

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADAST: ADAPTIVE SEMANTIC TRANSFORMATION OF VISUAL REPRESENTATION FOR TRAINING-FREE ZERO-SHOT COMPOSED IMAGE RETRIEVAL

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Composed Image Retrieval (CIR) retrieves a target image given a reference image
014 and a textual modification. The instruction specifies the intended change, while
015 other visual attributes are preserved for consistency. Recent work has explored
016 training-free methods that synthesize proxy images by combining a reference im-
017 age with a textual modification. However, such methods are computationally ex-
018 pensive and time-consuming, while relying solely on text queries often results in
019 the loss of crucial visual details. To address these issues, we propose Adaptive
020 Semantic Transformation (AdaST), a new training-free method that transforms
021 reference image features into proxy features guided by text. Instead of generat-
022 ing images, AdaST efficiently preserves visual information through feature-level
023 transformation. To achieve finer-grained transformation, we introduce an adaptive
024 weighting mechanism that balances proxy and text features, enabling the model to
025 exploit proxy information only when it is reliable. Our method is lightweight and
026 can be seamlessly applied to existing training-free baselines in a plug-and-play
027 manner. Extensive experiments demonstrate that it achieves state-of-the-art per-
028 formance on three CIR benchmarks while avoiding the heavy cost of image gen-
029 eration and incurring only marginal inference overhead compared to text-based
030 baselines.

031 1 INTRODUCTION

032 Composed Image Retrieval (CIR) is the task of retrieving a target image given a reference image
033 and a textual modification instruction. (Vo et al., 2019) The central challenge lies in multi-modal
034 understanding and compositional reasoning, as the system must accurately integrate textual cues
035 that specify the desired modifications with visual cues that preserve the unchanged details of the
036 reference image. CIR has recently gained significant attention because it offers a natural and intu-
037 itive interface for exploring large-scale image collections, going beyond traditional keyword-based
038 search. This capability is particularly important in domains such as fashion e-commerce and online
039 search engines (Wu et al., 2021; Tian et al., 2023), where users may provide a reference product
040 image and request modifications such as “the same shirt but in red.” More broadly, CIR represents a
041 fundamental step toward advancing vision-language understanding, as it requires aligning heteroge-
042 neous modalities and performing fine-grained reasoning that bridges visual and textual information.

043 Despite strong practical demand, many proprietary datasets are often kept internal and not shared
044 with external developers. (Zhang et al., 2024; Kolouju et al., 2025) Collecting labeled CIR data,
045 consisting of reference and target images with a modification instruction, is also costly and labor-
046 intensive (Liu et al., 2021; Wu et al., 2021). This limits scalability and generalization to unseen
047 domain, motivating zero-shot CIR (ZS-CIR) methods based on pretrained models without annota-
048 tions. Early ZS-CIR works (Karthik et al., 2023; Yang et al., 2024b;a; Saito et al., 2023; Baldrati
049 et al., 2023; Gu et al., 2024) treat CIR as a text-to-image retrieval task by encoding the reference
050 image and modification instruction into a single textual representation. While effective, this strat-
051 egy discards fine-grained cues, often yielding semantically correct but visually mismatched results
052 in fashion. More recent works (Li et al., 2025; Zhou et al., 2024) synthesize a modified image via
053 conditional generation and uses it as a retrieval input. While this preserves visual detail, genera-

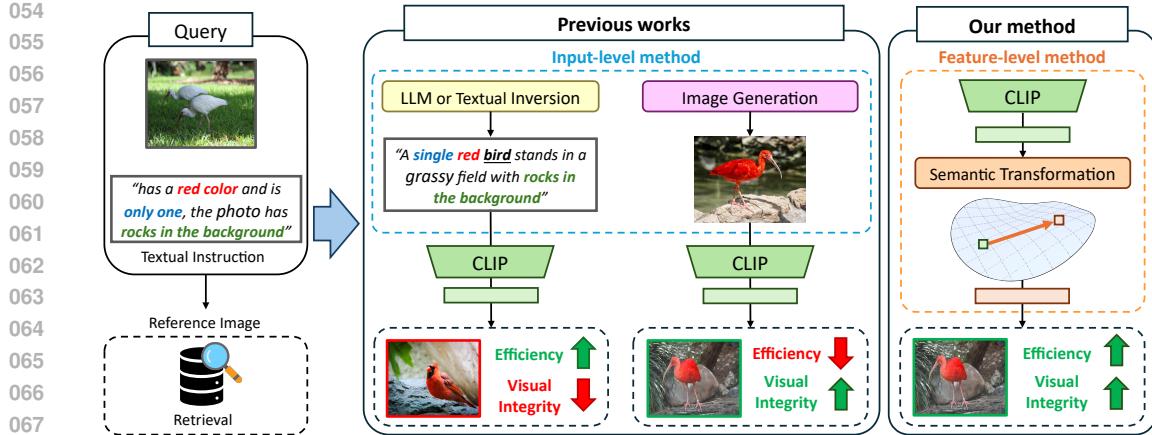


Figure 1: Comparison of existing input-level approaches and AdaST. Given a reference image and a textual instruction (*left*), prior approaches encode modifications at the input level using text or image generation (*middle*), which often sacrifice either visual integrity or efficiency. In contrast, AdaST applies instruction-guided transformations directly in the feature space of pretrained VLMs (*right*), preserving visual details while remaining efficient.

tion in high-dimensional pixel space is costly, often exceeding 30 seconds per image and surpassing usability thresholds for interactive retrieval (Nielsen, 1994).

Motivated by these limitations, we introduce **Adaptive Semantic Transformation (AdaST)**, a training-free ZS-CIR method that preserves visual detail while remaining efficient and independent of external generative models. Instead of operating in pixel space or forcing the image into text space, AdaST performs instruction-guided transformations directly in the feature space of a pre-trained vision–language model (VLM) (Radford et al., 2021), as shown in Fig. 1, inspired by feature-level editing strategies (Kwon & Ye, 2022; Ye-Bin et al., 2023). Guided by LLM-generated captions, our method derives semantic shifts from text and transfers them to image embeddings, producing proxy features that better approximate the target. To ensure robustness, we further introduce an adaptive similarity mechanism that balances the contributions of proxy and text-based features, allowing the model to preserve fine-grained cues without resorting to computationally expensive image generation.

