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Abstract

Cross-lingual transfer learning has proven use-001
ful in a variety of NLP tasks, but it is under-002
studied in the context of legal NLP, and not at003
all on Legal Judgment Prediction (LJP). We ex-004
plore transfer learning techniques on LJP using005
the trilingual Swiss-Judgment-Prediction (SJP)006
dataset, including cases written in three lan-007
guages (German, French, Italian). We find008
that Cross-Lingual Transfer (CLT) improves009
the overall results across languages, especially010
when we augment the dataset with machine-011
translated versions of the original documents,012
using a 3× larger training corpus. Further on,013
we perform an analysis exploring the effect of014
cross-domain and cross-regional transfer, i.e.,015
train a model across domains (legal areas), or016
regions. We find that in both settings (legal017
areas, origin regions), models trained across018
all groups perform overall better, while they019
also have improved results in the worst-case020
scenarios. Finally, we report improved results021
when we ambitiously apply cross-jurisdiction022
transfer, where we augment our dataset with023
Indian legal cases originally written in English.024

1 Introduction025

Rapid development in CLT has been achieved by026

pre-training transformer-based model in large mul-027

tilingual corpora (Conneau et al., 2020; Xue et al.,028

2021), where these models have state-of-the-art029

results in multilingual NLU benchmarks (Ruder030

et al., 2021). Moreover, adapter-based fine-tuning031

(Houlsby et al., 2019; Pfeiffer et al., 2020) has032

been proposed to minimize the disalignment of033

multilingual knowledge (alignment) when CLT is034

applied, especially in a zero-shot fashion, where035

the target language is unseen during training. CLT036

is severely understudied in legal NLP applications037

with the exception of Chalkidis et al. (2021) who038

experimented with several methods for CLT on039

MultiEURLEX, a newly introduced multilingual le-040

gal topic classification dataset, including EU laws.041

To the best of our knowledge, CLT has not been 042

applied to the LJP task (Aletras et al., 2016; Xiao 043

et al., 2018; Malik et al., 2021), where the goal is to 044

predict the verdict (court decision) given the facts 045

of a legal case. Following the work of Niklaus et al. 046

(2021), we experiment with their newly released 047

trilingual Swiss-Judgment-Prediction (SJP) dataset, 048

containing cases from the Federal Supreme Court 049

of Switzerland (FSCS), written in three official 050

Swiss languages (German, French, Italian). 051

The dataset covers four core legal areas (public, 052

penal, civil, and social law) and courts originated in 053

eight regions of Switzerland (Zurich, Ticino, etc.), 054

which poses interesting new challenges on model 055

robustness / fairness and the effect of cross-domain 056

and cross-regional knowledge sharing. 057

We examine three main research questions: (a) Is 058

cross-lingual transfer beneficial across all or some 059

of the languages?, (b) Do models benefit from 060

cross-domain and cross-regional transfer?, and (c) 061

Can we leverage data from another jurisdiction to 062

improve performance? The contributions of this 063

paper are threefold: 064

• We explore, for the first time, the application of 065

cross-lingual transfer learning in the challeng- 066

ing task of Legal Judgment Prediction (LJP) in 067

several settings. We find that pre-trained multi- 068

lingual models trained in a multilingual fashion, 069

outperform their mono-lingual counterparts, es- 070

pecially when we augment the training data with 071

translated versions of the original documents (3× 072

larger training corpus) with larger gains in a low- 073

resource setting (Italian). 074

• We perform cross-domain and cross-regional 075

analyses exploring the effects of cross-domain 076

(and cross-regional) transfer, i.e., train a model 077

across domains, with respect to the relevant le- 078

gal areas (e.g., civil, penal law) or regions (e.g., 079

Zurich, Ticino). We find that in both settings 080

(legal areas, regions), models trained across all 081

groups perform overall better and more robustly. 082
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• We also report improved results when we apply083

