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Learning against Non-credible Second-Price Auctions
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Abstract
The standard framework of online bidding algorithm design as-

sumes that the seller commits himself to faithfully implementing

the rules of the adopted auction. However, the seller may attempt

to cheat in execution to increase his revenue if the auction belongs

to the class of non-credible auctions. For example, in a second-price

auction, the seller could create a fake bid between the highest bid

and the second highest bid. This paper focuses on one such case

of online bidding in repeated second-price auctions. At each time

𝑡 , the winner with bid 𝑏𝑡 is charged not the highest competing

bid 𝑑𝑡 but a manipulated price 𝑝𝑡 = 𝛼0𝑑𝑡 + (1 − 𝛼0)𝑏𝑡 , where the
parameter 𝛼0 ∈ [0, 1] in essence measures the seller’s credibil-

ity. Unlike classic repeated-auction settings where the bidder has

access to samples (𝑑𝑠 )𝑡−1𝑠=1
, she can only receive mixed signals of

(𝑏𝑠 )𝑡−1𝑠=1
, (𝑑𝑠 )𝑡−1𝑠=1

and 𝛼0 in this problem. The task for the bidder is

to learn not only the bid distributions of her competitors but also

the seller’s credibility. We establish regret lower bounds in various

information models and provide corresponding online bidding al-

gorithms that can achieve near-optimal performance. Specifically,

we consider three cases of prior information based on whether the

credibility 𝛼0 and the distribution of the highest competing bids are

known. Our goal is to characterize the landscape of online bidding

in non-credible second-price auctions and understand the impact

of the seller’s credibility on online bidding algorithm design under

different information structures.
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1 Introduction
Digital advertising has experienced significant expansion due to

the rapid rise of online-activities, surpassing traditional advertising

as the dominant marketing influence in various industries. Between

2021 and 2022, digital advertising revenues in U.S. grew 10.8% year-

over-year totalling $209.7 billion dollars [19]. In practice, a huge

amount of online ads are sold via real-time auctions implemented on

advertising platforms and advertisers participate in such repeated

online auctions to purchase advertising opportunities. This has
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motivated a flourishing line of work to focus on the problem of

online bidding algorithm design. In particular, learning to bid in

repeated second-price auctions—often with constraints or unknown

own valuations—has been well studied due to the popularity of

this auction format in practice [6, 7, 10, 11, 14, 15, 28]. However,

these studies are in fact based on an implicit assumption that the

seller commits himself to faithfully implementing the rules of the

announced second-price auction.

The possibility that a seller can profitably cheat in a second-

price auction was pointed out as early as the seminal paper [26]

that introduced this auction format. After observing all the bids, the

seller can strategically exaggerate the highest competing bid and

overcharge the winner up to the amount of her own bid. Several

following papers studied the issue of seller cheating in second-price

auctions [22–24]. Recent theoretical work by [1] formally modelled

credibility in an extensive-form game where the seller is allowed

to deviate from the auction rules as long as the deviation cannot

be detected by bidders. They defined an auction to be credible if
it is incentive-compatible for the seller to follow the rules in the

presence of cheating opportunities. In a second-price auction, the

seller can even charge the winner the amount of her own bid to

obtain higher utility, with an innocent explanation that the highest

and second-highest bids are identical. Therefore, the prevalent

second-price auction belongs to the class of non-credible auctions

in this framework. Taking credibility into consideration, advertisers

are confronted with a question of practical importance: how should

an advertiser bid in repeated non-credible second-price auctions to

maximize her cumulative utility?

In this work, we formulate the above problem as an online learn-

ing problem for a single bidder. We consider the scenario with a

single seller who runs repeated non-credible second-price auctions.

At each time 𝑡 , the winner with bid 𝑏𝑡 is charged not the highest

competing bid 𝑑𝑡 but a manipulated price 𝑝𝑡 = 𝛼0𝑑𝑡 + (1 − 𝛼0)𝑏𝑡
for some 𝛼0 ∈ [0, 1]. The parameter 𝛼0 in essence captures the

seller’s credibility, the extent to which the seller deviates from the

second-price auction rules. Our linear model is equivalent to the

classic bid-shilling model [22–24] in expectation. In the bid-shilling

model, the seller cheats by inserting a shill bid after observing

all of the bids with probability 𝑃𝑐 . The seller is assumed to take

full advantage of his power so the winner will pay her own bid

if the seller does cheat. Then the winner’s expected payment is

𝑃𝑐𝑏𝑡 + (1 − 𝑃𝑐 )𝑑𝑡 . Moreover, no matter what charging rules the

seller actually uses, as long as the estimated credibility within this

linear model is away from 1, it can be confirmed that the seller is

cheating. We believe our results and techniques have implications

for the more complicated setting with 𝑝𝑡 = ℎ(𝑏𝑡 , 𝑑𝑡 ;𝛼).
We assume the highest competing bids (𝑑𝑡 )𝑇𝑡=1 are i.i.d. sampled

from a distribution𝐺 . The bidder aims to maximize her expected cu-

mulative utility, which is given by the expected difference between

the total value and the total payment. Moving to the information

model, We investigate three cases of prior information: (1) known

𝛼0 and unknown 𝐺 ; (2) unknown 𝛼0 and known 𝐺 ; (3) unknown
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𝛼0 and unknown 𝐺 . For all three cases, we consider bandit feed-

back where the bidder can observe the realized allocation and cost

at each round. For the last case where neither is unknown, we

additionally consider full feedback where the price 𝑝𝑡 is always

observable regardless of the auction outcome. More discussions on

modeling will be placed in Section 2.

The key challenge of this problem lies in the lack of credibility

and its impact on the learning process. If assuming the seller has

full commitment, it is well known that truthful bidding is the domi-

nant strategy in second-price auctions, but this truthful property no

longer holds in non-credible second-price auctions. Identifying op-

timal bidding strategies for utility maximization requires not only

knowing the bidder’s own values but also considering the strate-

gies of her competitors and the seller. In classic repeated-auction

settings (assuming a trustworthy seller), online bidding algorithms

can collect historical samples (𝑑𝑠 )𝑡−1𝑠=1
to estimate distribution 𝐺 .

However, the bidder in non-credible auctions needs to cope with

an additional dimension of uncertainty: the available observations

under either bandit or full feedback are all manipulated prices, i.e.,

mixed signals of (𝑏𝑠 )𝑡−1𝑠=1
, (𝑑𝑠 )𝑡−1𝑠=1

and 𝛼0. As a result, difficulties

arise in the estimation of the distribution of her competitors’ bids

and the seller’s credibility.

1.1 Main Contributions
First, we characterize the optimal clairvoyant bidding strategy in

non-credible second-price auctions when the bidder knows both

credibility 𝛼0 and distribution𝐺 . This optimal clairvoyant bidding

strategy is also used as the benchmark strategy in the regret defini-

tion.

Next, we establish regret lower bounds in various information

models and provide corresponding online bidding algorithms that

are optimal up to log factors. Our results are summarized in Table 1.

• For the case where 𝐺 is unknown and 𝛼0 is known, we

explore the landscape by discussing how the problem varies

with different credibility parameter 𝛼0 = 0, 𝛼0 = 1 and

𝛼0 ∈ (0, 1). We mainly contribute to the regret analysis

for 𝛼0 ∈ (0, 1), with a proven Ω(
√
𝑇 ) lower bound, and a

concrete near-optimal 𝑂 (
√
𝑇 ) algorithm.

• For the case where 𝐺 is known and 𝛼0 is unknown, we

develop an 𝑂 (log2𝑇 ) algorithm, which adopts a dynamic

estimation approach to approximate 𝛼0.

• For the challenging case where both𝐺 and 𝛼0 are unknown,

we observe that under bandit feedback, an Ω(𝑇 2/3) lower
bound and an 𝑂 (𝑇 2/3) algorithm follow directly from ex-

isting algorithms. We then turn to the more interesting

setting with full information feedback, for which we pro-

pose an episodic bidding algorithm that learns 𝛼0 and 𝐺

simultaneously in an efficient manner, while achieving a

near-optimal regret of 𝑂 (
√
𝑇 ).

Overall, this work provides a theoretical regret analysis for learn-

ing against non-credible auctions. We aim to characterize the land-

scape of online bidding in non-credible auctions and analyze how

the seller’ credibility influences the design of online bidding algo-

rithms under different information structures.

1.2 Related Work
Credibility in auctions. The issue of seller cheating has been stud-
ied by the game-theoretic literature in a strategic framework [22–

24]. Recently, [1] explored the setting where the seller deviates from

the auction rules in a way that can be innocently explained. To

this end, they defined credibility based on the detectability of seller

deviations. They further established an impossibility result that no

optimal auction simultaneously achieves staticity, credibility and

strategy-proofness. They showed that the first-price auction is the

unique static optimal auction that achieves credibility. [16] consid-

ered the general allocation problem and introduced the definition

of verifiability (i.e., allowing participants to check the correctness

of their assignments) and transparency (i.e., allowing participants

to check whether the allocation rule is deviated). These are stronger

security notions than the credibility concept investigated by [1].

[12] studied how the credibility of an auction format affects bidding

behavior and final outcomes via laboratory experiments. Their em-

pirical findings confirm the theory that sellers do have incentives to

break the auction rules and overcharge the winning bidder. These

pioneering works discussed how a participant can potentially de-

tect and learn non-credible mechanisms as we do. In contrast, our

work is based on the online learning framework, where information

revelation is partial and sequential in nature.

Learning to bid. Our work is closely related with the line of

literature on learning to bid in repeated auctions. [3, 4, 17, 18, 29]

studied the problem of learning in repeated first-price auctions.

[8, 27] studied no-regret learning in repeated first-price auctions

with budget constraints. As for repeated second-price auctions,

[6, 7, 11] considered the bidding problem with budget constraints

and [14, 15] further considered return-on-spend (RoS) constraints.

All these works assume that the seller has full commitment to the

announced auction rules.

2 Problem Formulation
We consider the problem of online learning in repeated non-credible

second-price auctions. We focus on a single bidder in a large popu-

lation of bidders during a time horizon𝑇 . In each round 𝑡 = 1, . . . ,𝑇 ,

there is an available item auctioned by a single seller. The bidder

perceives a value 𝑣𝑡 ∈ [0, 1] for this item, and then submits a bid

𝑏𝑡 ∈ R+ based on 𝑣𝑡 and all historical observations available to her.

We denote the maximum bid of all other bidders by 𝑑𝑡 ∈ R+. As
usual, we use the bold symbol 𝒗 without subscript 𝑡 to denote the

vector (𝑣1, . . . , 𝑣𝑇 ); the same goes for other variables in the present

paper.

We consider a stochastic setting where 𝑣𝑡 is i.i.d. sampled from

a distribution 𝐹 and 𝑑𝑡 is i.i.d. sampled from a distribution 𝐺 . The

latter assumption follows from the standard mean-field approxi-

mation [5, 20] and is a common practice in literature. The main

rationale behind this assumption is that when the number of other

bidders is large, on average their valuations and bidding strategies

are static over time. Whether 𝐺 is known to the bidder depends on

the information structure while 𝐹 is always unknown to the bidder.

The seller claims that he follows the rules of the second-price

auction, but he actually uses a combination of the first-price auction

and the second-price auction. For simplicity, we assume a linear

model. The auction outcome in round 𝑡 is then as follows: if 𝑏𝑡 ≥ 𝑑𝑡 ,
2
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Table 1: Result Summary.