Extensive experiments on three CIR benchmarks demonstrate that AdaST not only achieves state-of-the-art performance but also remains highly efficient. In particular, AdaST improves performance by +3.47 mAP@5 over the baseline with ViT-G on the CIRCO dataset. Moreover, it runs 186 \times faster than state-of-the-art method IP-CIR (Li et al., 2025), while still achieving superior accuracy. Finally, our approach can be seamlessly applied to various models in a plug-and-play manner, consistently boosting their performance.

Our contributions are summarized as follows:

- We propose AdaST, a training-free ZS-CIR method that transforms reference image embeddings into proxy features guided by LLM-derived text shifts, thereby preserving fine-grained visual details without relying on generative models.
- We introduce an adaptive similarity mechanism that dynamically balances proxy- and text-based similarities, enabling the model to exploit proxy features when reliable while ensuring robustness through textual alignment.
- Extensive experiments demonstrate that AdaST achieves state-of-the-art performance on multiple CIR benchmarks while remaining substantially faster and more lightweight than generation-based methods.

108

2 RELATED WORKS

109

2.1 COMPOSED IMAGE RETRIEVAL

110 Composed Image Retrieval (CIR) is the task of retrieving a target image given a reference image and
 111 a textual instruction (Vo et al., 2019). This task is particularly relevant in real-world applications such
 112 as fashion e-commerce and online search engines. Prior research has focused on designing models
 113 that align image–text pairs within a shared embedding space through contrastive learning (Vo et al.,
 114 2019; Chen & Bazzani, 2020; Lee et al., 2021), or employed cross-modal attention mechanisms to
 115 capture compositional relationships (Delmas et al., 2022). However, these works rely on supervised
 116 learning using task-specific datasets (Wu et al., 2021; Liu et al., 2021; Baldrati et al., 2023), whose
 117 large-scale construction is costly and limits scalability and generalization.
 118

119

2.2 ZERO-SHOT COMPOSED IMAGE RETRIEVAL

120 ZS-CIR approaches aim to reduce the cost of dataset construction by enabling of unseen images
 121 without training on CIR-specific datasets, through the utilization of large-scale pretrained
 122 VLMs (Radford et al., 2021). Early approaches encode both the reference image and the modification
 123 text into a single textual representation, typically through either textual inversion or LLM-based
 124 methods. Textual inversion methods (Saito et al., 2023; Baldrati et al., 2023; Gu et al., 2024) train
 125 an inversion model (Kumari et al., 2023; Gal et al., 2023; Ruiz et al., 2023) to map images into the
 126 text token space, which is then combined with modification instructions for retrieval. LLM-based
 127 approaches (Karthik et al., 2023; Yang et al., 2024b;a; Tang et al., 2025) instead caption images into
 128 natural language and let Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023)
 129 reason jointly over the reference description and the modification text. However, both approaches
 130 inevitably compress visual information into textual form, discarding fine-grained details from the
 131 reference image. Recent work (Li et al., 2025) directly synthesizes modified image from reference
 132 image and textual instruction using conditional generative models (Zhou et al., 2024; Wei et al.,
 133 2023) in pixel space. While this preserves visual detail, generation in high-dimensional pixel space
 134 is costly, due to reliance on large-scale generative models. Motivated by this limitation, we propose
 135 an efficient alternative that preserves visual fidelity without resorting to expensive image generation.
 136

137

2.3 TEXT-GUIDED SEMANTIC TRANSFORMATION

138 Text-guided semantic transform methods (Fu et al., 2022; Kwon & Ye, 2022; Gal et al., 2022; Ye-Bin
 139 et al., 2023; Park et al., 2025) exploit the latent space of pretrained vision–language models (VLMs)
 140 such as CLIP to align image features with textual guidance. These methods assume that images and
 141 texts are embedded in a joint feature space where their representations are semantically aligned. In
 142 this space, the difference vector between source and target text features can be applied to the cor-
 143 responding image features, yielding transformed image representations. Several CIR methods (Vo
 144 et al., 2019; Li et al., 2025) have also adopted this idea by directly applying the text-feature differ-
 145 ence vector to image features, but such direct transfer has shown limited effectiveness. To address
 146 this limitation, we propose a novel rescaling strategy that preserves the direction of the text-feature
 147 difference vector while adapting its magnitude to the image feature space. This yields more faithful
 148 transformed image features and enables composed image retrieval that is both effective and efficient.
 149

150

3 METHOD

151 We present **AdaST** (**A**daptive **S**emantic **T**ransformation), a training-free method for zero-shot com-
 152 posed image retrieval. Given a reference image I_r , a textual instruction T_{inst} , and an image database
 153 $\mathcal{D} = \{I_i^{\text{DB}}\}_{i=1}^N$, the goal is to retrieve the target image $I_t \in \mathcal{D}$ that reflects the modification spec-
 154 ified by the instruction. Our approach consists of three main components. First, we generate text
 155 guidance in the form of a reference caption and a target caption using a captioning model and an
 156 LLM in section 3.1. Second, we introduce a text-guided semantic transformation that projects the
 157 semantic shift between captions into the image embedding space to construct a proxy embedding
 158 in section 3.2. Finally, we design an adaptive similarity fusion module with a gating mechanism that
 159 selectively incorporates proxy-based similarity, thereby balancing semantic alignment with visual
 160 cues for robust retrieval in section 3.3.