cross-jurisdiction transfer, where we further aug-084

ment our dataset with Indian legal cases origi-085

nally written in English. The cumulative perfor-086

mance improvement is approx. 7% compared to087

the best reported scores in Niklaus et al. (2021).088

2 Related Work089

Legal Judgment Prediction (LJP) is the task,090

where given the facts of a legal case, a system091

has to predict the correct outcome (legal judge-092

ment). Many prior works experimented with some093

forms of LJP, however, the precise formulation of094

the LJP task is non-standard as the jurisdictions095

and legal frameworks vary. Aletras et al. (2016);096

Medvedeva et al. (2018); Chalkidis et al. (2019)097

predict the plausible violation of European Con-098

vention of Human Rights (ECHR) articles of the099

European Court of Human Rights (ECtHR). Xiao100

et al. (2018, 2021) study Chinese criminal cases101

where the goal is to predict the ruled duration of102

prison sentences and/or the relevant law articles.103

Another setup is followed by Şulea et al. (2017);104

Malik et al. (2021); Niklaus et al. (2021), which105

use cases from Supreme Courts (French, Indian,106

Swiss, respectively), hearing appeals from lower107

courts relevant to several fields of law (legal areas).108

Across tasks (datasets), the goal is to predict the109

binary verdict of the court (approval or dismissal110

of the examined appeal) given a textual description111

of the case. None of these works have explored112

neither cross-lingual (i.e., models trained in multi-113

ple languages), nor cross-jurisdiction transfer, (i.e.,114

from one jurisdiction to another), while the effects115

of cross-domain and cross-regional transfer are also116

not studied (analyzed).117

Cross-Lingual Transfer (CLT) is a flourish-118

ing topic with the application of pre-trained119

transformer-based models trained in a multilingual120

setting (Devlin et al., 2019; Lample and Conneau,121

2019; Conneau et al., 2020; Xue et al., 2021) ex-122

celling in NLU benchmarks (Ruder et al., 2021).123

Adapter-based fine-tuning (Houlsby et al., 2019;124

Pfeiffer et al., 2021a) has been proposed as an anti-125

measure to mitigate disalignment of multilingual126

knowledge when CLT is applied, especially in a127

zero-shot fashion, where the target language is un-128

seen during training (or even pre-training).129

Meanwhile, CLT is understudied in legal NLP130

applications. Chalkidis et al. (2021) experiment131

with standard fine-tuning, while they also examined132

the use of adapters (Houlsby et al., 2019) for zero- 133

shot CLT on a legal topic classification dataset com- 134

prising European Union (EU) laws. They found 135

adapters to achieve the best tradeoff between ef- 136

fectiveness and efficiency. Their work did not ex- 137

amine the use of methods incorporating translated 138

versions of the original documents in any form, i.e., 139

translate train documents or test ones. Other multi- 140

lingual legal NLP resources (Galassi et al., 2020; 141

Drawzeski et al., 2021) have been recently released, 142

although CLT is not applied in any form. 143

3 Experiments 144

3.1 Experimental Set Up 145

We use the Swiss-Judgment-Prediction (SJP) 146

dataset of Niklaus et al. (2021) containing cases 147

from the FSCS. The dataset is not equally dis- 148

tributed; in fact, there is a notable representation 149

disparity where Italian have far fewer documents 150

(4.2k), compared to German (50k) and French 151

(31k). Representation disparity is also vibrant with 152

respect to legal areas and regions. 153

Since the dataset contains many documents with 154

more than 512 tokens (90% of the documents are 155

up to 2048), we use hierarchical BERT models 156

(Chalkidis et al., 2019; Niklaus et al., 2021) to 157

encode up to 2048 tokens per document (4×512 158

blocks). We follow Niklaus et al. and report macro- 159

F1 score. We repeat each experiment with 3 differ- 160

ent random seeds and report the average score and 161

standard deviation across runs (seeds). Our code 162

and additional resources will be publicly available.1 163

3.2 Cross-lingual Transfer 164

We first examine cross-lingual transfer, where the 165

goal is to share (transfer) knowledge across lan- 166

guages, and we compare models in three main set- 167

tings: (a) Monolingual: fine-tuned per language, 168

using either the documents originally written in the 169

language, or an augmented training set including 170

the machine-translated versions of all other docu- 171

ments (originally written in another language),2 (b) 172

Cross-lingual: fine-tuned across languages with or 173

without the additional translated versions, and (c) 174

Zero-shot cross-lingual: fine-tuned across a subset 175

of the languages excluding a target language at a 176

time. We present the results in Table 1. 177

1Additional details on model configuration, training, and
hyperparameter tuning can be found in Appendix A.2.

2We use the EasyNMT (https://github.com/U
KPLab/EasyNMT) library to translate all documents using
M2M (Fan et al., 2020). Additional details in Appendix A.3.
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Model #M de fr it Avg

