

# 000 001 002 003 004 005 ARIA: AN AGENT FOR RETRIEVAL AND ITERATIVE 006 AUTO-FORMALIZATION VIA DEPENDENCY GRAPH 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

## ABSTRACT

Accurate auto-formalization of theorem statements is essential for advancing automated discovery and verification of research-level mathematics, yet remains a major bottleneck for LLMs due to hallucinations, semantic mismatches, and their inability to synthesize new definitions. To tackle these issues, we present Aria (Agent for Retrieval and Iterative Autoformalization), a system for conjecture-level formalization in Lean that emulates human expert reasoning via a two-phase Graph-of-Thought process: recursively decomposing statements into a dependency graph and then constructing formalizations from grounded concepts. To ensure semantic correctness, we introduce **AriaScorer**, a checker that retrieves definitions from Mathlib for term-level grounding, enabling rigorous and reliable verification. We evaluate Aria on diverse benchmarks. On ProofNet, it achieves 91.6% compilation success rate and 68.5% final accuracy, surpassing previous methods. On FATE-X, a suite of challenging algebra problems from research literature, it outperforms the best baseline with 44.0% vs. 24.0% final accuracy. On a dataset of homological conjectures, Aria reaches 42.9% final accuracy while all other models score 0%.

## 1 INTRODUCTION

In recent years, Interactive Theorem Provers (ITPs) such as Coq (Barras et al., 1999), Isabelle (Paulson, 1994) and Lean (Moura & Ullrich, 2021) have become crucial ecosystems for formalized mathematics. Among these, Lean 4, together with its comprehensive library Mathlib (mathlib Community, 2020), is pioneering a new paradigm for formalization. However, the continuous growth of this ecosystem is always constrained by the immense manual effort and the deep expertise that formalization demands. To address this, the research community has turned to Large Language Models (LLMs) for auto-formalization the process of translating informal (or natural language) mathematical statements and proofs into their formal counterparts. While these two processes are interconnected, the accurate formalization of statements is the foundational first step. A correctly formalized statement is a prerequisite for any valid proof and, on its own, is a valuable asset to the mathematical ecosystem, enabling better search, integration, and verification. Thus, despite progress in proof automation (Ren et al., 2025; Chen et al., 2025), the fidelity of this initial statement translation remains a critical bottleneck. LLMs frequently generate formal statements that suffer not only from compilation errors but also from more insidious semantic flaws, a challenge that intensifies when formalizing more complex research or conjecture-level statements.

These foundational shortcomings manifest in several critical downstream failures. An unfaithful translation can derail large-scale data generation pipelines, wasting significant computational budgets on attempts to prove an incorrect premise. For instance, modern provers often decompose complex proofs into smaller, informal lemmas, which are then individually translated and proven. In this workflow, a single flawed translation of a lemma not only invalidates the entire proof structure but can also contaminate the datasets generated during this process, which are crucial for fine-tuning future models. Furthermore, as the research community pushes towards formal models that can autonomously explore conjecture-level problems, the inability to create and utilize the necessary, often unseen, premises (i.e. definitions, lemmas, theorems, etc.) becomes a critical roadblock. Any system lacking this capability is bound to fail at the outset of such ambitious tasks. In this work, we address these challenges by introducing a robust methodology to generate, iterate, and verify formal statements, tackling these foundational bottlenecks through automated structural reasoning.

One primary challenge stems from the static nature and inherent fallibility of an LLM’s pre-trained knowledge. While foundational work has demonstrated the potential of LLMs up to undergraduate mathematics (Gao et al., 2024b; Wang et al., 2025), these methods exhibit critical failure modes when confronted with research-level statements, where LLMs are prone to hallucination and outdated pre-trained knowledge. They generate invalid codes with functions either non-existent in Mathlib, or incompatible with rapidly evolving library toolchains. To address this, we integrate a Retrieval-Augmented Generation (RAG) framework, grounding the formalization process by dynamically querying the most current version of the Mathlib library, mitigating the model’s dependence on static knowledge and ensuring compatibility with the evolving toolchain.

Beyond the issue of knowledge retrieval, a more profound challenge lies in synthesis. Research-level mathematics fundamentally involves creating new mathematical objects and definitions, one-pass generation methods, even when augmented with retrieval, fail at this task because they cannot spontaneously synthesize definitions for concepts absent from existing libraries. To address this, we develop an agentic pipeline driven by a Graph-of-Thought (GoT) formalizing process. This approach emulates an expert mathematician’s workflow by recursively decomposing dependencies of definitions until they are well-grounded, then synthesizes their formal statements in a bottom-up order until the primary target is formalized. To ensure the robustness of this process, a compiler-in-the-loop reflection mechanism is employed at each node.

Once a statement is generated and pass the compiler check, the ultimate challenge is to ensure its semantic correctness. While existing methods like LeanScorer (Xuejun et al., 2025) have advanced semantic checking by performing fine-grained comparisons, they fail to detect subtle definitive discrepancies between formal and informal terms due to reliance on superficial textual similarity. To overcome this limitation, we introduce AriaScorer, an enhanced semantic checker that incorporates a term-level grounding step. AriaScorer retrieves the authoritative definitions of all Lean terms from Mathlib and injects this formal context into the comparison process, enabling a more rigorous and accurate evaluation.

Equipped with this validated checker, we evaluated Aria’s end-to-end performance on a suite of research-level datasets. We measure final accuracy, which we define as the proportion of the generated formalized statements that pass both compiler and semantic correctness checks. The results demonstrate a significant leap over prior work, with Aria achieving 68.5% on the ProofNet benchmark while also surpassing previous state-of-the-art models on others, including FATE-H (71.0% vs. 43.0%) and FATE-X (44.0% vs. 24.0%). Most notably, on a challenging set of real-world mathematical conjectures where all baseline models score 0%, Aria achieves a 42.9% success rate, demonstrating a unique capability for research-level formalization.

The main contributions of this paper are as follows:

- We introduce Aria, a statement auto-formalizer agent that emulates the human formalization process by integrating retrieval-augmented generation, graph-of-thought planning, and a compiler-guided self-reflection mechanism that is especially effective on conjecture-level problems.
- We develop a term-level grounded semantic scorer, AriaScorer, to detect subtle discrepancies between informal statements and Lean terms, and to accurately verify the mathematical correctness of formalizations.
- We achieve state-of-the-art performance with substantial improvements over previous methods, reaching 68.5% on ProofNet, 71.0% on FATE-H, 44.0% on FATE-X, and 42.9% on real-world conjectures proposed by mathematicians.

The remainder of this paper is structured as follows. Section 2 reviews related work. Section 3 details our proposed methodology, including Aria’s architecture and its core components. Section 4 presents our experimental results and their analysis. Finally, Section 5 concludes the paper.

## 2 RELATED WORK

**Auto-formalization** The rapid advancement of Large Language Models (LLMs) has catalyzed significant progress in auto-formalization. Early efforts demonstrated success by leveraging few-shot in-context learning (ICL) (Wu et al., 2022; Patel et al., 2024; Zhou et al., 2024). As the Lean

108 community grew and its Mathlib library became more comprehensive, the availability of large-  
 109 scale datasets enabled the development of specialized models through supervised fine-tuning (SFT)  
 110 (Azerbayev et al., 2023; Jiang et al., 2023; Gao et al., 2024b; Wang et al., 2025). More recently,  
 111 Reinforcement Learning (RL) has shown potential in mathematics and inference, and several works  
 112 have leveraged RL training to enhance the quality of auto-formalization (Xuejun et al., 2025; Huang  
 113 et al., 2025). In parallel, other methods have focused on enhancing the quality and reliability of the  
 114 generation process itself. With the increasingly powerful search capabilities within the Lean ecosys-  
 115 tem, Retrieval-Augmented Generation (RAG) has proven effective at providing models with relevant  
 116 definitions and theorems from the extensive Mathlib library (Lu et al., 2025). Concurrently, novel  
 117 methodologies like Process-Supervised Verification (PSV) leverage direct feedback from compilers  
 118 to guide the model’s learning process, significantly improving the correctness and reliability of the  
 119 generated formalizations (Lu et al., 2024). Similarly, in the adjacent field of automated theorem  
 120 proving, recent works (Thakur et al., 2024; Zhou et al., 2025; Chen et al., 2025) have demonstrated  
 121 the efficacy of reflection mechanisms, enabling systems to iteratively critique and refine their rea-  
 122 soning strategies.

123 **Semantic Check** As methods for statement auto-formalization have become more sophisticated  
 124 and diverse, it is crucial to establish a credible way to evaluate the extent to which the formal state-  
 125 ment preserves the mathematical meaning of its informal counterpart. Human experts can certainly  
 126 provide reliable evaluations of consistency (Azerbayev et al., 2023), but as statements grow more  
 127 complex, such evaluations become increasingly demanding. Consequently, perplexity (Wang et al.,  
 128 2018) and BLEU (Wang et al., 2018; Azerbayev et al., 2023) have been used as proxy metrics. It  
 129 is also common to use an LLM to back-translate valid formal statements into informal statements,  
 130 and then employ another LLM to assess semantic preservation (Ying et al., 2024; Gao et al., 2024b;  
 131 Liu et al., 2025b). Additionally, a combined structure of unanimous voting among LLM judges and  
 132 validation by Lean experts has been introduced, serving as a reward signal during training (Wang  
 133 et al., 2025). Moreover, subtask decomposition of informal statements has been considered, re-  
 134 sulting in a more fine-grained filtering of incorrect formalizations (Xuejun et al., 2025). Recently,  
 135 an automated neuro-symbolic method for determining the mathematical equivalence of two formal  
 136 statements has been widely adopted. This approach establishes equivalence if and only if a formal  
 137 proof can connect the two statements, by using semantic-preserving tactics (Liu et al., 2025a; Wu  
 138 et al., 2025).

### 140 3 METHODOLOGY

141 This section details our methodology, which is comprised of two primary components. The overall  
 142 pipeline is shown in Figure 1. Section 3.1 describes Aria’s architecture, a structured pipeline de-  
 143 signed to navigate the deep conceptual dependencies in conjecture-level mathematical statements.  
 144 Then Section 3.2 presents our integrated semantic checker, which verifies whether the agent’s output  
 145 is faithful to the original mathematical intent.

#### 148 3.1 THE GRAPH-OF-THOUGHT (GoT) AUTO-FORMALIZER PIPELINE

149 In this section, we detail the architecture of our agent, Aria. This architecture moves beyond the  
 150 conventional approach of direct, single-step generation. These methods often fail when applied to  
 151 complex, conjecture-level statements. As illustrated in Figure 1, our agent operates through a struc-  
 152 tured pipeline that systematically deconstructs, resolves, synthesizes and verifies a formalization,  
 153 mirroring the methodical process of a human mathematician.

154 This pipeline uses a Graph-of-Thought (GoT) planner to deconstruct an informal statement into a  
 155 conceptual graph, where each concept node represents a definition, structure or class, as illustrated  
 156 in Figure 1 (A). Each concept node in the graph is then processed by a grounding module, which  
 157 employs a Retrieval-Augmented Generation (RAG) framework powered by LeanSearch (Gao et al.,  
 158 2024a) to anchor known concepts to the Mathlib library. For ungrounded concepts, a synthesis mod-  
 159 ule generates new definitions bottom-up, as depicted in Figure 1 (B). All outputs are validated and  
 160 refined by a compiler-in-the-loop reflection module. Finally, we employ a retrieval-based checker to  
 161 verify semantic correctness.

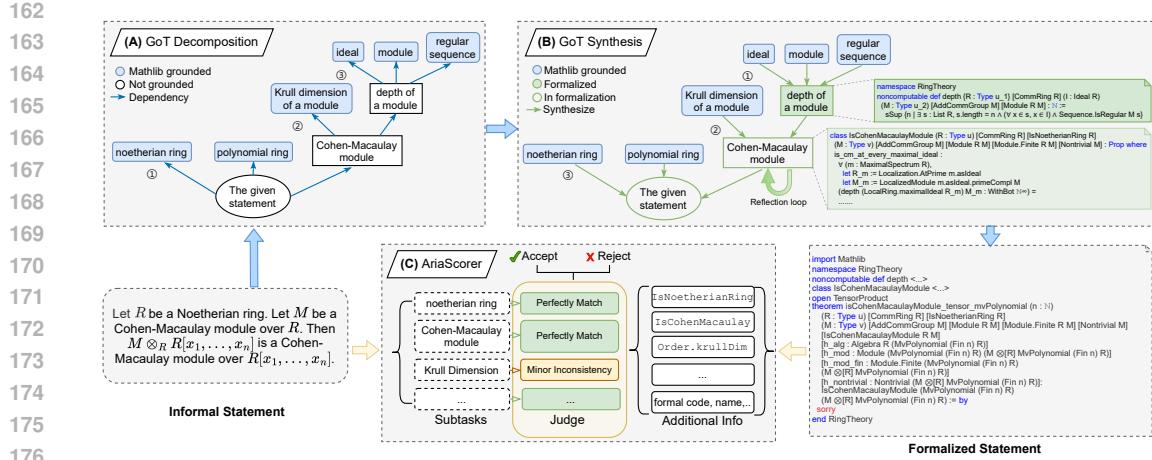


Figure 1: The overall pipeline of Aria system. (A) **Graph-of-Thought Decomposition:** Aria expands the informal statement into a dependency graph of concepts and grounds them in Mathlib. (B) **Graph-of-Thought Synthesis:** The system executes a bottom-up synthesis procedure guided by the graph, incorporating a self-reflection loop. (C) **AriaScorer:** A dedicated module that verifies the semantic correctness between the generated formal statement and the original informal statement.

### 3.1.1 GOT DECOMPOSITION PHASE

To manage the complex, acyclic dependency graph of definitions and lemmas required to formalize a high difficulty-level statement, our agent’s architecture is centered around a Planning Module based on the GoT paradigm. This module transforms the monolithic task of formalization into a structured, manageable workflow by modeling it as the construction and resolution of a conceptual dependency graph, as shown in Figure 1 (A). This approach is founded on a key principle of mathematical abstraction, which our agent leverages directly: any concept, no matter how complex, can be defined solely in terms of its immediate prerequisite concepts.

