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ABSTRACT

Scientific and environmental imagery are often degraded by multiple compounding
factors related to sensor noise and environmental effects. Existing restoration
methods typically treat these compound effects by iteratively removing fixed cate-
gories, lacking the compositionality needed to handle real-world mixtures and often
introducing cascading artifacts, overcorrection, or signal loss. We present PRISM
(Precision Restoration with Interpretable Separation of Mixtures), a prompted
conditional diffusion framework for expert-in-the-loop controllable restoration
under compound degradations. PRISM combines (1) compound-aware supervision
on mixtures of distortions and (2) a weighted contrastive disentanglement objective
that aligns compound distortions with their constituent primitives to enable high-
fidelity joint restoration. We outperform image restoration baselines on unseen
complex real-world degradations, including underwater visibility, under-display
camera effects, and fluid distortions. PRISM also enables selective restoration.
Across microscopy, wildlife monitoring, and urban weather datasets, our method
enhances downstream analysis by letting experts remove only degradations that
hinder analysis, avoiding black-box “over-restoration.” Together, these results estab-
lish PRISM as a generalizable, controllable framework for high-fidelity restoration
in domains where scientific utility is a priority.
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Figure 1: Expert-in-the-Loop Restoration with PRISM. PRISM learns separable, compositional
embeddings of distortions, enabling robust compound restoration and zero-shot handling of unseen
mixtures. It balances high fidelity with expert control, supporting both automatic restoration and
prompt-driven, selective correction for scientific analysis.

1 INTRODUCTION

Scientific and environmental imagery is rarely degraded by a single factor. Instead, images typically
suffer from compounding effects that vary across datasets and collection settings. For instance,
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underwater images combine low light, scattering, and wavelength-dependent absorption effects
(Akkaynak & Treibitz, 2018; Chiang & Chen, 2011), while satellite imagery suffers from overlapping
sensor noise, haze, and cloud occlusions (King et al., 2013; Ahmad et al., 2019).

Specialized single-distortion models (e.g., dehazing or cloud removal) enable domain experts to
preprocess noisy data before conducting analysis. These approaches are often carefully hand-crafted
for specific datasets and distortion types, making them brittle when degradations occur unpredictably.
For example, camera trap data may combine the effects of motion blur, weather, and lighting that vary
across images from the same deployment, making single-distortion pipelines ineffective. While this
has motivated generalist “all-in-one” models (Li et al., 2020; Potlapalli et al., 2023b), evaluations on
these methods typically emphasize image quality rather than scientific fidelity. In practice, restoration
must preserve signals critical for precision and analysis, not just aesthetics.

Moreover, current frameworks fail in two ways: (1) sequential/iterative removal of single distortions,
leading to cascading artifacts, or (2) indiscriminate removal, erasing signals that should be preserved.
In science, “more restoration” may mean more error: denoising may erase faint galaxies (Starck et al.,
2002), and super-resolution can hallucinate microscopy structures (Christensen, 2022). Few models
let experts control these tradeoffs.

We argue that restoration for science requires three principles: simultaneous over sequential correc-
tion, control over automation, and precision over aesthetics. We introduce PRISM, a conditional
diffusion framework that disentangles compound degradations and enables expert-guided, faithful
restoration. Our contributions are:

1. A framework with compound-aware supervision and contrastive disentanglement across a
broad diversity of primitive tasks, producing separable embeddings of distortions for robust
sequential and compound restoration, even under unseen real-world mixtures;

2. A novel benchmark for scientific utility spanning remote sensing, ecology, biomedical, and
urban domains—including our newly-introduced Rooftop Cityscapes dataset—that evaluates
task fidelity rather than perceptual scores;

3. A systematic study showing that controllability is not a convenience but a necessity: selective
restoration significantly improves scientific accuracy under unseen, real-world degradations,
establishing precision and expert guidance as core requirements for trustworthy restoration.

2 RELATED WORKS

2.1 RESTORATION IN SCIENTIFIC DOMAINS

Restoration has long been integral to scientific imaging: early astronomy corrected photographic
plates (Gull & Daniell, 1978), while biomedical imaging relied on denoising and deblurring for
diagnostics (Buades et al., 2005; Dabov et al., 2007). Modern deep learning pipelines continue
this pattern with destriping in astronomy surveys (Liu et al., 2025; Vojtekova et al., 2021) or MRI
denoising (Yan et al., 2024; Manj6én & Coupe, 2018; Kidoh et al., 2020). These methods are effective
but assume degradations are fixed and known.