A. Fine-tune on the tgt training set (src = tgt) — Baselines

Niklaus et al. (2021) N 68.5 70.2 57.1 65.2

NativeBERT N 69.6 72.0 68.2 69.9
XLM-R N 68.2 69.9 59.7 65.9

B. Fine-tune on the tgt training set incl. translations (src = tgt)

NativeBERT N 70.0 71.0 71.9 71.0
XLM-R N 68.8 70.7 71.9 70.4

C. Fine-tune on all training sets (src ⊂ tgt)

XLM-R 1 68.9 71.1 68.9 69.7
XLM-R + Adapt 1 66.0 66.3 67.0 66.4

D. Fine-tune on all training sets incl. translations (src ⊂ tgt)

XLM-R 1 70.2 71.5 72.1 71.3
XLM-R + Adapt 1 70.0 70.5 69.8 70.1

E. Fine-tune on all training sets excl. tgt language (src ̸= tgt)

XLM-R 1 58.4 69.1 68.4 65.3
XLM-R + Adapt 1 57.7 64.0 62.6 61.5

Table 1: Test results for all training set-ups (mono-
lingual w/ or w/o translations, multilingual w/ or w/o
translations, and zero-shot) w.r.t source (src) and target
(tgt) language. Best overall results are in bold, and best
per setting (group) are underlined. The multilingually
trained model including translated versions (3× larger
training corpus) have the best overall results. #M is
the number of models trained/used (1, or N=3).

We observe that the baseline monolingually pre-178

trained models (NativeBERT) have the best results179

compared to the multilingually pre-trained XLM-R180

(group A – Table 1). Augmenting the original train-181

ing sets with translated versions of the documents182

(group B – Table 1), originally written in another183

language, improves performance in almost all (5/6)184

cases. Interestingly, the performance improvement185

in Italian, which has the least documents (less than186

1/10 compared to German), is approx. 2%; making187

Italian the best performing language.188

We now turn to the cross-lingual transfer set-189

ting, where we train XLM-R across all languages.190

We observe that cross-lingual transfer (group C –191

Table 1) improves performance across languages192

compared to the same model (XLM-R), fine-tuned193

in a monolingual setting. Augmenting the original194

training sets with the documents translated across195

all languages, further improves performance (group196

D – Table 1); translating the full training set pro-197

vides a 3× larger training set (approx. 150k in total)198

that equally represents all three languages.199

We also present results in a zero-shot cross-200

lingual setting (group E – Table 1), where XLM-R201

is trained in two languages and evaluated in the202

third one (unseen in fine-tuning). We observe that203

German has the worst performance (approx. 10%204

drop), which can be justified as German is a Ger-205

Legal Area #D Public Civil Penal Social All
Public 15.2k 56.4 52.2 59.7 60.1 57.1
Civil 11.5k 44.4 64.2 45.5 43.6 49.4
Penal 11.8k 40.8 55.8 84.5 61.1 60.6
Social 9.7k 52.6 56.6 69.0 70.2 62.1

All (XLM-R) 59.7k 58.0 67.2 84.4 70.2 70.0

All (Native) 59.7k 58.1 64.5 83.0 71.1 69.2

Table 2: Test results for models trained per legal area
(domain) or across all legal areas (domains). Best over-
all results are in bold, and in-domain are underlined.
Cross-domain transfer is beneficial for 3 out of 4 legal
areas and has the best overall results. #D is the number
of training examples per legal area.

manic language, while both French and Italian are 206

Romance and share a larger part of the vocabu- 207

lary. Contrarily, Italian, the low-resource language 208

in our experiments, strongly benefits from cross- 209

lingual transfer, leading to approx. 10% improve- 210

ment, compared to the monolingual XLM-R. A 211

general negative result of our study is that the use 212

of Adapters negatively affects results across all 213

cross-lingual settings. Concluding, cross-lingual 214

transfer with an augmented dataset comprised of 215

the original and machine-translated versions of all 216

documents, has the best overall performance with a 217

vibrant improvement (approx. 3% compared to the 218

baselines) in Italian, the least represented language. 219

3.3 Cross-domain/regional Transfer Analysis 220

3.3.1 Legal Areas 221

In Table 2 we present the results for cross-domain 222

transfer between legal areas. The results on the di- 223

agonal (underlined) are in-domain, i.e., fine-tuned 224

and evaluated in the same legal area. Interesting to 225

note is that the best results (bold) are achieved in 226

the cross-domain setting, either by using XLM-R 227

or NativeBERT in 3 out of 4 legal areas. Penal law 228

poses the only exception where the domain-specific 229

model outperforms the cross-domain model by 230

a small margin. The shared multilingual model 231

trained across all languages and legal areas (All 232

– XLM-R) outperforms the NativeBERT models 233

trained across all legal areas, giving another indica- 234

tion that the performance gains from cross-lingual 235

transfer are robust domain-wise as well. 236

3.3.2 Origin Regions 237

In Table 3 we present the results for cross-regional 238

transfer. In the top section of the table, we again 239

present the region-specific multilingual models 240

evaluated across regions (in-region on the diagonal, 241

zero-shot otherwise). Surprisingly, in some cases 242

the zero-shot model slightly outperforms the in- 243
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Origin Region #D #L ZH ES CS NWS EM RL TI FED All

