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Abstract001

Large language models (LLMs) have deliv-002
ered significant breakthroughs across diverse003
domains but can still produce unreliable or mis-004
leading outputs, posing critical challenges for005
real-world applications. While many recent006
studies focus on quantifying model uncertainty,007
relatively little work has been devoted to diag-008
nosing the source of uncertainty. In this study,009
we show that, when an LLM is uncertain, the010
patterns of disagreement among its multiple011
generated responses contain rich clues about012
the underlying cause of uncertainty. To illus-013
trate this point, we collect multiple responses014
from a target LLM and employ an auxiliary015
LLM to analyze their patterns of disagreement.016
The auxiliary model is tasked to reason about017
the likely source of uncertainty, such as whether018
it stems from ambiguity in the input question,019
a lack of relevant knowledge, or both. In cases020
involving knowledge gaps, the auxiliary model021
also identifies the specific missing facts or con-022
cepts contributing to the uncertainty. In our023
experiment, we validate our framework on Am-024
bigQA, OpenBookQA, and MMLU-Pro, con-025
firming its generality in diagnosing distinct un-026
certainty sources. Such diagnosis shows the027
potential for relevant manual interventions that028
improve LLM performance and reliability.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable performance across a wide032

range of applications, including natural language033

understanding (Brown et al., 2020; Chowdhery034

et al., 2023), reasoning (Wei et al., 2022; Wang035

et al., 2022), and decision-making (Chen et al.,036

2021; Yao et al., 2023). Ensuring the trustworthi-037

ness and reliability of LLMs has become impera-038

tive as their capabilities continue to advance. This039

requirement is particularly critical in sensitive do-040

mains such as healthcare (Kung et al., 2023) and041

law (Surden, 2018), where high uncertainty can042

lead to significant risks and safety issues (Bom- 043

masani et al., 2021). Accurately quantifying uncer- 044

tainty helps determine whether a model’s predic- 045

tion can be trusted: low uncertainty indicates a reli- 046

able answer, while high uncertainty suggests that 047

the response requires further scrutiny or should be 048

rejected. In the literature, various approaches have 049

been proposed for uncertainty quantification in 050

LLMs, including verbalization-based methods (Ka- 051

davath et al., 2022; Yin et al., 2023; Xiong et al., 052

2023), perplexity-based methods (Huang et al., 053

2023; Duan et al., 2023), and self-consistency meth- 054

ods (Wang et al., 2022; Yadkori et al., 2024; Xiong 055

et al., 2023). Among them, self-consistency based 056

methods, which generate multiple independent re- 057

sponses and assess their agreement, have usually 058

demonstrated more promising results, such as a 059

stronger ability to forecast model errors. 060

Despite these efforts, relatively fewer works have 061

focused on one key challenge: how to precisely 062

identify the source of uncertainty of LLMs. In fact, 063

knowing why the model yields highly uncertain re- 064

sponses to a given question is crucial. For example, 065

it can enable the model users or developers to diag- 066

nose whether the uncertainty stems from inherent 067

ambiguity in the question or from the model’s insuf- 068

ficient knowledge (Hou et al., 2023). Consequently, 069

this precise diagnosis can later guide targeted im- 070

provements: if the uncertainty arises from unclear 071

details of the query, users can refine it; whereas if it 072

results from a lack of specific knowledge of model, 073

developers can upgrade or fine-tune the model with 074

additional data, or users can modify the query to 075

explicitly include the missing knowledge. Notably, 076

similar topics have been explored in traditional 077

models (Kendall and Gal, 2017), but they may not 078

straightforwardly generalize to LLMs, as discussed 079

in Section 2.2. 080

To address the challenge mentioned above, we 081

explore whether multiple responses from LLMs 082

(e.g., obtained during self-consistency assessment) 083
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Question

Answer 1

Answer 2

Answer N

…
Source of Uncertainty

Target LLM

…

Q: Who was prime 
minister of Canada
in 1920?

A1: The Prime Minister of 
Canada in 1920 was Arthur 
Meighen . He served as
Prime Minister from July 10, 
1920, to December 29, 1921.

A10: The Prime Minister of 
Canada in 1920 was Sir
Robert Borden. He served 
as Prime Minister from 
October 10, 1911, to July 10,
1920.

Tom has 10 answers 
to the same
question … Please 
analyze the possible
reasons for the 
variations in these 
answers…

Due to the absence of a specific
timeframe within 1920, Tom may
interpret the question differently
each time: If referencing early
1920, Sir Robert Borden is the
correct answer. If referencing
mid to late 1920, then Arthur
Meighen is accurate.… The primary
reason for the variations in Tom's
answers is **The question is
unclear or misleading**…

…

Auxiliary LLM

Figure 1: Illustration of the framework and example. We generate multiple responses from a target LLM and use
an auxiliary LLM to analyze their disagreement patterns. The top shows the overall process flow, and the bottom
presents a concrete example of diagnosing uncertainty for a sample question.