In reality, compound degradations are common. Domain-specific models like Sea-Thru (Akkaynak &
Treibitz, 2019) or dark channel priors for atmospheric correction (Li et al., 2018; Guo et al., 2019)
explicitly model these effects, but rely on tailored, paired datasets where “ground truth” is often
simulated, limiting generalization.

Several works across scientific imaging domains caution that aggressive or over-generalized restora-
tion, particularly where multiple degradations are removed simultaneously, can introduce unwanted
artifacts and compromise fidelity. In microscopy, Lu et al. (2025) showed that over-denoising obliter-
ates critical details; in underwater monitoring, Cecilia & Murugan (2022) found generic denoisers
over-smooth marine structures, obscuring ecologically relevant edges. These studies highlight that
clean images are not always better: over-restoration risks discarding weak but meaningful signals
or introducing unwanted artifacts. Taken together, there is a clear need for frameworks that jointly
handle compound effects while allowing expert control over what to preserve.
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2.2 COMPOUND DEGRADATION IMAGE RESTORATION

“All-in-one” models share backbones but treat degradations independently, e.g., All-WeatherNet (Li
et al., 2020), TransRestorer (Chen et al., 2021), and SmartAssign (Wang et al., 2023). . Universal
networks (MT-Restore (Chen et al., 2022b), All-in-OneNet (Li et al., 2022b), PatchDiffuser (Oz-
denizci & Legenstein, 2023)) improve flexibility, yet fail when degradations overlap nonlinearly.
Composite approaches such as OneRestore (Guo et al., 2024) and AllRestorer (Mao et al., 2024)
better capture interactions. However, they remain black boxes with no expert-in-the-loop control, and
their generalization to unseen mixtures is unclear.

2.3 PROMPT-GUIDED RESTORATION AND CONDITIONAL DIFFUSION

Prompt-based methods provide greater adaptability. The scene descriptor tokens in OneRestore,
AllRestorer, and PromptIR (Potlapalli et al., 2023b) demonstrate that textual conditioning improves
all-in-one restoration on limited sets of fixed categories. Diffusion-based methods (Ho et al., 2020;
Dhariwal & Nichol, 2021; Rombach et al., 2022) extend this idea with higher fidelity: DiffPlugin (Liu
et al., 2024) introduces modular prompt conditioning with natural language, MPerceiver (Ai et al.,
2024) encodes degradation as "tokens", and AutoDIR (Jiang et al., 2024) prompts over dominant
subtasks iteratively. These works either require predefined vocabularies, treat degradations discretely,
or accumulate errors in sequential restoration. Jiang et al. (2024) and Ai et al. (2024) hint at primitive
decomposition for generalization but stop short of modeling mixtures compositionally.

A recent survey (Jiang et al., 2025) highlights two key gaps: (1) explicitly handling complex, real-
world degradations and (2) establishing standardized multi-domain evaluations. We address both by
enforcing compositionality in the image embedding space and introducing a Mixed Degradations
Benchmark (MDB) and downstream task evaluation pipeline. Furthermore, prior approaches have
not jointly addressed (1) controllability, (2) compound degradation removal, and (3) robustness to
unseen mixtures. PRISM fills this gap with compound-aware supervision, weighted contrastive
disentanglement, and prompt-based conditioning, enabling precise and interpretable restoration.

3 METHODS

PRISM is trained on a large-scale diverse dataset of mixed degradations, integrates compound-aware
supervision with contrastive disentanglement, and uses a latent diffusion backbone augmented with
modules for content preservation and controllable restoration.

3.1 BUILDING A DATASET OF COMPOUND DEGRADATIONS

We construct a synthetic dataset from diverse scientific domains: ImageNet (Deng et al., 2009),
Sentinel-2 patches from Sen12MS (Schmitt et al., 2019), iWildCam 2022 (JohnBeuving et al., 2022),
EUVP underwater imagery (Islam et al., 2020), CityScapes (Cordts et al., 2016), BioSR microscopy
slides (Gong et al., 2021), Brain Tumor MRI (Nickparvar, 2021), and high-resolution Subaru/HSC
sky surveys (Miao et al., 2024). Across these datasets, we sample 1.5M clean images that serve as
the ground truth targets during training.