Zürich (ZH) 8.8k de 65.5 65.6 63.7 68.2 62.0 57.9 63.2 54.8 62.6
Eastern Switzerland (ES) 5.7k de 62.9 66.9 62.8 65.2 62.2 60.2 57.8 55.1 61.6
Central Switzerland (CS) 4.8k de 62.5 65.5 63.2 65.1 60.7 57.8 60.5 55.9 61.4
Northwestern Switzerland (NWS) 5.7k de 66.0 68.6 65.2 67.9 61.6 57.0 57.1 55.5 62.4
Espace Mittelland (EM) 8.3k de,fr 64.1 66.6 63.3 66.7 64.0 66.8 63.2 58.4 64.1
Région Lémanique (RL) 13.4k fr,de 61.0 64.7 60.2 63.7 63.4 69.8 67.6 54.3 63.1
Ticino (TI) 2.3k it 55.0 56.3 53.2 54.5 56.0 54.7 66.0 53.1 56.1
Federation (FED) 1.3k de,fr,it 57.5 59.6 56.8 58.9 55.0 56.5 53.5 54.9 56.6

All (XLM-R) 59.7k de,fr,it 69.2 72.9 68.3 73.3 69.9 71.7 70.4 65.0 70.1

All (Native) 59.7k de,fr,it 69.0 72.1 68.6 72.0 69.9 71.9 68.8 64.8 69.6

Table 3: Test results for models trained per region or across all regions. Best overall results are in bold, and
in-domain are underlined. Cross-regional transfer is beneficial for all regions and has the best overall results.
The shared multilingual model trained across all languages and regions is comparable with the baseline (mono-
lingual BERT models). #D is the number of training examples per origin region. #L are the languages covered.

domain model (e.g., NWS to ZH and vice-versa).3244

Similar to cross-domain transfer across legal areas,245

in cross-regional transfer, cross-lingual transfer is246

beneficial in 5 out of 8 origin regions. Also, even247

more audibly, the cross-regional models always248

outperform region-specific models.249

3.4 Cross-Jurisdiction Transfer250

We, finally, “ambitiously” stretch the limits of trans-251

fer learning in LJP and we apply cross-jurisdiction252

transfer, i.e., use of cases from different legal sys-253

tems, another form of cross-domain transfer. For254

this purpose, we further augment the dataset of255

FSCS cases, with cases from the Supreme Court256

of India (SCI), published by (Malik et al., 2021).4257

We consider and translate all (approx. 31k) Indian258

cases ruled up to the last year (2014) of our training259

dataset, originally written in English, to all target260

languages (German, French, and Italian).5261

In Table 4, we present the results for two cross-262

jurisdiction settings: zero-shot (Only MT Indian),263

where we train XLM-R on the machine-translated264

version of Indian cases, and augmented (+ MT265

Indian), where we further augment the (already266

augmented) training set of Swiss cases with the267

Indian ones. While zero-shot transfer clearly fails;268

interestingly, we observe improvement for all lan-269

3We consider the distributional similarity (or dissimilarity)
w.r.t. legal areas as a plausible explanation for the minor per-
formance differences, but the results in Table 6 in Appendix C
does not fully justify all in/out of domain mismatches.

4Although SCI rules under the Indian jurisdiction (law),
while the FSCS under the Swiss one, we hypothesize that both
legal systems, primarily civil-based, share core standards, and
thus transferring knowledge could potentially have a positive
effect. We discuss this matter in Appendix E.

5We do not use the original documents written in English,
as English is not part of our target languages.

Dataset #D de fr it Avg

XLM-R + MT Swiss 59.7k 70.2 71.5 72.1 71.3

+ MT Indian 90.9k 70.5 71.8 73.5 72.0
Only MT Indian 31.2k 50.4 47.9 49.5 49.3

Table 4: Test results for cross-jurisdiction transfer in
both settings: zero-shot (Only MT Indian) and aug-
mented (+ MT Indian). Best results are in bold. Aug-
menting with Indian cases is overall beneficial.

guages in the augmented setting. This opens a new 270

fascinating direction for LJP research. The cumu- 271

lative improvement from all applied enhancements 272

adds up to approx. 7% macro-F1 compared to the 273

XLM-R baseline and best-of Niklaus et al. (2021). 274

Statistical Significance: Using Almost Stochas- 275

tic Order (ASO) (Dror et al., 2019) with a confi- 276

dence level α=0.05, we find the score distributions 277

of the core models (NativeBERT, w/ and w/o MT 278

Swiss, XLM-R w/ and w/o Indian MT) stochasti- 279

cally dominant (ϵmin = 0) over each other in order. 280

Results are presented in Table 5 in Appendix B. 281

4 Conclusions 282

We examined the application of CLT in Legal Judg- 283

ment Prediction for the very first time. We found 284

that a multilingually trained model including trans- 285

lated versions have the best overall results, espe- 286

cially in the low resource setting (Italian). We also 287

examined the effects of cross-domain ((legal ar- 288

eas) and cross-regional transfer, which is overall 289

beneficial in both settings, leading to more robust 290

models. Cross-jurisdiction transfer by further aug- 291

menting the training set with machine-translated 292

Indian cases improves overall performance. The 293

cumulative improvement from all applied enhance- 294

ments adds up to approx. 7% macro-F1. 295
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Ethics Statement296