𝜶0 𝑮 Feedback Upper bound Lower bound Theorem

Known, 𝛼0 = 1

Unknown Bandit

0 0

Theorem 3.1
Known, 𝛼0 ∈ (0, 1) 𝑂 (𝑇 1/2) Ω(𝑇 1/2)

Known, 𝛼0 = 0 𝑂 (𝑇 2/3) Ω(𝑇 2/3)

Unknown Known Bandit 𝑂 (1) Ω(1) Theorem 4.3
1

Unknown Unknown

Bandit 𝑂 (𝑇 2/3) Ω(𝑇 2/3) Corollary 5.1

Full 𝑂 (𝑇 1/2) Ω(𝑇 1/2) Theorem 5.6
1

1
The regret bounds of these theorems rely on corresponding assumptions.

the bidder wins the item and pays 𝑝𝑡 := 𝛼0𝑑𝑡 +(1−𝛼0)𝑏𝑡 , where 𝛼0 is
assumed to be a fixed weight throughout the period; if 𝑏𝑡 < 𝑑𝑡 , the

bidder loses the auction and pays nothing. Here we assume that ties

are broken in favor of the bidder we concern to simplify exposition.

We only consider 𝛼0 ∈ [0, 1] since 𝛼0 < 0 will be immediately

detected by the winner and 𝛼0 > 1 will lead to lower revenue

than mere second-price auctions. One can observe the pricing rule

follows the second-price auction when 𝛼0 = 1, and it follows the

first-price auction when 𝛼0 = 0.

Let 𝑥𝑡 := I {𝑏𝑡 ≥ 𝑑𝑡 } be the binary variable indicating whether

the bidder wins the item. Let 𝑐𝑡 := 𝑥𝑡𝑝𝑡 be the bidder’s cost and let

𝑟𝑡 := 𝑥𝑡𝑣𝑡 − 𝑐𝑡 be the corresponding reward.

Information structure. In this paper, we investigate three cases

of prior information: 1) known credibility 𝛼0 and unknown dis-

tribution 𝐺 ; 2) unknown credibility 𝛼0 and known distribution 𝐺 ;

3) unknown credibility 𝛼0 and unknown distribution 𝐺 .

The first two cases not only serve as warm-up analysis, but also

have practical significance in their own right. In reality, a bidder

may receive some additional signals beyond the learning process

to construct her belief over the seller’s credibility or the strategies

of other bidders, e.g. the seller’s reputation heard from other bid-

ders, bidding data collected through other credible channels. Then

her bidding algorithm mainly aims to learn the other part in the

competing environment.

We consider two cases of information feedback:

(1) Bandit information feedback. The bidder can observe the

allocation 𝑥𝑡 and the cost 𝑐𝑡 at the end of each round 𝑡 .

(2) Full information feedback. The bidder can observe the allo-

cation 𝑥𝑡 and the price 𝑝𝑡 at the end of each round 𝑡 .

The second information feedback makes sense in non-censored

auctions where the seller-side platform (SSP) is supposed to provide

the minimum winning price for every bidder regardless of the

outcome. If the bidder wins, a dishonest seller will overstate the

minimum winning price to overcharge the winner; if the bidder

loses, a dishonest seller will understate the minimum winning price

to trick the bidder into raising her bids in the following rounds. The

full-feedback model for simplicity assumes that these two types

of deceptions are symmetric, controlled by the same parameter 𝛼0.

Note that when 𝛼0 = 0, both feedback models are equivalent to the

binary feedback model in first-prices auctions.

We denote the historical observations available to the bidder

before submitting a bid in round 𝑡 by H𝑡 . For the two cases of

information feedback, we have, respectively,

H𝐵
𝑡 := (𝑣𝑠 , 𝑥𝑠 , 𝑐𝑠 )𝑡−1𝑠=1 , H

𝐹
𝑡 := (𝑣𝑠 , 𝑥𝑠 , 𝑝𝑠 )𝑡−1𝑠=1 .

We will omit the superscript 𝐵 or 𝐹 in the remaining of this paper

when the context is clear.

Bidding strategy and regret. A bidding strategy maps (H𝑡 , 𝑣𝑡 ) to
a (possibly random) bid 𝑏𝑡 for each 𝑡 . For a strategy 𝜋 , we denote

by R(𝜋) the expected performance of 𝜋 , defined as follows:

R(𝜋) = E𝜋𝒗,𝒅

[
𝑇∑︁
𝑡=1

𝑟𝜋𝑡

]
= E𝜋𝒗,𝒅

[
𝑇∑︁
𝑡=1

I
{
𝑏𝜋𝑡 ≥ 𝑑𝑡

} (
𝑣𝑡 − 𝑝𝜋𝑡

) ]
,

where the expectation is taken with respect to the values 𝒗, the
highest competing bids 𝒅 and any possible randomness embedded

in the strategy 𝜋 . The expect regret of the bidder is defined to be

the difference in the expected cumulative rewards of the bidder’s

strategy and the optimal bidding strategy, which has the perfect

knowledge of 𝛼0, 𝐹 and 𝐺 to maximize the target:

Regret(𝜋) = max

𝜋 ′
R(𝜋 ′) − R(𝜋).

Now we look at the the optimal bidding strategy. Using the inde-

pendence of 𝑑𝑡 from 𝑣𝑡 , one has

R(𝜋) =
𝑇∑︁
𝑡=1

E𝜋H𝑡 ,𝑣𝑡

[
(𝑣𝑡 − 𝑏𝜋𝑡 )𝐺 (𝑏𝜋𝑡 ) + 𝛼0

∫ 𝑏𝜋𝑡

0

𝐺 (𝑦)𝑑𝑦
]
.

Let 𝑟 (𝑣, 𝑏, 𝛼) = (𝑣 − 𝑏)𝐺 (𝑏) + 𝛼
∫ 𝑏
0
𝐺 (𝑦) 𝑑𝑦 and let 𝑏∗ (𝑣, 𝛼) =

argmax𝑏 𝑟 (𝑣, 𝑏, 𝛼) (taking the largest in a case of a tie). Then with

the perfect knowledge of 𝛼0 and 𝐺 , the optimal strategy in each

round submits 𝑏∗ (𝑣𝑡 , 𝛼0), denoted by 𝑏∗𝑡 for short. The expect regret
of strategy 𝜋 can written as

Regret(𝜋) = E𝜋𝒗,𝒅

[
𝑇∑︁
𝑡=1

𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) −
𝑇∑︁
𝑡=1

𝑟 (𝑣𝑡 , 𝑏𝜋𝑡 , 𝛼0)
]
.

We will omit the superscript 𝜋 in the remaining of this paper when

the context is clear .
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3 Learning with Known 𝛼 and Unknown 𝐺
We start with the scenario where the credibility parameter 𝛼 is

known but the distribution 𝐺 of the highest competing bids is

unknown.

Observe that when 𝛼 reaches an endpoint of [0, 1], this problem
will degenerate into a bidding problem in repeated first-price or

second-price auctions. Therefore, We will consider three cases sep-

arately: 𝛼0 = 0, 𝛼0 = 1, and 𝛼0 ∈ (0, 1). The following Theorem 3.1

provides a comprehensive characterization of this setting. For each

case, it establishes a regret lower bound and gives an algorithm

with optimal performance up to log factors.

Theorem 3.1. For repeated non-credible second-price auctions with
known credibility 𝛼0, unknown distribution 𝐺 and bandit feedback:

(1) when 𝛼0 = 1, truthful bidding achieves no regret;
(2) when 𝛼0 = 0, there exists a bidding algorithm (Algorithm A.1)

that achieves an𝑂 (𝑇 2/3) regret, and the lower bound on regret
for this case is Ω(𝑇 2/3);

(3) when 𝛼0 ∈ (0, 1), there exists a bidding algorithm (Algo-
rithm A.2) that achieves an 𝑂 (𝑇 1/2) regret, and the lower
bound on regret for this case is Ω(𝑇 1/2).

The lower bounds in Theorem 3.1 show that the hardness of this

learning problem increases as 𝛼0 decreases, which demonstrates

the impact of reduced credibility on online bidding optimization.

When 𝛼0 deviates from 1, truthful bidding is no longer a dominant

strategy. The bidder has to learn the competitors’ bids to make

decisions, and thus the distribution estimation error would intro-

duce an inevitable regret of order Ω(𝑇 1/2). As long as 𝛼0 > 0, the

bidder can infer the highest competing bid 𝑑𝑡 from her payment

once she wins an auction by measuring the difference between 𝑐𝑡
and 𝑏𝑡 . However, when 𝛼0 becomes 0, 𝑐𝑡 ≡ 𝑏𝑡 in winning rounds

provides no additional information about 𝑑𝑡 . The complete loss of

credibility cripples the bidder’s ability to observe the competitive

environment and estimate the distribution 𝐺 , so the regret lower

bound leaps from Ω(𝑇 1/2) to Ω(𝑇 2/3).
The first statement of Theorem 3.1 is trivial due to the nature of

the second-price auction.

The second case is equivalent to bidding in repeated first-price

auctions with binary feedback (receiving only 𝑥𝑡 = 1 or 0), which

can be modeled as a contextual bandits problem with cross learning:

• Cross learning over contexts. The bidder in round 𝑡 not only

receives the reward 𝑟𝑡 under (𝑣𝑡 , 𝑏𝑡 ), but also observes the

rewards 𝑟 ′ under (𝑣 ′, 𝑏𝑡 ) for every other 𝑣 ′.

For the contextual bandits problem with cross-learning over con-

texts in the stochastic setting, [4] proposed a UCB-based algorithm

that can achieve an 𝑂 (
√
𝐾𝑇 ) regret, where 𝐾 is the number of ac-

tions. Applying this algorithm to the auction setting results in a

regret bound of 𝑂 (
√
𝐾𝑇 +𝑇 /𝐾), where the last term comes from

the discretization error and the upper bound becomes𝑂 (𝑇 2/3) with
𝐾 ∼ 𝑇 1/3

. They also proved the regret lower bound is Ω(𝑇 2/3) via
a reduction to the problem of dynamic pricing.

Lemma 3.2 ([4]). For repeated first-price auctions with binary feed-
back, Algorithm A.1 can achieve an𝑂 (𝑇 2/3) regret, and there exists a
problem instance where any algorithm must incur a regret of at least
Ω(𝑇 2/3) regret.

The third case is similar to bidding in repeated first-price auctions

with censored feedback, where the seller runs first-price auctions

and always reveals the winner’s bid to each bidder so the bidder

can see the highest competing bid only if she loses the auction. [18]

modeled that problem as a contextual bandits problem with cross

learning, partial ordering:

• Cross learning over contexts.
• Partial ordering over actions. There exists a partial order

⪯B over the action set B. The bidder in round 𝑡 not only

receives the reward 𝑟𝑡 under (𝑣𝑡 , 𝑏𝑡 ), but also observes the

rewards 𝑟 ′ under (𝑣𝑡 , 𝑏′) for every other 𝑏′ ⪯B 𝑏𝑡 .
• Partial ordering over contexts. There exists a partial order
⪯V over the context set V such that if 𝑣1 ⪯V 𝑣2, then

𝑏∗ (𝑣1) ⪯B 𝑏∗ (𝑣2) where 𝑏∗ (𝑣) is the optimal auction under

context 𝑣 .

Lemma 3.3. [[18]] For the contextual bandits problem with cross-
learning over contexts, partial ordering over auctions and contexts in
the stochastic setting, there exists a bidding algorithm than achieves
an 𝑂 (𝑇 1/2) regret.