Compound-Aware Supervision. Each image is degraded by up to three distortions sampled from
a library including geometric warping, blur, photometric shifts and weather effects, etc. We cap
distortions at three to capture challenging compound cases while maintaining efficiency and prompt
interpretability. For each image I.jean, a distorted version is generated as

Idisl - dil o di2 o d13 (Iclean)a (1)

where o denotes composition. The distortions are applied in random order with varied parameters
(i.e. kernel size for blurring, intensity of snowfall, etc.) that determine degradation intensity. Prompts
p describing distortions are auto-generated with GPT-4 (Hurst et al., 2024) to simulate the variability
in natural-language queries that may be provided as input. We also include partial prompts (remove
a subset of distortions) and negative prompts (remove a non-present distortion), training the model
to both handle joint degradations and respect user instructions. The dataset consists of triplets
(Xetean, Laist, p). Further details on distortions, dataset construction, and sampling are provided in
Appendix Sec. D.
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3.1.1 THE PRISM MODEL

Our framework builds on composite/all-in-one restoration (Guo et al., 2024; Jiang et al., 2024; Ai
et al., 2024) but emphasizes controllability and precision under compound degradations. We first
fine-tune the CLIP image encoder, keeping the text encoder frozen, on our mixed-degradation dataset
to ensure that embeddings preserve semantic content while becoming distortion-invariant; once
adapted, we freeze both CLIP encoders to provide a stable conditioning space for training the latent
diffusion backbone.

Disentangling Distortions. Naive CLIP embeddings are poorly suited to restoration, as they cluster
images by semantic content rather than image quality. Jiang et al. (2024) showed that quality-aware
embeddings improve restoration by shifting focus to degradations. We extend this to the compound
distortion setting, encoding compositionality so embeddings reflect both individual and overlapping
degradations (e.g., an image with haze+rain sits closer to haze or rain than to noise).

Let Igjean be a clean image with m degraded variants, where each variant I}, is generated by applying
either a single primitive degradation (e.g., haze, blur, noise) or a mixture. With embeddings f(-)

and cosine similarity sim(-, -), each degraded variant I, gist is aligned with I.jean and repelled from (i)

sibling degradations 1, (’fm for k # j and (ii) other minibatch images Bope;-

To reflect the fact that some degradations are more similar than others, sibling negatives are weighted
|d7 Nd*| )

by the Jaccard distance between their degradation sets, w3 = exp (1 mlraval

This weighting means that two variants sharing any primitives (e.g., haze vs. haze+rain) are treated
as more similar than variants with little overlap (e.g., haze vs. noise) are pushed further apart. In
other words, the loss models compound degradations as mixtures of their primitives, ensuring the
embedding space preserves compositionality. The per-variant contrastive loss is

_eXp(Sim(f(Igist)v fLetean)) /) _
kg Wik XD (L), F(T5))/7) + Ve, XD (F (L), f())/7)]

LG = —log

other

for some temperature 7 (see Sec. G in the Appendix for ablation study). This term is averaged over
all clean images per batch and their variants. To further bias embeddings toward fidelity, we add a
quality-aware regularizer for each clean image

m

1 .
Equal = E Z Z p(C ‘ Iclean)7

Jj=1cedi
where d7 is the set of degradations applied to I C{ist, and p(c | Icean) is the model’s predicted probability
that the clean embedding exhibits this configuration. When averaged over a batch, this penalizes
clean embeddings that encode artifacts from their degraded counterparts.

The final objective is Lcpip = Lo + Lquai- This yields embeddings that cluster degraded views
with their clean counterpart and maintain compositional structure, enabling precise and controllable
restoration.

Prompting. Using this disentangled latent space, PRISM can generate its own input prompts.
We predict a distribution over candidate degradations D via multi-label classification on encoder
embeddings, converting predictions into prompts of the predefined fixed format. This hybrid design
supports both expert-guided and automated restoration. For our experiments below, we use fixed text
prompts of the form “remove the effects of distortions x, y, and z”.