The scope of this work is to study LJP to broaden297

the discussion and help practitioners to build assist-298

ing technology for legal professionals and layper-299

sons. We believe that this is an important appli-300

cation field, where research should be conducted301

(Tsarapatsanis and Aletras, 2021) to improve legal302

services and democratize law, while also highlight303

(inform the audience on) the various multi-aspect304

shortcomings seeking a responsible and ethical305

(fair) deployment of legal-oriented technologies.306

In this direction, we study how we could better307

exploit all the available resources (from various308

languages, domains, regions, or even different ju-309

risdictions). This combination leads to models that310

improve overall performance -more robust models-,311

while having improved performance in the worst-312

case scenarios across many important demographic313

or legal dimensions (low-resource language, worst314

performing legal area and region).315

Nonetheless, irresponsible use (deployment) of316

such technology is a plausible risk, as in any other317

application (e.g., content moderation) and domain318

(e.g., medical). We believe that similar technolo-319

gies should only be deployed to assist human ex-320

perts (legal scholars, or legal professionals).321

The examined dataset, Swiss-Judgment-322

Prediction, released by Niklaus et al. (2021),323

comprises publicly available cases from the FSCS,324

where cases are pre-anonymized, i.e., names and325

other sensitive information are redacted. The326

same applies for the Indian Legal Documents327

Corpus (ILDC) of Malik et al. (2021).328
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A Details on the Experimental Set Up529