We carefully adapt their algorithm to our setting (Algorithm A.2)

and verify that the third case with 𝛼0 ∈ (0, 1) satisfies the above
three properties:

• Cross learning over values. The bidder can calculate 𝑟 ′ under
(𝑣 ′, 𝑏𝑡 ) by

𝑟 ′ = 𝑟𝑡 + 𝑥𝑡 (𝑣 ′ − 𝑣𝑡 ) . (1)

• Partial ordering over bids. If the bidder wins in round 𝑡 , she

can infer the highest competing bid 𝑑𝑡 by

𝑑𝑡 = (𝑐𝑡 − (1 − 𝛼0)𝑏𝑡 ) /𝛼0 . (2)

Therefore the reward 𝑟 ′ under (𝑣𝑡 , 𝑏′) for any other 𝑏 < 𝑏𝑡
can be calculated by using the corresponding allocation

I {𝑏 ≥ 𝑑𝑡 } and price 𝛼0𝑑𝑡 + (1−𝛼0)𝑏. If the bidder loses the
auction with 𝑏𝑡 , she should also lose with 𝑏′ < 𝑏𝑡 and the

reward 𝑟 ′ is 0.
• Partial ordering over values. We have shown in the previous

section that the optimal bid under value 𝑣 is 𝑏∗ (𝑣, 𝛼0) =
argmax𝑏 𝑟 (𝑣, 𝑏, 𝛼0). The following lemma shows it is a non-

decreasing function in 𝑣 .

Lemma 3.4. 𝑏∗ (𝑣, 𝛼) = argmax𝑏 𝑟 (𝑣, 𝑏, 𝛼) (taking the largest in the
case of a tie) is a non-decreasing function in both 𝑣 and 𝛼 .

Therefore, Algorithm A.2 can achieve an 𝑂 (𝑇 1/2) regret when
𝛼0 ∈ (0, 1). For the last piece of the puzzle, we prove the follow-
ing regret lower bound. Remark that Lemma 3.5 holds for any 𝛼0,

though the bound is not tight when 𝛼0 = 0.

Lemma 3.5. For repeated non-credible second-price auctions with
known credibility 𝛼0, unknown distribution 𝐺 , there exists a constant
𝑐 > 0 such that

inf

𝜋
sup

𝐺

Regret(𝜋) ≥ 𝑐 · (1 − 𝛼0)
√
𝑇,

even in the special case with 𝑣𝑡 ≡ 1 and full feedback.
4
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4 Learning with Unknown 𝛼 and Known 𝐺
We next consider the scenario where distribution 𝐺 is known but

credibility 𝛼0 is unknown.

Algorithm 4.1: Learning with unknown 𝛼0, known 𝐺 and

bandit feedback

Input: Time horizon 𝑇 ; distribution 𝐺 .

Initialization: The bidder submits 𝑏1 = 1.

1 for 𝑡 ← 2 to 𝑇 do
2 The bidder receives the value 𝑣𝑡 ∈ [0, 1].
3 The bidder estimates the seller’s credibility by

𝛼𝑡 = arg min

𝛼∈[0,1]

�����𝑡−1∑︁
𝑠=1

(𝑟𝑠 − 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼))
����� , (3)

4 The bidder submits 𝑏𝑡 = argmax𝑏 𝑟 (𝑣𝑡 , 𝑏, 𝛼𝑡 ).
5 end

Our bidding algorithm for this setting is depicted inAlgorithm 4.1.

The bidder first conducts a one-round exploration to make an ap-

propriate initialization. After receiving the value 𝑣𝑡 in each round

𝑡 = 2, . . . ,𝑇 , the bidder computes 𝛼𝑡 , which is the estimation of 𝛼0
based on the historical observations in the past 𝑡 − 1 rounds. Recall
that the optimal bid 𝑏∗𝑡 shown in Section 2 maximizes 𝑟 (𝑣𝑡 , 𝑏, 𝛼0).
Thus, by the choice of 𝑏𝑡 , if the estimator 𝛼𝑡 is close to 𝛼0, the

expected reward 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) will be close to the optimal reward

𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0).
Equation (3) in Algorithm 4.1 aims to estimate 𝛼0 by fitting the

observed rewards {𝑟𝑠 }𝑡−1𝑠=1
to the expected rewards {𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼)}𝑡−1𝑠=1

,

which can be computed given 𝐺 is known. We apply the Azuma-

Hoeffding inequality to obtain the following result.

Lemma 4.1. Under Algorithm 4.1, we have with probability at least
1 − 𝛿 , ∀𝑡 ∈ [𝑇 ],

|𝛼𝑡 − 𝛼0 | ≤ 𝑤𝑡 , where𝑤𝑡 is given by

where𝑤𝑡 is given by

𝑤𝑡 =
2

√︁
2(𝑡 − 1) log (2𝑇 /𝛿)∑𝑡−1
𝑠=1

∫ 𝑏𝑠
0

𝐺 (𝑦)𝑑𝑦
.

For technical purpose, we make the following assumption.

Assumption 4.2. 𝐺 is twice differentiable and log-concave with

density function 𝑔. There exist positive constants 𝐵1, 𝐵2 such that

𝐵1 ≤ 𝑔(𝑥) ≤ 𝐵2 for 𝑥 ∈ [0, 1].

The CDFs of many common distributions, such as gamma dis-

tributions, Gaussian distributions and uniform distributions, are

all log-concave. The existence of positive bounds on the density

function is also a standard and common assumption in various

learning problems.

Theorem 4.3. Suppose that Assumption 4.2 holds. For repeated non-
credible second-price auctions with unknown credibility 𝛼0, known
distribution 𝐺 and bandit feedback, there exists a bidding algorithm
(Algorithm 4.1) that achieves an𝑂 (log2𝑇 ) regret, and any algorithm
must incur at least a constant regret.

Remark that due to the additional assumption, we cannot actually

draw the conclusion that estimating 𝛼 is generally easier than

estimating 𝐺 by comparing two lower bounds in Theorem 4.3 and

Theorem 3.1. For example, the two-point method used in the proof

of Lemma 3.5 constructs two discrete 𝐺 distributions to show no

bidding algorithm can obtain low regret simultaneously under both

distributions, while Assumption 4.2 has ruled out such bad cases.

A key step in the proof of Theorem 4.3 involves showing that

the reward per round obtained by the bidder is close to the reward

under optimal bid with high probability. We have with probability

at least 1 − 𝛿 , ∀𝑡 , 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) − 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) ≤ 𝑤2

𝑡 /𝐵1. Then the

regret upper bound can be established by showing𝑤𝑡 ∼
√︁
log𝑇 /𝑡

and summing up through 1 to 𝑇 . It is also worth discussing the

robustness of this result. Even without Assumption 4.2, we can

get 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) − 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) ≤ 𝑤𝑡 . And with a weaker continuity

condition, it still holds that𝑤𝑡 ∼
√︁
log𝑇 /𝑡 .

Corollary 4.4. Suppose that 𝐺 is continuous. For repeated non-
credible second-price auctions with unknown credibility 𝛼0, known
distribution 𝐺 and bandit feedback, Algorithm 4.1 can achieve an
𝑂 (
√
𝑇 ) regret.

An intuition on why the proof of the regret upper bound may

fail under some discontinuous distributions is given in Example B.3.

In spite of this, we conjecture that Algorithm 4.1 can also guarantee

a lower regret in the case with discontinuous 𝐺 and we leave that

as a future direction.

5 Learning with Unknown 𝛼 and Unknown 𝐺
Bandit feedback. For the last scenario with both 𝛼 and 𝐺 un-

known, we first consider bandit feedback. Although the seller’s

credibility is unknown, this case still satisfies the cross-learning

property over values, i.e., Equation (1) holds. Thus, Algorithm A.1,

which actually does not use the value of 𝛼0, can still work in this

case and achieve an 𝑂 (𝑇 2/3) regret. The regret lower bound also

directly follows the third statement of Theorem 3.1 since any bid-

ding strategy cannot obtain a better regret guarantee than𝑂 (𝑇 2/3)
when 𝛼0 = 0. Hence, we have the following result.

Corollary 5.1. For repeated non-credible second-price auctions with
unknown credibility 𝛼0, unknown distribution𝐺 and bandit feedback,
there exists a bidding algorithm (Algorithm A.1) that achieves an
𝑂 (𝑇 2/3) regret, and the lower bound on regret for this problem is
Ω(𝑇 2/3).

In spite of the sublinear regret, the result of Corollary 5.1 is not

satisfactory. Algorithm A.1 only falls into the category of usual

UCB policies with cross learning, but does not make full use of

the properties of this auction setting. In fact, it treats the seller’s

mechanism as a black box without really estimating the seller’s

credibility or other bidder’s strategies.

Full feedback. With the above in mind, we explore whether

we can make any improvements with richer feedback and more

meticulous estimation of 𝛼0 and 𝐺 . In the full feedback model,

𝑝𝑡 = 𝛼0𝑑𝑡 + (1 − 𝛼0)𝑏𝑡 is always observable, which would intu-

itively help our estimation. Nevertheless, when 𝛼0 = 0, binary

feedback in first-prices auctions still results in the Ω(𝑇 2/3) lower
bound. Thus, in what follows we exclude the extreme case of 𝛼 = 0

5
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when it is impossible to achieves a better bound than𝑂 (𝑇 2/3). Note
that sellers in reality often do not set 𝛼0 = 0 due to concerns about

reputation or cheating costs [22]. This assumption is also consistent

with the recent empirical findings by [12] that although sellers in

non-credible second-price auctions often overcharge, they typically

do not use the rules of the first-price auction to maximize revenue.

Assumption 5.2. There exists a constant 𝛼 > 0 such that 𝛼0 ∈
[𝛼, 1].

We also make a slightly stronger assumption over 𝐺 .

Assumption 5.3. 𝐺 is twice differentiable with log-concave den-

sity function 𝑔. There exist positive constants 𝐵1, 𝐵2, 𝐵3,𝑊 such

that 𝐵1 < 𝑔(𝑥) < 𝐵2 and |𝑔′ (𝑥) | ≤ 𝐵3 for 𝑥 ∈ [0, 1 +𝑊 ].
Our bidding algorithm for full feedback is presented in Algo-

rithm 5.1. It runs in an episodic manner, similar to [9],[21], [3].

During a time horizon 𝑇 , the bidding algorithm is divided into 𝑆

episodes, each containing 𝑇𝑠 = 𝑇
1−2−𝑠

time steps. Denote Γ𝑠 be the
time steps in stage 𝑠 , s.t. |Γ𝑠 | = 𝑇𝑠 . For any time step 𝑡 in the first

episode, we set 𝑏𝑡 = 1 for a proper initialization. For any time step

𝑡 in episode 𝑠(𝑠 ≥ 2), we use the estimated parameter 𝛼𝑠−1 and

distribution 𝐺𝑠−1 in the (𝑠 − 1)-th episode to set the bid

𝑏𝑡 = argmax

𝑏
(𝑣𝑡 − 𝑏)𝐺𝑠−1 (𝑏) + 𝛼𝑠−1

∫ 𝑏

0

𝐺𝑠−1 (𝑦) 𝑑𝑦,

and only update these estimators at the end of episode 𝑠 by using

the data observed in episode 𝑠 .

The main difficulty is how to update the estimators of 𝐺 and

𝛼0 in each episode. Recall that when G is known, the estimation

step (Equation (3)) in Algorithm 4.1 is essentially similar to using

the maximum likelihood estimation (MLE) method to find the most

probable 𝛼 . However, without the knowledge of 𝐺 , the bidder can-

not directly estimate 𝛼0 by matching observed rewards to expected

rewards. To handle this challenge, we combine the non-parametric

log-concave density estimator and MLE method, to learn 𝛼0 and 𝐺

simultaneously.