The core of our planning module is a conceptual dependency graph, a dynamic data structure that serves as the agent’s working memory. This graph consists of concept nodes and directed edges, where each node represents a mathematical concept required for the final formalization.

For a given statement, Aria initiates a full formalization routine: it performs a top-down dependency expansion of the concept graph until all leaf nodes can be grounded in Mathlib. To achieve this grounding, the agent queries LeanSearch at each node. LeanSearch is a specialized search engine whose index is continuously updated to reflect recent versions of Mathlib, thereby remaining effective as Mathlib evolves. This retrieval process returns a ranked list of candidates from Mathlib, where each candidate consists of a formal statement and its corresponding informal description, ordered by their semantic relevance to the input concept name.

Since the top ranked search result is not always the canonical definition required for formalization, the agent employs an LLM as a sophisticated reasoner to analyze the retrieved candidates, identifying the single best appropriate canonical definition for the concept. If the reasoner concludes that no suitable match exists among the candidates (i.e., the concept is not grounded in Mathlib), the node is treated as an internal node in the dependency graph (as depicted in Figure 1 (A)). Its unresolved status triggers the planner to continue the top-down expansion of its children, after which the node is marked for synthesis.

### 3.1.2 GOT SYNTHESIZING PHASE

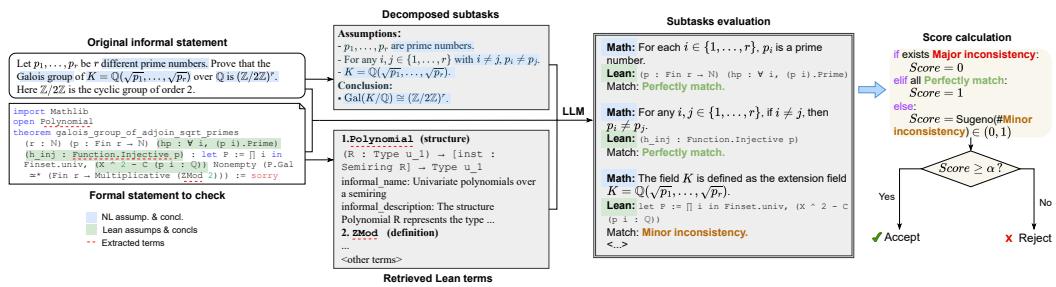
Immediately upon completing all expansions, the agent transitions to a bottom-up synthesis phase for the whole graph, which is shown in Figure 1 (B). The synthesis module is invoked for any concept that could not be grounded in the Mathlib library (for instance, the concept "Cohen-Macaulay Module" in Figure 1 (B)). This module is responsible for generating verifiable formal definitions

216 from the ground up, guided by a robust compiler-in-the-loop reflection process that ensures syntactic  
 217 correctness.  
 218

219 For a given target concept, the agent first collects the verified formal code of all its immediate  
 220 dependencies (i.e. its children in the dependency graph) to use as context for the LLM to generate a  
 221 formal Lean definition for the target. The generated code is immediately sent to the Lean compiler  
 222 for a syntactic check. If compilation fails, the error message along with the failed code is then  
 223 returned to the LLM as feedback for refinement. If it succeeds, the code is marked as synthesized  
 224 and used for the synthesis of its parent node.

225 While this process ensures syntactic validity, it cannot preclude "correctly-typed but semantically  
 226 wrong" translations. To check the semantic correctness of our code with a more flexible approach,  
 227 our methodology incorporates an enhanced retrieval-based semantic consistency checker, which is  
 228 detailed in Section 3.2.

### 229 3.2 SEMANTIC CORRECTNESS MODULE: ARIASCORER



241 Figure 2: The overall pipeline of AriaScorer: informal statements are decomposed into subtasks,  
 242 grounded with retrieved Lean terms, and their evaluations are aggregated into a final score, which is  
 243 compared against a threshold  $\alpha \in [0, 1]$  to yield a binary decision.  
 244

#### 245 3.2.1 GROUNDWORK: LEANSCORER

246 We propose a semantic correctness checker for auto-formalized Lean statements aimed at mitigating  
 247 hallucinations and reducing the false positives inherent in LLM-generated outputs. To address the  
 248 densely packed, assumption-sensitive nature of high difficulty-level statements (such as conjectures),  
 249 we adopt the subtask decomposition strategy of LeanScorer (Xuejun et al., 2025), which evaluates  
 250 the semantic correctness through subtask-level comparisons.  
 251

252 Given an original informal statement, it is decomposed into atomic assumptions and conclusions  
 253 by an LLM, and each resulting subtask is then evaluated to determine how well its formal clause  
 254 matches the corresponding informal one. Subtasks are labeled as Perfectly Match, Minor Inconsistency,  
 255 or Major Inconsistency, and these labels are aggregated via a fuzzy integral into a final score  
 256 between 0 and 1, where 0 indicates the presence of a major error and 1 reflects perfect alignment  
 257 across all subtasks. Besides these two cases, the score decays gradually from 1 with accumulating  
 258 minor inconsistencies, capturing the cumulative effect of subtle deviations. A tunable threshold is  
 259 applied to make binary decisions, balancing tolerance for small deviations against the need to re-  
 260 ject semantically incorrect formalizations. Nonetheless, because this method still relies heavily on  
 261 surface-level textual similarity, it remains vulnerable to semantic mismatches hidden beneath super-  
 262 ficially close expressions, which motivates our introduction of a term-grounded evaluation module.  
 263

#### 264 3.2.2 TERM-LEVEL SEMANTIC GROUNDING

265 To ensure alignment between the evaluation process and the true semantics of formal Lean state-  
 266 ments, we introduce a new step: **term-level retrieval and interpretation**. In this step, we use jixia<sup>1</sup>,  
 267 a static analyzer for Lean, which extracts every Lean term referenced in the formal statement and  
 268 queries the curated informalized Mathlib dataset established in Herald (Gao et al., 2024b) to retrieve  
 269

<sup>1</sup><https://github.com/frenzymath/jixia>

270 each term’s name, kind, type, value, informal name, and informal description. The retrieved term  
 271 information, together with the original informal and formal statements, the decomposed subtask list,  
 272 and few-shot examples, is then provided as context to the LLM during the subtask evaluation stage.  
 273

274 This process serves as the foundation for **semantic grounding**, enabling AriaScorer to reason over  
 275 the true meanings of formal components rather than their surface syntax. As a result, AriaScorer can  
 276 identify subtle inconsistencies, such as reversed parameter order or unintended type coercions, all of  
 277 which are easily missed by purely textual comparison. This step helps prevent common LLM failure  
 278 modes, including: (i) overlooking implicit preconditions or constraints embedded in Lean term  
 279 definitions; (ii) misinterpreting Lean definitions by defaulting to their more familiar mathematical  
 280 counterparts when the two diverge; and (iii) hallucinating incorrect explanations of Lean terms.  
 281 These error types and how AriaScorer addresses them are discussed in Section 4.3.3, with detailed  
 282 illustrations provided in the case studies.

283 By grounding evaluation in the actual semantics of Lean terms, AriaScorer provides more reliable  
 284 and fine-grained assessments, particularly in cases involving newly introduced or user-defined  
 285 structures. To validate the impact of this semantic grounding step, we present an ablation study in  
 286 Section 4.3, showing clear gains in error detection and reductions in false positives.  
 287

## 4 EXPERIMENTS

289 We conduct extensive experiments to evaluate the performance of Aria and AriaScorer. In Section  
 290 4.1, we describe the experimental setup of Aria, while Section 4.2 presents the main results. Section  
 291 4.3 demonstrates the comprehensive experiment to validate AriaScorer. Finally, we analyze the  
 292 contributions of key components through ablation studies in Section 4.4.  
 293

### 4.1 EXPERIMENTAL SETUP OF ARIA

294 This section outlines the experimental framework for rigorously evaluating Aria’s performance, in-  
 295 cluding the datasets used and the baselines for comparison.  
 296

#### 4.1.1 BENCHMARKS

300 To rigorously assess our agent across diverse difficulty levels and problem types, we evaluate it on  
 301 a suite of benchmarks. Specifically, we use the widely adopted ProofNet (Azerbayev et al., 2023)  
 302 to ensure generalizability and comparability with existing work, and the FATE (Jiang et al., 2025)  
 303 (Formal Algebra Theorem Evaluation) collection together with a dataset of 14 real conjectures to  
 304 test performance on complex, research-level problems.  
 305

306 **ProofNet** To assess generalizability, we use ProofNet, a widely-adopted benchmark of  
 307 undergraduate-level mathematics. This ensures our agent’s sophisticated architecture is not only  
 308 effective for complex conjectures but also robust and competitive on standard problems.  
 309

310 **FATE-H & FATE-X** The FATE collection tests our agent on advanced mathematics. FATE-H  
 311 comprises problems from algebra final exams, while FATE-X contains more difficult problems from  
 312 PhD qualifying exams and research literature. These benchmarks were specifically chosen to evaluate  
 313 our agent’s capabilities on complex, research-level mathematics.

314 **Homological Conjectures in Commutative Algebra (Conjectures)** Finally, we test Aria on a set  
 315 of 14 real-world Homological Conjectures (Wikipedia contributors, 2025) in Commutative Algebra,  
 316 compiled by Melvin Hochster. These conjectures probe deep connections between the homological  
 317 properties of a commutative Noetherian ring and its structural characteristics. This serves as a direct  
 318 and challenging testbed of Aria’s ability to formalize active mathematical research problems.  
 319

#### 4.1.2 BASELINE MODELS

320 To evaluate the efficacy of our agent’s architecture, we compare it against several leading state-  
 321 ment auto-formalization models, including a powerful reasoning model Gemini-2.5-Pro (Google  
 322 DeepMind) and specialized auto-formalizers including Goedel-Formalizer-V2-32B (Goedel-V2)  
 323

324  
 325 Table 1: End-to-end auto-formalization results comparing Aria against specialized models. All  
 326 values are success rates (%); we report Compiler success rate and the stricter Final accuracy  
 327 (passing both compilation and our AriaScorer semantic check). Results for the Conjectures  
 328 dataset were manually verified. Kimina’s score on ProofNet is marked due to potential data  
 contamination\*.

| Method                  | ProofNet    |             | FATE-H      |             | FATE-X      |             | Conjectures |
|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                         | Compiler    | Final acc.  | Compiler    | Final acc.  | Compiler    | Final acc.  |             |
| <b>Aria</b>             | <b>91.6</b> | <b>68.5</b> | 89.0        | <b>71.0</b> | <b>69.0</b> | <b>44.0</b> | <b>42.9</b> |
| Goedel-V2 (pass@16)     | –           | –           | 77.0        | –           | 37.0        | –           | 0           |
| Goedel-V2 (pass@32)     | –           | –           | 82.0        | –           | 49.0        | –           | 0           |
| Goedel-V2 (pass@64)     | –           | –           | 88.0        | –           | 58.0        | –           | 0           |
| Goedel-V2 (pass@128)    | –           | –           | <b>91.0</b> | 43.0        | 63.0        | 24.0        | 0           |
| Gemini-2.5-Pro (pass@1) | 55.8        | 27.8        | 35.0        | 31.0        | 27.0        | 21.0        | 0           |
| Goedel-V2 (pass@1)      | 59.6        | 32.0        | 35.0        | 27.0        | 27.0        | 16.0        | 0           |
| Kimina (pass@1)         | 70.4*       | 24.7*       | 10.0        | 0.0         | 5.0         | 1.0         | 0           |
| Herald (pass@1)         | 48.5        | 18.3        | 24.0        | 12.0        | 8.0         | 5.0         | 0           |

337 \* Kimina was trained on the ProofNet dataset, so its reported score may not reflect true generalization  
 338 capabilities.

344 (Lin et al., 2025), Kimina-Autoformalizer-7B (Kimina) (Wang et al., 2025) and Herald-translator  
 345 (Herald) (Gao et al., 2024b).

## 347 4.2 MAIN RESULTS AND ANALYSIS

349 To evaluate the performance of our model, we conducted comprehensive tests comparing Aria with  
 350 the baselines on benchmarks detailed in Section 4.1. As shown in Table 1, our agent demonstrates  
 351 outstanding performance across all evaluations.

352 As shown in Table 1, Aria demonstrates a significant advantage over all baselines on each bench-  
 353 mark. However, Our GoT and reflection mechanisms require multiple LLM calls for each translation  
 354 task within Aria. To ensure a fair comparison of efficiency, it is crucial to consider not only the suc-  
 355 cess rate but also the computational cost, for which we use the number of API calls per problem as  
 356 the primary metric. As Goedel-V2 is the top-performing specialized model at a single pass, with  
 357 results comparable to the Gemini-2.5-Pro baseline, we select it for a direct comparison of compu-  
 358 tational budget against Aria. We first determined that Aria requires an average of 17.7 calls per  
 359 problem on the FATE-X benchmark.

360 Based on this, we designed a series of experiments for Goedel-V2, ranging from pass@16 to  
 361 pass@128. As shown in Table 1, while Goedel-V2’s compilation rate scales with the number of  
 362 calls, its final accuracy remains lower than Aria’s. Aria maintains a higher final accuracy even when  
 363 compared to Goedel-V2 at pass@128 (using more than 7x calls).

364 Most importantly, our comparative analysis on the Conjectures dataset reveals why Aria achieves its  
 365 breakthrough performance. Through comprehensive case study of the generated codes, We identify  
 366 distinct shortcomings in baseline models: large reasoning models tend to hallucinate incorrect  
 367 interfaces due to insufficient expert knowledge of Mathlib, while specialized auto-formalizers lack the  
 368 mathematical reasoning power to manage conjecture-level conceptual dependencies, as evidenced  
 369 by their tendency to simply replicate training data formats without a true understanding of the un-  
 370 derlying mathematical logic. Aria’s architecture, integrating GoT and retrieval module on top of a  
 371 strong reasoning model, successfully addresses both limitations. We provide case studies of formal-  
 372 ized conjectures in Appendix A for further illustration.