A.1 Hierarchical BERT530

Since the Swiss-Judgment-Prediction dataset con-531

tains many documents with more than 512 tokens532

(90% of the documents are up to 2048), we use533

Hierarchical BERT models similar to (Chalkidis534

et al., 2019; Niklaus et al., 2021) to encode up to535

2048 tokens per document (4×512 blocks).536

We split the text into consecutive blocks of 512537

tokens and feed the first 4 blocks to a shared stan-538

dard BERT encoder. Then, we then aggregate the539

block-wise CLS tokens by passing them through540

another 2-layer transformer encoder, followed by541

max-pooling and a final classification layer.542

We re-use the implementation released by543

Niklaus et al. (2021),6 which is based on the Hug-544

ging Face Transformers library (Wolf et al., 2020).545

Notably, we improve the masking of the blocks.546

Specifically, when the document has less than the547

maximum number (4) of blocks, we pad with extra548

sequences of PAD tokens, without the use of special549

tokens (CLS, SEP), as was previously performed.550

This minor technical improvement seems to affect551

the model’s performance at large (Table 1).552

A.2 Hyperparameter Tuning553

We experimented with learning rates in {1e-5, 2e-554

5, 3e-5, 4e-5, 5e-5} as suggested by Devlin et al.555

(2019). However, like reported by Mosbach et al.556

(2020), we also found RoBERTa-based models to557

exhibit large training instability with learning rate558

3e-5, although this learning rate worked well for559

BERT-based models. 1e-5 worked well enough for560

all models. To avoid either over- or under-fitting,561

6https://github.com/JoelNiklaus/Swiss
JudgementPrediction

we use Early Stopping (Caruana et al., 2001) on 562

development data. 563

We opted to use the standard Adapters of 564

Houlsby et al. (2019), as the language Adapters in- 565

troduced by Pfeiffer et al. (2020) are more resource- 566

intensive and require further pre-training per lan- 567

guage. We tuned the adapter reduction factor in 568

{2×, 4×, 8×, 16×} and got the best results with 569

2× and 4×; we chose 4× for the final experiments 570

to favor less additional parameters. We tuned the 571

learning rate in {1e-5, 1e-4, 1e-3} and achieved the 572

best results with 1e-5. 573

We additionally applied label smoothing 574

(Szegedy et al., 2015) on cross-entropy loss. We 575

achieved the best results with a label smoothing 576

factor of 0.1 after tuning with {0, 0.1, 0.2, 0.3}. 577

We experiment with mono-lingually pre-trained 578

BERT models and XLM-R (approx. 550M pa- 579

rameters) of Conneau et al. (2020), available at 580

https://huggingface.co/models. Specifically, 581

for monolingual experiments (Native BERTs), we 582

use German-BERT (approx. 110M parameters) 583

(Chan et al., 2019) for German, CamemBERT 584

(Martin et al., 2020) (approx. 123M parameters) for 585

French, and UmBERTo (approx. 123M parameters) 586

(Parisi et al., 2020) for Italian, similar to Niklaus 587

et al. (2021). These models are considered the best 588

monolingual models in the respective languages. 589

A.3 Translating Documents with EasyNMT 590

We performed the translations using the 591

EasyNMT7 framework utilizing the many- 592

to-many M2M_100_418M model of (Fan et al., 593

2020), since the OPUS-MT (Tiedemann and 594

Thottingal, 2020) models did not have any model 595

available from French to Italian. A manual check 596

of some translated samples showed sufficient 597

translation quality. However, we noted that a 598

lack of legal-specific sentence splitters negatively 599

affected translation quality. We also expect higher 600

quality translations by designated (legal-oriented) 601

NMT systems. 602

B Statistical Significance Testing 603

Using ASO (Dror et al., 2019) with a confidence 604

level α = 0.05, we found the score distribu- 605

tions of core models (NativeBERT, NativeBERT + 606

MT Swiss, XLM-R + MT Swiss, XLM-R + MT 607

Swiss/Indian) ranked worst to best are stochasti- 608

cally dominant over each other (ϵmin = 0). We 609

7https://github.com/UKPLab/EasyNMT
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Model Type M1 M2 M3 M4

M1 1.0 1.0 1.0 1.0
M2 0.0 1.0 1.0 1.0
M3 0.0 0.0 1.0 1.0
M4 0.0 0.0 0.0 1.0

Table 5: Almost stochastic dominance (ϵmin < 0.5)
with ASO. Models are (M1: NativeBERT, M2: Native-
BERT + MT, M3: XLM-R + MT, M4: XLM-R + MT
Indian

compared all pairs of models based on three ran-610

dom seeds each using ASO with a confidence level611

of α = 0.05 (before adjusting for all pair-wise com-612

parisons using the Bonferroni correction). Almost613

stochastic dominance (ϵmin < 0.5) is indicated614

in Table 5. We use the deep-significance Python615

library of Ulmer (2021).616

C Distances Between Legal Area617

Distributions per Origin Regions618

ZH ES CS NWS EM RL TI FED

ZH .02 .02 .03 .02 .01 .02 .05 .12
ES .03 .03 .04 .03 .02 .01 .06 .11
CS .02 .01 .01 .02 .01 .04 .06 .13
NWS .05 .04 .06 .04 .04 .03 .04 .09
EM .03 .03 .04 .02 .03 .03 .04 .10
RL .06 .05 .07 .05 .05 .05 .04 .07
TI .07 .07 .08 .05 .07 .08 .02 .06
FED .10 .10 .12 .09 .10 .10 .06 .02

Table 6: Wasserstein distances between the legal area
distributions of the training and the test set per origin
region across languages. The training sets are in the
columns and the test sets in the rows.

In Table 6 we show the Wasserstein distances619

between the legal area distributions of the training620

and the test sets per origin region across languages.621

Unfortunately, this analysis does not explain why622

the NWS model (zero-shot) outperforms the ZH623

model (in-domain) on the ZH test set, as found in624

Table 3.3.2.625

D Additional Results626

In Tables 7, 8, 9, and 10 we present detailed re-627

sults for all experiments. All tables include both628

the average score across repetitions, as reported in629

the original tables in the main article, but also the630

standard deviations across repetitions.631

Model #N de fr it Avg

Fine-tune on the tgt training set (src = tgt) — Baselines

Linear (BoW) N 52.6 ± 0.1 56.6 ± 0.2 53.9 ± 0.6 54.4 ± 0.3

(Niklaus et al., 2021) N 68.5 ± 1.6 70.2 ± 1.1 57.1 ± 0.4 65.2 ± 0.8

NativeBERT N 69.6 ± 0.4 72.0 ± 0.5 68.2 ± 1.3 69.9 ± 1.6

XLM-R N 68.2 ± 0.3 69.9 ± 1.6 59.7 ± 10.8 65.9 ± 4.5

Fine-tune on the tgt training set incl. translations (src = tgt)

NativeBERT N 70.0 ± 0.7 71.0 ± 1.3 71.9 ± 2.5 71.0 ± 0.8

XLM-R N 68.8 ± 1.4 70.7 ± 2.1 71.9 ± 2.6 70.4 ± 1.3

Fine-tune on all training sets (src ⊂ tgt)