PRISM bridges natural language prompts to task predictions through a two-stage process. Each
prompt from our training set described above is paired with a ground-truth label set from a fixed
vocabulary of distortions (blur, haze, blur and haze, etc.), enabling supervised training of the mapping
between text and tasks. At inference time, user-provided prompts are encoded with the frozen CLIP

text encoder and projected into this label space, producing a multi-label prediction D that specifies
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Figure 2: Overview of PRISM. We first fine-tune CLIP’s image encoder to disentangle image
embeddings by distortion. The degraded input and user prompt are then used to condition the latent
diffusion backbone, the coarse outputs of which are refined with a Semantic Content Preservation
Module (SCPM) to yield the final restored output.

which degradations to remove. This design allows PRISM to accept free-form natural language while
ensuring predictions align with a consistent set of restoration tasks.

Model Backbone. We adopt a latent diffusion model (Rombach et al., 2022), operating in VAE-
compressed space. Unlike prior sequential restoration methods, which remove distortions step-by-step
(Jiang et al., 2024), PRISM conditions diffusion directly on composite prompts, reducing cascading
errors. While MPerceiver (Ai et al., 2024) uses concatenated tokens to encode multiple degradations,
this method does not explicitly model compositionality or enable controllable prompts.

To recover fine details, we jointly fine-tune a Semantic Content Preservation Module (SCPM) that
fuses encoder and decoder features via adaptive modulation

frefined = 'Y(fenc) ® Norm(fdec) + ﬂ(fenc)y 2)

where 7(-) and j(-) are learned affine transforms, and ® denotes element-wise multiplication.
Residual and attention blocks process frefineq before final decoding by Dyag. By reintroducing
encoder features at the decoding stage, SCPM retains fine structures (edges, textures, or small objects)
that are often lost in the bottleneck representation.

Refer to Appendix Sec. G for more details and ablations over model components (loss, SCPM, etc.).
For fair comparison, all baselines are trained on the same set of primitive distortions. Training details,
compute requirements, and baselines are described in Appendix Secs. C and F.

3.2 EVALUATION

We evaluate PRISM on: (1) compound and controllable restoration, (2) handling unseen real-world
composites, and (3) downstream utility. Unless noted otherwise, we use manual prompting with
pre-defined distortion types. Full details on datasets and evaluation are in Appendix D and E.

Mixed Degradations Benchmark (MDB). We build a fixed testbed of triplets (Zciean, Laist, p) With
up to three randomly composed distortions and a matching prompt p. MDB measures sequential vs.
composite prompting and prompt faithfulness under compound degradations. This dataset builds off
of the CDD-11 proposed by Guo et al. (2024) to span a broader diversity of real-world degradations.

Handling Unseen Distortions. For zero-shot tests, we evaluate on real domains with compound
distortions not explicitly seen in training: underwater effects (low light, color, and haze) in UIEB (Li
et al., 2019), under-display camera artifacts (low light, blur, and contrast) (Zhou et al., 2021), and
fluid-based distortions (refraction and warping) (Thapa et al., 2020). These probe PRISM’s ability to
extend to novel, physically distinct distortions.

Downstream Utility. Standard benchmarks measure pixel similarity to a clean reference, but this
misses whether restored images remain scientifically useful. We instead evaluate restoration through
downstream tasks using real datasets with natural distortions and undistorted views as ground truth.
To reflect how restoration outputs are typically used in practice, we use off-the-shelf pretrained
models, giving a conservative but practical measure of utility. We test across four real-world domains:

1. Remote sensing with Sen12MS (Schmitt et al., 2019): landcover classification (Papoutsis
et al., 2023) on cloudy satellite data, with labels from cloudless samples.
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2. Wildlife monitoring with iWildCam 2022 (JohnBeuving et al., 2022): species classifica-
tion with SpeciesNet (Gadot et al., 2024) on low-confidence nighttime images with expert
labels from high-confidence frames of the same sequence.

3. Segmentation and tracking in microscopy with BioSR (Gong et al., 2021): segmentation
of clathrin-coated pits from low signal-to-noise data using MicroSAM (Archit et al., 2025),
compared to high quality structured illumination microscopy (SIM) ground truth.