## 373 4.3 VALIDATION OF ARIASCORER

### 375 4.3.1 EXPERIMENTAL SETUP

377 We validated our semantic correctness checker against leading alternatives on the FATE-X bench-  
 378 mark. The evaluation used the Aria agent’s syntactically correct, auto-formalized outputs. This

378 benchmark contains complex mathematical statements and advanced definitions, providing a rigorous  
 379 test of semantic precision.  
 380

381  
 382 **Ground truth dataset construction** We create an expert-validated ground truth dataset by labeling  
 383 each formalization as "True" or "False" based on its mathematical fidelity. The annotations are  
 384 provided by an algebra Ph.D. candidate in pure mathematics and has also contributed to Mathlib,  
 385 then independently verified by a second expert with the same credentials. We then used this dataset  
 386 to benchmark the performance of several semantic correctness checkers.  
 387

388 **Baselines** We benchmark AriaScorer against several established methods for checking semantic  
 389 correctness. The first is LeanScorer (Xuejun et al., 2025), a method using decomposition and match-  
 390 ing, which we re-implemented as its original version is not open-source. Our re-implementation of  
 391 LeanScorer also serves as a critical ablation study for AriaScorer, representing our full pipeline  
 392 but without the term-level grounding step. The second is Back Translation (Ying et al., 2024; Gao  
 393 et al., 2024b), a widely-used pipeline that translates a formal statement back to an informal one  
 394 and uses an LLM to judge the similarity. For a controlled comparison, AriaScorer, LeanScorer, and  
 395 BackTranslation are all built upon the same base model: Gemini-2.5-Pro. We also evaluate Gemini-  
 396 2.5-Pro's performance on this task directly. This comparison framework ensures that AriaScorer's  
 397 accuracy improvements can be attributed specifically to our novel term-level analysis, rather than  
 398 the underlying language model.  
 399

400 **Evaluation Metrics** We evaluate performance using binary classification, where formalizations  
 401 are labeled positive (correct) or negative (flawed). Performance is based on the counts of True Posi-  
 402 tives (TP), True Negatives (TN), False Negatives (FN), and False Positives (FP). A False Positive, for  
 403 instance, occurs when a checker incorrectly approves a flawed formalization. These four outcomes  
 404 are then used to calculate and report accuracy, precision, recall, and F1 score.  
 405

#### 406 4.3.2 PERFORMANCE OF ARIASCORER

407  
 408  
 409 Table 2: Performance comparison of distinct semantic correctness checkers. It is carried out on the  
 410 auto-formalized output of Aria on FATE-X. The score threshold for binary decision is denoted as  $\alpha$ .  
 411

|           | AriaScorer<br>( $\alpha = 0$ ) | AriaScorer<br>( $\alpha = 0.9$ ) | LeanScorer<br>( $\alpha = 0$ ) | LeanScorer<br>( $\alpha = 0.9$ ) | Back<br>Translation | Gemini |
|-----------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------------|--------|
| TP        | 50                             | 42                               | 46                             | 44                               | 7                   | 45     |
| TN        | 12                             | 15                               | 3                              | 7                                | 16                  | 8      |
| FP        | 5                              | 2                                | 14                             | 10                               | 1                   | 9      |
| FN        | 2                              | 10                               | 6                              | 8                                | 45                  | 7      |
| Accuracy  | <b>89.9%</b>                   | 82.6%                            | 71.0%                          | 73.9%                            | 33.3%               | 76.8%  |
| Precision | 90.9%                          | <b>95.5%</b>                     | 77.6%                          | 81.5%                            | 87.5%               | 83.3%  |
| Recall    | <b>96.2%</b>                   | 80.8%                            | 88.5%                          | 84.6%                            | 13.5%               | 86.5%  |
| F1        | <b>93.5%</b>                   | 87.5%                            | 82.1%                          | 83.0%                            | 23.3%               | 84.9%  |

420  
 421 AriaScorer is the top-performing model for semantic correctness checking on Aria's output from  
 422 FATE-X. At a threshold of  $\alpha = 0$ , it achieves the highest accuracy (89.9%), recall (96.2%), and F1  
 423 score (93.5%), significantly outperforming all baselines. Its superior precision and recall compared  
 424 to LeanScorer underscore the benefits of term-level grounding. Increasing the threshold to  $\alpha =$   
 425 0.9 boosts AriaScorer's precision to a peak of 95.5%. This demonstrates a key trade-off: a lower  
 426 threshold is more tolerant of mathematically equivalent forms, maximizing recall, while a higher  
 427 threshold imposes stricter criteria, minimizing false positives for real-world deployment. In contrast,  
 428 the Back Translation baseline, which demands an exact textual match, achieves very high precision  
 429 but suffers from low overall recall. While we adopt the high-precision setting of  $\alpha = 0.9$  in all other  
 430 experiments, the results at  $\alpha = 0$  best demonstrate the fundamental advantage of our term-grounded  
 431 approach.  
 432

432 4.3.3 KEY FINDINGS OF ARIASCORER  
433434 By incorporating term-level grounding, AriaScorer addresses common failure modes in semantic  
435 correctness checking. Our ablation study highlights three of its key strengths:436  
437 **Implicit Semantic Inclusion** By retrieving a formal term’s full definition from Mathlib, AriaS-  
438 corer identifies any implicit preconditions or constraints it contains. This uncovers crucial depen-  
439 dencies for accurate evaluation that purely textual comparisons would overlook. (See Appendix  
440 B.1).441 **Definition Discrepancy Detection** AriaScorer detects subtle discrepancies between a formal  
442 term’s precise definition and the informal concept’s intended meaning. By comparing the retrieved  
443 Mathlib definition against the original problem’s context, it identifies when a Lean term, though  
444 textually similar, carries a different mathematical interpretation. (See Appendix B.2).445  
446 **Hallucination Suppression via Grounding** AriaScorer suppresses LLM hallucinations by  
447 grounding the evaluation process. Before invoking the LLM, it injects the authoritative Mathlib  
448 definitions of all formal terms into the prompt. This constrains the model to reason based on verified  
449 ground truths, ensuring its output reflects the actual semantics of the formal code. (See Appendix  
450 B.3).451 4.4 SUMMARY OF ABLATION STUDIES  
452453 We conduct a series of comprehensive ablation studies to quantify the unique contributions of  
454 Aria’s core components: the Reflection mechanism, the Graph-of-Thought (GoT) planner, and the  
455 Retrieval-Augmented Generation (RAG) module. Our findings, particularly on the challenging Con-  
456 jectures dataset, demonstrate that all three are indispensable.457  
458 • Ablating the Reflection module, caused performance to collapse on both FATE-X and Con-  
459 jectures, proving its necessity for achieving correct codes.  
460 • Removing the GoT planner crippled the agent’s ability to formalize novel concepts, reduc-  
461 ing successful conjectures from 6 to 1. This highlights its critical role in imposing logical  
462 structure. Moreover, we found that the impact of ablating the GoT module is more pro-  
463 nounced on more challenging datasets.  
464 • Disabling the RAG module results in a complete 0% success rate on Conjectures, confirm-  
465 ing its crucial function in grounding the agent and preventing foundational hallucinations  
466 of non-existent concepts.467 Detailed procedures and analysis are provided in Appendix C.  
468469 5 CONCLUSION  
470471 In this paper, we present Aria, a statement auto-formalization agent integrating retrieval-augmented  
472 generation, graph-of-thought planning, and self-reflection mechanism. This integrated approach  
473 makes Aria the first agent capable of autonomously synthesizing the complex novel definitions re-  
474 quired to formalize high difficulty-level mathematical statements such as conjectures. This capabili-  
475 ty directly addresses a core limitation of prior methods, which fail due to hallucination and logical  
476 errors when encountering unseen concepts. Moreover, we presented a novel semantic correctness  
477 checker, AriaScorer, that retrieves definitions from Mathlib for term-level grounding, enabling rig-  
478 orous and reliable verification.479 Our comprehensive experimental results demonstrate that our agent achieves leading final accuracy  
480 on benchmarks of varying difficulty, from the undergraduate level to conjectures. This success  
481 is particularly pronounced on the highly challenging Homological Conjectures dataset, where our  
482 agent achieves breakthrough performance.483 Given that statement formalization is a critical prerequisite for theorem proving, our successful  
484 formalization of conjecture-level statements established a solid foundation for future work on auto-  
485 mated mathematical proof at this frontier of research.

486 REFERENCES  
487

488 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and  
489 Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-  
490 ics. *arXiv preprint arXiv:2302.12433*, 2023.

491 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,  
492 Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The  
493 Coq proof assistant reference manual. *INRIA*, 1999.

494

495 Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,  
496 Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,  
497 Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,  
498 Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,  
499 Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen  
500 Zhu. Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving, August 2025.  
501 URL <http://arxiv.org/abs/2507.23726>. arXiv:2507.23726 [cs].

502 Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine  
503 for mathlib4, 2024a. URL <https://arxiv.org/abs/2403.13310>.

504

505 Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:  
506 A natural language annotated lean 4 dataset. *arXiv preprint arXiv:2410.10878*, 2024b.

507

508 Google DeepMind. Gemini 2.5 pro. <https://deepmind.google/technologies/gemini/pro/>, 2025.

509

510 Yanxing Huang, Xinling Jin, Sijie Liang, Peng Li, and Yang Liu. Formarl: Enhancing autoformal-  
511 ization with no labeled data. *arXiv preprint arXiv:2508.18914*, 2025.

512

513 Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. *arXiv  
514 preprint arXiv:2311.03755*, 2023.

515

516 Jiedong Jiang, Wanyi He, Yuefeng Wang, Guoxiong Gao, Peihao Wu, Bryan Dai, and Bin Dong.  
517 Introducing fate: A multi-level formal benchmark for frontier algebraic problems. <https://frenzymath.com/blog/fate/>, Aug 2025.

518

519 Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan  
520 Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,  
521 Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling  
522 formal theorem proving with scaffolded data synthesis and self-correction, 2025. URL <https://arxiv.org/abs/2508.03613>.

523

524 Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving  
525 autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In  
526 *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=hUb2At2DsQ>.

527

528 Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and Tao  
529 Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data. *arXiv  
530 preprint arXiv:2502.05567*, 2025b.

531

532 Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,  
533 Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in lean 4. *arXiv  
534 preprint arXiv:2406.01940*, 2024.

535

536 Wangyue Lu, Lun Du, Sirui Li, Ke Weng, Haozhe Sun, Hengyu Liu, Minghe Yu, Tiancheng Zhang,  
537 and Ge Yu. Automated formalization via conceptual retrieval-augmented llms. *arXiv preprint  
538 arXiv:2508.06931*, 2025.

539 The mathlib Community. The Lean mathematical library. In *Proceedings of the 9th ACM SIGPLAN  
International Conference on Certified Programs and Proofs*, 2020.

540 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.  
 541 In André Platzer and Geoff Sutcliffe (eds.), *Automated Deduction – CADE 28*, pp. 625–635,  
 542 Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

543

544 Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization, 2024.  
 545 URL <https://arxiv.org/abs/2310.07957>.

546 Lawrence C Paulson. *Isabelle: A Generic Theorem Prover*. Springer, 1994.

547

548 ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,  
 549 Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-  
 550 soning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*,  
 551 2025.

552 Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-  
 553 context learning agent for formal theorem-proving, 2024. URL <https://arxiv.org/abs/2310.04353>.

554

555 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood  
 556 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large  
 557 formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025.

558

559 Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of in-  
 560 formal to formal mathematics. In *International Conference on Intelligent Computer Mathematics*,  
 561 pp. 255–270. Springer, 2018.

562 Wikipedia contributors. Homological conjectures in commutative algebra — Wikipedia, the free  
 563 encyclopedia. [https://en.wikipedia.org/w/index.php?title=Homological\\_](https://en.wikipedia.org/w/index.php?title=Homological_conjectures_in_commutative_algebra&oldid=1299704292)  
 564 [conjectures\\_in\\_commutative\\_algebra&oldid=1299704292](https://en.wikipedia.org/w/index.php?title=Homological_conjectures_in_commutative_algebra&oldid=1299704292), 2025. [Online; ac-  
 565 cessed 22-September-2025].

566

567 Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and  
 568 Christian Szegedy. Autoformalization with large language models, 2022. URL <https://arxiv.org/abs/2205.12615>.

569

570 Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong  
 571 Du, Jie Yan, and Xing Hu. StepFun-Formalizer: Unlocking the Autoformalization Potential  
 572 of LLMs through Knowledge-Reasoning Fusion, August 2025. URL <http://arxiv.org/abs/2508.04440>. *arXiv:2508.04440* [cs].

573

574 Yu Xuejun, Jianyuan Zhong, Zijin Feng, Pengyi Zhai, Roozbeh Yousefzadeh, Wei Chong Ng, Haox-  
 575 iong Liu, Ziyi Shou, Jing Xiong, Yudong Zhou, et al. Mathesis: Towards formal theorem proving  
 576 from natural languages. *arXiv preprint arXiv:2506.07047*, 2025.

577

578 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:  
 579 A large-scale lean problem set formalized from natural language math problems. *Advances in*  
 580 *Neural Information Processing Systems*, 37:105848–105863, 2024.

581

582 Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.  
 583 Don’t trust: Verify – grounding llm quantitative reasoning with autoformalization, 2024. URL  
 584 <https://arxiv.org/abs/2403.18120>.

585

586 Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,  
 587 Huawei Chen, Allan Jie, Xinbo Zhang, Haocheng Wang, Luong Trung, Rong Ye, Phan Nhat  
 588 Hoang, Huishuai Zhang, Peng Sun, and Hang Li. Solving formal math problems by decomposi-  
 589 tion and iterative reflection, 2025. URL <https://arxiv.org/abs/2507.15225>.

590

591

592

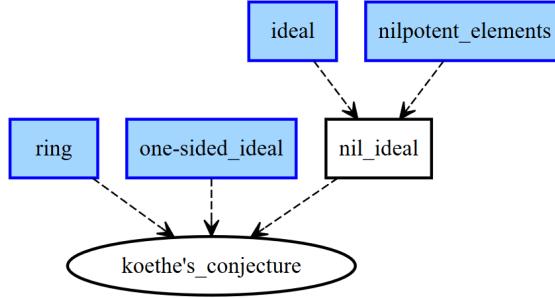
593

594 A CASE STUDY FOR ARIA'S GENERATED STATEMENTS  
595

596 In this section, we present a qualitative analysis of Aria's generated statements through several  
597 representative case studies to illustrate its strengths and limitations. For each case, we visualize  
598 the agent's conceptual dependency graph as a "blueprint"—a visualization style standard in the Lean  
599 community for representing dependencies—to illustrate its planning process. We then present the  
600 final formalization and compare it against the outputs generated by the Goedel-V2-Formalizer-32B  
601 and Gemini-2.5-Pro model for the same problem.