XLM-R 1 68.9 ± 0.3 71.1 ± 0.3 68.9 ± 1.4 69.7 ± 1.0

XLM-R + Adapt 1 66.0 ± 3.7 66.3 ± 3.3 67.0 ± 2.0 66.4 ± 0.4

Fine-tune on all training sets incl. translations (src ⊂ tgt)

XLM-R 1 70.2 ± 0.5 71.5 ± 1.1 72.1 ± 1.2 71.3 ± 0.7

XLM-R + Adapt 1 70.0 ± 0.3 70.5 ± 1.0 69.8 ± 0.6 70.2 ± 0.5

Fine-tune on all training sets excl. tgt language (src ̸= tgt)

XLM-R 1 58.4 ± 1.2 69.1 ± 1.2 68.4 ± 1.1 65.3 ± 4.9

XLM-R + Adapt 1 57.7 ± 1.9 64.0 ± 2.0 62.6 ± 1.2 61.5 ± 2.7

Table 7: Test results for all examined training set-ups
w.r.t source (src) and target (tgt) language. Best over-
all results are in bold, and best per setting (group) are
underlined. The mean and standard deviation are com-
puted across random seeds.

Area Public Civil Penal Social All

Public 56.4 ± 2.2 52.2 ± 2.0 59.7 ± 4.9 60.1 ± 5.8 57.1 ± 3.2

Civil 44.4 ± 7.9 64.2 ± 0.6 45.5 ± 13.1 43.6 ± 5.2 49.4 ± 8.6

Penal 40.8 ± 10.1 55.8 ± 2.9 84.5 ± 1.3 61.1 ± 7.5 60.6 ± 15.7

Social 52.6 ± 4.2 56.6 ± 2.0 69.0 ± 5.5 70.2 ± 2.0 62.1 ± 7.6

All (XLM-R) 58.0 ± 3.0 67.2 ± 1.6 84.4 ± 0.2 70.2 ± 1.3 70.0 ± 9.5

All (Native) 58.1 ± 3.0 64.5 ± 3.7 83.0 ± 1.3 71.1 ± 4.3 69.2 ± 9.2

Table 8: Test results for models trained per legal area
(domain) or across all legal areas (domains). Best over-
all results are in bold, and in-domain are underlined.
The mean and standard deviations are computed across
languages per legal area and across legal areas for the
right-most column. The number in brackets shows the
number of examples in the train set per legal area.

E Motivation for Cross-Jurisdiction 632

Transfer 633

Legal systems vary from country to country. Al- 634

though they develop in different ways, legal sys- 635

tems also have some similarities based on histori- 636

cally accepted justice ideals. Switzerland has a civil 637

law legal system, i.e., statutes (legislation) is the 638

primary source of law, at the crossroads between 639

Germanic and French legal traditions. Contrary, 640

India maintains a hybrid legal system with a mix- 641

ture of civil, common law and customary, Islamic 642

ethics, or religious law within the legal framework 643

inherited from the colonial era and various legisla- 644

tion first introduced by the British are still in effect 645

in modified forms today. 646

Although the Supreme Court of India (SCI) rules 647

under the Indian jurisdiction (law), while the Fed- 648

8



Dataset de fr it Avg

XLM-R + MT Swiss 70.2 ± 0.5 71.5 ± 1.1 72.1 ± 1.2 71.3 ± 0.7

+ MT Indian 70.5 ± 0.4 71.8 ± 0.3 73.5 ± 1.4 72.0 ± 0.9
Only MT Indian 50.4 ± 1.5 47.9 ± 1.0 49.5 ± 1.3 49.3 ± 1.0

Table 9: Test results for cross-jurisdiction transfer in
both settings: zero-shot (Only MT Indian) and aug-
mented (+ MT Indian). Best results are in bold. Aug-
menting with Indian cases is overall beneficial.