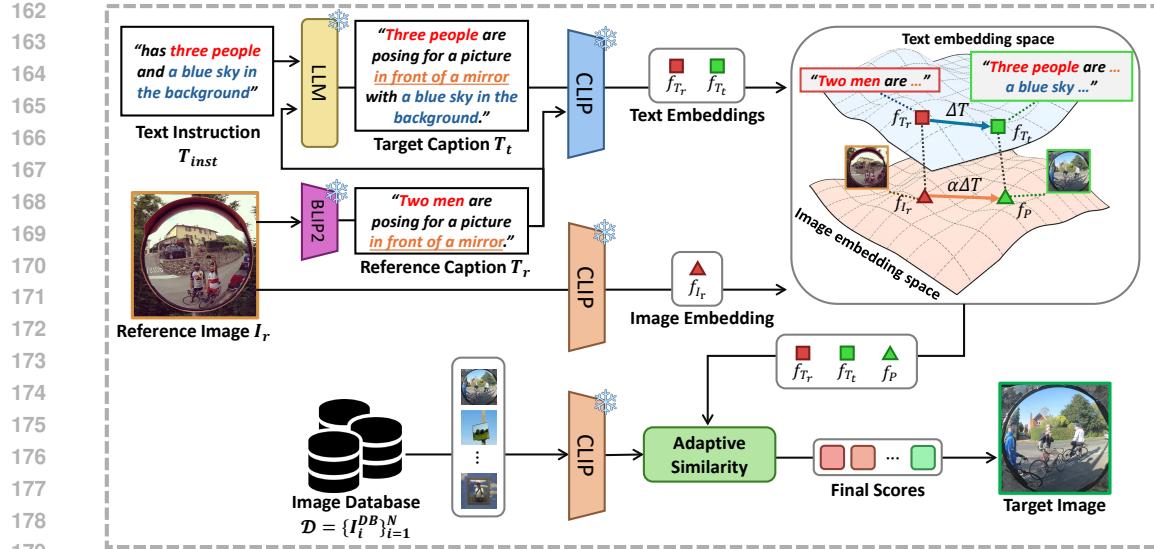


Figure 2: Overall pipeline of AdaST. It consists of three stages. (1) Text guidance generation: a reference caption is obtained from the input image using a captioning model, and an LLM combines it with the textual instruction to generate a target caption. (2) Text-guided semantic transformation: both captions and the reference image are embedded with CLIP, where the feature difference between the reference and target captions is transferred to the reference image feature with a scaling factor, yielding a proxy feature. (3) Adaptive similarity fusion: an adaptive gating mechanism fuses proxy similarity with text-based similarity, allowing proxy similarity to contribute only when supported by consistent semantic cues.

3.1 TEXT GUIDANCE GENERATION

We begin by constructing text guidance, which serves as a semantic bridge between the visual reference and the textual instruction, thereby facilitating accurate and robust retrieval of the modified target image. The guidance comprises two components: a reference caption T_r , which describes the reference image, and a target caption T_t , which encodes the intended modification conditioned on both T_r and T_{inst} . The reference caption T_r is obtained by passing the reference image I_r through a recent captioning model such as BLIP-2 (Li et al., 2023). We then generate a target caption T_t conditioned on both T_r and T_{inst} using recent LLM-based approaches (Karthik et al., 2023). The target caption is essential since it explicitly encodes the semantic shift specified by the instruction, ensuring that retrieval emphasizes the intended modification rather than mere visual similarity to the reference image.

3.2 TEXT-GUIDED SEMANTIC TRANSFORMATION

We propose a text-guided semantic transformation that transfers the semantic shift captured in the text space into the image space to construct a proxy embedding f_P . This method is training-free and operates directly in the feature space, enabling efficient retrieval without costly image generation while still preserving visual information. Specifically, we embed both captions and images into a joint representation space using a text encoder E_T and an image encoder E_I from a pretrained VLM such as CLIP (Radford et al., 2021). This yields the following embeddings:

$$f_{T_r} = E_T(T_r), \quad f_{T_t} = E_T(T_t), \quad f_{I_r} = E_I(I_r). \quad (1)$$

Formally, the semantic shift between the target and reference caption is defined as

$$\Delta T = f_{T_t} - f_{T_r}. \quad (2)$$

The corresponding proxy embedding is defined as

$$f_P^{(\alpha)} = f_{I_r} + \alpha \Delta T, \quad (3)$$

where α is a scaling factor that controls the strength of the semantic transformation.

216 **Optimal Scaling** A naive choice of the scaling factor such as $\alpha = 1$ often leads to suboptimal
 217 behavior: the proxy embedding too close to the reference image embedding and thus fails to suffi-
 218 ciently capture the intended modification as shown in section 4.2. To address this, we propose an
 219 optimization-based approach to obtain the optimal value of α . The key principle is that the proxy
 220 embedding $f_P^{(\alpha)}$ should be well aligned with the target caption embedding f_{T_t} , ensuring that the
 221 intended modification is accurately represented. At the same time, it should remain sufficiently dis-
 222 tinct from the reference embedding f_{I_r} to prevent the retrieval from collapsing back to the original
 223 visual content. To encode these requirements, we formulate the optimization problem:

$$224 \quad \alpha^* = \arg \min_{\alpha} \left(1 - \text{sim}(f_P^{(\alpha)}, f_{T_t}) + \beta \cdot \text{sim}(f_P^{(\alpha)}, f_{I_r}) \right), \quad (4)$$

226 where β is a weighting coefficient that controls the influence of penalty term and $\text{sim}(\cdot, \cdot)$ denotes
 227 cosine similarity. The first term encourages alignment with the target caption, while the second
 228 penalizes excessive similarity to the reference image. This objective admits a closed-form solution
 229 that can be computed directly from inner products:

$$231 \quad \alpha^* = \frac{x^\top y \cdot x^\top d - d^\top y \cdot \|x\|^2}{d^\top y \cdot x^\top d - x^\top y \cdot \|d\|^2}, \quad (5)$$

233 where $x = f_{I_r}$, $y = \tilde{f}_{T_t} - \beta \tilde{f}_{I_r}$, and $d = \Delta T$. Here, $\tilde{f} = f / \|f\|_2$. The resulting proxy embedding
 234 $f_P^{(\alpha^*)}$ effectively captures the semantic shift specified by the textual instruction while remaining
 235 anchored in the visual space of the reference image.

237 3.3 ADAPTIVE SIMILARITY FUSION

239 While the proxy embedding can be directly used for retrieval by measuring its similarity to candidate
 240 image features, relying solely on proxy-based similarity introduces a drawback. Since it primarily
 241 captures visual cues, the proxy may assign high scores to images that are visually similar yet seman-
 242 tically irrelevant to the instruction. To address this issue, we incorporate semantic guidance through
 243 the target caption feature f_{T_t} , which encodes rich semantic information. We compute target-caption
 244 similarity between target caption feature and the candidate features, and then fuse this score with the
 245 proxy-based similarity.