602 A.1 EXAMPLE 1: KOETHE'S CONJECTURE  
603604 INFORMAL STATEMENT  
605

606 Let  $R$  be a ring. If  $R$  has no non-zero nil ideal (two-sided), then it has no non-zero nil one-sided  
607 ideal (neither left nor right).

610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
Figure 3: Dependency Graph of Koethe's Conjecture623 ARIA GENERATED STATEMENT  
624

```

625 import Mathlib
626
627 universe u
628
629 /-- An ideal `I` is a nil ideal if every element of `I` is nilpotent. -/
630 def IsNil {R : Type u} [Semiring R] (I : Ideal R) : Prop :=
631   ∀ x ∈ I, IsNilpotent x
632
633 /--
634 If a ring `R` has no non-zero nil two-sided ideals, then it has no
635   non-zero nil
636 one-sided ideals (neither left nor right).
637 -/
638 theorem no_nil_ideals_implies_no_nil_one_sided_ideals {R : Type u}
639   [Ring R]
640   (h : ∀ (I : Ideal R), IsNil I → I = ⊥) :
641   (∀ (L : Submodule R R), (∀ x ∈ L, IsNilpotent x) → L = ⊥) ∧
642   (J : Submodule (MulOpposite R) R), (forall x ∈ J, IsNilpotent x) → J
643   = ⊥ :=
644   sorry
  
```

645 GOEDEL GENERATED STATEMENT  
646

```

647 import Mathlib
648 import Aesop
649
650 set_option maxHeartbeats 0
  
```

```

648 open BigOperators Real Nat Topology Rat
649
650 theorem statement (R : Type*) [Ring R] :
651   ( $\forall I : \text{Ideal } R, I \neq \perp \rightarrow \exists x \in I, \neg \text{IsNilpotent } x$ )  $\rightarrow$ 
652   ( $\forall L : \text{Ideal } R, L \neq \perp \rightarrow \exists x \in L, \neg \text{IsNilpotent } x$ )  $\wedge$ 
653   ( $\forall R : \text{Ideal } R, R \neq \perp \rightarrow \exists x \in R, \neg \text{IsNilpotent } x$ )  $::= \text{by sorry}$ 

```

654

## 655 GEMINI GENERATED STATEMENT

```

656 import Mathlib
657
658 variable (R : Type*) [Ring R]
659
660 def koethe_conjecture : Prop :=
661   ( $\forall (I : \text{Ideal } R), \text{IsNil } I \rightarrow I = \perp$ )  $\rightarrow$ 
662   ( $\forall (J : \text{Submodule } R R), \text{IsNil } J \rightarrow J = \perp$ )  $\wedge$ 
663   ( $\forall (K : \text{Submodule } R^{\text{op}} R), \text{IsNil } K \rightarrow K = \perp$ )
664

```

665

## 666 ANALYSIS

667

This example clearly reflects the architectural advantages of Aria over both the specialized formalization model like Goedel and a powerful general reasoning model like Gemini.

668

Among the three outputs, Gemini's results successfully preserves the original mathematical intent, correctly identifying the need to distinguish between two-sided and one-sided ideals. However, it fails to compile because it hallucinates a non-existent API (`IsNil`), reflecting a disconnect between its strong high-level reasoning and its knowledge of the library's API.

669

In contrast, while Goedel's output is compilable, it is semantically incorrect. It fails to capture the non-trivial knowledge that one-sided ideals are represented by `Submodule R R` and `Submodule (MulOpposite R) R`, and instead formalizes all ideals as `Ideal R`, which stands only for two-sided ideals, causing the formalization to deviate entirely from the original mathematical intent.

670

Aria's formalization is both syntactically and semantically correct. It uses the proper `Mathlib` types for the different ideals but also achieves good readability and modularity with a prerequisite formal definition for nilpotent ideals (`def IsNil`). This success highlights the core advantage of Aria's GoT architecture. Its ability to perform high-level conceptual planning, while strictly grounding the formalization process in `Mathlib`, allows it to avoid both the API hallucinations of Gemini and the semantic errors of Goedel.

671

672 A.2 EXAMPLE 2: EXISTENCE OF BALANCED BIG COHEN–MACAULAY MODULES  
673 CONJECTURE

680

## 681 INFORMAL STATEMENT

682

Let  $R$  be a Noetherian commutative local ring with maximal ideal  $m_R$ . There exists a  $R$ -module  $W$  such that  $m_R W \neq W$  and every system of parameters for  $R$  is a regular sequence on  $W$ .

683

## 684 ARIA GENERATED STATEMENT

685

```

686 import Mathlib
687
688 -- A ring `R` is a Noetherian local ring if it is both Noetherian and
689 -- a local ring. --/
690 class IsNoetherianLocalRing (R : Type*) [CommRing R]
691   extends IsNoetherianRing R, IsLocalRing R : Prop
692
693 -- Note: `ringKrullDim` is already defined in Mathlib.
694
695 -- Note: `Ideal.IsPrimary` is standard in Mathlib and its definition
696 -- matches the one provided in the context.

```

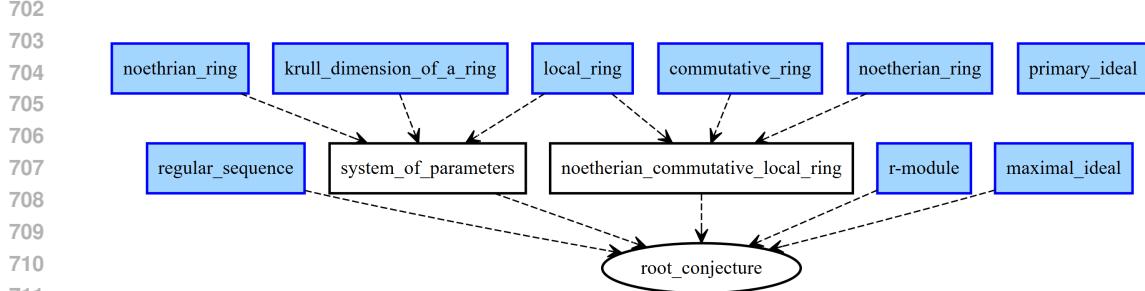


Figure 4: Dependency Graph of Existence of Balanced Big Cohen–Macaulay Modules Conjecture

```

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

```

```

/--
In a Noetherian local ring `R` of Krull dimension `d`, a "system of
parameters" is a
sequence of `d` elements `x_1, ..., x_n` in the maximal ideal `m` such
that the ideal
`I = <x_1, ..., x_n>` generated by these elements is `m`-primary (i.e., it
is a primary ideal
whose radical is the maximal ideal `m`).
 -/
def IsSystemOfParameters {R : Type*} [CommRing R]
  [IsNoetherianLocalRing R]
  (d : N) (x : Fin d → R) : Prop :=
ringKrullDim R = ↑d
(∀ i, x i ∈ LocalRing.maximalIdeal R) ∧
(let I := Ideal.span (Set.range x);
 I.IsPrimary ∧ I.radical = LocalRing.maximalIdeal R)

/--
Let  $R$  be a Noetherian commutative local ring with maximal ideal  $m_R$ .
There exists a  $R$ -module  $W$  such that  $m_R W \neq W$  and every system of
parameters
for  $R$  is a regular sequence on  $W$ .
 -/
theorem exists_module_where_system_of_parameters_is_regular_sequence
  (R : Type*) [CommRing R] [IsNoetherianLocalRing R] :
  ∃ (W : Type*) ( _: AddCommGroup W) ( _: Module R W),
    (LocalRing.maximalIdeal R) · (T : Submodule R W) ≠ T ∧
    ∀ (d : N) (x : Fin d → R),
      IsSystemOfParameters d x → RingTheory.Sequence.IsRegular W
      (List.ofFn x) := by
        sorry

```

## GOEDEL GENERATED STATEMENT

```

import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat
theorem statement (R : Type*) [CommRing R] [IsLocalRing R]
  [IsNoetherianRing R] :
  ∃ (W : Type*) [AddCommGroup W] [Module R W],
    (maximalIdeal R : Ideal R) · W ≠ W ∧
    ∀ (s : Set R), s.Finite ∧ Ideal.span s = maximalIdeal R →
      ∀ (f : R → W), (∀ r ∈ s, f r ≠ 0) → LinearIndependent
      R f := by sorry

```

## GEMINI GENERATED STATEMENT

```

756
757 import Mathlib
758
759 open LocalRing
760
761 -- The proposition is defined within a `variable` block,
762 -- which sets the context for the ring R.
763 variable (R : Type*) [CommRing R] [IsNoetherianRing R] [LocalRing R]
764
765 /--
766 Formalization of the statement:
767 "There exists an R-module W such that  $m_R * W \neq W$  and every system
768 of parameters for R is a regular sequence on W."
769
770 def module_with_regular_sop_exists : Prop :=
771   -- "There exists an R-module W..." 
772   ∃ (W : Type*) [AddCommGroup W] [Module R W],
773     -- "...such that  $m_R * W \neq W$ ..." 
774     (maximalIdeal R) . (T : SubmoduleRW) ≠ \top ∧
775     -- "...and every system of parameters for R..." 
776     ∀ {s : Fin (Ring.Dimension R) → (maximalIdeal R)},
777       (IsSystemOfParameters s) →
778         -- "...is a regular sequence on W." 
779         (IsRegularSequence (fun i ↦ (s i : R)) W)
780

```

## ANALYSIS

This is a more complex conjecture, and the three generated examples once again highlight the poor performance of a specialized model like Goedel in capturing complex mathematical semantics, as well as the knowledge gaps of a general reasoning model like Gemini regarding the Mathlib library.

In this instance, Gemini uses a definition `IsSystemOfParameters` which does not exist in the library. And for the concept of a regular sequence, which is available in Mathlib (`RingTheory.Sequence.Isregular`), it used an incorrect interface (`IsRegularSequence`). Goedel, on the other hand, failed entirely to grasp the concepts of "regular sequence" and "system of parameters", producing a completely erroneous statement.

In contrast, Aria's Graph-of-Thought (GoT) architecture helped it correctly identify the key concepts. It successfully searched within Mathlib to find `RingTheory.Sequence.IsRegular`. By leveraging the deconstruct capabilities of GoT, Aria successfully formalize the definition for system of parameters, and ultimately succeeded in formalizing the entire conjecture.

## B DISCUSSION AND CASE STUDY FOR ARIASCORER

By grounding evaluation in retrieved Lean term information, our checker captures the precise semantics of formal statements with greater accuracy, improving both matching and evaluation quality. In the following section, we present examples showing how the three key innovations contribute to the enhanced performance of AriaScorer.

### B.1 IMPLICIT SEMANTIC INCLUSION

#### INFORMAL STATEMENT

$\mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$  is a UFD.

#### CONDITIONS AND CONCLUSIONS

##### Condition:

1. Let R be the ring  $R = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$ .

##### Conclusion:

810  
 811     •  $R$  is a Unique Factorization Domain (UFD). This means:  
 812       1.  $R$  is an integral domain (a commutative ring with  $1 \neq 0$  and no zero divisors).  
 813       2. For every non-zero, non-unit element  $a \in R$ , there exist irreducible elements  
 814           $p_1, p_2, \dots, p_k \in R$  such that  $a = p_1 p_2 \cdots p_k$ .  
 815       3. This factorization is unique: if  $a = q_1 q_2 \cdots q_m$  is another factorization into  
 816          irreducibles, then  $k = m$  and there exists a permutation  $\sigma$  of  $\{1, 2, \dots, k\}$  and  
 817          units  $u_1, u_2, \dots, u_k \in R$  such that  $p_i = u_i q_{\sigma(i)}$  for all  $i \in \{1, 2, \dots, k\}$ .  
 818

819     FORMAL STATEMENT TRANSLATED BY ARIA  
 820

```
821 import Mathlib
822
  -- To state that the quotient ring is a UFD, Lean must first know it's
  -- an integral domain.
  -- This requires the ideal to be prime. The error 'unknown constant'
  -- indicates that the
  -- function name `Ideal.isPrime_iff_isDomain_quotient` used in the
  -- previous attempt does not exist.
  -- The correct mathlib theorem is `Ideal.Quotient.isDomain_iff_prime`,
  -- which states
  -- `IsDomain (R / I) ↔ I.IsPrime`. To prove the `IsDomain` instance
  -- from the primality of the
  -- ideal, we need the reverse direction of this equivalence, which is
  -- accessed with `mpr`.
  --
  -- The `noncomputable` keyword is required because types like
  -- `MvPolynomial` over `C`
  -- are defined using classical logic and do not have an executable
  -- implementation.
833 noncomputable def kleinianSingularityIdeal : Ideal (MvPolynomial (Fin
834 3) C) :=
835   Ideal.span {
836     (MvPolynomial.X 0 : MvPolynomial (Fin 3) C)^2 +
837     (MvPolynomial.X 1)^3 +
838     (MvPolynomial.X 2)^7
839   }
840
  -- We define an abbreviation for the quotient ring type for clarity.
841 abbrev CxyzModKleinian := MvPolynomial (Fin 3) C /
842   kleinianSingularityIdeal
843
  -- We manually provide the `IsDomain` instance for our quotient ring.
  -- Its proof follows
  -- from the fact that the ideal is prime, a non-trivial result which we
  -- assume with `sorry`.
844 local instance : IsDomain CxyzModKleinian :=
845   (Ideal.Quotient.isDomain_iff_prime kleinianSingularityIdeal).mpr sorry
846
  theorem isUFD_of_C_xyz_mod_x2_y3_z7 :
847   UniqueFactorizationMonoid CxyzModKleinian := by
848   sorry
849
```