We first introduce the non-parametric estimator of log-concave

density function 𝑔, which is adopted from [13]. In each episode s,

given realized 𝑝𝑡 , 𝑡 ∈ Γ𝑠 , Algorithm 5.1 for any parameter 𝛼 gives

an estimator 𝑔𝑠 (·, 𝛼),

𝑔𝑠 (·, 𝛼) = argmax

𝑔 is log-concave

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

log𝑔

(
𝑝𝑡 − (1 − 𝛼)𝑏𝑡

𝛼

)
−

∫
𝑔(𝑦)𝑑𝑦. (11)

In this work, we restrict the function class of 𝑔𝑠 (·;𝛼) for any 𝛼 and

𝑠 as below,

P =
{
𝑝 : 𝑝 (𝑧) ≤ 𝐵2,∀𝑧 ∈ [0, 1 +𝑊 ],

∫
𝑝 (𝑧)𝑑𝑧 = 1

}
.

It is w.l.o.g. to re-parameterize 𝑔(𝑦) = exp(Ψ(𝑦)), where Ψ(𝑦) is
a concave function w.r.t 𝑦. Then it is equivalent to get an estimator

Ψ̂𝑠 (·, 𝛼),

Ψ̂𝑠 (·, 𝛼) = argmax

Ψ is concave

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

Ψ

(
𝑝𝑡 − (1 − 𝛼)𝑏𝑡

𝛼

)
−

∫
exp(Ψ(𝑦;𝛼))𝑑𝑦. (12)

Algorithm 5.1: Learning with unknown 𝛼0, unknown 𝐺

and full feedback

Input: Time horizon 𝑇 .

1 for 𝑡 ∈ Γ1 do
2 The bidder receives the value 𝑣𝑡 ∈ [0, 1].
3 The bidder submits a bid 𝑏𝑡 = 1.

4 end
5 Estimate 𝛼0 by using 𝛼1, which is computed by,

𝛼1 = arg min

𝛼∈[𝛼,1]
L1 (𝛼), (4)

where L1 (𝛼) is defined in Equation (13).

6 The bidder computes Ψ̂(·;𝛼1) by

Ψ̂1 (·, 𝛼1)

= argmax

Ψ 𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑣𝑒

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

Ψ

(
𝑝𝑡 − (1 − 𝛼1)𝑏𝑡

𝛼1

)
−

∫
exp(Ψ(𝑦;𝛼1))𝑑𝑦. (5)

7 The bidder estimates 𝐺 by

𝐺1 (·;𝛼1) =
∫

exp(Ψ̂1 (𝑦;𝛼1))𝑑𝑦. (6)

for 𝑠 = 2, 3, · · · , 𝑆 do
8 for 𝑡 ∈ Γ𝑠 do
9 The bidder receives the value 𝑣𝑡 ∈ [0, 1].

10 The bidder submits a bid 𝑏𝑡 , computed by,

𝑏𝑡 = argmax

𝑏

[
(𝑣𝑡 − 𝑏)𝐺𝑠−1 (𝑏)

+𝛼𝑠−1
∫ 𝑏

0

𝐺𝑠−1 (𝑦) 𝑑𝑦
]
, (7)

11 end
12 The bidder updates the estimator for 𝛼0 in episode 𝑠 by

using 𝛼𝑠 , which is computed by,

𝛼𝑠 = arg min

𝛼∈[𝛼,1]
L𝑠 (𝛼). (8)

where L𝑠 (𝛼) is defined in Equation (13). The bidder

updates Ψ̂(·;𝛼1) by
Ψ̂𝑠 (·, 𝛼𝑠 )

= argmax

Ψ 𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑣𝑒

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

Ψ

(
𝑝𝑡 − (1 − 𝛼𝑠 )𝑏𝑡

𝛼𝑠

)
−

∫
exp(Ψ(𝑦;𝛼𝑠 ))𝑑𝑦. (9)

13 The bidder updates the estimation of 𝐺 by

𝐺𝑠 (·;𝛼𝑠 ) =
∫

exp(Ψ̂1 (𝑦;𝛼𝑠 ))𝑑𝑦. (10)

14 end

6
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Let 𝐺𝑠 (𝑦;𝛼) =
∫ 𝑦
0
𝑔𝑠 (𝑧, 𝛼)𝑑𝑧 =

∫ 𝑦
0

exp(Ψ̂𝑠 (𝑧;𝛼))𝑑𝑧 be the esti-
mated empirical distribution using the above estimator. Let G𝑠 be
the empirical distribution of samples {𝑑𝑡 }𝑡 ∈Γ𝑠 in episode 𝑠 such

that G𝑠 (𝑦) = 1

𝑇𝑠

∑
𝑡 ∈Γ𝑠 I{𝑑𝑡 ≤ 𝑦}. [13] proved the following result.

Lemma 5.4 ([13]). The optimizer Ψ̂𝑠 (·, 𝛼0) exists and is unique. For
any 𝑑𝑡 = (𝑝𝑡 − (1 − 𝛼0)𝑏𝑡 )/𝛼0, 𝑡 ∈ Γ𝑠 , G𝑠 (𝑑𝑡 ) − 1

𝑇𝑠
≤ 𝐺𝑠 (𝑑𝑡 ;𝛼0) ≤

G𝑠 (𝑑𝑡 ).

Give the above characterization of Ψ̂𝑠 (·, 𝛼0) and 𝐺𝑠 (·;𝛼0) we
provide the uniform convergence bound for |𝐺𝑠 (𝑑 ;𝛼0) −𝐺 (𝑧) | in
the following lemma.

Lemma 5.5. Suppose that 𝑇𝑠 ≫ log
2 (2/𝛿) for some 𝛿 > 0, then

with probability at least 1 − 𝛿 , ∀𝑑 ∈ [0, 1], |𝐺𝑠 (𝑑 ;𝛼0) − 𝐺 (𝑧) | ≤
𝑂 (

√︁
log(1/𝛿)/𝑇𝑠 ) holds .

Given the non-parametric estimator 𝐺𝑠 (·;𝛼) introduced in the

above, we minimize the following MLE loss function to compute

𝛼𝑠 ,

L𝑠 (𝛼) = −
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

[
𝜉𝑡 log𝐺𝑠 (𝜀𝑡 (𝛼);𝛼)

+(1 − 𝜉𝑡 ) log(1 −𝐺𝑠 (𝜀𝑡 (𝛼);𝛼))
]
, (13)

where 𝜉𝑡 = I{𝑝𝑡 ≤ 𝑏𝑡 + 𝛼𝑊 /2} and 𝜀𝑡 (𝛼) = 𝑏𝑡 + 𝛼𝑊 /(2𝛼). Here,
the indicator 𝜉𝑡 is carefully chosen so that E [𝜉𝑡 ] = 𝐺 (𝜀𝑡 (𝛼)), and
∀𝛼 ∈ [𝛼, 1], 0 < 𝜀𝑡 (𝛼) < 1 +𝑊 .

Theorem 5.6. Suppose that Assumption 5.2 holds. For repeated non-
credible second-price auctions with unknown credibility 𝛼0, known
distribution 𝐺 and full feedback, there exists a bidding algorithm
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 5.1 that achieves 𝑂 (𝑇 1/2) if Assumption 5.3 holds. And
the lower bound on regret for this problem is Ω(𝑇 1/2).

Wefirst give a bound on distance between𝛼𝑠 and𝛼0 in LemmaC.3.

Next we show that the distribution estimator 𝐺𝑠 (·;𝛼𝑠 ) uniformly

converges to the real distribution 𝐺 in Lemma C.4. Our algorithm

and the regret analysis follow the same spirit as in Theorem 4.3

in [3]. The main difference is that we use 𝜉𝑡 rather than 𝑥𝑡 as our

indicator function.

6 Limitations
This is the first work on the bidding problem when the seller can

potentially deviate from his announced auction rule, but the setting

is a little bit specific and restrictive, which is the main limitation of

this work. We have made several simplifications and assumptions

to make the model tractable. In a more realistic setting, the seller’s

credibility 𝛼0 might not be fixed or the seller might not even use a

linear charging rule. The independence between values an highest

competing bids is also a strong assumption, though standard in

literature. We are working on how to generalize our techniques in

this paper to other cases.
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A Missing Algorithms and Proofs of Section 3

Algorithm A.1: Learning with known 𝛼0 = 0 (or unknown 𝛼0), unknown 𝐺 and bandit feedback

Input: Time horizon 𝑇 .

Initialization: Let B = {𝑏1, · · · , 𝑏𝐾 } be the bid set with 𝑏𝑘 = (𝑘 − 1)/𝐾 ; for 𝑡 ∈ [𝐾], the bidder submits a bid 𝑏𝑡 = 𝑏
𝑡
.

1 for 𝑡 ← 𝐾 + 1 to 𝑇 do
2 The bidder receives the value 𝑣𝑡 ∈ [0, 1].
3 For every 𝑘 ∈ [𝐾], the bidder counts the observation by

𝑛𝑘𝑡 ←
𝑡−1∑︁
𝑠=1

I
{
𝑏𝑠 = 𝑏

𝑘
}
. (14)

4 For every 𝑘 ∈ [𝐾], the bidder computes the confidence bound:

𝑤𝑘𝑡 =

√︄
2 ln𝑇

𝑛𝑘𝑡

, (15)

5 For every 𝑘 ∈ [𝐾], the bidder estimates the reward by

�̃�𝑡 (𝑣𝑡 , 𝑏𝑘 ) =
1

𝑛𝑘𝑡

𝑡−1∑︁
𝑠=1

I
{
𝑏𝑠 = 𝑏

𝑘
}
(𝑥𝑠𝑣𝑡 − 𝑐𝑠 ) , (16)

6 The bidder submits a bid 𝑏𝑡 = argmax𝑏∈B
(̃
𝑟𝑡 (𝑣𝑡 , 𝑏) +𝑤𝑘𝑡

)
.

7 end

Lemma 3.4. 𝑏∗ (𝑣, 𝛼) = argmax𝑏 𝑟 (𝑣, 𝑏, 𝛼) (taking the largest in the case of a tie) is a non-decreasing function in both 𝑣 and 𝛼 .

Proof of Lemma 3.4. Fix any 𝑣1, 𝑣2 with 𝑣1 ≤ 𝑣2. For any 𝑏 ≤ 𝑏∗ (𝑣1, 𝛼), it holds that
𝑟 (𝑣2, 𝑏, 𝛼) = 𝑟 (𝑣1, 𝑏, 𝛼) + (𝑣2 − 𝑣1)𝐺 (𝑏)

≤ 𝑟 (𝑣1, 𝑏∗ (𝑣1, 𝛼), 𝛼) + (𝑣2 − 𝑣1)𝐺 (𝑏∗ (𝑣1, 𝛼))
= 𝑟 (𝑣2, 𝑏∗ (𝑣1, 𝛼), 𝛼),

where the inequality follows from the definition of 𝑏∗ (𝑣1, 𝛼) and the conditions 𝑣1 ≤ 𝑣2, 𝑏 ≤ 𝑏∗ (𝑣1, 𝛼). Thus, all bids no larger than 𝑏∗ (𝑣1, 𝛼)
cannot be the largest maximizer for 𝑣2.

