ij =

1

KL(s(t)i ∥ s
(a)
j ) + ϵ

(13)

where ϵ is a small constant for numerical stability.

Adjusted Similarity Logits: The reweighted similarity logits are adjusted as follows:
L̃

(i,j)
vt = L

(i,j)
vt − λw

(t)
ij , L̃

(i,j)
va = L

(i,j)
va − λw

(a)
ij , L̃

(i,j)
ta = L

(i,j)
ta − λw

(ta)
ij (14)

Here, λ is a hyperparameter that controls the effect of sentiment reweighting.
Contrastive Loss: For each modality pair (x, y) ∈ {(v, t), (v, a), (t, a)}, we define the standard
cross-entropy contrastive loss:

Lxy =
1

N

N∑
i=1

− log
exp(L̃(i,i)

xy )∑N
j=1 exp(L̃

(i,j)
xy )

(15)

Final Objective: The complete ERMC loss is the average of all six symmetric modality pair
losses:

LERMC =
1

6
(Lvt + Ltv + Lva + Lav + Lta + Lat) (16)

The final training objective is:
Ltotal = LCE + LERMC (17)

where LCE is standard cross-entropy, and LERMC ensures modality consistency.

5 EXPERIMENTS AND RESULTS

In Table 4, we compare per-class recognition performance across MELD, CAER, and SpEmoC,
where MELD and CAER show high scores for Neutral and Joy but poor results for minority classes
like Fear (0.00 in MELD, 13.58 in CAER) and Disgust (2.90 in MELD, 12.24 in CAER). SpEmoC
achieves consistent F1-scores above 64% for Sadness, Joy, Disgust, and Anger, with significant
improvements for Fear (68.84) and Disgust (67.13), reflecting its effective class balance. With the
highest overall weighted F1-score (67.84) compared to MELD (57.61) and CAER (44.04), SpEmoC
proves a robust benchmark, supported by ablation studies on loss functions, neutral class removal,
and modality analysis in Appendix E.

Table 4: Per-class emotion recognition performance (F1-scores) on MELD Poria et al. (2018),
CAERLee et al. (2019), and the proposed SpEmoC dataset. SpEmoC achieves more balanced
performance across all emotion categories, particularly improving underrepresented classes such as
Fear, Disgust, and Anger, while also yielding the highest weighted F1 (W-F1) score. An upward
arrow (↑) signifies that higher values are better.

Datasets Neutral Surprise Fear Sadness Joy Disgust Anger W-F1 ↑
MELD 76.37 52.05 0.00 20.77 55.27 2.90 38.06 57.61
CAER 57.01 32.58 13.58 27.85 60.20 12.24 29.33 44.04
SpEmoC (Ours) 53.11 76.51 68.84 64.56 82.62 67.13 67.28 67.84

6 CONCLUSION AND FUTURE WORK
We introduced SpEmoC, a large-scale multimodal dataset with 30,000 refined clips from 306,544
segments across 3,100 English-language movies and TV series, offering synchronized visual, au-
dio, and text modalities annotated for seven emotions. Unlike existing datasets, SpEmoC is class-
balanced, enabling fair learning and balanced F1-scores across all emotions, including underrepre-
sented ones like fear and disgust. We developed an automated annotation pipeline using pretrained
models (Wav2Vec, DistilRoBERTa) with human validation, and a lightweight baseline model with
Extended Reweighted Multimodal Contrastive (ERMC) Loss, achieving a 67.84% F1-score with
8.68M parameters. This foundation addresses scale, modality alignment, imbalance, and efficiency,
paving the way for future enhancements including non-acted real-world videos, continuous valence-
arousal labels, and physiological signals.
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Appendix

Dataset and Code Availability : The dataset (test set for evaluation) and code are available in the
anonymous link provided here: https://github.com/emouser2023/emodata.git

A DATA COLLECTION

The videos for the SpEmoC dataset were collected using a Python-based implementation of the
YouTube API, specifically youtube-search-python Mercer (2021), which replicates the search be-
havior of the YouTube web interface. We used search queries such as “TV series”, “movies,” and
“TV shows” to identify long-form content rich in emotional expression. To maintain linguistic con-
sistency, we filtered the results to include only English-language videos without dubbing. Addition-
ally, to exclude short or irrelevant clips and ensure meaningful emotional content, we retained only
videos longer than 40 minutes. This filtering process resulted in a curated set of 3,100 videos from
diverse TV shows and movies, covering a wide range of demographics, genres, and authenticity of
affect, as summarized in Table 5.