856     RETRIEVED LEAN TERMS  
 857

```
858 {'name': ['MvPolynomial'], 'kind': 'definition', 'value': 'Type u_1 →
  859   (R : Type u_2) → [inst : CommSemiring R] → Type (max u_1 u_2)',
  860   'informal_name': 'Multivariate polynomials over R with variables in
  861   σ', 'informal_description': 'The type of multivariate polynomials
  862   over a commutative semiring R with variables indexed by a type σ.
  863   Each polynomial is a finite formal linear combination of monomials,
  864   where a monomial is a product of variables  $X_i$  for  $i \in \sigma$  raised to
  865   non-negative integer powers, with coefficients in R.'}
```

```

864 {'name': ['Ideal', 'span'], 'kind': 'definition', 'value': '{α : Type
865   u} → [inst : Semiring α] → Set α → Ideal α', 'informal_name':
866   'Ideal generated by a subset', 'informal_description': 'Given a
867   subset s of a semiring α, the ideal span(s) is the smallest ideal of
868   α containing s, defined as the intersection of all ideals
869   containing s.'}

```

870

## 871 MATCHING AND ASSESSMENT BY ARIASCORER

872

873 LLM Full Output: Let's compare the mathematical conditions and conclusions with the Lean  
 874 4 formal statement one by one:

875

876 1. **Let  $R$  be the ring  $R = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$ :**

877

- 878 Math: The object of study is a quotient ring. The base ring is the ring of polynomials  
 879 in three variables  $x, y, z$  with complex coefficients,  $\mathbb{C}[x, y, z]$ . The ideal is the  
 880 principal ideal generated by the polynomial  $x^2 + y^3 + z^7$ .
- 881 Lean: abbrev CxyzModKleinian := MvPolynomial (Fin 3)  $\mathbb{C}$  /  
 882 kleinianSingularityIdeal. This defines the ring as a quotient  $/$ .  
 883 The base ring is MvPolynomial (Fin 3)  $\mathbb{C}$ , which represents multivariate  
 884 polynomials with coefficients in  $\mathbb{C}$  (complex numbers) and variables  
 885 indexed by Fin 3 (a type with 3 elements, corresponding to  $x, y, z$ ). The ideal  
 886 kleinianSingularityIdeal is defined as Ideal.span of the set containing  
 887 the polynomial (MvPolynomial.X 0)^2 + (MvPolynomial.X 1)^3 + (MvPolynomial.X 2)^7, which corresponds exactly to  $x^2 + y^3 + z^7$ .
- 888 Match: Perfectly match.

889

890 2.  **$R$  is a Unique Factorization Domain (UFD):**

891

- 892 Math: The ring  $R$  is an integral domain, and every non-zero, non-unit element has  
 893 a unique factorization into irreducible elements (up to order and multiplication by  
 894 units).
- 895 Lean: The conclusion is formalized in two parts. First, local instance  
 896 : IsDomain CxyzModKleinian asserts that the ring is an integral domain.  
 897 Second, the main theorem theorem isUFD\_of\_C\_xyz\_mod\_x2\_y3\_z7 :  
 898 UniqueFactorizationMonoid CxyzModKleinian asserts the property  
 899 of unique factorization. In Mathlib, a ring is a UFD if and only if it satisfies both  
 900 IsDomain and UniqueFactorizationMonoid.
- 901 Match: Perfectly match.

902

903 **Check for missing conditions / implicit conditions:**

904

- 905 The mathematical statement " $R$  is a UFD" contains the implicit condition that  $R$   
 906 must be an integral domain. The Lean code makes this explicit with the local  
 907 instance : IsDomain CxyzModKleinian. This is not a missing condition  
 908 but a correct formalization of an implicit part of the mathematical definition.
- 909 Match: Perfectly match.

910

## 911 ANALYSIS

912

913 In this case, the informal statement asserts that the quotient ring  $R = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$   
 914 is a Unique Factorization Domain (UFD), which requires  $R$  to be an integral domain by  
 915 definition. AriaScorer, empowered by term-level retrieval, correctly accesses the definitions of  
 916 relevant Lean terms and tracks newly written local instances. This allows it to recognize  
 917 that the concept of UFD is semantically realized through the combination of IsDomain and  
 918 UniqueFactorizationMonoid, even though they appear separately in the formal code.

919

920 Without this term-level semantic grounding, a checker may mistakenly treat the newly defined local  
 921 instance as a nontrivial addition to the conclusion, rather than recognizing it as a prerequisite  
 922 implicitly embedded in the definition of UniqueFactorizationMonoid. By contrast, AriaScorer  
 923 uncovers this internal dependency and correctly matches the formalization. This case illustrates the  
 924 strength of semantic grounding: it enables the checker to move beyond surface forms and reason

918 about the structural meaning and interrelation of formal terms—something that purely textual com-  
 919 parison would fail to capture.  
 920

921 **B.2 DEFINITION DISCREPANCY DETECTION**  
 922

923 **INFORMAL STATEMENT**  
 924

925 Let  $A, B \in \mathbb{Q}^\times$  be rational numbers. Consider the quaternion ring  $D_{A,B,\mathbb{R}} = \{a + bi +$   
 926  $cj + dk \mid a, b, c, d \in \mathbb{R}\}$  in which the multiplication satisfies relations:  $i^2 = A$ ,  $j^2 = B$ ,  
 927 and  $ij = -ji = k$ . Show that  $D_{A,B,\mathbb{R}}$  is either isomorphic to  $\mathbb{H}$  (Hamilton quaternion) or  
 928 isomorphic to  $\text{Mat}_{2 \times 2}(\mathbb{R})$  as  $\mathbb{R}$ -algebras.  
 929

930 **CONDITIONS AND CONCLUSIONS**  
 931

932 **Conditions:**  
 933

1.  $A, B \in \mathbb{Q}^\times$  (i.e.,  $A$  and  $B$  are non-zero rational numbers).
2.  $D_{A,B,\mathbb{R}}$  is an  $\mathbb{R}$ -algebra defined on the set  $\{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ .
3. The multiplication in  $D_{A,B,\mathbb{R}}$  is defined by the relations:

- $i^2 = A$
- $j^2 = B$
- $ij = -ji = k$

940 **Conclusion:**  
 941

- $D_{A,B,\mathbb{R}}$  is isomorphic to  $\mathbb{H}$  (the Hamilton quaternions) or isomorphic to  $\text{Mat}_{2 \times 2}(\mathbb{R})$  (the algebra of  $2 \times 2$  real matrices) as  $\mathbb{R}$ -algebras. This can be stated as:  $(D_{A,B,\mathbb{R}} \cong \mathbb{H}) \vee (D_{A,B,\mathbb{R}} \cong \text{Mat}_{2 \times 2}(\mathbb{R}))$ , where  $\cong$  denotes an isomorphism of  $\mathbb{R}$ -algebras.

945 **FORMAL STATEMENT TRANSLATED BY ARIA**  
 946

```
947 import Mathlib
948
949 theorem
950   quaternion_algebra_over_reals_isomorphic_to_hamiltonians_or_matrices
951   (A B : ℚ) (hA : A ≠ 0) (hB : B ≠ 0) :
952   Nonempty (QuaternionAlgebra ℝ (A : ℝ) (B : ℝ) 1) ≅a [ℝ]
953   (QuaternionAlgebra ℝ (-1) (-1) 1)) ∨
954   Nonempty (QuaternionAlgebra ℝ (A : ℝ) (B : ℝ) 1) ≅a [ℝ] Matrix (Fin
955   2) (Fin 2) ℝ) := by
956   sorry
```

956 **RETRIEVED LEAN TERMS**  
 957

```
958 { 'name': ['Matrix'], 'kind': 'definition', 'value': "Type u → Type u"
959   → Type v → Type (max u u' v)", 'informal_name': 'Matrix',
960   'informal_description': 'The type of matrices with rows indexed by
961   a type  $m$ , columns indexed by a type  $n$ , and entries in a type  $\alpha$ . A
962   matrix  $M$  can be represented as a function  $M : m \rightarrow n \rightarrow \alpha$ , where  $M(i, j)$ 
963   gives the entry in row  $i$  and column  $j$ .' }
964 { 'name': ['QuaternionAlgebra'], 'kind': 'structure', 'value': '(R :
965   Type u_1) → R → R → R → Type u_1', 'informal_name': 'Quaternion
966   Algebra', 'informal_description': 'The structure representing a
967   quaternion algebra over a commutative ring  $R$  with fixed
968   coefficients  $a, b, c$ , where the elements are of the form  $x + yi + zj + wk$ 
969   with  $x, y, z, w \in R$  and the multiplication rules are determined by
970    $i^2 = a + bi$  and  $j^2 = c$ . The structure has four components: the real part
971   `re` and three imaginary parts `imI`, `imJ`, `imK`.' }
```

971 **MATCHING AND ASSESSMENT BY ARIA'S SEMANTIC CHECKER**

972  
973  
974

Let's compare the mathematical conditions and conclusions with the Lean 4 formal statement one by one:

975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987

1.  $A, B \in \mathbb{Q}^\times$  (i.e.,  $A$  and  $B$  are non-zero rational numbers).:
  - Math:  $A, B \in \mathbb{Q}^\times$ .
  - Lean:  $(A\ B : \mathbb{Q})\ (hA : A \neq 0)\ (hB : B \neq 0)$ .
  - Match: Perfectly match.
2.  $D_{A,B,\mathbb{R}}$  is an  $\mathbb{R}$ -algebra defined on the set  $\{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ .:
  - Math: The algebra is defined on the set of elements of the form  $a + bi + cj + dk$  with real coefficients.
  - Lean:  $\text{QuaternionAlgebra } \mathbb{R} (A : \mathbb{R}) (B : \mathbb{R}) 1$ .
  - According to the provided Mathlib entry for `QuaternionAlgebra`, the elements are of the form  $x + yi + zj + wk$  where  $x, y, z, w$  are from the base ring  $\mathbb{R}$ , which is  $\mathbb{R}$  in this case. This matches the form of the elements.
  - Match: Perfectly match.
3. The multiplication in  $D_{A,B,\mathbb{R}}$  is defined by the relations:  $i^2 = A$ ,  $j^2 = B$ , and  $ij = -ji = k$ .:
  - Math: The multiplication rules are  $i^2 = A$  and  $j^2 = B$ .
  - Lean: The multiplication is determined by  $\text{QuaternionAlgebra } \mathbb{R} (A : \mathbb{R}) (B : \mathbb{R}) 1$ .
  - According to the provided Mathlib entry, `QuaternionAlgebra R a b c` has multiplication rules  $i^2 = a + bi$  and  $j^2 = c$ . For the Lean statement,  $\mathbb{R}$  is  $\mathbb{R}$ ,  $a$  is  $(A : \mathbb{R})$ ,  $b$  is  $(B : \mathbb{R})$ , and  $c$  is  $1$ . This implies the rules are  $i^2 = A + Bi$  and  $j^2 = 1$ . These rules do not match the mathematical rules.
  - Match: Major inconsistency.
4.  $D_{A,B,\mathbb{R}}$  is isomorphic to  $\mathbb{H}$  (the Hamilton quaternions) or isomorphic to  $\text{Mat}_{2 \times 2}(\mathbb{R})$  (the algebra of 2x2 real matrices) as  $\mathbb{R}$ -algebras.:
  - Math:  $(D_{A,B,\mathbb{R}} \cong \mathbb{H}) \vee (D_{A,B,\mathbb{R}} \cong \text{Mat}_{2 \times 2}(\mathbb{R}))$ .
  - Lean:  $\text{Nonempty } (\text{QuaternionAlgebra } \mathbb{R} (A : \mathbb{R}) (B : \mathbb{R}) 1 \simeq_a [\mathbb{R}] \ (\text{QuaternionAlgebra } \mathbb{R} (-1) (-1) 1)) \vee \text{Nonempty } (\text{QuaternionAlgebra } \mathbb{R} (A : \mathbb{R}) (B : \mathbb{R}) 1 \simeq_a [\mathbb{R}] \ \text{Matrix} (\text{Fin} 2) (\text{Fin} 2) \mathbb{R})$ .
  - The conclusion in Lean concerns the algebra  $\text{QuaternionAlgebra } \mathbb{R} (A : \mathbb{R}) (B : \mathbb{R}) 1$ , which, as established in point 3, is not the same as  $D_{A,B,\mathbb{R}}$ . Furthermore, the Hamilton quaternions ( $\mathbb{H}$ ), defined by  $i^2 = -1, j^2 = -1$ , are represented in Lean as  $\text{QuaternionAlgebra } \mathbb{R} (-1) (-1) 1$ . According to the provided documentation, this corresponds to an algebra with rules  $i^2 = -1 - i$  and  $j^2 = 1$ , which is not  $\mathbb{H}$ . While the representation of  $\text{Mat}_{2 \times 2}(\mathbb{R})$  as  $\text{Matrix} (\text{Fin} 2) (\text{Fin} 2) \mathbb{R}$  is correct, the overall statement is about different algebraic structures than those in the mathematical problem.
  - Match: Major inconsistency.

#### Check for missing conditions / implicit conditions:

1013  
1014  
1015  
1016

- No missing conditions / implicit conditions
- Match: Perfectly match.