Fix any 𝛼1, 𝛼2 with 𝛼1 ≤ 𝛼2. For any 𝑏 ≤ 𝑏∗ (𝑣, 𝛼1), it holds that

𝑟 (𝑣, 𝑏, 𝛼2) = 𝑟 (𝑣, 𝑏, 𝛼1) + (𝛼2 − 𝛼1)
∫ 𝑏

0

𝐺 (𝑦) 𝑑𝑦

≤ 𝑟 (𝑣, 𝑏∗ (𝑣, 𝛼1), 𝛼1) + (𝛼2 − 𝛼1)
∫ 𝑏∗ (𝑣,𝛼1 )

0

𝐺 (𝑦) 𝑑𝑦

= 𝑟 (𝑣, 𝑏∗ (𝑣, 𝛼1), 𝛼2),
where the inequality follows from the definition of 𝑏∗ (𝑣, 𝛼) and the conditions 𝛼1 ≤ 𝛼2, 𝑏 ≤ 𝑏 ≤ 𝑏∗ (𝑣, 𝛼1). Thus, all bids no larger than

𝑏∗ (𝑣, 𝛼1) cannot be the largest maximizer for 𝛼2. □

Lemma 3.5. For repeated non-credible second-price auctions with known credibility 𝛼0, unknown distribution 𝐺 , there exists a constant 𝑐 > 0

such that
inf

𝜋
sup

𝐺

Regret(𝜋) ≥ 𝑐 · (1 − 𝛼0)
√
𝑇,

even in the special case with 𝑣𝑡 ≡ 1 and full feedback.

Proof of Lemma 3.5. The proof follows the Le Cam’s two-point method [25]. For any 𝛼0 ∈ (0, 1), consider the following two candidate

distributions supported on [0, 1]:

𝐺1 (𝑥) =


0 if 𝑥 ∈

[
0,

1−𝛼0
3−2𝛼0

)
1

2
+ Δ if 𝑥 ∈

[
1−𝛼0
3−2𝛼0 ,

2−𝛼0
3−2𝛼0

)
1 if 𝑥 ∈

[
2−𝛼0
3−2𝛼0 , 1

] , 𝐺2 (𝑥) =


0 if 𝑥 ∈

[
0,

1−𝛼0
3−2𝛼0

)
1

2
− Δ if 𝑥 ∈

[
1−𝛼0
3−2𝛼0 ,

2−𝛼0
3−2𝛼0

)
1 if 𝑥 ∈

[
2−𝛼0
3−2𝛼0 , 1

] ,

8
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Algorithm A.2: Learning with known 𝛼0 ∈ (0, 1), unknown 𝐺 and bandit feedback

Input: Time horizon 𝑇 ; credibility parameter 𝛼0 ∈ (0, 1).
Initialization: LetV = [𝑣1, · · · , 𝑣𝑀 ] be the value set with 𝑣𝑚 = (𝑚 − 1)/𝑀 ; let B = {𝑏1, · · · , 𝑏𝐾 } be the bid set with 𝑏𝑘 = (𝑘 − 1)/𝐾 ;

set B𝑚
1
← B for each 𝑣𝑚 ∈ V; select failure probability 𝛿 ∈ (0, 1).

1 for 𝑡 ← 1 to 𝑇 do
2 The bidder receives the value 𝑣𝑡 ∈ [0, 1] and round it to 𝑣𝑚 (𝑡 ) by

𝑣𝑚 (𝑡 ) = max{𝑢 ∈ V : 𝑢 ≤ 𝑣𝑡 }. (17)

3 The bidder submits a bid 𝑏𝑡 = supB𝑚 (𝑡 )𝑡 .

4 For every 𝑘 ∈ [𝐾], the bidder counts the observation by

𝑛𝑘𝑡 ←
𝑡∑︁
𝑠=1

I
{
𝑏𝑠 ≥ 𝑏𝑘

}
. (18)

5 For every𝑚 ∈ [𝑀], 𝑘 ∈ [𝐾], the bidder estimates the reward by

�̃�𝑡 (𝑣𝑚, 𝑏𝑘 , 𝛼0) =
1

𝑛𝑘𝑡

𝑡∑︁
𝑠=1

I
{
𝑏𝑠 ≥ 𝑏𝑘

}
I
{
𝑏𝑘 ≥ 𝑑𝑠

}
𝑥𝑠

(
𝑣𝑚 − 𝛼0𝑑𝑠 − (1 − 𝛼0)𝑏𝑘

)
, (19)

where 𝑑𝑠 = (𝑐𝑠 − (1 − 𝛼0)𝑏𝑠 ) /𝛼0.
6 for𝑚 = 𝑀,𝑀 − 1, . . . , 1 do
7 The bidder eliminates bids by:

B𝑚𝑡 =

{
𝑏𝑘 ∈ B𝑚𝑡 : 𝑏𝑘 ≤ min

𝑠>𝑚
supB𝑠𝑡+1

}
. (20)

8 The bidder computes the confidence bound:

𝑤𝑚𝑡 =

√︄
4 ln𝑇 log(𝐾𝑇 /𝛿)

𝑁𝑚𝑡
, (21)

where 𝑁𝑚𝑡 = min𝑏𝑘 ∈B𝑚𝑡 𝑛𝑘𝑡 .

9 The bidder eliminates bids by:

B𝑚𝑡+1 ←
{
𝑏𝑘 ∈ B𝑚𝑡 : �̃�𝑡 (𝑣𝑚, 𝑏𝑘 , 𝛼0) ≥ max

𝑏∈B𝑚𝑡
�̃�𝑡 (𝑣𝑚, 𝑏, 𝛼0) − 2𝑤𝑚𝑡

}
. (22)

10 end
11 end

where Δ is some parameter to be chosen later. In other words, 𝐺1 corresponds to a discrete random variable taking value in

{
1−𝛼0
3−2𝛼0 ,

2−𝛼0
3−2𝛼0

}
with probability (1/2 + Δ, 1/2 − Δ), and 𝐺2 corresponds to the probability (1/2 − Δ, 1/2 + Δ). Fixing 𝑣𝑡 ≡ 1, let 𝑅1 (𝑏) and 𝑅2 (𝑏) be the
expected per-round reward when bidding 𝑏 under 𝐺1 and 𝐺2, respectively. After some algebra, it is straightforward to check that

max

𝑏∈[0,1]
𝑅1 (𝑏) = max

𝑏∈[0,1]

[
(1 − 𝑏)𝐺1 (𝑏) + 𝛼0

∫ 𝑏

0

𝐺1 (𝑥)d𝑥
]
=

2 − 𝛼0
3 − 2𝛼0

(
1

2

+ Δ
)
,

max

𝑏∈[0,1]
𝑅2 (𝑏) = max

𝑏∈[0,1]

[
(1 − 𝑏)𝐺2 (𝑏) + 𝛼0

∫ 𝑏

0

𝐺2 (𝑥)d𝑥
]
=

1

3 − 2𝛼0

(
1 − 𝛼0

2

+ 𝛼0Δ
)
,

max

𝑏∈[0,1]
(𝑅1 (𝑏) + 𝑅2 (𝑏)) = max

𝑏∈[0,1]

[
(1 − 𝑏) (𝐺1 (𝑏) +𝐺2 (𝑏)) + 𝛼0

∫ 𝑏

0

(𝐺1 (𝑥) +𝐺2 (𝑥)) d𝑥
]
=

2 − 𝛼0
3 − 2𝛼0

.
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Hence, for any 𝑏𝑡 ∈ [0, 1], we have (
max

𝑏∈[0,1]
𝑅1 (𝑏) − 𝑅1 (𝑏𝑡 )

)
+

(
max

𝑏∈[0,1]
𝑅2 (𝑏) − 𝑅2 (𝑏𝑡 )

)
≥ max

𝑏∈[0,1]
𝑅1 (𝑏) + max

𝑏∈[0,1]
𝑅2 (𝑏) − max

𝑏∈[0,1]
(𝑅1 (𝑏) + 𝑅2 (𝑏))

=
2 − 2𝛼0
3 − 2𝛼0

Δ. (23)

The inequality (23) is the separation condition required in the two-point method: there is no single bid 𝑏𝑡 that can obtain a uniformly small

instantaneous regret under both 𝐺1 and 𝐺2.

In the full information model, when 𝛼0 ≠ 0, the bidder can always infer 𝑑𝑡 by

𝑑𝑡 = (𝑝𝑡 − (1 − 𝛼0)𝑏𝑡 ) /𝛼0 .

Let 𝑃𝑡
𝑖
, 𝑖 ∈ {1, 2} be the distribution of all historical samples (𝑑1, · · · , 𝑑𝑡−1) at the beginning of time 𝑡 . Then for any policy 𝜋 ,

sup

𝐺

Regret(𝜋 ;𝐺)
(a)
≥ 1

2

Regret(𝜋 ;𝐺1) +
1

2

Regret(𝜋 ;𝐺2)

=
1

2

𝑇∑︁
𝑡=1

(
E𝑃𝑡

1

[
max

𝑏∈[0,1]
𝑅1 (𝑏) − 𝑅1 (𝑏𝑡 )

]
+ E𝑃𝑡

2

[
max

𝑏∈[0,1]
𝑅2 (𝑏) − 𝑅2 (𝑏𝑡 )

] )
(b)
≥ 1

2

𝑇∑︁
𝑡=1

2 − 2𝛼0
3 − 2𝛼0

Δ

∫
min{d𝑃𝑡

1
, d𝑃𝑡

2
}

(c)
=

1

2

𝑇∑︁
𝑡=1

2 − 2𝛼0
3 − 2𝛼0

Δ
(
1 − ∥𝑃𝑡

1
− 𝑃𝑡

2
∥TV

)
≥ 1 − 𝛼0

3

Δ
𝑇∑︁
𝑡=1

(
1 − ∥𝑃𝑡

1
− 𝑃𝑡

2
∥TV

)
, (24)

where (a) is due to the fact that themaximum is no smaller than the average, (b) follows from (23), and (c) is due to the identity

∫
min{d𝑃, d𝑄} =

1 − ∥𝑃 −𝑄 ∥TV. Invoking Lemma A.1 and using the fact that for Δ ∈ (0, 1/4),

𝐷KL (𝑃𝑡1 | |𝑃
𝑡
2
) = (𝑡 − 1)𝐷KL (𝐺1 | |𝐺2)

= (𝑡 − 1)
((
1

2

+ Δ
)
log

1/2 + Δ
1/2 − Δ +

(
1

2

− Δ
)
log

1/2 − Δ
1/2 + Δ

)
≤ 16𝑇Δ2, (25)

we have the following inequality on total variation distance:

1 − ∥𝑃𝑡
1
− 𝑃𝑡

2
∥TV ≥

1

2

exp

(
−16𝑇Δ2

)
. (26)

Finally, choosing Δ = 1

4

√
𝑇
, combining inequalities (24) and (26), we conclude that Lemma 3.5 holds with the constant 𝑐 = 1

24𝑒 . □

Lemma A.1 ([25]). Let 𝑃,𝑄 be two probability measures on the same space. It holds that

1 − ∥𝑃 −𝑄 ∥TV ≥
1

2

exp

(
−𝐷KL (𝑃 | |𝑄) + 𝐷KL (𝑄 | |𝑃)

2

)
.

B Missing Proofs of Section 4
Lemma 4.1. Under Algorithm 4.1, we have with probability at least 1 − 𝛿 , ∀𝑡 ∈ [𝑇 ],

|𝛼𝑡 − 𝛼0 | ≤ 𝑤𝑡 , where𝑤𝑡 is given by

where𝑤𝑡 is given by

𝑤𝑡 =
2

√︁
2(𝑡 − 1) log (2𝑇 /𝛿)∑𝑡−1
𝑠=1

∫ 𝑏𝑠
0

𝐺 (𝑦)𝑑𝑦
.
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Proof of Lemma 4.1. Taking expectation on 𝑟𝑠 w.r.t. 𝑑𝑠 , one has

E [𝑟𝑠 ] = 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼0) .

Then by applying Azuma–Hoeffding inequality, with probability at least 1 − 𝛿/𝑇 ,�����𝑡−1∑︁
𝑠=1

(𝑟𝑠 − 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼0))
����� ≤ √︁

2(𝑡 − 1) log (2𝑇 /𝛿).