246 Specifically, we propose a gating mechanism inspired by (Yang et al., 2024b;a) that adaptively reg-
 247 ulates the contribution of proxy similarity. This gating strategy ensures that proxy-based similarity
 248 influences retrieval only when supported by semantic evidence, thereby reducing false positives
 249 caused by purely visual resemblance. To implement this, we first extract feature of the database
 250 images:

$$251 \quad f_{I_i^{\text{DB}}} = E_I(I_i^{\text{DB}}), \quad \forall i = \{1, \dots, N\}. \quad (6)$$

252 For simplicity, let $f_{I^{\text{DB}}}$ denote the set of all database embeddings. For each query, we then compute
 253 three similarity scores:

$$254 \quad S_{T_t} = \text{sim}(f_{T_t}, f_{I^{\text{DB}}}), \quad S_{T_r} = \text{sim}(f_{T_r}, f_{I^{\text{DB}}}), \quad S_P = \text{sim}(f_P, f_{I^{\text{DB}}}). \quad (7)$$

256 The proposed gating function is defined as

$$258 \quad G(\Delta S_T) = \begin{cases} \lambda, & \Delta S_T + m \geq 0 \\ 0, & \text{otherwise} \end{cases}, \quad \Delta S_T = S_{T_t} - S_{T_r}, \quad (8)$$

260 where λ is a weighting coefficient that controls the influence of S_P and m is a margin that determines
 261 whether semantic alignment is achieved. The gate activates only when the target caption shows
 262 greater semantic alignment than the reference, ensuring that proxy-based similarity is incorporated
 263 only under supportive evidence.

264 Under this regulation, the final similarity score is given by

$$266 \quad S_{\text{total}} = S_A \cdot S_P + S_{T_t}, \quad S_A = S_{T_t} \cdot G(\Delta S_T), \quad (9)$$

267 where S_A represents an adaptive weight on the proxy similarity S_P . Finally, the retrieval result is
 268 obtained by selecting the database image with the maximum similarity score:

$$269 \quad I_t = \arg \max_{I_i^{\text{DB}} \in \mathcal{D}} S_{\text{total}}. \quad (10)$$

Table 1: Quantitative results on the CIRCO and CIRR benchmarks using three backbones (ViTB-32, ViT-L/14, and ViT-G/14), where our method is applied on top of two representative baselines (CIRRevL (Karthik et al., 2023) and SEIZE (Yang et al., 2024a)). Across all three architectures and both benchmarks, combining our approach with the baselines yields consistent improvements and achieves state-of-the-art performance on most metrics. † represents our reproduced results.

Benchmark		CIRCO (mAP@K)					CIRR (Recall@K)			CIRR (Recall _{subset} @K)			
Backbone	Method	k=5	k=10	k=25	k=50	k=1	k=5	k=10	k=50	k=1	k=2	k=3	
ViT-B/32	SEARLE	ICCV23	9.35	9.94	11.13	11.84	24	53.42	66.82	59.78	54.89	76.60	88.19
	CIReVL†	ICLR24	13.28	13.69	15.13	15.94	20.84	46.96	60.19	84.70	54.30	76.5	88.10
	LDRE	SIGIR24	17.96	18.32	20.21	21.11	25.69	55.13	69.04	89.9	60.53	80.65	90.7
	SEIZE†	ACMMM24	18.75	19.37	21.09	22.07	26.96	55.59	68.24	88.34	66.82	85.23	93.35
	OSrCIR	CVPR25	18.04	19.17	20.94	21.85	25.42	54.54	68.19	-	62.31	80.86	91.13
	CIReVL† + Ours		15.20	15.73	17.25	18.12	25.23	52.41	64.48	85.35	60.12	78.96	89.11
	SEIZE† + Ours		21.16	21.89	23.76	24.62	30.15	59.71	72.60	89.81	66.72	84.94	93.45
ViT-L/14	Pic2Word	CVPR23	8.72	9.51	10.64	11.29	23.9	51.7	65.3	87.8	-	-	-
	SEARLE	ICCV23	11.68	12.73	14.33	15.12	24.24	52.48	66.29	88.84	53.76	75.01	88.19
	LinCIR	CVPR24	12.59	13.58	15.00	15.85	25.04	53.25	66.68	-	57.11	77.37	88.89
	CIReVL†	ICLR24	16.54	17.42	19.27	20.22	21.28	47.47	60.6	83.4	54.5	75.28	88.77
	LDRE	SIGIR24	23.35	24.03	26.44	27.5	26.53	55.57	67.54	88.5	60.43	80.31	89.9
	SEIZE†	ACMMM24	24.71	25.52	27.99	29.03	28.43	56.53	69.88	88.17	66.43	84.68	92.96
	OSrCIR	CVPR25	23.87	25.33	27.84	28.97	29.45	57.68	69.86	-	62.12	81.92	91.10
ViT-G/14	LDRE + IP-CIR	CVPR25	26.43	27.41	29.87	31.07	29.76	58.82	71.21	90.41	62.48	81.64	90.89
	CIReVL† + Ours		20.32	20.92	22.81	23.71	25.35	52.92	66.41	86.89	60.75	80.77	90.92
	SEIZE† + Ours		28.94	29.65	32.04	33.03	30.72	59.78	71.13	88.68	67.21	84.96	93.04
	LinCIR	CVPR24	19.71	21.01	23.13	24.18	35.25	64.72	76.05	-	63.35	82.22	91.98
	CIReVL†	ICLR24	26.47	27.46	29.91	30.86	30.7	59.66	70.89	89.86	63.54	82.02	91.52
	LDRE	SIGIR24	31.12	32.24	34.95	36.03	36.15	66.39	77.25	93.95	68.82	85.66	93.76
	SEIZE†	ACMMM24	35.61	36.92	39.67	40.61	40.87	69.52	78.94	92.27	75.04	90.31	96.02
ViT-G/14	OSrCIR	CVPR25	30.47	31.14	35.03	36.59	37.26	67.25	77.33	-	69.22	85.28	93.55
	LDRE + IP-CIR	CVPR25	32.75	34.26	36.86	38.03	39.25	70.07	80.00	94.89	69.95	86.74	94.22
	CIReVL† + Ours		32.32	33.49	35.98	36.81	35.04	65.06	75.98	91.57	65.57	83.52	92.53
	SEIZE† + Ours		39.08	39.93	42.53	43.34	42.84	72.29	80.82	93.28	74.82	89.95	96.00