eral Supreme Court of Switzerland (FSCS) under649

the Swiss one, we hypothesize that the fundamen-650

tals of law in two primarily civil law legal systems651

are quite common, especially in penal law, and652

thus transferring knowledge could potentially have653

a positive effect.654

F Responsible NLP Research655

We include information on limitations, licensing656

of resources, and computing foot-print, as sug-657

gested by the newly introduced Responsible NLP658

Research checklist.659

F.1 Limitations660

In this appendix, we discuss core limitations that661

we identify in our work and should be considered662

in future work.663

Adapter under-performance Contrary to the lit-664

erature (Pfeiffer et al., 2021a,b; Chalkidis et al.,665

2021), in our case, Adapters do not improve in666

the cross-lingual transfer setting over fine-tuning.667

Although we tuned both the learning rate and the668

reduction factor (see Appendix A.3), we did not669

manage to improve the performance. So far, we do670

not have a reasonable explanation for this behavior.671

Data size flunctuations We did not control for672

the sizes of the training datasets, which is why we673

reported them in the Tables 2, 3 and 4. This mimics674

a more realistic setting, where the training set size675

differs based on data availability. However, we676

cannot completely rule out different performance677

based on simply more training data.678

Mismath in in/out of region model perfomance679

As described in Section 3.3.2, certain zero-shot680

evaluations outperform in-domain evaluations. Al-681

though we try to find an explanation for this in682

appendix C, it remains an open question.683

Re-use of Indian cases Although we have empir-684

ical results confirming the statistically significant685

positive effect of training with additional translated686

Indian cases, we do not have a thorough legal justi- 687

fication for this finding at the moment. 688

F.2 Licensing 689

The SJP dataset (Niklaus et al., 2021) we mainly 690

use in this work is available under a CC-BY-4 li- 691

cense. The second dataset, ILDC (Malik et al., 692

2021), comprising Indian cases is available upon 693

request. The authors kindly provided their dataset. 694

All used software and libraries (EasyNMT, Hug- 695

ging Face Transformers, deep-significance, and sev- 696

eral other typical scientific Python libraries) are 697

publicly available and free to use, while we always 698

cite the original work and creators. The artifacts 699

(i.e., the translations and the code) we created, tar- 700

get academic research and are available under a 701

CC-BY-4 license. 702

F.3 Computing Infrastructure 703

We used an NVIDIA GeForce RTX 3090 GPU 704

with 24 GB memory for our experiments. In to- 705

tal, the experiments took approx. 70 GPU days, 706

excluding the translations. The translations took 707

approx. 7 GPU days per language from Indian to 708

German, French, and Italian. The translation within 709

the Swiss corpus took approx. 4 GPU days in total. 710
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Region ZH ES CS NWS EM RL TI FED All

ZH 65.5 ± 0.0 65.6 ± 0.0 63.7 ± 0.0 68.2 ± 0.0 62.0 ± 2.9 57.9 ± 6.7 63.2 ± 0.0 54.8 ± 5.1 62.6 ± 4.1

ES 62.9 ± 0.0 66.9 ± 0.0 62.8 ± 0.0 65.2 ± 0.0 62.2 ± 1.1 60.2 ± 5.3 57.8 ± 0.0 55.1 ± 6.3 61.6 ± 3.6

CS ) 62.5 ± 0.0 65.5 ± 0.0 63.2 ± 0.0 65.1 ± 0.0 60.7 ± 1.6 57.8 ± 3.7 60.5 ± 0.0 55.9 ± 0.5 61.4 ± 3.1

NWS 66.0 ± 0.0 68.6 ± 0.0 65.2 ± 0.0 67.9 ± 0.0 61.6 ± 1.7 57.0 ± 4.9 57.1 ± 0.0 55.5 ± 5.7 62.4 ± 4.9

EM 64.1 ± 0.0 66.6 ± 0.0 63.3 ± 0.0 66.7 ± 0.0 64.0 ± 0.7 66.8 ± 2.9 63.2 ± 0.0 58.4 ± 0.3 64.1 ± 2.6

RL 61.0 ± 0.0 64.7 ± 0.0 60.2 ± 0.0 63.7 ± 0.0 63.4 ± 3.3 69.8 ± 2.7 67.6 ± 0.0 54.3 ± 7.2 63.1 ± 4.4

TI 55.0 ± 0.0 56.3 ± 0.0 53.2 ± 0.0 54.5 ± 0.0 56.0 ± 0.4 54.7 ± 0.9 66.0 ± 0.0 53.1 ± 6.4 56.1 ± 3.9

FED 57.5 ± 0.0 59.6 ± 0.0 56.8 ± 0.0 58.9 ± 0.0 55.0 ± 1.0 56.5 ± 1.1 53.5 ± 0.0 54.9 ± 2.9 56.6 ± 1.9

All (XLM-R) 69.2 ± 0.0 72.9 ± 0.0 68.3 ± 0.0 73.3 ± 0.0 69.9 ± 1.6 71.7 ± 2.8 70.4 ± 0.0 65.0 ± 3.9 70.1 ± 2.5

All (Native) 69.0 ± 0.0 72.1 ± 0.0 68.6 ± 0.0 72.0 ± 0.0 69.9 ± 1.6 71.9 ± 0.7 68.8 ± 0.0 64.8 ± 7.0 69.6 ± 2.3

Table 10: Test results for models trainer per region (domain) or across all regions (domains). Best overall results are
in bold, and in-domain are underlined. The mean and standard deviations are computed across languages per origin
region and across origin regions for the right-most column. The regions where only one language is spoken thus
show std 0.
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