Then by (3) in Algorithm 4.1, �����𝑡−1∑︁
𝑠=1

(𝛼𝑡 − 𝛼0)
∫ 𝑏𝑠

0

𝐺 (𝑦) 𝑑𝑦
����� ≤

�����𝑡−1∑︁
𝑠=1

(𝑟𝑠 − 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼𝑡 ))
����� +

�����𝑡−1∑︁
𝑠=1

(𝑟𝑠 − 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼0))
�����

≤2
�����𝑡−1∑︁
𝑠=1

(𝑟𝑠 − 𝑟 (𝑣𝑠 , 𝑏𝑠 , 𝛼0))
�����

≤2
√︁
2(𝑡 − 1) log (2𝑇 /𝛿) .

Then the proof can be concluded by applying a union bound. □

Theorem 4.3. Suppose that Assumption 4.2 holds. For repeated non-credible second-price auctions with unknown credibility 𝛼0, known
distribution 𝐺 and bandit feedback, there exists a bidding algorithm (Algorithm 4.1) that achieves an 𝑂 (log2𝑇 ) regret, and any algorithm must
incur at least a constant regret.

Proof of Theorem 4.3. First, we show that the loss incurred by choosing such a bid 𝑏𝑡 is small with probability at least 1 − 𝛿 . For all
𝑡 ≥ 2,

𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) = 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼𝑡 ) − (𝛼𝑡 − 𝛼0)
∫ 𝑏𝑡

0

𝐺 (𝑦) 𝑑𝑦,

(a)
≥ 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼𝑡 ) − (𝛼𝑡 − 𝛼0)

∫ 𝑏𝑡

0

𝐺 (𝑦) 𝑑𝑦,

= 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) + (𝛼𝑡 − 𝛼0)
∫ 𝑏∗𝑡

𝑏𝑡

𝐺 (𝑦) 𝑑𝑦,

(b)
≥ 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) −

1

𝐵1
(𝛼𝑡 − 𝛼0)2,

(c)
≥ 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) −

1

𝐵1
𝑤2

𝑡 , (27)

where (a) holds by the choice of 𝑏𝑡 and (b) holds since 𝑏∗𝑡 = 𝑏
∗ (𝑣𝑡 , 𝛼0), 𝑏𝑡 = 𝑏∗ (𝑣𝑡 , 𝛼𝑡 ) together with Lemma B.1; (c) follows from Lemma 4.1.

Next, we have

𝑡−1∑︁
𝑠=1

∫ 𝑏𝑠

0

𝐺 (𝑦)𝑑𝑦 =

𝑡−1∑︁
𝑠=1

∫ 𝑏∗ (𝑣𝑠 ,𝛼𝑠 )

0

𝐺 (𝑦) 𝑑𝑦.

(a)
≥

𝑡−1∑︁
𝑠=1

∫ 𝑏∗ (𝑣𝑠 ,0)

0

𝐺 (𝑦) 𝑑𝑦.

(b)
≥ (𝑡 − 1) · E𝑣

[∫ 𝑏∗ (𝑣,0)

0

𝐺 (𝑦) 𝑑𝑦
]

︸                        ︷︷                        ︸
𝐶0

−
√︁
2(𝑡 − 1) log (𝑇 /𝛿),

where (a) holds by Lemma 3.4 or Lemma B.1 and (b) holds with probability at least 1 − 𝛿/𝑇 by applying Azuma–Hoeffding inequality.

By Lemma B.2, If 𝐶0 = 0, no algorithm can obtain positive expected reward under regardless of the seller’s credibility 𝛼0, which also

implies any algorithm that guarantees 𝑏𝑡 ≤ 𝑣𝑡 can get a zero regret. Therefore, we can presume 𝐶0 is a positive constant depending on the
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known distribution 𝐺 . Then for some constant 𝐶1 ∈ (0,𝐶0), when 𝑡 > 𝑡0 = 2 log (𝑇 /𝛿 )
(𝐶0−𝐶1 )2 , we have

𝑤𝑡 ≤
2

√︁
2(𝑡 − 1) log (2𝑇 /𝛿)

𝐶0 (𝑡 − 1) −
√︁
2(𝑡 − 1) log (𝑇 /𝛿)

≤
2

√︁
2 log (2𝑇 /𝛿)

𝐶0
√
𝑡 − 1 −

√︁
2 log (𝑇 /𝛿)

≤
2

√︁
2 log (2𝑇 /𝛿)
𝐶1
√
𝑡 − 1

. (28)

Combining (27) and (28), we have with probability at least 1 − 2𝛿 ,
𝑇∑︁
𝑡=1

𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) −
𝑇∑︁
𝑡=1

𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) ≤𝑡0 +
1

𝐵1

𝑇∑︁
𝑡=𝑡0+1

𝑤2

𝑡

≤𝑡0 +
8 log (2𝑇 /𝛿)

𝐵1𝐶
2

1

𝑇∑︁
𝑡=𝑡0+1

1

𝑡 − 1

≤ 2 log (𝑇 /𝛿)
(𝐶0 −𝐶1)2

+ 8 log (2𝑇 /𝛿)
𝐵1𝐶

2

1

log𝑇,

which is 𝑂 (log2𝑇 ) by taking 𝛿 ∼ 𝑇 −1. The proof of the regret upper bound can be finished by taking expectation.

The lower bound part trivially holds. We have for some constant 𝑐 ,

inf

𝜋
sup

𝛼0

Regret(𝜋) ≥ 𝑐,

since at least in the first round, no single bid 𝑏𝑡 that can obtain a uniformly small instantaneous regret for all 𝛼0. □

Corollary 4.4. Suppose that 𝐺 is continuous. For repeated non-credible second-price auctions with unknown credibility 𝛼0, known distribution
𝐺 and bandit feedback, Algorithm 4.1 can achieve an 𝑂 (

√
𝑇 ) regret.

Proof of Corollary 4.4. The proof is analogous to that of Theorem 4.3. We first have

𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0) = 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼𝑡 ) − (𝛼𝑡 − 𝛼0)
∫ 𝑏𝑡

0

𝐺 (𝑦) 𝑑𝑦,

≥ 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼𝑡 ) − (𝛼𝑡 − 𝛼0)
∫ 𝑏𝑡

0

𝐺 (𝑦) 𝑑𝑦,

= 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) + (𝛼𝑡 − 𝛼0)
∫ 𝑏∗𝑡

𝑏𝑡

𝐺 (𝑦) 𝑑𝑦,

≥ 𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) −𝑤𝑡 , (29)

where the second inequality uses the face

∫ 𝑏∗𝑡
𝑏𝑡

𝐺 (𝑦) 𝑑𝑦 ≤ 1 rather than Lemma B.1. Together the inequality (28), which still holds given that

𝐺 is continuous, the proof can be finished by bounding

∑𝑇
𝑡=1𝑤𝑡 . □

Lemma B.1. Suppose that Assumption 4.2 holds. Then 𝑏∗ (𝑣, 𝛼) is strictly increasing in 𝛼 with derivative bounded by 1/𝐵1.

Proof of Lemma B.1. First, we have

𝜕𝑟 (𝑣, 𝑏, 𝛼)
𝜕𝑏

= 0 =⇒ 1 − (𝑣 − 𝑏) 𝑔(𝑏)
𝐺 (𝑏) = 𝛼.

Denote 𝜙 (𝑏) = 1 − (𝑣 −𝑏) 𝑔 (𝑏 )
𝐺 (𝑏 ) . Give that Assumption 4.2 holds, we have 𝜙 ′ (𝑏) = log

′𝐺 (𝑏) − (𝑣 −𝑏) log′′𝐺 (𝑏) ≥ 𝐵1. Thus, 𝜙 (𝑏) is a strictly
increasing function and we have

𝜕𝑏∗ (𝑣, 𝛼)
𝜕𝛼

= (𝜙−1 (𝛼))′ = 1

𝜙 ′ (𝜙−1 (𝛼))
≤ 1

𝐵1
.

□

Lemma B.2. Suppose that 𝐺 is continuous. If E𝑣
[∫ 𝑏∗ (𝑣,0)
0

𝐺 (𝑦) 𝑑𝑦
]
= 0, then for any 𝛼0, no algorithm can obtain positive expected reward.
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Proof of Lemma B.2. First, as𝑏∗ (𝑣, 0) is increasing in 𝑣 by Lemma 3.4,

∫ 𝑏∗ (𝑣,0)
0

𝐺 (𝑦) 𝑑𝑦 is also increasing in 𝑣 . Thus, ifE𝑣
[∫ 𝑏∗ (𝑣,0)
0

𝐺 (𝑦) 𝑑𝑦
]
=

0, it holds that for nearly all 𝑣 , ∫ 𝑏∗ (𝑣,0)

0

𝐺 (𝑦) 𝑑𝑦 = 0,

except a set contained in [𝐹−1 (1), 1] on which the probability distribution 𝐹 has a zero measure.

Next, by the continuity and monotonicity of 𝐺 , for all 𝑣 ∈ [0, 𝐹−1 (1)), we have 𝐺 (𝑦) ≡ 0 on [0, 𝑏∗ (𝑣, 0)]. As
𝑟 (𝑣, 𝑏∗ (𝑣, 0), 0) = (𝑣 − 𝑏∗ (𝑣, 0))𝐺 (𝑏∗ (𝑣, 0)) = 0 = 𝑟 (𝑣, 𝑣, 0),

we have 𝑏∗ (𝑣, 0) ≥ 𝑣 by the tie-breaking rule in the definition of 𝑏∗ (𝑣, 0). Thus, 𝐺 (𝑦) remains zero on [0, 𝑣] for all 𝑣 < 𝐹−1 (1). Again by the

continuity of 𝐺 , we have 𝐺 (𝑦) ≡ 0 on [0, 𝐹−1 (1)] where 𝐹−1 (1) = inf{𝑣 : 𝐹 (𝑣) = 1}.
For nearly all 𝑣 except a zero-measure set,

𝑟 (𝑣, 𝑏, 𝛼0) = (𝑣 − 𝑏)𝐺 (𝑏) + 𝛼
∫ 𝑏

0

𝐺 (𝑦) 𝑑𝑦

= 𝛼0

∫ 𝑏

𝑣

𝛼0𝐺 (𝑦) −𝐺 (𝑣) 𝑑𝑦

≤ 0,

where the inequality holds (1) by 𝐺 (𝑦) ≡ 0 when 𝑏 ≤ 𝑣 and (2) by 𝛼𝐺 (𝑦) ≤ 𝐺 (𝑣) for 𝑦 ∈ [𝑣, 𝑏] when 𝑏 ≥ 𝑣 . Therefore, no algorithm can

obtain positive expected reward under such a distribution 𝐺 regardless of the seller’s credibility 𝛼0. □

Example B.3. Let 𝑣 ≡ 1. Consider the following distribution:

𝐺 (𝑦) =
{
0 if 0 ≤ 𝑦 < 1

3

3

4
𝑦 + 1

4
if

1

3
≤ 𝑦 ≤ 1

.

Then for 𝑏 ∈ [1/3, 1],

𝑟 (𝑣, 𝑏, 𝛼0) = (1 − 𝑏)𝐺 (𝑏) + 𝛼0
∫ 𝑏

0

𝐺 (𝑦) 𝑑𝑦

= −6 − 3𝛼0
8

𝑏2 + 2 + 𝛼0
4

𝑏 + 2 − 𝛼0
8

.

The optimal bid is calculated by

𝑏∗ = argmax

𝑏
𝑟 (𝑣, 𝑏, 𝛼0) =

1

3

(
1 + 2

2/𝛼0 − 1

)
.