Data
Processing

Videos

Deep
Learning
Model

Anger
Happy
Fear
Sad

Neutral
Surprise
Disgust

Em
otion C

lassification

Multi-Modalities

Audio
(Speech)

"Want to grab
coffee later?"

Text

Facial
Expression  ..... ... ..... . ......... ...........

.. .........
.

Videos
Collection

Figure 6: Overview of the multi-modal emotion recognition pipeline. Videos are collected from on-
line sources (e.g., YouTube) and undergo preprocessing to extract three primary modalities: visual,
speech audio, and textual transcripts. Each modality is analyzed individually and then fused through
a deep learning model to perform emotion classification into seven categories: Anger, Happy, Fear,
Sad, Neutral, Surprise, and Disgust.

Table 5: Demographic, genre, and authenticity distribution of the 3100 videos.

Category Distribution (approx.) Notes
Ethnicity Western/White: 60%, Asian: 20%,

African/Black: 12%, Other: 8%
Skewed toward Western me-
dia; noted as a limitation

Genres Drama: 30%, Comedy: 20%, Romance: 15%,
Thriller: 15%, Horror: 10%, History: 10%

Wide genre diversity, re-
flecting emotional variation

Authenticity of Affect Acted (Movies/TV): ∼85%, Genuine (Inter-
views, Documentaries, Reactions): ∼15%

Mix of acted and sponta-
neous expressions; genuine
subset improves authenticity

B ANNOTATION FILE INFORMATION

The table 6 provides an annotation summary for a 4-second clip (1230.1s to 1234.02s) from “5THE
BRIEF Blame,” clip 43, containing 74 frames. It includes metadata such as the text “I don’t doubt
that you were genuinely alarmed by what you saw,” emotion scores with text logits showing a high
probability for a specific emotion (0.9532) and a neutral score of 0.0141, and audio logits with a
neutral score of -0.0092. Detection and fusion results indicate perfect confidence in face and human
detection (1.0), a final emotion label of “Fear,” inconsistency between modalities (False), and a
fusion score of 0.0411. The clip meets the filtering criteria (fk > 0.9, wk

t < 0.05, wk
a < 0.05),

ensuring its suitability for multimodal emotion analysis in the SpEmoC dataset. Figure 7 visualizes
the synchronization process, showing the alignment of video frames, audio, and transcripts, along
with human and face bounding boxes over a representative 4-second clip from the SpEmoC dataset.

13

https://github.com/emouser2023/emodata.git


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

" In other words, it's most likely the car was deliberately driven off the road. "

Figure 7: Synchronization of modalities for a 4-second clip v from the SpEmoC dataset, with
tstart = 2179 seconds and tend = 2183 seconds. The clip includes frames f1 . . . f8, aligned with
corresponding audio and transcript text, and annotated with human and face bounding boxes to sup-
port multimodal emotion recognition.

Table 6: Annotation summary of a sample clip from 5THE BRIEF Blame, clip 43.

Metadata
Clip Identifier 5THE BRIEF Blame, Clip 43
Duration (s) (Start: 1230.1, End: 1234.02)
Text “I don’t doubt that you were genuinely alarmed by what you saw.”
Number of Frames 74
Emotion Scores
Text Emotion Logits [0.0062, 0.0026, 0.9532, 0.0015, 0.0141, 0.0024, 0.0200]
Text Neutral Score 0.0141
Audio Emotion Logits [-0.0500, 0.0340, 0.0282, 0.0154, -0.0092, -0.0892, 0.0115]
Audio Neutral Score -0.0092
Detection and Fusion
Face Detection Confidence (fk) 1.0
Human Detection Confidence 1.0
Final Emotion Label Fear
Is Consistent? False
Fusion Score 0.0411
Filtering Status
Filtering Criteria (fk > 0.9, wk

t < 0.05, wk
a < 0.05)

C DATSET FILTERING

Filtering Process: To obtain a refined dataset for a balanced class distribution, we curated the data
using a multi-step filtering strategy. We implemented a meticulous filtering process to address the
dominance of neutral clips observed in the initial 306,544 clips, focusing on evaluating neutral score
thresholds for text and audio modalities. This ensures the presence of faces in visual frames to retain
clips with strong emotional signals. This process was informed by manual experimentation with
multiple thresholds and validated through performance analysis, as detailed below. Consequently,
we observed that many clips, particularly those labeled as neutral, contained text and audio with high
neutral scores, indicating weak emotional content. Whereas these scores, derived from pretrained
models DistilRoBERTa for text Sanh et al. (2019) and Wav2Vec 2.0 for audio Baevski et al. (2020),
represent the probability of neutrality after applying a sigmoid transformation to the logits.