4. Urban forest monitoring using our novel Rooftop Cityscapes dataset: panoptic segmen-
tation (Lin et al., 2017) of cityscapes under haze/low light, with paired, labeled clear-weather
data. See Appendix Sec. E for details on this custom dataset.

4 RESULTS AND DISCUSSION

We present results that evaluate PRISM’s ability to restore images degraded by multiple simultaneous
distortions, showing how compound-aware supervision and contrastive disentanglement together
improve restoration fidelity and controllability under complex degradation scenarios.

4.1 BREAKING THE CASCADE: COMPOUND RESTORATION MADE ROBUST

Table 1: PRISM outperforms baselines on MDB, where each Sequentially removing distor-
test image has up to three distortions. Best results are bolded, tions often accumulates errors:

second-best are underlined. each step can introduce artifacts,
Method ‘ PSNR+ SSIM+ FID| LPIPS | smoothlng, or 1nconsistencies.
AirNet (Li et al., 2022a) 1923 0742 7855 0382 Restoring all distortions jointly
Restormer 4 (Zamir et al., 2022) 20.84 0768  70.11 0365 avoids these pitfalls and yields
NAFNet 4 (Chen et al., 2022a) 21.51 0776 6830 0352 more stable, high-fidelity results.
PromptIR (Potlapalli et al., 2023a) 22.67 0.801 62.78 0.298 0 MDB luati t
OneRestore (Guo et al., 2024) 2294 0812 5942 0276 ur MUDB evaluation supports

PP this intuition (qualitative results

DiffPlugin (Liu et al., 2024) 23.45 0.821 53.88 0.255 in A dix Fi 16 d15
MPerceiver (Ai et al., 2024) 24.19 0.829  48.18 0.235 n Appendix Figs. an ).
AutoDIR (Jiang et al., 2024) 23.84 0.833 5075  0.246 L ..
PRISM (ours) 2562 0842 4897 0218 Table 1 highlights a divide be-

tween early all-in-one models
(AirNet, Restormer, NAFNet, PromptIR), which are trained per-distortion and generalize poorly to
mixtures, and recent composite/diffusion approaches (DiffPlugin, MPerceiver, AutoDIR). OneRestore
struggles with capacity limits, while diffusion methods improve perceptual fidelity but still rely on
single-distortion or sequential training.

PRISM achieves the best results across both fidelity (PSNR/SSIM) and perceptual metrics
(FID/LPIPS), owing to two design choices: (1) compound-aware supervision, which trains on
mixed degradations, and (2) contrastive disentanglement of embeddings to separate degradations
from semantics. We study the contributions of each below.

C - PSNR (1)
ompound-aware supervision sup- 075

ports restoratlo‘n under 1nc1:eas- 5.0 1180 A11.30 A7.30 £3.70 I
ingly complex mixed degradations. 1
Training on combinatorial mixtures of 225 - J— ) &
degradations (full, partial, and nega-  2°° %
tive restoration) teaches how they in- 7.8 3 §
teract, enabling simultaneous removal 15.0 a
without cascading errors. PRISM 125 N
matches baselines on single distor- 10.0 i [ i

tions but excels as complexity grows, putoP® ¥ peroaNe Pg\s“;\‘e\ Pg\s(\;';\@

even on unseen cases with four dis- e o™

tortions. Fig. 3 shows that train- Methods

ing on composites explicitly outper-
forms training on separate distortions,
and that improved image embeddings
from our contrastive loss provide an
additional boost over baselines.

Figure 3: PRISM trained on composite examples scales best
with the number of distortions. This outperforms our model
trained on each degradation separately as well as comparable
baselines, emphasized by the A (change in performance
across test images with 1 vs. 4 distortions) above each bar.
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distortions enables faithful stepwise
and single-shot restoration. This
closes the gap between prompting
strategies.

By combining compound-aware supervision with contrastive
disentanglement, PRISM not only outperforms existing base-
lines on restoring compound degradations, but also enables
expert-in-the-loop control. In improving sequential restoration,
users can specify which degradations to remove and which signals to preserve. The result is a restora-
tion framework that is both more precise and more flexible, making it well-suited for real-world
scientific and environmental imaging applications where overcorrection or artifact introduction can
compromise downstream analysis.