Taking 𝛼0 =
1√

𝑇+1/2
, we have ∫ 𝑏∗

0

𝐺 (𝑦)𝑑𝑦 =

∫ 1

3
·
(
1+ 1√

𝑇

)
1

3

(
3

4

𝑦 + 1

4

)
𝑑𝑦 =

1

24

( 1
𝑇
+ 4

√
𝑇
) −→ 0.

Thus, 𝐶0 in the proof of Theorem 4.3 is neither a positive constant nor 0, but an infinitesimal o(1). As a result, we are not able to give an

𝑂 (log𝑇 /
√
𝑡 − 1) upper bound for𝑤𝑡 .

Intuitively, it requires 𝑏𝑡 → 𝑏∗𝑡 for an algorithm to achieve low regret. However, when 𝑏𝑡 is approaching
1

3

(
1 + 1√

𝑇

)
, although the bidder

can still win with positive probability, it becomes harder and harder for the bidder to distinguish different 𝛼0 under bandit feedback since in

the winning rounds 𝑏𝑡 − 𝑑𝑡 ≤ 𝑏𝑡 − 1

3
−→ 0.

C The Algorithm and Missing Proofs of Section 5
Proposition C.1. Suppose that Assumption 5.3 holds. There exists positive constants 𝑙𝑊 and ℎ𝑊 , such that ∀𝑥 ∈ [0, 1 +𝑊 ],

max{| log′𝐺 (𝑥) |, | log′ (1 −𝐺 (𝑥)) |} ≤ ℎ𝑊 , (30)

min{− log′′𝐺 (𝑥),− log′′ (1 −𝐺 (𝑥))} ≥ 𝑙𝑊 . (31)

Note that if the density function 𝑔 is log-concave, then the cumulative distribution function 𝐺 and 1 −𝐺 are both log-concave [2]. Thus,

Equation (30) and Equation (31) trivially holds for the bounded interval [0, 1 +𝑊 ].

Lemma 5.5. Suppose that𝑇𝑠 ≫ log
2 (2/𝛿) for some 𝛿 > 0, then with probability at least 1−𝛿 ,∀𝑑 ∈ [0, 1], |𝐺𝑠 (𝑑 ;𝛼0)−𝐺 (𝑧) | ≤ 𝑂 (

√︁
log(1/𝛿)/𝑇𝑠 )

holds .
13
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Proof of Lemma 5.5. Denote 𝑟𝑠 = 1

2𝐵1
√
𝑇𝑠
. For any 𝑑 ∈ [0, 1 +𝑊 ], the probability that there exists a point 𝑦 ∈ {𝑑𝑡 }𝑡 ∈Γ𝑠 such that

|𝑦 − 𝑑 | ≤ 𝑟𝑠 is at least

1 − (1 − 2𝐵1 · 𝑟𝑠 )𝑇𝑠 = 1 −
(
1 − 1

√
𝑇𝑠

)𝑇𝑠
≈ 1 − 𝑒−

√
𝑇𝑠 ≥ 1 − 𝛿/2.

Then for any 𝑑 and 𝑦 such that |𝑦 − 𝑑 | ≤ 𝑟𝑠 , we can decompose |𝐺𝑠 (𝑑 ;𝛼0) −𝐺 (𝑧) | in the following,

|𝐺𝑠 (𝑑 ;𝛼0) −𝐺 (𝑧) |
≤ |𝐺𝑠 (𝑑 ;𝛼0) −𝐺𝑠 (𝑦;𝛼0) | + |𝐺𝑠 (𝑦;𝛼0) − G𝑠 (𝑦) | + |G𝑠 (𝑦) −𝐺 (𝑦) | + |𝐺 (𝑦) −𝐺 (𝑑) |

≤ 𝐵2 · 𝑟𝑠 +
1

𝑇𝑠
+

√︄
𝑙𝑜𝑔(4/𝛿)

2𝑇𝑠
+ 𝐵2 · 𝑟𝑠

=
𝐵2

𝐵1
√
𝑇𝑠
+

√︄
𝑙𝑜𝑔(4/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠
.

The second inequality follows from𝐺𝑠 (·;𝛼0) is 𝐵2-Lipschitz, Lemma 5.4, Dvoretzky-Kiefer-Wolfowitz (DKW) inequality and𝐺 is 𝐵2-Lipschitz.

It also holds with probability at least 1 − 𝛿/2 since 𝑇𝑠 ≫ 𝑙𝑜𝑔2 (2/𝛿). □

Given Lemma 5.5, 𝐺𝑠 (·;𝛼0) is arbitrarily close to 𝐺 when 𝑇𝑠 is sufficiently large. In addition, [13] also show 𝑔𝑠 (·, 𝛼0) is arbitrarily close to

𝑔 when 𝑇𝑠 is sufficiently large. Therefore, we can show,

Proposition C.2. Suppose that Assumption 5.3 holds. Under Algorithm 5.1, there exists positive constants ˜𝑙𝑊 and ˜ℎ𝑊 , such that both

𝑚𝑎𝑥{| log′𝐺𝑠 (𝑥 ;𝛼0) |, | log′ (1 −𝐺𝑠 (𝑥 ;𝛼0)) |} ≤ ˜ℎ𝑊 ,∀𝑥 ∈ [0, 1 +𝑊 ],∀𝑠 ∈ [𝑆]
and

𝑚𝑖𝑛{− log′′𝐺𝑠 (𝑥 ;𝛼),− log′′ (1 −𝐺𝑠 (𝑥 ;𝛼))} ≥ ˜𝑙𝑊 ,∀𝑥 ∈ [0, 1 +𝑊 ],∀𝛼 ∈ [𝛼, 1], ,∀𝑠 ∈ [𝑆]
hold almost surely.

Theorem 5.6. Suppose that Assumption 5.2 holds. For repeated non-credible second-price auctions with unknown credibility 𝛼0, known
distribution 𝐺 and full feedback, there exists a bidding algorithm 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 5.1 that achieves 𝑂 (𝑇 1/2) if Assumption 5.3 holds. And the lower
bound on regret for this problem is Ω(𝑇 1/2).

Proof of Theorem 5.6. The lower bound directly follows from Lemma 3.5 since no algorithm can avoid Ω(
√
𝑇 ) regret even with known

𝛼0. Then we mainly focus on the upper bound. We first rewrite the regret per round in the following way,

𝑟 (𝑣𝑡 , 𝑏∗𝑡 , 𝛼0) − 𝑟 (𝑣𝑡 , 𝑏𝑡 , 𝛼0)

=

∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔(𝑥)𝑑𝑥 −
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔(𝑥)𝑑𝑥

=

∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔(𝑥)𝑑𝑥 −
∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥

+
∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥 −
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥

+
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥 −
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔(𝑥)𝑑𝑥

≤
∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔(𝑥)𝑑𝑥 −
∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥

+
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥 −
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔(𝑥)𝑑𝑥

=(𝑣𝑡 − 𝑏∗𝑡 ) · [𝐺 (𝑏∗𝑡 ) −𝐺𝑠−1 (𝑏∗𝑡 ;𝛼𝑠−1)] − (𝑣𝑡 − 𝑏𝑡 ) · [𝐺 (𝑏𝑡 ) −𝐺𝑠−1 (𝑏𝑡 ;𝛼𝑠−1)] + 𝛼0
∫ 𝑏∗𝑡

𝑏𝑡

[𝐺 (𝑥) −𝐺𝑠−1 (𝑥 ;𝛼𝑠−1)]𝑑𝑥

≤|𝐺 (𝑏∗𝑡 ) −𝐺𝑠−1 (𝑏∗𝑡 ;𝛼𝑠−1) | + |𝐺 (𝑏𝑡 ) −𝐺𝑠−1 (𝑏𝑡 ;𝛼𝑠−1) | + sup
𝑥
|𝐺 (𝑥) −𝐺𝑠−1 (𝑥 ;𝛼𝑠−1) |,

where the first inequality holds by the choice of 𝑏𝑡 , i.e.,∫ 𝑏∗𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏∗𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥 ≤
∫ 𝑏𝑡

0

(𝑣𝑡 − 𝛼0𝑥 − (1 − 𝛼0)𝑏𝑡 )𝑔𝑠−1 (𝑥 ;𝛼𝑠−1)𝑑𝑥 .
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Let Regret𝑠 be the regret achieved in episode 𝑠 . We have

Regret𝑠 ≤
∑︁
𝑡 ∈Γ𝑠
|𝐺 (𝑏∗𝑡 ) −𝐺𝑠−1 (𝑏∗𝑡 ;𝛼𝑠−1) | +

∑︁
𝑡 ∈Γ𝑠
|𝐺 (𝑏𝑡 ) −𝐺𝑠−1 (𝑏𝑡 ;𝛼𝑠−1) | +𝑇𝑠 sup

𝑥
|𝐺 (𝑥) −𝐺𝑠−1 (𝑥 ;𝛼𝑠−1) |

≤ 12𝐴𝐵2 (2 +𝑊 )𝑇𝑠
𝛼2𝑊 2 ˜𝑙𝑊

+ 3𝐵2
√
𝑇𝑠

𝐵1
+ 3

√︂
log(16𝑆/𝛿)𝑇𝑠

2

+ 3,

where the second inequality holds by Lemma C.3 and Lemma C.4 (setting K𝑠 = 4𝐴

𝛼2𝑊 2 ˜𝑙𝑊
and 𝛿 := 𝛿/2𝑆). Hence, the inequality holds with

probability at least 1 − 𝛿/𝑆 . Finally, by a union bound over 𝑆 episodes and the fact that 𝑇𝑠/𝑇𝑠−1 =
√
𝑇 and 𝑆 ≤ log log𝑇 , we complete our

proof. □

Lemma C.3. For each episode 𝑠 , we have with probability at least 1 − 𝛿/2𝑆 ,

| |𝛼𝑠 − 𝛼0 | | ≤
4𝐴

𝛼2𝑊 2 ˜𝑙𝑊
,

where

𝐴 =
𝑊 ˜ℎ𝑊

2𝛽𝑇𝑠
· ©­« 𝐵2

𝐵1
√
𝑇𝑠
+

√︄
𝑙𝑜𝑔(16𝑆/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠

ª®¬ + 𝑊
˜ℎ𝑊

2𝛽

√︄
log(2𝑆/𝛿)

𝑇𝑠
.

Proof. For notation simplicity, we re-parameterize 𝛼 by denoting 𝛽 = 1/𝛼 . By Assumption 5.2, 𝛽 has an upper bound 𝛽 = 1/𝛼 . To
compute

ˆ𝛽𝑠 , we minimize the following MLE loss function,

L𝑠 (𝛽) = −
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

[
I

{
𝑏𝑡 +

𝑊

2𝛽
≥ 𝑝𝑡

}
log𝐺𝑠

(
𝑏𝑡 +

𝑊

2𝛽
𝛽 ; 𝛽

)
+ I

{
𝑏𝑡 +

𝑊

2𝛽
< 𝑝𝑡

}
log

(
1 −𝐺𝑠

(
𝑏𝑡 +

𝑊

2𝛽
𝛽 ; 𝛽

))]
.

We abuse notation and denote 𝜀𝑡 (𝛽) = 𝑏𝑡 + 𝑊
2𝛽
𝛽 . Observe that

E

[
I

{
𝑏𝑡 +

𝑊

2𝛽
≥ 𝑝𝑡

}]
= E

[
I

{
𝑏𝑡 +

𝑊

2𝛽
≥ 𝛼𝑑𝑡 + (1 − 𝛼)𝑏𝑡

}]
= E

[
I

{
𝑏𝑡 +

𝑊

2𝛽
𝛽 ≥ 𝑑𝑡

}]
= 𝐺 (𝜀𝑡 (𝛽)) .