For a clip ck, let:

• lkt = text neutral logit(Tk) ∈ R: the neutral logit for text,

• lka = audio neutral logit(Ak) ∈ R: the neutral logit for audio,

• fk = has face(vk) ∈ [0, 1]: the confidence score indicating the presence of a face in the
visual frames.

These logits are converted to probabilities via the sigmoid function:

wk
t = σ(lkt ) =

1

1 + e−lkt
, wk

a = σ(lka) =
1

1 + e−lka
,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where wk
t , w

k
a ∈ [0, 1] represent the probability that the text or audio expresses a neutral sentiment.

To filter the dataset, we manually tested multiple neutral score thresholds for text (θt) and audio
(θa), alongside a face detection threshold (θf ).
We retained a clip ck if the following conditions were met:

Retain ck if
{
fk ≥ θf
wk

t < θt and wk
a < θa, if e∗j ̸= neutral

where e∗i is the final emotion label.
Here, θf = 0.9 ensures that a face is detected in at least 90% of the video frames, while θt, θa =
0.05 filter out samples with weak emotional content in text and audio. For class balancing, we
included a small subset of neutral clips, approximately 15% relative to the number of non-neutral
clips, by relaxing these thresholds. Our filtering strategy substantially shifts the distribution of
neutral probabilities toward lower values, resulting in a refined 50,000 clips with stronger emotional
cues across all modalities.

C.1 HUMAN ANNOTATION

To validate the reliability of SpEmoC, we conducted a human annotation study on this filtered subset
(50,000 clips), ensuring high quality and balance. Twenty expert annotators, proficient in English
and trained on standardized guidelines based on Ekman’s framework Ekman (1992), were selected.
Each clip was independently reviewed by at least three annotators using all modalities (text, au-
dio, visual), and final labels were assigned via majority voting. Inter-annotator agreement reached
a Fleiss’ Kappa of 0.62 (substantial agreement Landis & Koch (1977)). This process eliminated
ambiguous clips, yielding the final 30,000 balanced clips, as shown in Figure 4. This combined
threshold-based filtering and human annotation not only mitigates class imbalance but also enhances
label reliability.

C.2 LIMITATION OF HUMAN ANNOTATION

Although human annotation provides valuable ground truth for emotion labeling in SpEmoC, it is
inherently subject to limitations that can impact reliability. Annotators bring their own subjective
perspectives, shaped by personal experiences, cultural backgrounds, and interpretive biases, which
may lead to inconsistent classifications of the same multimodal clip. Furthermore, distinguishing
between closely related emotions such as surprise and joy, fear and anger, or disgust and fear
is particularly challenging due to overlapping expressive cues in facial, vocal, and textual modal-
ities, making clear boundaries between categories difficult to establish. These ambiguities often
result in misclassifications, especially in subtle or low-intensity cases. To mitigate these challenges,
our pipeline integrates pretrained model predictions with human annotations, leveraging automated
consistency to complement human judgment in assigning final labels, and underscoring the need for
hybrid approaches in the construction of large-scale emotion datasets.

C.3 NEUTRAL SCORE DISTRIBUTION BEFORE AND AFTER FILTERING

Figure 8 illustrates the distribution of neutral class probabilities from text and audio modalities in
the full dataset (left) and the filtered 30k subset (right). The filtering process removes clips with high
neutral scores, yielding a dataset with more emotionally salient and less ambiguous samples across
both modalities.