4 EXPERIMENTS

CIRR (Liu et al., 2021) consists of 21,552 images collected from the NLVR dataset (Suhr et al., 2018) and along with 36,554 associated queries. It is designed to support fine-grained natural language modifications, enabling retrieval based on subtle semantic differences between images. A limitation of CIRR is the presence of potential false negatives, as multiple images in the gallery may satisfy the same instruction, yet only one is annotated as the ground truth. **CIRCO** (Baldrati et al., 2023) is a benchmarking dataset constructed from COCO 2017 (Lin et al., 2014), explicitly addressing this false-negative issue by providing multiple annotated target images per query. It includes a validation set with 220 queries and a test set with 800 queries, covering instructions that involve attribute edits, object substitutions, and style modifications, which are particularly challenging for compositional reasoning. **Fashion-IQ** (Wu et al., 2021) is a domain-specific benchmark for fashion retrieval, containing 30,135 queries and 77,683 product images across three categories: *Shirt*, *Dress*, and *Toptee*. Its queries are written by annotators and describe modifications to reference garments.

For evaluation, we follow the official protocol from each dataset. CIRR is evaluated using Recall@K ($K \in \{1, 5, 10, 50\}$) and RecallSubset@K ($K \in \{1, 2, 3\}$), where the latter focuses only on images within the same semantic set as the reference and target, thus capturing retrieval performance under closely related distractor groups. CIRCO is evaluated with mean Average Precision at top-K results (mAP@K, $K \in \{5, 10, 25, 50\}$) due to its multiple positive targets. Fashion-IQ is evaluated with Recall@10 and Recall@50 for each garment category and their average.

Implementation Details. For the retrieval model, we adopt CLIP backbones including ViT-B/32, ViT-L/14, and ViT-G/14. We use the official OpenAI (Radford et al., 2021) weights by default, while for ViT-G/14 we use OpenCLIP (Ilharco et al., 2021) weights. We use CIREVL (Karthik et al., 2023) and SEIZE (Yang et al., 2024a) as baseline models for comparison. For the Fashion-IQ dataset, we additionally employ LinCIR (Gu et al., 2024) as our baseline, and additionally apply an LLM-based caption generation process. For image captioning, we employ the BLIP-2 (Li et al., 2023) model. Regarding the LLM model, the baseline codebases use GPT-3.5-turbo, which is no longer available. Therefore, following a recent work (Tang et al., 2025), we re-implemented the baseline with GPT-4o, ensuring that both our method and the baselines are evaluated under the same model for a fair comparison. All experiments are conducted on a single A6000 GPU. For all baselines and datasets, we set $\beta = 0.25$, $\lambda = 4$, and $m = 0.1$, except that $m = 0$ is used for the CIRCO dataset.

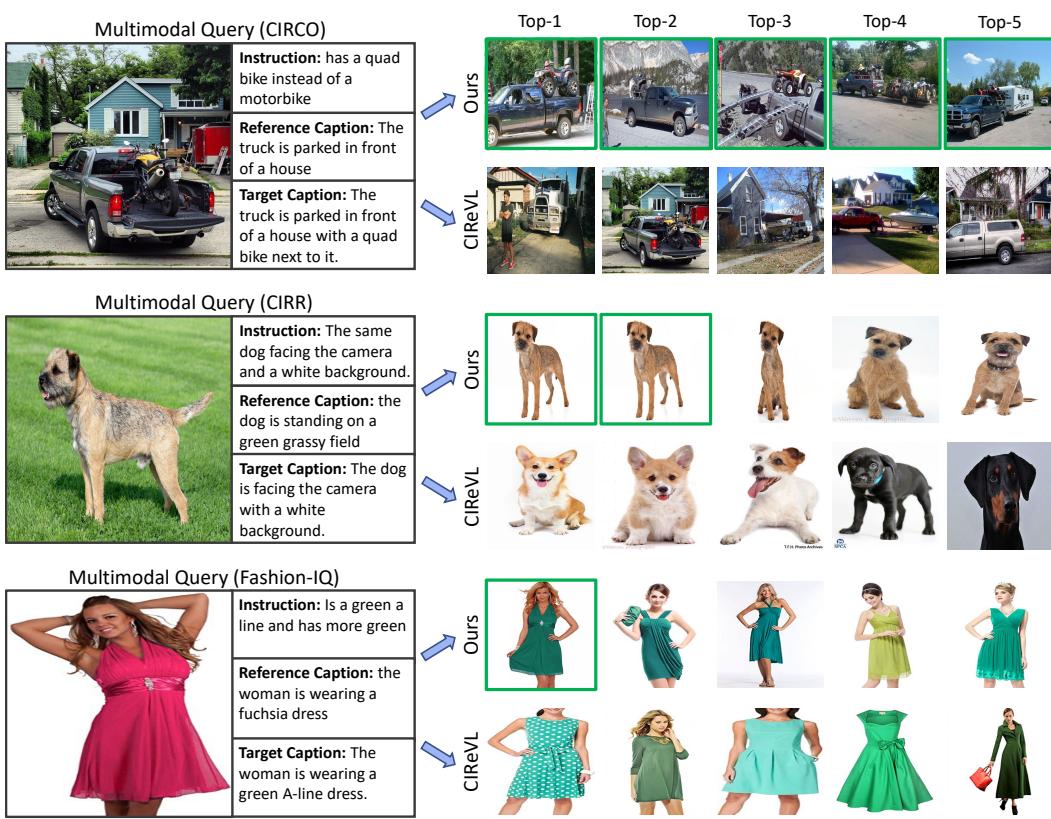


Figure 3: Qualitative comparison between CIReVL and our method on three benchmarks (CIRCO, CIRR, and Fashion-IQ). Given a reference image and an instruction, reference and target captions are generated, and the top-5 retrieved images from each method are shown, with ground-truth targets highlighted in green. Our method leverages visual features more effectively, enabling accurate retrieval even when the target caption is underspecified, by exploiting fine-grained details such as dog breeds or dress shapes.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