When 𝐺𝑠 equals to the real 𝐺 , 𝛽0 = 1/𝛼0 should minimize the MLE loss function. By the second-order Taylor theorem, we have

L𝑠 ( ˆ𝛽𝑠 ) − L𝑠 (𝛽0) = L′ (𝛽0) ( ˆ𝛽𝑠 − 𝛽0) +
1

2

L′′ ( ˜𝛽) ( ˆ𝛽𝑠 − 𝛽0)2

for some
˜𝛽 on the line segment between 𝛽 and

ˆ𝛽𝑠 . Given the definition of L𝑠 (𝛽 ; ·), we have

L′𝑠 (𝛽) =
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

𝑊

2𝛽
𝜂𝑡 (𝛽), L′′𝑠 (𝛽) =

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

𝑊 2

4𝛽
2
𝜁𝑡 (𝛽)

where 𝜂𝑡 (𝛽) and 𝜁𝑡 (𝛽) are defined as follows,

𝜂𝑡 (𝛽) = −I
{
𝑏𝑡 +

𝑊

2𝛽
≥ 𝑝𝑡

}
log
′𝐺𝑠 (𝜀𝑡 (𝛽); 𝛽) − I

{
𝑏𝑡 +

𝑊

2𝛽
< 𝑝𝑡

}
log
′ (1 −𝐺𝑠 (𝜀𝑡 (𝛽); 𝛽)),

𝜁𝑡 (𝛽) = −I
{
𝑏𝑡 +

𝑊

2𝛽
≥ 𝑝𝑡

}
log
′′𝐺𝑠 (𝜀𝑡 (𝛽); 𝛽) − I

{
𝑏𝑡 +

𝑊

2𝛽
< 𝑝𝑡

}
log
′′ (1 −𝐺𝑠 (𝜀𝑡 (𝛽); 𝛽)) .

Based on our construction of the algorithm, 𝑏𝑡 is independent with 𝑑𝑡 . Therefore, 𝜀𝑡 (𝛽0) = 𝑏𝑡 + 𝑊
2𝛽
𝛽0 are independent with 𝑑𝑡 for any 𝑡 ∈ Γ𝑠 ,

we have

E[𝜂𝑡 (𝛽0)] = −
𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)
𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

·𝐺 (𝜀𝑡 (𝛽0)) +
𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

𝐺𝑠 (1 − 𝜀𝑡 (𝛽0); 𝛽0)
· (1 −𝐺 (𝜀𝑡 (𝛽0)))

= [𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0) −𝐺 (𝜀𝑡 (𝛽0)))] · [
𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)
𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

+ 𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)
1 −𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

] .
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1799
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Thus, by Lemma 5.5 and Proposition C.2, we have

|E[𝜂𝑡 (𝛽0)] | = [𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0) −𝐺 (𝜀𝑡 (𝛽0)))] · [
𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)
𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

+ 𝑔𝑠 (𝜀𝑡 (𝛽0); 𝛽0)
1 −𝐺𝑠 (𝜀𝑡 (𝛽0); 𝛽0)

]

≤ 2
˜ℎ𝑊 ·

©­« 𝐵2

𝐵1
√
𝑇𝑠
+

√︄
𝑙𝑜𝑔(16𝑆/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠

ª®¬
holds with probability at least 1 − 𝛿/4𝑆 . Then by Hoeffding’s inequality and union bound

|L′𝑠 (𝛽0) | ≤
𝑊

2𝛽𝑇𝑠

∑︁
𝑡 ∈Γ𝑠
|E[𝜂𝑡 (𝛽0)] | +

𝑊 ˜ℎ𝑊

2𝛽

√︄
log(8𝑆/𝛿)

𝑇𝑠

≤ 𝑊
˜ℎ𝑊

2𝛽𝑇𝑠
· ©­« 𝐵2

𝐵1
√
𝑇𝑠
+

√︄
𝑙𝑜𝑔(16𝑆/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠

ª®¬ + 𝑊
˜ℎ𝑊

2𝛽

√︄
log(8𝑆/𝛿)

𝑇𝑠
:= 𝐴

holds with probability at least 1 − 𝛿/2𝑆 . By the optimality of
ˆ𝛽𝑠 ,

L𝑠 ( ˆ𝛽𝑠 ) − L𝑠 (𝛽0) ≤ 0.

Invoking into L𝑠 (𝛽), we have
1

2

L′′𝑠 (𝛽0) ( ˆ𝛽𝑠 − 𝛽0)2 ≤ −L′𝑠 (𝛽0) ( ˆ𝛽𝑠 − 𝛽0) ≤ 𝐴| ˆ𝛽𝑠 − 𝛽0 |,

| ˆ𝛽𝑠 − 𝛽0 | ≤
2𝐴

2
˜𝑙𝑊 ·𝑊 2/(4𝛽2)

=
4𝛽

2

𝐴

𝑊 2 ˜𝑙𝑊
.

holds with probability at least 1 − 𝛿/2𝑆 . So we have

| |𝛼𝑠 − 𝛼0 | | ≤
4𝛽

2

𝐴

𝑊 2 ˜𝑙𝑊
=

4𝐴

𝛼2𝑊 2 ˜𝑙𝑊
.

holds with probability at least 1 − 𝛿/2𝑆 . □

Lemma C.4. For any fixed 𝛿 > 0, suppose 𝑇𝑠 ≫ log
2 (2/𝛿) and conditioned on | ˆ𝛽𝑠 − 𝛽0 | ≤ K𝑠 , we have for all 𝑑 ∈ [0, 1 +𝑊 ],

|𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺 (𝑑) | ≤ 3𝐵2 (2 +𝑊 )K𝑠 +
𝐵2

𝐵1
√
𝑇𝑠
+

√︄
log(8/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠

holds with probability at least 1 − 𝛿 .

Proof. Let
ˆG𝑠 be the empirical distribution of samples { ˆ𝛽𝑠 (𝑝𝑡 − 𝑏𝑡 ) + 𝑏𝑡 }𝑡 ∈Γ𝑠 , i.e.

ˆG𝑠 (𝑑) =
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{ ˆ𝛽𝑠 (𝑝𝑡 − 𝑏𝑡 ) + 𝑏𝑡 ≤ 𝑑} =
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{𝑑𝑡 ≤ 𝑑 + (𝛽0 − ˆ𝛽𝑠 ) (𝑝𝑡 − 𝑏𝑡 )}.

First, we give a uniform convergence bound for | ˆG𝑠 (𝑑) −𝐺 (𝑑) |. The main challenge is that we cannot directly apply DKW inequality, since

ˆ𝛽𝑠 depends on 𝑑𝑡 , 𝑡 ∈ Γ𝑠 . To handle this challenge, we bound the lower bound and upper bound of
ˆG𝑠 (𝑑) separately. Since | ˆ𝛽𝑠 − 𝛽0 | ≤ K𝑠 ,

and 𝑏𝑡 ≤ 1, 𝑝𝑡 ≤ 1 +𝑊 , we have

1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{𝑑𝑡 ≤ 𝑑 − (2 +𝑊 )K𝑠 } ≤ ˆG𝑠 (𝑑) ≤
1

𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{𝑑𝑡 ≤ 𝑑 + (2 +𝑊 )K𝑠 }

Thus, conditioned on | ˆ𝛽𝑠 − 𝛽0 | ≤ K𝑠 , for any 𝛾 > 0, we have

P( ˆG𝑠 (𝑑) −𝐺 (𝑑 + (2 +𝑊 )K𝑠 ) ≤ 𝛾)

≥ P( 1
𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{𝑑𝑡 ≤ 𝑑 + (2 +𝑊 )K𝑠 } −𝐺 (𝑑 + (2 +𝑊 )K𝑠 ) ≤ 𝛾)

≥ 1 − P(sup
𝑑

| 1
𝑇𝑠

∑︁
𝑡 ∈Γ𝑠

I{𝑑𝑡 ≥ 𝑑 + (2 +𝑊 )K𝑠 } −𝐺 (𝑑 + (2 +𝑊 )K𝑠 ) | > 𝛾)

≥ 1 − 2𝑒𝑥𝑝 (−2𝑇𝑠𝛾2) .
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1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960
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1966
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1968
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1972

Similarly, we have P( ˆ𝐺 (𝑑 + (2 +𝑊 )K𝑠 ) − G𝑠 (𝑑) ≤ 𝛾) ≥ 1 − 2𝑒𝑥𝑝 (−2𝑇𝑠𝛾2) for any 𝛾 > 0, conditioned on | ˆ𝛽𝑠 − 𝛽0 | ≤ K𝑠 .
Therefore, applying a union bound and Lipschitzness of 𝐺 we have,

| ˆG𝑠 (𝑑) −𝐺 (𝑑) | ≤

√︄
log(8/𝛿)

2𝑇𝑠
+ 𝐵2 (2 +𝑊 )K𝑠 (32)

holds with probability at least 1 − 𝛿/2.
Second, we apply the similar technique used in Lemma 5.5 to bound |𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺 (𝑑) |. Denote ˆ𝑑𝑡 = ˆ𝛽𝑠 (𝑝𝑡 − 𝑏𝑡 ) + 𝑏𝑡 , ∀𝑡 ∈ Γ𝑠 . Thus, for

any
ˆ𝑑𝑡 , there must exist at least one 𝑑𝑡 s.t. |𝑑𝑡 − ˆ𝑑𝑡 | = | (𝛽0 − ˆ𝛽𝑠 ) (𝑝𝑡 − 𝑏𝑡 ) | ≤ (2 +𝑊 )K𝑠 . Let 𝑟𝑠 = 1

2𝐵1
√
𝑇𝑠
, then for any 𝑑 ∈ [0, 1 +𝑊 ], the

probability that there exists a point 𝑦 ∈ { ˆ𝑑𝑡 }𝑡 ∈Γ𝑠 s.t. |𝑦 − 𝑧 | ≤ 𝑟𝑠 + (2 +𝑊 )K𝑠 , is at least,

1 − (1 − 2𝐵1 · 𝑟𝑠 )𝑇𝑠 = 1 − (1 − 1

√
𝑇𝑠
) ≈ 1 − 𝑒−

√
𝑇𝑠 ≥ 1 − 𝛿/2

Therefore, for any 𝑑 ∈ [0, 1 +𝑊 ], we can decompose 𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺 (𝑑) in the following,

|𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺 (𝑑) |

≤|𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺𝑠 (𝑦; ˆ𝛽𝑠 ) | + |𝐺𝑠 (𝑦; ˆ𝛽𝑠 ) − ˆG𝑠 (𝑦) | + | ˆG𝑠 (𝑦) | −𝐺 (𝑦) | + |𝐺 (𝑦) −𝐺 (𝑑) |.

Indeed, the characterization results by Lemma 5.4 applies to samples
ˆ𝑑𝑡 . Then we have |𝐺𝑠 (𝑦; ˆ𝛽𝑠 ) − ˆG𝑠 (𝑦) | ≤ 1

𝑇𝑠
. . By the Lipshitzness of

𝐺𝑠 (·; ˆ𝛽𝑠 ) and 𝐺 , Equation (32) and union bound, we have

|𝐺𝑠 (𝑑 ; ˆ𝛽𝑠 ) −𝐺 (𝑑) | ≤ 2𝐵2 [𝑟𝑠 + (2 +𝑊 )K𝑠 ] +
1

𝑇𝑠
+

√︄
log(8/𝛿)

2𝑇𝑠
+ 𝐵2 (2 +𝑊 )K𝑠

= 3𝐵2 (2 +𝑊 )K𝑠 +
𝐵2

𝐵1
√
𝑇𝑠
+

√︄
log(8/𝛿)

2𝑇𝑠
+ 1

𝑇𝑠

holds with probability at least 1 − 𝛿 when 𝑇𝑠 ≫ log
2 (2/𝛿). □
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