D DATASET SPLIT STRATEGY

The 30,000 refined clips are distributed as follows: 70% for training, 10% for validation (used for
tuning), and 20% for testing (used for evaluating generalization to novel movies), as detailed in Ta-
ble 7. This strategy enhances the robustness of performance metrics and better simulates real-world
deployment by ensuring diverse representation across splits. To prevent content leakage and ensure
realistic evaluation, we adopt a movie-level splitting approach, where entire movies are assigned ex-
clusively to one of the three sets, avoiding overlap of scenes, characters, or dialogue contexts. This
method is particularly effective for handling franchise sequels or multi-episode series, as all related
episodes are confined to a single split, minimizing the risk of recurring visual or conversational pat-
terns influencing model performance. This rigorous splitting strategy, combined with the balanced
dataset design, supports the development of generalizable emotion recognition models.
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Figure 8: Distribution of neutral class probabilities from text and audio before (left) and after (right)
filtering. Filtering removes emotionally ambiguous clips, shifting the distribution toward lower
neutral scores and enhancing signal richness across modalities.

Table 7: Dataset Splitting Information of refined 30,000 clips

Split Percentage (%) Number of Clips
Training Set 70% 21,000
Validation Set 10% 24,00
Test Set 20% 60,00
Total 100% 30,000

D.1 BALANCED EMOTION CLASS DISTRIBUTION IN SPEMOC
The class distribution of the proposed SpEmoC dataset, alongside existing datasets, is illustrated in
Figure 9, which presents the percentage-wise distribution of emotion classes. This figure highlights
SpEmoC’s balanced representation across the seven categories (Anger: 18.8%, Disgust: 22.8%,
Fear: 11.2%, Joy: 11.5%, Neutral: 13.5%, Sadness: 7.6%, Surprise: 14.6%), contrasting with the
imbalanced distributions in datasets like MELD (Neutral: 47.0%) and CAER (Neutral: 34.7%),
where the neutral class dominates.
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0

10

20

30

40

Pe
rc

en
ta

ge
 (

%
)

11.7

2.6 2.6

16.8

7.3

11.9

47.0

12.3

5.4
3.9

20.6

11.1 11.9

34.7

18.8

22.8

11.2 11.5

7.6

14.6
13.5

MELD (Total:13708)
CAER (Total:13178)
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Figure 9: Comparison of emotion label distributions across MELD, CAER, and SpEmoC (Ours).
While MELD and CAER exhibit strong class imbalance (e.g., Neutral dominating with 47.0% and
34.7%, respectively), SpEmoC achieves a more balanced distribution across all seven emotions,
reducing bias toward majority classes.

E ABLATION STUDY

Ablation On Neutral Class Removal: Table 8 reports the performance of MELD, CAER, and
SpEmoC after excluding the Neutral class. In MELD and CAER show modest increases in certain
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minority categories (e.g., Sadness rises from 20.77 to 49.10 in MELD, and Joy rises from 60.20
to 74.37 in CAER), but their performance remains inconsistent and unbalanced across categories,
highlighting that their reported gains are largely inflated by the presence of Neutral. By contrast,
SpEmoC achieves consistently strong recognition across all categories, with substantial gains in
Fear (66.56), Disgust (68.92), and Anger (67.97). This demonstrates that SpEmoC does not rely on
the Neutral class for performance gains and instead provides a balanced benchmark for evaluating
non-neutral emotional states, reflected in the highest W-F1 score (71.03), as illustrated in Fig. 11.

Figure 10 effectively demonstrates the strength of our proposed model, showcasing its ability to
distinctly separate all emotion classes within the embedding space, highlighting the strength of its
multimodal fusion approach. Furthermore, the removal of the neutral class enhances the model’s
performance, enabling it to learn all emotional classes (Anger, Disgust, Fear, Joy, Sadness, Surprise)
effectively without bias toward the previously dominant neutral class, ensuring robust and balanced
emotion recognition.

Neutral

Fear

Disgust

Surprise

Joy

Sadness

Anger

Figure 10: 2-Dimensional t-SNE visualization of feature embeddings from multimodal fusion on
the SpEmoC dataset. The left plot shows clustering with all seven classes (including Neutral), while
the right plot presents the distribution without the Neutral class, highlighting improved separation
of minority emotions. These visualizations demonstrate clear class-wise boundaries and validate the
effectiveness of the proposed model.

Table 8: Ablation study Neutral class removal: Per-class F1-scores on MELD, CAER, and SpEmoC
(ours) after removing the dominant Neutral class. This analysis highlights how SpEmoC achieves
balanced improvements across all remaining emotions, resulting in the highest weighted F1 (W-F1).