4.2 COMPOSITIONALITY ENABLES ADAPTIVE RESTORATION IN NOVEL SETTINGS

Strong compound restoration performance also supports generalization to unseen degradations. If
degradations are represented compositionally, then novel composites can be modeled as combinations
of known primitives. This means PRISM can automatically identify constituent distortions and
restore them, even if the exact combination was never seen in training.

We evaluate zero-shot restoration on three domains: underwater imagery (UIEB), under-display
cameras (POLED), and fluid lensing (ThapaSet), all featuring novel complex distortions (see Table
2). We include qualitative results in Appendix Sec. H.

Table 2: PRISM achieves state-of-the-art zero-shot performance across underwater (UIEB), under-
display camera (POLED), and fluid lensing (ThapaSet) benchmarks. Best results are bolded, second-
best are underlined.

Method UIEB (Li et al., 2019) | POLED (Zhouetal,, 2021) | ThapaSet (Thapa et al., 2020)
[PSNRT SSIMT LPIPS] [PSNRT SSIMT LPIPS| | PSNRT SSIMT LPIPS |
AirNet (Li et al., 2022a) 16.95 0.755 0.312 13.21 0.517 0.705 19.52 0.741 0.386
Restormer 4 (Zamir et al., 2022) 17.42 0.771 0.297 14.11 0.533 0.684 21.14 0.782 0.354
NAFNet 4 (Chen et al., 2022a) 17.28 0.739 0.309 11.04 0.561 0.719 20.88 0.774 0.363
PromptIR (Potlapalli et al., 2023b) | 20.61 0.879 0.183 18.37 0.621 0.512 22.84 0.808 0.282
OneRestore (Guo et al., 2024) 21.41 0.886 0.171 19.28 0.633 0.488 23.76 0.821 0.263
DiffPlugin (Liu et al., 2024) 22.05 0.895 0.162 19.91 0.641 0.469 24.06 0.827 0.252
MPerceiver Ai et al. (2024) 22.74 0.903 0.152 20.36 0.647 0.448 24.39 0.832 0.238
AutoDIR (Jiang et al., 2024) 22.63 0.903 0.153 20.29 0.646 0.441 24.52 0.834 0.243
PRISM (ours) 23.52 0.914 0.139 21.46 0.661 0.444 25.28 0.845 0.224

All-in-one models (AirNet, Restormer, NAFNet) fall short under these conditions, while composite
methods like OneRestore are bottlenecked by under-parameterization. Diffusion models (AutoDIR,
MPerceiver) generalize better but treat degradations as isolated factors, reducing robustness under
unseen compounds.

PRISM'’s separable, compound-aware latent space drives its state-of-the-art zero-shot performance
across diverse domains. Rather than explicitly modeling complex physical processes such as the
propagation of ripples over water, PRISM learns a representation where unseen composites align
with their constituent primitives (for example, haze+brightness embeddings lie between haze and
brightness) preserving compositional structure while remaining distinct from unrelated distortions.
By modeling composites both as unique entities and as structured combinations of primitives, the
system can interpolate corrections rather than memorizing fixed categories.

Fig. 5 illustrates how this structure translates into practice. In improving performance on partial

restoration, PRISM enables experts to issue stepwise prompts (e.g., “unwarp,” “fix coloring,” “unblur’)
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Figure 5: Controllability supports expert-driven compositional generalization. Stepwise restoration of
a reef drone image shows how prompts progressively target distortions. The embedding visualization
demonstrates that unseen compound degradations lie between their constituent primitives, enabling
both strong zero-shot performance and expert-in-the-loop control.
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to iteratively target different factors for unseen distortion types. This geometry not only enables
zero-shot generalization but also provides interpretability and control: experts can explore how
distortions relate, refine restoration strategies, and avoid blindly applying black-box corrections.
Such interactivity is especially critical in scientific domains, where over-restoration risks introducing
artifacts or erasing faint but meaningful signals.

4.3 PRIORITIZING PRECISION IN RESTORATION

The results above show that PRISM restores images robustly under compound degradations, both
sequentially and in a single step. We next evaluate its impact on downstream tasks, shifting from
perceptual quality to scientific utility across four domains: remote sensing, ecology, microscopy, and
urban monitoring.

Table 3: PRISM faithfully restores data across real scientific datasets. We report mean =+ std on
fully-restored outputs over 3 random seeds. Best results are bolded, second-best are underlined.