1017

#### ANALYSIS

1019  
1020  
1021  
1022  
1023  
1024  
1025

In this case, the informal statement introduces  $D_{A,B,\mathbb{R}}$  with multiplication rules:  $i^2 = A$ ,  $j^2 = B$ , and  $ij = -ji = k$ . However, the corresponding Lean term actually has completely different rules:  $i^2 = A + Bi$ ,  $j^2 = 1$ . These differences are not perceptible by surface text comparison. Both the informal and formal version use  $A$  and  $B$ , and have similar algebra structure. By term-level grounding, AriaChecker gets the explicit retrieval of the definition of `QuaternionAlgebra`, making the semantic incorrectness obvious to AriaScorer. While LeanScorer is deceived by apparent textual similarity and misjudges this case, AriaScorer correctly flags it as "Major Inconsistency". This demonstrates that Definition Discrepancy Detection enables AriaScorer to distinguish semantic

1026 incorrectness, ensuring that the formal statement aligns with the formal statement in mathematical  
 1027 intent.  
 1028

1029 **B.3 HALLUCINATION SUPPRESSION VIA GROUNDING**  
 1030

1031 **INFORMAL STATEMENT**

1033 Let  $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$  and consider the extension  $E = \mathbb{Q}(\alpha)$ . Show that  
 1034  $\text{Gal}(E/\mathbb{Q}) \cong Q_8$ , the quaternion group of order 8.  
 1035

1036 **CONDITIONS AND CONCLUSIONS**  
 1037

1038 **Conditions:**

1040 1.  $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$   
 1041 2.  $E = \mathbb{Q}(\alpha)$  (E is the smallest field containing both  $\mathbb{Q}$  and  $\alpha$ )  
 1042

1043 **Conclusion:**

1044 • The Galois group of the extension  $E$  over  $\mathbb{Q}$  is isomorphic to the quaternion group  
 1045  $Q_8$ . In mathematical notation:  $\text{Gal}(E/\mathbb{Q}) \cong Q_8$ , where:  
 1046   –  $\text{Gal}(E/\mathbb{Q}) = \{\sigma : E \rightarrow E \mid \sigma \text{ is a field automorphism and } \forall x \in \mathbb{Q}, \sigma(x) =$   
 1047        $x\}$   
 1048   –  $Q_8 = \langle x, y \mid x^4 = 1, x^2 = y^2, y^{-1}xy = x^{-1} \rangle$  is the quaternion group of order  
 1049       8.  
 1050

1051 **FORMAL STATEMENT TRANSLATED BY ARIA**  
 1052

```
1053 import Mathlib
1054 open Polynomial
1055
1056 /--
1057 Let  $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$ . The field  $E = \mathbb{Q}(\alpha)$  is a Galois
1058 extension of  $\mathbb{Q}$ , and its Galois group is isomorphic to the quaternion
1059 group  $Q_8$ .
1060 ... Nonempty (P.Gal  $\cong^*$  QuaternionGroup 1) :=
1061 sorry
```

1062 **RETRIEVED LEAN TERMS**  
 1063

```
1064 {'name': ['IntermediateField', 'adjoin'], 'kind': 'definition',
1065   'value': '(F : Type u_1) →\n  [inst : Field F] → {E : Type u_2} →
1066  [inst_1 : Field E] → [inst_2 : Algebra F E] → Set E →
1067  IntermediateField F E', 'informal_name': 'Field adjunction of a set
1068  S to F', 'informal_description': 'Given a field extension E of F
1069  and a subset S ⊆ E, the structure `IntermediateField.adjoin F S`
1070  represents the intermediate field obtained by adjoining the
1071  elements of S; when n = 1, it is isomorphic to a cyclic
1072  group of order 4.'}
1073 {'name': ['Polynomial'], 'kind': 'structure', 'value': '(R : Type u_1)
1074  → [inst : Semiring R] → Type u_1', 'informal_name': 'Univariate
1075  polynomials over a semiring', 'informal_description': 'The
1076  structure `Polynomial R` represents the type of univariate
1077  polynomials over a semiring `R`, denoted as `R[X]`. Polynomials are
1078  constructed using the variable `X` and constant embedding `C` from
1079  `R`, forming a semiring structure.'}
```

1079 **MATCHING AND ASSESSMENT BY ARIA'S SEMANTIC CHECKER**

1080  
1081  
1082

Let's compare the mathematical conditions and conclusions with the Lean 4 formal statement one by one:

1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093

1. **Condition:**  $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$ :

- Math:  $\alpha$  is defined constructively by the given formula, which specifies a particular (positive real) number.
- Lean: `let P : ℚ[X] := X^8 - 24 * X^6 + 144 * X^4 - 288 * X^2 + 144 and ∃ α ∈ rootSet P P.SplittingField, . . .` This does not define  $\alpha$  using the `sqrt` formula. Instead, it posits the existence of an element  $\alpha$  that is a root of a specific polynomial  $P$ . While  $P$  is the minimal polynomial of the mathematical  $\alpha$ , the formal statement is about *any* root of  $P$ , not the specific one in the math problem.
- Match: Minor Inconsistency.

1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104

2. **Condition:**  $E = \mathbb{Q}(\alpha)$  (**E is the smallest field containing both  $\mathbb{Q}$  and  $\alpha$** ):

- Math:  $E$  is defined as the field extension  $\mathbb{Q}(\alpha)$ . The problem then asks to compute the Galois group of this extension, which implicitly assumes or requires that  $E/\mathbb{Q}$  is a Galois extension.
- Lean: `IntermediateField.adjoin ℚ {α} = ⊤`. The term `IntermediateField.adjoin ℚ {α}` corresponds to  $\mathbb{Q}(\alpha)$ . The term  $\top$  (top) refers to the ambient field, which is  $P.SplittingField$ . Thus, the statement asserts that  $\mathbb{Q}(\alpha)$  is the splitting field of  $P$ . This makes the implicit mathematical assumption that  $E/\mathbb{Q}$  is Galois into an explicit and strong condition within the theorem.
- Match: Minor Inconsistency.

1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114

2. **Conclusion:**  $\text{Gal}(E/\mathbb{Q}) \cong Q_8$ :

- Math: The Galois group of the extension  $E$  over  $\mathbb{Q}$  is isomorphic to  $Q_8$ , the quaternion group of order 8.
- Lean: `Nonempty (P.Gal ≈* QuaternionGroup 1)`.  $P.Gal$  corresponds to  $\text{Gal}(E/\mathbb{Q})$ . `Nonempty (G ≈* H)` means  $G$  is isomorphic to  $H$ . However, `QuaternionGroup 1` is the generalized quaternion group with  $n=1$ , which is isomorphic to the cyclic group of order 4 ( $C_4$ ). The quaternion group of order 8,  $Q_8$ , corresponds to `QuaternionGroup 2`.
- Match: Major Inconsistency.

1115  
1116  
1117  
1118  
1119  
1120  
1121

#### Check for missing conditions / implicit conditions:

- The Lean statement introduces the explicit definition of the polynomial  $P$ , which is not present in the original mathematical problem statement but is a necessary intermediate result for its proof. This is an added condition. No conditions are missing.
- Match: Minor Inconsistency.

1122  
1123

### MISJUDGMENT WHEN TERM-LEVEL GROUNDING IS ELIMINATED

1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

Let's compare the mathematical conditions and conclusions with the Lean 4 formal statement one by one:

1. **Definition of  $\alpha$ :**

- Math:  $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$ . This defines  $\alpha$  as a specific positive real number.
- Lean: `let P : ℚ[X] := X^8 - 24 * X^6 + 144 * X^4 - 288 * X^2 + 144 and ∃ α ∈ rootSet P P.SplittingField, . . .` This implicitly defines  $\alpha$  as an arbitrary root of the given polynomial  $P$ .

1134  
1135  
1136  
1137

(which is the minimal polynomial of the mathematical  $\alpha$ ). This is a shift from a concrete definition to an abstract algebraic one.

- Match: Minor Inconsistency.

1138  
1139

## 2. Definition of the field $E$ :

1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147

- Math:  $E = \mathbb{Q}(\alpha)$ . The field is defined by adjoining the specific number  $\alpha$  to  $\mathbb{Q}$ . That this field is a Galois extension over  $\mathbb{Q}$  is a substantial part of the proof.
- Lean: The ambient field is `P.SplittingField`, the splitting field of the polynomial `P`. The condition `IntermediateField.adjoin Q {α} = T` states that this splitting field is generated by a single root  $\alpha$ . This reframes the definition of the field: the problem is set in the splitting field of `P`, and one of the goals is to show it can be generated by a single root.
- Match: Minor Inconsistency.

1148  
1149

## 3. The groups being compared:

1150  
1151  
1152  
1153  
1154

- Math:  $\text{Gal}(E/\mathbb{Q})$  (the Galois group of the extension  $E$  over  $\mathbb{Q}$ ) and  $Q_8$  (the quaternion group).
- Lean: `P.Gal` and `QuaternionGroup 1`. `P.Gal` is the Galois group of `P.SplittingField` over  $\mathbb{Q}$ , which corresponds to  $\text{Gal}(E/\mathbb{Q})$ . The doc-string and context imply `QuaternionGroup 1` is the name used for  $Q_8$ .
- Match: Perfectly match.

1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164

## 4. Conclusion:

- Math:  $\text{Gal}(E/\mathbb{Q}) \cong Q_8$ , i.e., the Galois group is isomorphic to the quaternion group.
- Lean: `Nonempty (P.Gal ≈* QuaternionGroup 1)`. This states that there exists a group isomorphism between `P.Gal` and `QuaternionGroup 1`. The `Nonempty` wrapper is a standard way in Lean to express existence in a proposition.
- Match: Perfectly match.

### Check for missing conditions / implicit conditions:

1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175

- The mathematical problem requires implicitly that one finds the minimal polynomial of  $\alpha$  and proves that the extension  $\mathbb{Q}(\alpha)/\mathbb{Q}$  is Galois (i.e., is the splitting field of this polynomial). The Lean statement makes these aspects explicit by providing the polynomial `P` from the start and including the condition `IntermediateField.adjoin Q {α} = T` (that  $\mathbb{Q}(\alpha)$  is the splitting field) as part of the theorem to be proven. The formal statement is more explicit, which is a feature of formalization, not a missing condition.
- Match: Perfectly match.

1176  
1177

### ANALYSIS

1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

In this case, the Lean statement claims an isomorphism `Nonempty (P.Gal ≈* QuaternionGroup 1)`, using the key Lean term `QuaternionGroup 1`. It is easily to assume that `QuaternionGroup 1` refers to the quaternion group of order 8,  $Q_8$ . Actually, `QuaternionGroup 1` is isomorphic to the cyclic group  $C_4$ , while the actual representation of  $Q_8$  is `QuaternionGroup 2`. This subtle but important distinction is overlooked when LLM gives the checking purely on surface texts. In the setting without the information of Lean terms, checker is misled by the hallucination of LLM and gives a wrong judgment. In comparison, AriaScorer grounds the checking pipeline in concrete semantics. With the usage of the definition of `QuaternionGroup n`, AriaScorer correctly flags the statement as "Major Inconsistency", which is in line with human annotation. It gives an example of how the process of hallucination suppression constrains the LLM's reasoning within Lean terms, guarantees precision in the semantic correctness checking.

1188  
1189

## B.4 VERIFICATION STRATEGY AND ERROR PROPAGATION ANALYSIS

1190  
1191

## B.4.1 VERIFICATION STRATEGY

1192  
1193  
1194  
1195  
1196  
1197

A critical architectural decision in our system is the application of AriaScorer exclusively as a terminal evaluator rather than an iterative feedback signal. This design is driven by a strategic trade-off between verification rigor, algorithmic stability, and computational efficiency. AriaScorer is engineered to function as a rigorous, independent checker involving multiple LLM calls and database searches. Consequently, it is computationally expensive and best suited for validating the quality of the completed solution.

1198  
1199

Our preliminary experiments with iterative semantic feedback revealed two primary challenges:

1200  
1201  
1202  
1203  
1204  
1205

- **Instability:** Correcting semantic issues at intermediate steps frequently disrupted the syntactic structure of the proof, leading to oscillatory behavior where the system toggled between semantic and syntactic errors.
- **Inference Efficiency:** Given the computational intensity of AriaScorer, applying it to every intermediate node would drastically increase the total inference time. This inefficiency is further compounded by the aforementioned oscillatory behavior.

1206  
1207  
1208  
1209

Furthermore, utilizing AriaScorer as a feedback signal for reflection-in addition to its role as the final checker-introduces a risk of self-referential bias, where the formalizer might learn to overfit the scorer's specific preferences rather than producing universally correct proofs.

1210  
1211

## B.4.2 ANALYSIS OF SEMANTIC ERROR PROPAGATION

1212  
1213  
1214  
1215  
1216  
1217

We specifically investigated the risk of semantic error propagation, where an incorrect intermediate definition might lead to a finalized but flawed proof. Our empirical data suggests that errors caused by "correctly typed but semantically wrong" intermediate definitions are statistically rare. A root cause analysis of failure cases in the FATE-X dataset revealed that only a single instance of failure was attributable to a flaw in definition synthesis that propagated to cause a final semantic inconsistency.

1218  
1219  
1220  
1221

**Case Study: The Catenary Ring** To demonstrate the rigor of AriaScorer in detecting such rare propagation cases, we present a detailed analysis of the "Catenary Ring" instance. In this case, the generator synthesized a definition for CatenaryRing that was syntactically valid but mathematically overly restrictive compared to the standard definition.

1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241

```
import Mathlib

universe u

/-
A ring `R` is a catenary ring if it is a commutative Noetherian ring,
and for any two
prime ideals `p` and `q` with `p ⊂ q`, all saturated chains of prime
ideals between
`p` and `q` have the same length.

The length of a finite chain of prime ideals `p₀ ⊂ p₁ ⊂ ... ⊂ pₙ` is
`n`. This corresponds
to the chain having `n+1` elements. Thus, two chains have the same
length if and only
if they have the same number of elements (cardinality).
/-
class CatenaryRing (R : Type u) [CommRing R] extends IsNoetherianRing R
  : Prop where
/-
For any two prime ideals `p, q` with `p ⊂ q`, all saturated (i.e.
maximal) chains
of prime ideals in the interval `Set.Icc p q` have the same
cardinality.
```

```

1242      -/
1243      eq_saturated_chain_length :
1244       $\forall (p q : \text{PrimeSpectrum } R), p \leq q \rightarrow$ 
1245       $\forall (c_1 c_2 : \text{Set} (\text{Set.Icc } p q)),$ 
1246       $\text{IsMaxChain } (\cdot \leq \cdot) c_1 \rightarrow$ 
1247       $\text{IsMaxChain } (\cdot \leq \cdot) c_2 \rightarrow$ 
1248       $\text{Set.ncard } c_1 = \text{Set.ncard } c_2$ 
1249
1250      /--
1251      A Noetherian Unique Factorization Domain of Krull dimension at most 3
1252      is catenary.
1253      -/
1254      theorem ufd_of_dim_le_three_is_catenary (A : Type u)
1255      [CommRing A] [IsDomain A] [IsNoetherianRing A]
1256      [UniqueFactorizationMonoid A]
1257      (h_dim : Order.krullDim (PrimeSpectrum A) ≤ 3) :
1258      CatenaryRing A :=
1259      sorry

```

1258  
1259 Below is the analysis of AriaScorer:

```

1260      **A is a catenary ring**:
1261      - Math:  $A$  is a catenary ring, i.e., for any two prime ideals  $P, Q$  of  $A$ 
1262      with  $P \subseteq Q$ , any two saturated chains of prime ideals between  $P$  and
1263       $Q$  have the same length.
1264      - Lean: `CatenaryRing A`. The provided `class CatenaryRing` definition
1265      `extends IsNoetherianRing R`, which means that to be a
1266      `CatenaryRing`, a ring must be Noetherian in addition to satisfying
1267      the chain condition. The mathematical definition provided does not
1268      require the ring to be Noetherian. This makes the Lean conclusion
1269      stronger than the mathematical one.
1270

```

1271 Even though the specific problem context (Theorem `ufd_of_dim_le_three_is_catenary`)
1272 explicitly included the Noetherian ring condition ([`IsNoetherianRing A`]), AriaScorer
1273 correctly identified that the definition itself hallucinated an unnecessary inheritance
1274 (`extends IsNoetherianRing`). This demonstrates that AriaScorer maintains rigorous judgment even
1275 when the propagated error is subtle and contextually masked.