Datasets Surprise Fear Sadness Joy Disgust Anger W-F1 ↑
MELD 56.95 0.00 49.10 66.20 0.00 45.10 50.38
CAER 39.87 27.18 35.16 74.37 20.66 42.88 48.19
SpEmoC (Ours) 74.99 66.56 66.96 85.62 68.92 67.97 71.03

Modality Ablation Study: Table 9 reports results across individual modalities (Text, Video, Au-
dio) and their combinations. Single-modality performance is moderate, with text (T) performing
best among unimodal inputs (W-F1 = 56.12). Pairwise fusion (T+V, T+A, V+A) consistently im-
proves recognition, with text-based combinations yielding stronger results. The full fusion of all
three modalities (T+V+A) achieves the highest per-class F1-scores and overall weighted F1 (67.84),
confirming the complementary role of multimodal signals in emotion recognition.

Table 9: Modality ablation study on the SpEmoC dataset, reporting per-class F1 scores, overall
weighted F1 score (W-F1). SpEmoC (T+A+V) outperforms all unimodal and bimodal configura-
tions, with significant improvements in underrepresented classes such as Fear and Disgust. Bold
values indicate the best performance in each column.

Modality Neutral Surprise Fear Sadness Joy Disgust Anger W-F1↑
T 45.32 62.47 51.16 48.25 55.38 49.82 58.67 56.12
V 41.76 59.28 48.39 45.73 50.24 47.15 54.92 53.48
A 39.84 57.13 46.75 44.62 48.91 45.08 53.26 52.12
T+V 48.91 67.52 55.27 50.83 57.61 52.14 61.38 60.47
T+A 50.37 69.14 56.93 52.12 58.48 53.26 62.87 62.04
V+A 47.28 65.87 54.16 49.97 56.24 51.03 60.12 59.72
T+V+A 53.11 76.51 68.84 64.56 82.62 67.13 67.28 67.84
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Figure 11: Comparison of F1-Scores across emotion categories with and without the Neutral class.
SpEmoC achieves consistently strong recognition across all categories. This shows that SpEmoC
does not depend on the Neutral class for performance gains, instead offering a balanced benchmark
for non-neutral emotions. The highest weighted F1-score is observed without Neutral (71.0).

Impact of the Extended Reweighted Multimodal Contrastive Loss: We investigate the con-
tribution of our proposed Extended Reweighted Multimodal Contrastive (ERMC) Loss. As shown
in Table 10, incorporating ERMC alongside the standard cross-entropy improves overall F1-score,
validating the benefit of sentiment-guided embedding alignment.

Table 10: Ablation study on the impact of ERMC Loss.

CE Loss ERMC Loss Accuracy (%)↑
✓ ✗ 65.80
✓ ✓ 67.84

F DETAILED ENCODER ADAPTATIONS

F.1 VIDEO ENCODER VIA AIM
The video encoder in Figure Radford et al. (2021) adapts a pre-trained ViT-B/16 (CLIP) backbone
for video understanding, following the AIM framework Yang et al. (2023). It processes a video clip
by sampling frames at a fixed resolution (H ×W ×C). Each frame is split into N = (H ×W )/P 2

patches (with patch size P ), mapped to D-dimensional embeddings, yielding xp ∈ RT×N×D. A
[class] token is prepended per frame, and positional embeddings Epos ∈ R(N+1)×D are added,
resulting in z0 ∈ RT×(N+1)×D. This input is fed into a series of transformer blocks, modified for
spatiotemporal reasoning while keeping the ViT backbone frozen.

The AIM mechanism Yang et al. (2023) introduces lightweight spatial and temporal adapters within
CLIP-ViT layers Radford et al. (2021),which introduces lightweight adapters into the transformer
as shown in Fig. 12 (a). Spatial adaptation adds an adapter after the self-attention (S-MSA) layer
in each transformer block, using a bottleneck structure to fine-tune spatial features, producing zSl ∈
RT×(N+1)×D.

For temporal adaptation, the pre-trained self-attention layer is reused as T-MSA to model temporal
relationships across frames. The input z ∈ RT×(N+1)×D is reshaped to zT ∈ R(N+1)×T×D,
enabling T-MSA to capture dependencies among the T frames. A temporal adapter is appended to
adapt temporal features, yielding zTl ∈ RT×(N+1)×D.