CIRCO and CIRR As shown in Tab. 1, our method consistently improves over both CIReVL and SEIZE baselines across all backbones, achieving state-of-the-art performance on most metrics. The improvements are particularly significant with large backbones such as ViT-G/14, showing the scalability of AdaST. On the CIRCO benchmark, our approach yields substantial improvement. For example, with ViT-G/14 backbone, our method surpasses the CIReVL baseline by +5.85 mAP@5, which is substantially larger than the gain of +1.63 mAP@5 achieved by LDRE + IP-CIR. Similarly, when applied to SEIZE, our method achieves a further gain of +3.47 mAP@5, demonstrating its effectiveness on multi-target scenario. This highlights the effectiveness of the proposed feature-level transformation in exploiting visual cues from the reference image.

Fig. 3 presents a qualitative comparison between our method and CIReVL. In the CIRCO example, our model fuses cues from the reference image with the target caption and retrieves images where a quad bike appears on (or next to) the truck at the top ranks. In contrast, CIReVL, which uses only the target caption for retrieval, often misses one of the two key objects or even returns the reference image itself. In the CIRR example, the target caption omits the breed, so CIReVL retrieves dogs that are not the “same dog,” whereas our method leverages visual evidence to return the same breed as the reference (Border Terrier); note that Top-1 and Top-2 are duplicates due to dataset noise.

Fashion-IQ As shown in Tab. 2, across all three architectures and both benchmarks, combining our approach with the baselines yields consistent improvements and achieves state-of-the-art performance on most metrics. Note that LinCIR is a training-based baseline leveraging textual inversion,

378
 379 Table 2: Quantitative results on the Fashion-IQ benchmark using the ViT-G/14 backbone, where
 380 our method is applied on top of three representative baselines (CIReVL (Karthik et al., 2023),
 381 SEIZE (Yang et al., 2024a), and LinCIR (Gu et al., 2024)). Across all three categories (*Shirt*, *Dress*,
 382 and *Toptee*), our method combined with the baselines shows consistent improvements and reaches
 383 state-of-the-art performance on the majority of metrics. \dagger indicates our reproduced results.

384 Backbone	385 Type	386 Method	387 Shirt		388 Dress		389 Toptee		390 Average	
			391 R@10	392 R@50	393 R@10	394 R@50	395 R@10	396 R@50	397 R@10	398 R@50
399 ViT-G/14	Pic2Word	CVPR23	33.17	50.39	25.43	47.65	35.24	57.62	31.28	51.89
	SEARLE	ICCV23	36.46	55.35	28.16	50.32	39.83	61.45	34.81	55.71
	LinCIR	CVPR24	46.76	65.11	38.08	60.88	50.48	71.09	45.11	65.69
	CIReVL \dagger	ICLR24	35.13	52.65	27.52	49.03	37.33	58.75	33.33	53.48
	LDRE	SIGIR24	35.94	58.58	26.11	51.12	35.42	56.67	32.49	55.46
	SEIZE \dagger	ACMMM24	39.50	57.65	33.37	55.88	41.66	64.20	38.12	59.24
	OSrCIR	CVPR25	38.65	54.71	33.02	54.78	41.04	61.83	37.57	57.11
	LinCIR + IP-CIR	CVPR25	48.04	66.68	39.02	61.03	50.18	71.14	45.74	66.28
	CIReVL \dagger +Ours		40.38	59.08	36.49	58.70	43.65	64.10	40.17	60.63
	SEIZE \dagger +Ours		44.36	62.22	40.21	62.12	48.55	69.30	44.37	64.55
	LinCIR+Ours		48.28	67.17	43.53	64.70	52.68	73.13	48.16	68.33

393
Table 3: Comparison of inference time.

394 Dataset	395 Fashion-IQ Dress		396 CIRCO	
	397 time	398 + Δt	399 time	400 + Δt
CIReVL	1.76s	—	2.16s	—
+Ours	1.87s	0.11s	2.77s	0.61s
+IP-CIR	119.82s	118.06s	120.84s	118.68s
SEIZE	26.05s	—	26.25s	—
+Ours	26.17s	0.12s	26.89s	0.64s
+IP-CIR	144.19s	118.14s	145.21s	118.96s

397
Table 4: Ablation study on CIRCO dataset.

401 Method	402 Proxy	403 Scaling	404 Gating	405 mAP@5	406 Δ
CIReVL	✓			26.47	-
	✓	✓		27.42	+0.95
	✓	✓	✓	29.41	+2.94
				32.32	+5.85

407
 408 which explains its relatively strong performance; when combined with our method, it achieves even
 409 higher performance. This confirms that, even in the fashion domain where natural language modifi-
 410 cations are highly fine-grained and diverse, the proposed instruction-guided feature transformation
 411 proves effective in leveraging reference image cues. Furthermore, the qualitative results of Fashion-
 412 IQ in Fig. 3 highlight that our method captures texture and silhouette information from the reference
 413 image that is difficult to express purely in text, producing more faithful matches for instructions such
 414 as “green A-line dress.”

415
Inference Time We further evaluate the efficiency of our method compared to generation-based
 416 approach (Li et al., 2025). As shown in Tab. 3, our method introduces only a negligible over-
 417 head compared to the baseline retrieval models (CIReVL and SEIZE). Specifically, on Fashion-IQ
 418 Dress (4K database), the additional computation is only 0.11–0.12 seconds, and on CIRCO (120K
 419 database), the overhead remains within 0.61–0.64 seconds. In contrast, generation-based IP-CIR
 420 requires more than 118 seconds of additional processing time on both datasets, making it over two
 421 orders of magnitude slower. These results clearly demonstrate that our approach maintains near real-
 422 time efficiency while substantially improving accuracy. By avoiding costly image generation, our
 423 method scales effectively to large databases and provides a practical alternative to generation-based
 424 solutions.