#### 1276 B.4.3 FUTURE OUTLOOK

1278 While the current dependency graphs in FATE-X are relatively shallow (averaging 2-3 layers), minimizing
1279 the impact of error propagation, this challenge may become more pronounced in large-scale
1280 formalization tasks, such as formalizing entire textbooks. Future work may aim to efficiently
1281 integrate semantic signals into larger systems by adopting strategic checkpointing (e.g., verifying every
1282  $k$  layers) to balance efficiency and correctness.

#### 1284 B.5 LIMITATIONS OF SYNTACTIC METRICS IN RESEARCH-LEVEL MATHEMATICS

1285 A potential concern in using a LLM-based evaluator is the risk of self-referential bias. We address
1286 this by adhering to a strict architectural decoupling: AriaScorer is utilized solely as a post-hoc
1287 evaluator and is never exposed to the agent during generation or reflection. This ensures that the
1288 observed performance gains reflect genuine capabilities rather than optimization towards the metric.
1289 Furthermore, the reliability of AriaScorer has been validated against human expert annotations on
1290 the FATE-X and Conjecture datasets, achieving a 95.5% alignment rate.

##### 1292 B.5.1 WHY SYNTACTIC METRICS ARE LIMITED.

1294 While syntactic metrics such as BEq or simple type-checking are standard for simple formalization
1295 tasks, we find them ill-suited for research-level mathematics. At this level, proving logical
1296 equivalence between a synthesized definition and a reference statement is often non-trivial. Stan-

1296    dard syntactic matchers frequently generate false negatives due to several intrinsic complexities of  
 1297    formal libraries:  
 1298

- 1299    1. **Multiple Mathematical Definitions:** A single concept often has multiple equivalent mathematical definitions. Different contexts (or authors) may prefer different formulations, leading to distinct structures or type classes in Lean.
- 1300    2. **Bundled Type Classes:** Structures can be "bundled" differently. For example, a two-variable polynomial ring can be formalized as `MvPolynomial (Fin 2) R` or `Polynomial (Polynomial R)`. These are not definitionally equal; proving their equivalence requires constructing a complex algebraic isomorphism ( $\simeq_a [R]$ ).
- 1301    3. **Inheritance Structures (Diamonds):** Type classes inherit from others. Different inheritance paths can lead to "diamond" problems where the formal representations diverge despite representing the same object. This issue is acute in our framework: the Graph of Thoughts (GoT) planner synthesizes deeply structured, multi-layer definition chains. This structured approach naturally induces diamond patterns.

1311    B.5.2 CASE STUDY: THE E8 KLEINIAN SINGULARITY.

1313    To illustrate why syntactic metrics fail in this domain, we present a specific case from the FATE-X  
 1314    dataset regarding the E8 Kleinian Singularity.

```

1316 --Aria Generated Code:
1317 import Mathlib
1318 noncomputable def kleinian_singularity_E8_polynomial : MvPolynomial (Fin
1319   3) ℂ :=
1320   (MvPolynomial.X 0) ^ 2 + (MvPolynomial.X 1) ^ 3 + (MvPolynomial.X 2) ^
1321   7
1322 abbrev E8_singularity_quotient_ring :=
1323   (MvPolynomial (Fin 3) ℂ) / (Ideal.span
1324   {kleinian_singularity_E8_polynomial})
1325 instance kleinian_singularity_E8_ideal_isPrime :
1326   (Ideal.span {kleinian_singularity_E8_polynomial}).IsPrime := by sorry
1327 theorem isUFD_E8_singularity_quotient_ring :
1328   UniqueFactorizationMonoid E8_singularity_quotient_ring := by sorry

1329 --Reference Code:
1330 import Mathlib
1331 /--
1332 The ring  $R = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^7)$ .
1333 /-
1334 abbrev R : Type := (MvPolynomial (Fin 3) ) / Ideal.span {(.X 0 ^ 2 + .X
1335   1 ^ 3 + .X 2 ^ 7 : MvPolynomial (Fin 3) )}
1336 /-
1337 C[x, y, z]/(x^2 + y^3 + z^7) is a UFD.
1338 /-
1339 theorem quotient_not_UFD :
1340   ∃ (h : IsDomain R),
1341   (UniqueFactorizationMonoid R) := by sorry

```

1342    Both theorems assert the same fact: the coordinate ring of the E8 singularity is a Unique Factorization Domain (UFD).

1343    To formally prove that these two statements are equivalent in Lean (and thus satisfy a strict checker, e.g. BEq), one would need to perform three non-trivial steps:

- 1344    • **Ring Identification:** Prove  $R = E8\_singularity\_quotient\_ring$ . This requires unfolding the definitions, returning to the quotient construction, and applying rewrite tactics.
- 1345    • **Domain Verification:** Prove that  $R$  is an integral domain. This follows from the `kleinian_singularity_E8_ideal_isPrime` instance, but requires a non-trivial proof step.

1350 • Logical Elimination: Prove the lemma  $(\exists (h : \text{IsDomain } R),$   
 1351  $\text{UniqueFactorizationMonoid } R) \text{ UniqueFactorizationMonoid } R.$   
 1352 This involves existential elimination logic.

1353 Bridging this gap requires unfolding 4-5 technical layers and employing intermediate-level Lean  
 1354 tactics. BEq, which operates on structural equality, cannot perform this semantic reasoning. Conse-  
 1355 quently, we maintain that AriaScorer represents a necessary, reliable, and unbiased standard for this  
 1356 domain.

## 1358 C ABLATION STUDIES

1360 To quantify the individual contributions of the core components within our Aria agent, we conducted  
 1361 a series of comprehensive ablation studies. We systematically disabled the Reflection, Graph-of-  
 1362 Thought (GoT), and Retrieval-Augmented Generation (RAG) modules to measure their impact on  
 1363 the performance. All experiments were conducted on the challenging benchmarks FATE-X and  
 1364 homological conjectures, with the results presented in Table 3 and Table 4.

1366 Table 3: Ablation study results on the Conjectures dataset. Performance drops significantly as key  
 1367 components of Aria are removed, highlighting their individual contributions. All values are success  
 1368 rates (%).

| 1370 Configuration             | 1371 Final acc. |
|--------------------------------|-----------------|
| <b>1371 Aria (Full System)</b> | <b>42.9</b>     |
| Ablations of Aria:             |                 |
| without Reflection             | 0               |
| without GoT                    | 7.1             |
| without RAG                    | 0               |
| <b>1376 Baseline (Gemini)</b>  | <b>0</b>        |

1379 Table 4: Ablation study results on the FATE-X benchmark. All values are success rates (%).

| 1380 Configuration             | 1381 Compiler | 1382 Final acc. |
|--------------------------------|---------------|-----------------|
| <b>1381 Aria (Full System)</b> | <b>69.0</b>   | <b>44.0</b>     |
| Ablations of Aria:             |               |                 |
| without Reflection             | 19.0          | 14.0            |
| without GoT                    | <b>69.0</b>   | 38.0            |
| without RAG                    | 61.0          | 43.0            |
| <b>1386 Baseline (Gemini)</b>  | 27.0          | 21.0            |

### 1389 C.1 ABLATING THE REFLECTION MECHANISM

1390 This study is designed to quantify the contribution of our agent’s core iterative self-correction mech-  
 1391 anism. In the full Aria agent, each generation step (for both prerequisite definitions and the final  
 1392 theorem) is embedded in a refinement loop that allows for 16 reflection attempts. Within this loop,  
 1393 the agent generates a candidate formal definition or statement and receives feedback from the com-  
 1394 piler, and uses this feedback to inform the next generation attempt.

1395 For ablation, we disable the refinement loop entirely, restricting the agent to a single generation  
 1396 attempt at each stage.

1397 As shown in Table 4, ablating the reflection module causes the final accuracy on FATE-X to drop  
 1398 from 44% to 14% and the compilation success rate from 69% to 19%, even lower than that of  
 1399 baseline. This dramatic performance decrease is also observed on the Conjectures dataset, where  
 1400 the success rate plummet from 42.9% to 0%. The result indicates that a single generation is often  
 1401 insufficient for both capturing the semantic nuances and the syntactic rigor of complex mathemat-  
 1402 ical statements. Therefore, we conclude that the Reflection module is a crucial part in our agent’s  
 1403 architecture.

1404 C.2 ABLATING THE GOT PLANNER  
1405

1406 The experimental setup for this ablation is as follows: first, we extract a flat list of conceptual key-  
1407 words from the original informal statement. Then, for each concept in this list, we use LeanSearch  
1408 to retrieve it in Mathlib. In contrast to the full system, this process does not perform any further  
1409 recursive decomposition, regardless of the search outcome. The agent then directly synthesizes the  
1410 final formal statement only using the results from this search.

1411 **Quantitative Analysis.** As shown in Table 3, the impact of GoT scales with problem difficulty.  
1412 On the challenging Conjectures dataset, the full Aria system successfully formalized 6 of the 14  
1413 conjectures, whereas the version without GoT only managed 1. Similarly, on the FATE-X bench-  
1414 mark (Table 4), removing GoT causes the final accuracy to drop from 44.0% to 38.0%, although the  
1415 compilation success rate remains constant at 69.0%.

1416 However, Table 5 reveals a counter-intuitive phenomenon on the simpler FATE-H dataset: the ab-  
1417 lated agent achieves a higher compilation success rate (95% vs. 89%) but a significantly lower final  
1418 accuracy (54% vs. 71%).

1420 **The Trade-off between Syntactic Risk and Semantic Rigor.** We attribute the "high compilation,  
1421 low accuracy" anomaly on FATE-H to a strategic trade-off. The GoT planner prioritizes semantic ex-  
1422 plicitness by forcing the generation of all necessary intermediate definitions (e.g., explicitly defining  
1423 extended fields or tensor products as separate structures). While this ensures semantic consistency,  
1424 it significantly increases the total attack surface for syntactic errors. For instance, the modular style  
1425 introduces complexities in global namespace management and Lean's type class resolution-where  
1426 instances of equivalent but distinct definitions often fail to interoperate without explicit equivalence  
1427 proofs.

1428 On simpler problems like those in FATE-H, which typically require no prerequisite definitions, this  
1429 structural overhead yields a net negative impact on compilation. The ablated model, which tends  
1430 to generate monolithic statement using local `let` bindings, avoids these interface complexities but  
1431 fails to capture the correct semantics, leading to lower final accuracy.

1433 **Scaling to Complexity** This relationship shifts as problem complexity increases. On FATE-X  
1434 and Conjectures, the "syntactic cost" of longer code is effectively offset by the "structural bene-  
1435 fit" of decomposition. Without GoT, the agent's attempt to formalize novel, high-level concepts  
1436 monolithically leads to 2 distinct failure modes: synthesis failure (inability to generate complex and  
1437 definitions) and interface hallucination.

1438 In summary, GoT acts as an indispensable engine for the creative mathematical construction de-  
1439 demanded by research-level auto-formalization. Unlike prior works that rely solely on static library  
1440 retrieval, GoT explicitly leverages the reasoning LLM's natural-language mathematical capability to  
1441 construct dynamic dependency graphs. This enables a modular formalization style that bridges the  
1442 gap between the model's internal knowledge and the rigorous requirements of the formal system.

1444 Table 5: Performance comparison between the full Aria agent and its GoT-ablated version on the  
1445 FATE-H benchmark. All values are success rates (%).

| Configuration      | Compiler    | Final acc.  |
|--------------------|-------------|-------------|
| Aria (Full System) | 89.0        | <b>71.0</b> |
| Aria (without GoT) | <b>95.0</b> | 54.0        |

1451 C.3 ABLATING THE RAG MODULE  
1452

1453 To measure the value of Retrieval-Augmented Generation (RAG), we designed this study to contrast  
1454 live, tool-based retrieval against reliance on the pretrained, static knowledge of the Large Language  
1455 Model (LLM).

1456 In the full system, the agent's grounding process is executed by leveraging LeanSearch. The LLM's  
1457 task is confined to reasoning over this verified set of options. For the ablated version, we disable the

1458 retrieval tool entirely. Instead, the agent directly queries the LLM, to recall the correct formal name  
 1459 for a concept based on its own knowledge.  
 1460

1461 Our ablation studies, presented in Table 3 and Table 4, reveal the crucial role of the RAG module,  
 1462 particularly as problem complexity increases. While the ablation version resulted in only a moderate  
 1463 drop in final accuracy on FATE-X (from 69% to 61%), its effect on the more challenging Conjectures  
 1464 dataset was absolute, with the success rate collapsing from 42.9% to 0%.