Joint adaptation adds an adapter parallel to the MLP layer, scaled by a factor s, for spatiotemporal
tuning, resulting in zl ∈ RT×(N+1)×D. Only adapters are updated during training, and the final
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video representation is obtained by averaging [class] tokens across frames, producing an embedding
∈ RD for emotion classification.

• Spatial adaptation:

z
(S)
ℓ = AdapterS (MSA (LN(zℓ−1))) + zℓ−1 (18)

• Temporal adaptation:

z
(T )
ℓ = AdapterT (MSA (LN(zT ))) (19)

• Joint adaptation:

zℓ = MLP
(

LN(z
(T )
ℓ )

)
+ s · AdapterJ

(
LN(z

(T )
ℓ )

)
+ z

(T )
ℓ (20)

Where s is a scaling factor to control the weight of the output from Adapter.
The final video embedding v ∈ RD is computed by averaging the [CLS] tokens across frames:

v =
1

T

T∑
t=1

z[CLS]
t (21)

MLP ❄

LN ❄

Adapter🔥

MSA ❄

LN ❄

❄ Tuned Frozen🔥

Adapter

FC 🔥

GELU🔥

FC 🔥

Transformer
blockLN ❄

T-MSA❄

Adapter🔥

LN ❄

S-MSA❄

Adapter🔥

LN ❄

MLP ❄Adapter🔥

(a) Joint adaptation
(b)

Figure 12: Architecture of the video and text encoder modules used in SpEmoC. Module (a) de-
picts the lth block of the video encoder, which uses a transformer-based approach with temporal
shift operations to capture spatio-temporal dependencies in frame embeddings, adapted from the
AIM framework Yang et al. (2023). Module (b) shows the lth transformer block of the text encoder,
adapted with low-rank projections (T2L) ? for efficient fine-tuning, where only the adapter parame-
ters are updated during training, while other layers remain frozen.

F.2 TEXT ENCODER

We use the CLIP text encoder Radford et al. (2021) adapted with T2L ?, which modifies each self-
attention weight matrix by injecting trainable low-rank projections for efficient fine-tuning, as shown
in the l-th transformer block in Fig. 12(b).

Wq ←Wq +AqBq, Aq ∈ RD×r, Bq ∈ Rr×D (22)

where r ≪ d. Only Aq and Bq are trainable, enabling efficient adaptation. The final embedding is
extracted from the [EOS] token:

t = ftext(T ) ∈ RD (23)
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F.3 AUDIO ENCODER VIA PRETRAINED HUBERT
Raw audio waveform x ∈ RS , sampled at 16 kHz, is padded or truncated to a fixed duration of
S = 240,000 samples (15 seconds). The waveform is then fed into a pretrained HuBERT-Base
encoder Hsu et al. (2021) ϕHuBERT to extract frame-level speech representations:

H = ϕHuBERT(x) ∈ RT×768 (24)

where T is the number of time steps and 768 is the dimensionality of HuBERT-Base hidden repre-
sentations. These frame-wise features are mean-pooled across the temporal dimension and passed
through a lightweight projection head fproj:

a = fproj

(
1

T

T∑
t=1

Ht

)
∈ RD (25)

where fproj is a two-layer MLP mapping from 768 to d = 512 dimensions. The final embedding a
is used as the audio representation.

G TRAINING CONFIGURATION AND HYPERPARAMETERS

We utilize ViT-B/16-based CLIP as the visual encoder, extracting 8 sparsely sampled frames per
video at 224×224 resolution, while audio features are derived using the HuBERT-Base model from
torchaudio on raw 16 kHz audio with a maximum clip length of 15 seconds, where the HuBERT
outputs (768-dim) are mean-pooled and projected to 512 dimensions via a two-layer MLP. For the
training setup, we employ the AdamW optimizer with a learning rate of 5 × 10−6, a weight decay
of 0.2, a cosine decay scheduler with a 5-step warmup, and train for 50 epochs using a batch size of
20 on a single NVIDIA RTX A6000 GPU.

Model Parameters:

Table 11: Trainable parameters of each component in our model.

Component Trainable Parameters
CLIP Visual Encoder 8.681M
Audio Projection MLP 0.656M
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