425

4.2 ABLATION STUDY

426
Component Analysis To gain deeper insight into the impact of each component, we conduct an
 427 ablation study to evaluate the effectiveness of each module in our framework: proxy embedding,
 428 optimal scaling, and the gating function, as shown in Tab. 4. The baseline model (CIReVL) shows
 429 26.47 mAP@5. Using proxy embedding alone ($\alpha = 1$) achieves 27.42 mAP@5 (+0.95). Incorporat-
 430 ing the scaling strategy further improves performance to 29.41 mAP@5 (+2.94). Finally, introducing
 431 the gating function in conjunction with proxy and scaling yields the best result of 32.32 mAP@5
 432 (+5.85). These results confirm that adaptively regulating the contribution of proxy similarity is cru-
 433 cial for suppressing misleading visual cues and enhancing retrieval accuracy.

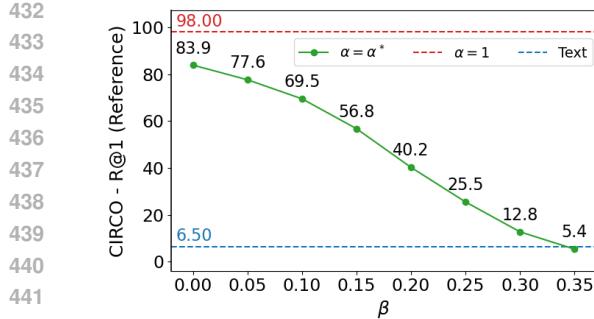


Figure 4: Retrieval performance with the reference image as ground truth.

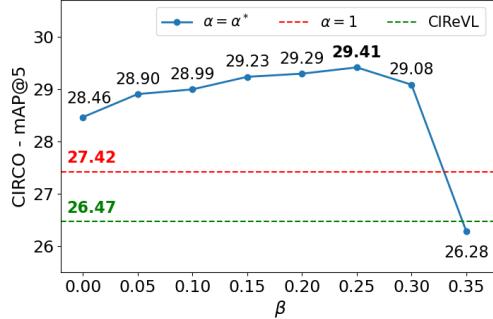


Figure 5: Ablation study of optimal scaling.

Analysis for the Optimal Scaling of Semantic Transformation To better understand the behavior of the proxy embedding, we conduct a controlled retrieval experiment on the CIRCO dataset where the objective is to retrieve the reference image rather than the target. This experiment enables us to directly examine how much the proxy embedding diverges from the original reference representation. As shown in Fig. 4, the proxy mostly fails to sufficiently deviate from the reference. In particular, when the semantic shift from the text space is naively transferred, the resulting proxy embedding achieves an R@1 of 98.0, indicating that it remains largely unchanged from the reference. This finding motivates us to explore an optimal scaling strategy.

According to the results, we find that enforcing only the first condition, which requires the proxy embedding to align with the target caption embedding (controlled by α), is insufficient. Although this condition pushes the proxy embedding away from the reference, it still remains in its vicinity. By introducing an additional parameter β , we observe that the proxy embedding gradually diverges further from the reference image, and this divergence is closely tied to retrieval performance, as shown in Fig. 5. When α is fixed to 1, the performance improves over the baseline but does not yield a substantial gain. In contrast, applying our proposed scaling strategy leads to a consistent increase in performance until β exceeds a certain threshold, at which point performance drops sharply. This degradation occurs because the proxy embedding becomes overly detached from the reference, which is consistent with the intuition that the target image still preserves essential information from the reference. Furthermore, when we directly use the reference image ($\alpha = 0$), the performance drops significantly, achieving only mAP@5 of 22.75. Unlike the proxy embedding, which remains close to the reference but shifts toward the target direction, this result demonstrates that the semantic transformation is crucial for effectively guiding the proxy embedding.

5 CONCLUSION

In this work, we proposed Adaptive Semantic Transformation (AdaST), a training-free method for Composed Image Retrieval that achieves a new state-of-the-art in both accuracy and efficiency. We identified a core challenge in existing methods: a forced choice between the efficiency of text-based approaches, which lose visual detail, and the fidelity of generation-based methods, which are computationally expensive. AdaST resolves this dilemma by transforming reference image features directly in the latent space, guided by textual instructions. This approach effectively preserves fine-grained visual information without resorting to costly image synthesis. Our experiments on three benchmarks demonstrate that AdaST significantly outperforms previous methods. The introduction of an adaptive similarity mechanism further improves robustness by intelligently weighting visual and textual cues. As a result, AdaST is not only more accurate but also substantially faster than generation-based alternatives, making it highly suitable for practical applications. Its modular, plug-and-play design also allows for easy integration into existing ZS-CIR pipelines. We believe our feature-space transformation approach offers a promising and efficient direction for the future of multi-modal retrieval and understanding.

486 REFERENCES
487

488 Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed
489 image retrieval with textual inversion. In *Proceedings of the IEEE/CVF International Conference*
490 on *Computer Vision*, pp. 15338–15347, 2023.

491 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
492 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
493 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

494 Yanbei Chen and Loris Bazzani. Learning joint visual semantic matching embeddings for language-
495 guided retrieval. In *European Conference on Computer Vision*, pp. 136–152. Springer, 2020.

496 Ginger Delmas, Rafael Sampaio de Rezende, Gabriela Csurka, and Diane Larlus. Artemis:
497 Attention-based retrieval with text-explicit matching and implicit similarity. *arXiv preprint*
498 *arXiv:2203.08101*, 2022.

499 Tsu-Jui Fu, Xin Eric Wang, and William Yang Wang. Language-Driven Artistic Style Transfer. In
500 *European Conference on Computer Vision (ECCV)*, 2022.

501 Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
502 Stylegan-nada: Clip-guided domain adaptation of image generators. *ACM Transactions on Graph-
503 ics (TOG)*, 41(4):1–13, 2022.

504 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
505 Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
506 textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.
507 URL <https://openreview.net/forum?id=NAQvF08TcyG>.