Method \ Sentinel-2 (Acc. 1)  iWildCam (Acc. 1) BioSR (mIoU 1) Rooftop Cityscapes (mIoU 1)
AirNet (Li et al., 2022a) 0.791 £+ 0.017 0.961 4+ 0.012 0.523 £+ 0.020 0.635 4+ 0.018
Restormer 4 (Zamir et al., 2022) 0.812 4+ 0.015 0.965 4+ 0.011 0.550 £+ 0.017 0.639 4+ 0.016
NAFNet 4 (Chen et al., 2022a) 0.807 £ 0.018 0.970 £ 0.014 0.546 £ 0.019 0.635 £ 0.017
OneRestore (Guo et al., 2024) 0.833 £ 0.014 0.969 £ 0.010 0.611 £ 0.015 0.636 £ 0.015
PromptIR (Potlapalli et al., 2023b) 0.835 £ 0.013 0.971 £ 0.012 0.626 £+ 0.014 0.632 £ 0.013
DiffPlugin (Liu et al., 2024) 0.838 £ 0.013 0.975 £ 0.011 0.643 £ 0.014 0.636 £+ 0.013
MPerceiver (Ai et al., 2024) 0.842 + 0.012 0.975 £ 0.010 0.637 £ 0.014 0.644 £ 0.012
AutoDIR (Jiang et al., 2024) 0.841 4+ 0.013 0.976 £ 0.012 0.642 +0.011 0.641 4+ 0.013
PRISM (ours) 0.842 £+ 0.011 0.976 + 0.008 0.657 £+ 0.012 0.650 + 0.012

As shown in Table 3, PRISM consistently yields strong downstream performance, boosting classifica-
tion in wildlife and remote sensing, and segmentation in microscopy and urban scenes. Gains are
especially pronounced for dense segmentation, which depends on fine textures and faint structures
often lost under mixed distortions, while classification models are comparatively robust to noise. This
highlights PRISM’s value for dense prediction tasks where subtle details drive scientific precision.

4.3.1 THE CASE FOR CONTROLLABILITY IN SCIENCE

If a model is powerful enough to remove all degradations, should it always do so? In scientific
imaging, the answer is often no. Distortions are frequently entangled with faint but meaningful signals,
and indiscriminate restoration can erase these cues or introduce artifacts that mislead downstream
analysis. This makes controllability essential: experts must be able to decide which degradations to
correct and which to preserve.

As shown in Table 4, selective controllability significantly improves downstream performance over
full restoration (automatically detecting all distortions present) in three of four domains. In nighttime
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camera trap data, restoring only contrast improves recognition over full restoration, which can blur
subtle texture cues. In microscopy, super-resolution alone aligns best with SIM references, while
adding denoising suppresses faint but biologically relevant signals. In urban scenes, removing haze
improves segmentation, but also correcting low light over-adjusts vegetation and sky regions. Remote
sensing is the exception: full restoration performs slightly better, since removing only clouds leaves
images under-illuminated and affected by residual haze.

Table 4: Selective controllability outperforms full restoration across three of four downstream tasks.
We report mean = std over 3 random seeds. Best results are bolded.

Domain \ Degraded Input  Full Restoration  Selective Restoration p-value
Remote sensing (Acc. T) 0.781 £ 0.013 0.842 + 0.011 0.836 £ 0.012 0.11 (n.s.)
Camera Traps (Acc. 1) 0.921 £ 0.004 0.976 £ 0.008 0.984 + 0.004 0.032 < 0.05
Microscopy (mlIoU 1) 0.353 £0.015 0.475 £0.012 0.580 £ 0.010 0.018 < 0.05
Urban scenes (mloU 1) 0.548 £ 0.018 0.615 £ 0.014 0.650 £ 0.012 0.041 < 0.05

Fig. 6 illustrates a use case of controllability in microscopy: super-resolution alone improves
segmentation alignment with SIM ground truth, but additional denoising erases faint, biologically
relevant structures. Additional examples across other domains are included in Appendix Sec. H.