1465 This divergence highlights a key insight into the agent’s capabilities. For moderately complex tasks  
 1466 like those in FATE-X, the agent can partially compensate for the lack of retrieval through its power-  
 1467 ful self-reflection mechanism. By interpreting the compiler’s precise feedback on “unknown identi-  
 1468 fiers,” the agent may iteratively rediscover correct Mathlib definitions. However, this trial-and-error  
 1469 recovery process is insufficient for complex conjectures. The 0% accuracy reveals that without the  
 1470 contextual grounding from RAG, the LLM’s inaccurate internal knowledge of Mathlib leads it to  
 1471 hallucinate non-existent definitions and confidently judge them as grounded. This foundational er-  
 1472 ror prevents the generation of compilable code, demonstrating that our RAG module is essential for  
 1473 success on challenging mathematical reasoning tasks.  
 1474

## D PROMPTS

1475 For clarity and reproducibility, we present the prompt frameworks used by Aria across various  
 1476 stages.  
 1477

### Prompt for Decomposition Phase

1481 You are an expert mathematician and a specialist in formal  
 1482 mathematics, specifically Lean 4 and its library, mathlib4. Your  
 1483 task is to deconstruct a given mathematical concept into its  
 1484 immediate, foundational prerequisite concepts.  
 1485 The goal is to produce a list of terms that are themselves canonical,  
 1486 searchable definitions. I will provide you with examples of correct  
 1487 deconstruction before giving you the final task.  
 1488 --  
 1489 \*\*Example 1:\*\*  
 1490 - \*\*Input Concept:\*\* "Finitely Generated Prime Ideal"  
 1491 - \*\*Correct Output:\*\* "dependencies": ["finitely generated ideal",  
 1492 "prime ideal"]  
 1493 ... (few shot examples) ...  
 1494 --  
 1495 \*\*Now, perform the task for the following concept based on its  
 1496 name.\*\*  
 1497 \*\*Concept to deconstruct:\*\* "node.name"

### Prompt for Grounding Phase

1498 You are a meticulous expert in Lean 4 and ‘mathlib4’. Your task is  
 1499 to act as a “grounding” reasoner for a formalization agent. Your  
 1500 goal is to determine if a given mathematical concept has a canonical  
 1501 formal definition in ‘mathlib’, based on a list of search candidates.  
 1502 \*\*Concept to find:\*\* "node.name"  
 1503 \*\*Search Candidates from ‘mathlib’:\*\*  
 1504 --  
 1505 ... (candidates context) ...  
 1506 --  
 1507 \*\*Your Task (Follow these steps PRECISELY):\*\*  
 1508 \*\*Step 1: Direct Match Analysis\*\*  
 1509 - First, look for a \*\*direct, canonical definition\*\* among the  
 1510 candidates. A direct match is typically a ‘class’, ‘structure’, or  
 1511 ‘def’ whose name is very similar to the concept name (e.g., concept  
 ‘local ring’ matches ‘class IsLocalRing’).

```

1512
1513 - If you find a clear, direct match, use that as your primary answer.
1514 **Step 2: Deduction from Usage Patterns (If no direct match is
1515 found) **
1516 - If no direct match was found in Step 1, your task is to **deduce**
1517 the canonical name by finding a **consistent usage pattern** across
1518 multiple 'theorem' and 'instance' candidates.
1519 - **Analyze the signatures:** Look for a common identifier that is
1520 consistently used as a **type** or **typeclass** across multiple
1521 candidates.
1522 - **Example:** If you are looking for "CharZero" and the search
1523 results include 'instance : CharZero N', 'instance : CharZero Z',
1524 and 'theorem my_thm [CharZero R]', the identifier 'CharZero' appears
1525 repeatedly as a typeclass. This is overwhelming evidence that the
1526 canonical definition is named 'CharZero'.
1527 - **Strict Rule:** The name you select **must** be an identifier that
1528 is explicitly present in the candidate list. Do **not** invent,
1529 combine, or guess a new name. If no single, consistent pattern
1530 emerges from the candidates, you must conclude that no confident
1531 match can be found.
1532 **Step 3: Final Decision**
1533 - Based on your analysis from Step 1 and Step 2, determine the single
1534 best name for the concept.
1535 - Your answer MUST be a single, valid JSON object with the following
1536 keys:
1537 - '"best_match"': The full formal name of the canonical definition
1538 (e.g., "RingTheory.IsLocalRing"). If no confident match can be
1539 found through either direct matching or inference, the value must
1540 be 'null'.
1541 - '"reasoning"': A brief, one-sentence explanation of HOW you found
1542 the match. It must be one of the following strings: "Found a direct
1543 definition." or "Inferred from usage in instances and theorems." or
1544 "No confident match found."
1545 **JSON Output:**

```

### Prompt for Definition Synthesis Phase

1544 You are a meticulous expert in Lean 4 and 'mathlib4'. Using the  
1545 following verified Lean 4 prerequisite definitions as context, write  
1546 the formal Lean definition for "node.name".  
1547 Your output must be a single, well-formed Lean 4 code block. Do not  
1548 add any explanation outside the code block.  
1549 **\*\*Context from Previous Steps:\*\***  
1550 --  
1551 ... (context code) ...  
1552 --  
1553 **\*\*Informal Definition of "node.name":\*\***  
1554 ... (informal description) ...  
1555 **\*\*Your Task:** Write the Lean 4 'def' or 'class':\*\*  
Caution: DO NOT use sorry to skip the value of the definition.

### Prompt for Statement Synthesis Phase

1559 You are a meticulous expert in Lean 4 and 'mathlib4'. Your primary  
1560 goal is to translate informal mathematical statements into **\*\*correct,**  
1561 **idiomatic,** and **compilable\*\*** Lean 4 code that seamlessly integrates  
1562 with the existing Mathlib library.  
1563 Before generating the final code, you **MUST** follow a structured  
thought process in five steps:  
1. **\*\*Deconstruct:\*\*** Break down the informal statement into its core  
mathematical components (e.g., objects, assumptions, conclusion).

```

1566
1567 2. Identify Mathlib Components: List the key Mathlib
1568 definitions, theorems, and notations that are necessary to formalize
1569 each component. Guessing is not allowed; refer to known Mathlib
1570 APIs. For example, 'integral domain' corresponds to '[IsDomain R]',  

1571 'finitely generated module' to '[Module.Finite R M]'.
1572 3. Plan the Formal Statement: Outline the structure of the
1573 final theorem. This includes defining the types (e.g., 'R M :  

1574 Type*'), typeclasses (e.g., '[CommRing R]'), variables, hypotheses,  

1575 and the goal.
1576 4. Generate Final Code: Based on the plan, write the complete,  

1577 compilable Lean 4 code.
1578 5. Do not generate 'variable' declarations that are irrelevant to
1579 the final theorem statement. For a single theorem, prefer placing
1580 all variables and hypotheses directly in the 'theorem's signature
1581 instead of using a global 'variable' block.
1582 Context (Newly Generated Definitions):
1583 --  

1584 ... (newly generated definitions) ...
1585 --  

1586 Informal Theorem to Formalize:
1587 ... (informal statement) ...
1588 Final Lean Theorem Statement:
1589 Caution: Don't generate explicit header like 'import
1590 Mathlib.RingTheory.Noetherian'. Use 'import Mathlib'. Crucially,
1591 you must NOT write the proof. Your only goal is to state the
1592 theorem correctly. The proof block must be replaced with the 'sorry'
1593 keyword.
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

### Prompt for Reflection

```

1594 You are a Lean 4 expert. The following code you previously generated
1595 has a compilation error.
1596 Your task is to analyze the error message and provide a corrected
1597 version of the code.
1598 You MUST follow this two-step process:
1599 Step 1: Analysis and Correction Plan
1600 First, provide a brief analysis of the problem in the following
1601 format:
1602 1. Error Analysis: [Summarize the main error message in one
1603 sentence]
1604 2. Root Cause: [Explain the underlying reason for the error,
1605 e.g., missing typeclass instance, type mismatch between a term and
1606 its expected type, incorrect syntax, etc.]
1607 3. Correction Plan: [Describe the specific code change you will
1608 make to fix the issue, e.g., "Change the typeclass constraint from
1609 [Semiring R] to [Ring R]", "Explicitly access the underlying ideal
1610 using .toIdeal", etc.]
1611 Step 2: Corrected Lean 4 Code
1612 Then, provide the complete, corrected code in a single Lean code
1613 block. Do not change the original theorem statement, only fix the
1614 proof or definition.
1615 Caution: You are not sure about the explicit header, so DO NOT
1616 generate explicit header like 'import Mathlib.RingTheory.Noetherian',
1617 USE 'import Mathlib'.
1618 Crucially, you must NOT write the proof. Your only goal is to
1619 state the theorem correctly.
Failed Code:
... (previous code) ...
Error Message from Lean Compiler:
... (error message) ...

```

1620

1621

1622

1623

1624

1625

Provide the complete, corrected Lean 4 code in a single code block, without any extra explanation. USE 'import Mathlib' as a header!

1626

1627

1628

1629

1630

1631

## E GENERALIZATION ACROSS MATHEMATICAL DOMAINS

1632

While our primary experimental analysis centers on the FATE algebra datasets, the mechanisms underlying Aria are not intrinsically limited to algebra. In this section, we analyze the system’s performance across diverse mathematical fields and discuss the rationale behind our domain selection.

1633

1634

1635

1636

1637

### E.1 PERFORMANCE ON PROOFNET

1638

1639

To empirically validate domain generalization, we break down the performance on the ProofNet benchmark by subfield. As shown in Table 6, Aria demonstrates high consistency across undergraduate-level algebra, analysis, number theory and topology. Furthermore, it surpasses the strong baseline (Goedel-V2) in every category. Notably, in number theory and topology, Aria achieves a significant margin in final accuracy, suggesting that its retrieval and planning capabilities are robust to domain shifts.

1640

1641

Table 6: Performance breakdown by domain on the ProofNet benchmark. Aria demonstrates consistent superiority over the Goedel-V2 baseline across all subfields.

1642

1643

1644

1645

1646

1647

| Metric                 | Algebra      | Analysis      | Number Theory | Topology     |
|------------------------|--------------|---------------|---------------|--------------|
| Aria (Ours) Compiler   | <b>97.4%</b> | <b>100.0%</b> | <b>100.0%</b> | <b>96.7%</b> |
| Aria (Ours) Final Acc. | <b>64.7%</b> | <b>64.8%</b>  | <b>71.4%</b>  | <b>56.7%</b> |
| Goedel Compiler        | 54.7%        | 81.8%         | 90.5%         | 26.7%        |
| Goedel Final Acc.      | 28.9%        | 44.3%         | 47.6%         | 11.7%        |

1648

1649

### E.2 CASE STUDY: BOREL’S CONJECTURE IN TOPOLOGY

1650

1651

1652

1653

Furthermore, we successfully applied Aria to formalize Borel’s Conjecture in topology. This task requires handling distinct mathematical structures (e.g., Manifold, ChartedSpace, HomotopyGroup) that differ significantly from algebraic rings and modules.

1654

1655

1656

This successful formalization confirms that Aria’s GoT planner can effectively navigate the definition dependencies in non-algebraic domains, provided that the underlying library support exists.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

```
import Mathlib

/-- A closed manifold is a compact manifold with empty boundary. -/
class IsClosedManifold {k : Type*} [NontriviallyNormedField k] {E : Type*}
[NormedAddCommGroup E] [NormedSpace k E] {H : Type*} [TopologicalSpace H]
(I : ModelWithCorners k E H) (n : WithTop N∞) (M : Type*)
[TopologicalSpace M]
[ChartedSpace H M] extends IsManifold I n M, CompactSpace M : Prop
  where
  /-- The boundary of a closed manifold is empty. -/
  boundaryless : {x : M | I.IsBoundaryPoint (chartAt H x x)} = ∅

/-- An aspherical topological manifold is a topological manifold `M` that is path-connected and for which the `k`-th homotopy group `π_k(M, x)` is trivial for all `k ≥ 2` and all basepoints `x : M`. -/
structure IsAsphericalTopologicalManifold
{k : Type*} [NontriviallyNormedField k]
{E : Type*} [NormedAddCommGroup E] [NormedSpace k E]
```

```

1674 {H : Type*} [TopologicalSpace H] (I : ModelWithCorners k E H)
1675 (n : WithTop N∞) (M : Type*) [TopologicalSpace M] [ChartedSpace H]
1676 M] : Prop where
1677 -- An aspherical topological manifold is a topological manifold. -/
1678 is_manifold : IsManifold I n M
1679 -- An aspherical topological manifold is path-connected. -/
1680 path_connected : PathConnectedSpace M
1681 -- The `k`-th homotopy group of an aspherical topological manifold is
1682 trivial for `k ≥ 2`. -/
1683 homotopy_groups_trivial (k : N) (hk : 2 ≤ k) (x : M) :
1684 Subsingleton (HomotopyGroup (Fin k) M x)

1685 -- Let  $M$  and  $N$  be closed and aspherical topological manifolds. If
1686  $f: M \rightarrow N$  is a homotopy equivalence, then  $f$  is homotopic to a
1687 homeomorphism. -/
1688 theorem borel_conjecture_for_topological_manifolds
1689 {k : Type*} [NontriviallyNormedField k]
1690 {E : Type*} [NormedAddCommGroup E] [NormedSpace k E]
1691 {H : Type*} [TopologicalSpace H]
1692 {I : ModelWithCorners k E H}
1693 {n : WithTop N∞}
1694 {M : Type*} [TopologicalSpace M] [ChartedSpace H M]
1695 [IsClosedManifold I n M]
1696 (hM_aspherical : IsAsphericalTopologicalManifold I n M)
1697 {N : Type*} [TopologicalSpace N] [ChartedSpace H N]
1698 [IsClosedManifold I n N]
1699 (hN_aspherical : IsAsphericalTopologicalManifold I n N)
1700 (f : ContinuousMap.HomotopyEquiv M N) :

$$\exists (g : M \xrightarrow{t} N), \text{ContinuousMap.Homotopic } f.\text{toFun } (g : C(M, N)) := \text{by}$$

1701 sorry

```

## F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

In accordance with the policy, we disclose that Large Language Models (LLMs) played a significant role in the preparation of this manuscript. The authors take full responsibility for all content, including any text generated by these models, and have meticulously reviewed and edited all outputs for accuracy, originality, and scientific integrity.

We utilized Google's Gemini-2.5-Pro as a language editing tool. Its role was strictly limited to improving clarity, correcting grammatical errors, and rephrasing sentences.

1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727