508 Geonmo Gu, Sanghyuk Chun, Wonjae Kim, Yoohoon Kang, and Sangdoo Yun. Language-only
509 training of zero-shot composed image retrieval. In *Proceedings of the IEEE/CVF Conference on*
510 *Computer Vision and Pattern Recognition*, pp. 13225–13234, 2024.

511 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
512 Achal Dave, et al. OpenCLIP. https://github.com/mlfoundations/open_clip,
513 2021.

514 Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. Vision-by-language
515 for training-free compositional image retrieval. *arXiv preprint arXiv:2310.09291*, 2023.

516 Pranavi Kolouju, Eric Xing, Robert Pless, Nathan Jacobs, and Abby Stylianou. good4cir: Generating
517 detailed synthetic captions for composed image retrieval. In *Proceedings of the Computer Vision*
518 and *Pattern Recognition Conference*, pp. 3148–3157, 2025.

519 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
520 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF conference on com-
521 puter vision and pattern recognition*, pp. 1931–1941, 2023.

522 Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style transfer with a single text condition. In
523 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18062–
524 18071, 2022.

525 Seungmin Lee, Dongwan Kim, and Bohyung Han. Cosmo: Content-style modulation for image
526 retrieval with text feedback. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
527 and *Pattern Recognition*, pp. 802–812, 2021.

528 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
529 training with frozen image encoders and large language models. In *International conference on*
530 *machine learning*, pp. 19730–19742. PMLR, 2023.

531 You Li, Fan Ma, and Yi Yang. Imagine and seek: Improving composed image retrieval with an
532 imagined proxy. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
533 3984–3993, 2025.

540 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 541 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 542 *conference on computer vision*, pp. 740–755. Springer, 2014.

543

544 Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image retrieval on
 545 real-life images with pre-trained vision-and-language models. In *Proceedings of the IEEE/CVF*
 546 *international conference on computer vision*, pp. 2125–2134, 2021.

547 Jakob Nielsen. *Usability engineering*. Morgan Kaufmann, 1994.

548

549 Jihun Park, Jongmin Gim, Kyoungmin Lee, Seunghun Lee, and Sunghoon Im. Style-editor: Text-
 550 driven object-centric style editing. In *Proceedings of the Computer Vision and Pattern Recog-*
 551 *nition Conference*, pp. 18281–18291, 2025.

552 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 553 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 554 models from natural language supervision. In *International conference on machine learning*, pp.
 555 8748–8763. PMLR, 2021.

556

557 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 558 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-*
 559 *ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 560 22510, 2023.

561

562 Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and Tomas
 563 Pfister. Pic2word: Mapping pictures to words for zero-shot composed image retrieval. In *Pro-*
 564 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19305–
 565 19314, 2023.

566

567 Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
 568 reasoning about natural language grounded in photographs. *arXiv preprint arXiv:1811.00491*,
 569 2018.

570

571 Yuanmin Tang, Jue Zhang, Xiaoting Qin, Jing Yu, Gaopeng Gou, Gang Xiong, Qingwei Lin, Saravan
 572 Rajmohan, Dongmei Zhang, and Qi Wu. Reason-before-retrieve: One-stage reflective chain-of-
 573 thoughts for training-free zero-shot composed image retrieval. In *Proceedings of the Computer*
 574 *Vision and Pattern Recognition Conference*, pp. 14400–14410, 2025.

575

576 Yuxin Tian, Shawn Newsam, and Kofi Boakye. Fashion image retrieval with text feedback by ad-
 577 ditive attention compositional learning. In *Proceedings of the IEEE/CVF winter conference on*
 578 *applications of computer vision*, pp. 1011–1021, 2023.

579

580 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 581 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 582 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

583

584 Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing text
 585 and image for image retrieval—an empirical odyssey. In *Proceedings of the IEEE/CVF conference*
 586 *on computer vision and pattern recognition*, pp. 6439–6448, 2019.

587

588 Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
 589 visual concepts into textual embeddings for customized text-to-image generation. In *Proceedings*
 590 *of the IEEE/CVF International Conference on Computer Vision*, pp. 15943–15953, 2023.

591

592 Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Roge-
 593 rio Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback.
 594 In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp.
 595 11307–11317, 2021.

596

597 Zhenyu Yang, Shengsheng Qian, Dizhan Xue, Jiahong Wu, Fan Yang, Weiming Dong, and Chang-
 598 sheng Xu. Semantic editing increment benefits zero-shot composed image retrieval. In *Proceed-*
 599 *ings of the 32nd ACM International Conference on Multimedia*, pp. 1245–1254, 2024a.

594 Zhenyu Yang, Dizhan Xue, Shengsheng Qian, Weiming Dong, and Changsheng Xu. Ldre: Llm-
595 based divergent reasoning and ensemble for zero-shot composed image retrieval. In *Proceedings*
596 *of the 47th International ACM SIGIR conference on research and development in information*
597 *retrieval*, pp. 80–90, 2024b.

598 Moon Ye-Bin, Jisoo Kim, Hongyeob Kim, Kilho Son, and Tae-Hyun Oh. Textmania: Enriching vi-
599 sual feature by text-driven manifold augmentation. In *Proceedings of the IEEE/CVF International*
600 *Conference on Computer Vision*, pp. 2526–2537, 2023.

602 Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhui Chen, Yu Su, and Ming-Wei
603 Chang. Magiclens: Self-supervised image retrieval with open-ended instructions. *arXiv preprint*
604 *arXiv:2403.19651*, 2024.

605 Dewei Zhou, You Li, Fan Ma, Zongxin Yang, and Yi Yang. Migr++: Advanced multi-instance
606 generation controller for image synthesis. *IEEE Transactions on Pattern Analysis and Machine*
607 *Intelligence*, 2024.

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 ETHICS STATEMENT

652
653
654
655
656
657

Following the ICLR 2026 guidelines, we disclose that a Large Language Model (LLM) was used during the preparation of this manuscript for grammar correction, text refinement, manuscript review, and related research searches through Deep Research. The LLM was also employed to support experiments and to generate code for plotting figures (Fig. 4 and Fig. 5) based on the data obtained from our experiments. All research contributions, experimental results, and scientific claims are entirely the responsibility of the authors.

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701