&% ‘“remove the effects of
“=" low-resolution and noise”

LQ Microscopy Sensor

‘ “super-resolve” HQ Microscopy Sensor

mlOU: 0.382 mlOU: 0.495 mlOU: 0.569

Figure 6: Selective restoration improves segmentation of clathrin-coated pits in microscopy. Super-
resolution alone improves mloU, while automatically detecting and removing noise suppresses faint
but biologically relevant signals (see regions encircled in red), reducing accuracy.

These results suggest that in scientific domains, controlled restoration allows experts to prioritize
downstream utility. In some cases, running inference on the original noisy data is preferable to relying
on incorrectly “cleaned” outputs, particularly when downstream models are already robust to noise.
Effective restoration systems must therefore prioritize fidelity and expert guidance to ensure outputs
remain scientifically reliable.

At the same time, important challenges remain for PRISM. Our training still depends on synthetic
augmentations that cannot fully capture real distortions. Moreover, extending controllability beyond
“which distortions to remove” toward specifying their intensity and spatial extent would enable
localized restoration and finer-grained preservation of scientific signals.

5 CONCLUSIONS

Our results show that controllable, compound-aware restoration is critical for scientific and envi-
ronmental imaging. PRISM outperforms both specialized and generalist baselines by combining
(1) compound-aware supervision, which exposes the model to overlapping degradations, and (2)
weighted contrastive disentanglement, which organizes the latent space so composite distortions align
with their constituent primitives. Together, these yield more robust and interpretable restoration.

We also find strong generalization beyond curated training sets. PRISM achieves robust zero-shot
performance on underwater imaging, under-display camera correction, and fluid lensing, showing
that compositional representations extend naturally to unseen domains. Importantly, evaluations on
real-world composite degradations confirm generalization beyond our synthetic training pipeline.

A key insight is that more restoration is not always better. Across diverse domains, we show that
indiscriminate removal of degradations suppresses faint but meaningful signals or introduced artifacts.
Allowing experts to choose which degradations to correct is essential for scientific precision.
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ETHICS STATEMENT

This work builds on publicly available datasets and synthetic distortions, and does not involve human
subjects, personally identifiable information, or sensitive data. Where real-world ecological and
scientific datasets are used (e.g., remote sensing, microscopy, ecological monitoring), we follow the
original licenses, usage guidelines, and citation practices specified by dataset creators.

Our method introduces a controllable restoration framework designed primarily for scientific imaging
domains such as ecological monitoring, microscopy, and remote sensing. By enabling expert-guided
restoration, our approach can enhance the fidelity and interpretability of critical datasets used to study
biodiversity, climate change, and human health. We believe that this has positive societal impact by
empowering researchers and practitioners with more reliable tools for environmental stewardship,
medical discovery, and other areas where accurate imaging is essential.

At the same time, we acknowledge potential risks. Restoration models can, if misapplied, introduce
artifacts that distort scientific findings or be misused in settings such as surveillance, evidence
tampering, or misinformation. To mitigate this, we design our system around transparency and user
control, highlight the risks of over-restoration, and release evaluation protocols that quantify fidelity
under compound degradations. Our framework is not intended for use in high-stakes decision-making
without domain expert oversight.

We further note that access to high-quality restoration tools can help democratize science, particularly
in resource-constrained regions where imaging equipment may be limited. By making our code and
evaluation data publicly available, we aim to broaden participation in ecological and biomedical
research. We are committed to responsible dissemination, and to adhering to the ICLR Code of
Ethics.

REPRODUCIBILITY STATEMENT

Our Anonymous Github repository contains source code for this work, including end-to-end pipelines
for data generation (with metadata for reproducibility), model training, and inference and evalua-
tion across standard and downstream testbeds: https://anonymous.4open.science/r/
PRISM-E4E3/README.md. Detailed descriptions of our model architecture, training objectives,
and evaluation pipelines are provided in Secs. 3 and 4 of the main paper. Hyperparameters, dataset
splits, and preprocessing steps are reported in Appendix Secs. C and D. For all baselines, we use
publicly available implementations and follow metadata provided by the original papers. Evaluation
pipelines and metrics are described in detail in the Appendix Sec. E. We also present extensive abla-
tions and full results in the Appendix Sec. G, justifying each design choice so that other researchers
can replicate our findings. Finally, we release our benchmarking datasets for mixed degradation
removal and downstream analysis. Together, these resources provide a complete framework for
reproducing our results.
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