can reveal clues about the source of uncertainty,084

as they could contain rich contextual information085

that naturally reflect the underlying cause of uncer-086

tainty. As shown in Figure 1, when asking “Who087

was the prime minister of Canada in 1920?”, some088

responses indicate the answer is Arthur Meighen089

but also mention he took office in July. While, oth-090

ers gives the answer as Robert Borden but note that091

his serving is until July. Analyzing these inconsis-092

tencies reveals that each answer understands this093

question differently by interpreting the term “in094

1920” differently. It shows that the uncertainty of095

the model primarily results from unclear question096

details, rather than a lack of knowledge.097

Based on this finding, we explore whether an098

LLM can automatically diagnose the source of its099

uncertainty by analyzing patterns of disagreement100

among its multiple outputs. Refer to the overall101

framework as illustrated in Figure 1, we collect102

the responses from a “target” LLM for multiple103

times, and then employ an “auxiliary” LLM to104

scrutinize these responses and analyze their pat-105

terns of disagreement. Specifically, the auxiliary106

model is prompted to distinguish among various107

types of uncertainty sources: (1) whether the uncer-108

tainty stems from unclear or under-specified input,109

or (missing factual or conceptual information), or110

Both (a combination of the two). (2) for samples111

labeled Knowledge Gaps or Both, pinpoint the ex-112

act factual or conceptual knowledge missing from113

the reasoning, thereby even more precisely iden-114

tifying which critical knowledge failure underlies115

the model’s uncertainty. 116

In our experiment, we first evaluate the approach 117

on the AmbigQA (Min et al., 2020) and Open- 118

BookQA (Mihaylov et al., 2018) datasets, both of 119

which contain a variety of fact-based and common- 120

sense questions that are ambiguous or missing key 121

information. We find that representative models 122

exhibit notable uncertainty of Question Ambigu- 123

ity on a substantial portion of these. Moreover, 124

if we provide clarification to those questions, we 125

observe that samples labeled as “Question Ambigu- 126

ity” exhibit a great decrease in uncertainty, thereby 127

demonstrating the effectiveness of our uncertainty 128

attribution. In contrast, for questions where the 129

uncertainty stems from missing knowledge, such 130

clarification has little effect and the uncertainty per- 131

sists. Furthermore, we conduct another study of 132

the Physics and Chemistry subsets of MMLU-Pro 133

(Wang et al., 2024) which requires various domain 134

knowledge. In these settings, the auxiliary model 135

can successfully identify key missing knowledge 136

components that hinder the target model’s perfor- 137

mance. Overall, these results suggest the potential 138

to effectively differentiate between distinct sources 139

of uncertainty of LLMs and help guide further ap- 140

propriate manual interventions. 141

2 Related Work 142

2.1 Uncertainty Quantification of LLMs 143

Uncertainty plays a critical role in large language 144

models (LLMs). Prior research indicates that 145

LLMs often exhibit overconfidence, raising trust 146
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concerns for practical applications (Tian et al.,147

2023). Existing uncertainty quantification ap-148

proaches broadly fall into three categories:149

Verbalization. This class of methods exploits the150

model’s ability to self-report uncertainty by prompt-151

ing it for confidence judgments (e.g., “On a scale152

from 0% to 100%, how certain are you?”) and map-153

ping the verbal response to a numerical uncertainty154

score. (Tian et al., 2023; Xiong et al., 2023). Early155

work demonstrated that GPT-3 could explicitly ver-156

balize its uncertainty (Lin et al., 2022), further stud-157

ies explored self-awareness across model sizes (Ka-158

davath et al., 2022), highlighting gaps between159

model and human uncertainty calibration (Yin et al.,160

2023). Recent prompting strategies have further161

improved uncertainty estimation and model cali-162

bration (Tian et al., 2023; Xiong et al., 2023).163

Perplexity. This line of methods quantifies uncer-164

tainty using the model’s token-level predictive prob-165

abilities, where lower perplexity corresponds to166

higher confidence (Huang et al., 2023; Duan et al.,167

2023). Perplexity, initially introduced by Jelinek168

(1990), reflects predictive probability distributions169

(Chen et al., 1998). Blatz et al. (2004) extended170

perplexity to token-level uncertainty estimation in171

machine translation, and recent work adopted ge-172

ometric averaging to mitigate sequence-length bi-173

ases (Huang et al., 2023; Duan et al., 2023).174

Self-consistency. Measure uncertainty by sam-175

pling multiple independent Chain-of-Thought re-176

sponses and quantifying their agreement (Wang177

et al., 2022; Yadkori et al., 2024; Xiong et al.,178

2023; Becker and Soatto, 2024). Recent exten-179

sions further quantify uncertainty through semantic180

similarity among responses, such as clustering se-181

mantically equivalent sequences (Kuhn et al., 2023)182

or computing covariance between inner states of183

different responses (Chen et al., 2024).184

2.2 Uncertainty Decomposition185

Decomposing uncertainty in LLMs is essential for186

precisely identifying deficiencies at different lev-187

els—whether due to inherent data noise or model188

limitations—thus guiding targeted improvements.189

Existing studies in the literature typically divide190

such uncertainty into two categories: (1) epistemic191

uncertainty, which reflects the model’s lack of192

sufficient training data or parameter capacity to193

generalize correctly, and (2) aleatoric uncertainty,194

which arises from ambiguity in the input (Kendall195

and Gal, 2017; Hou et al., 2023). Prior methods 196

such as Bayesian Neural Networks (BNNs) (Neal, 197

2012; Hasenclever et al., 2017) and Deep Ensem- 198

bles (DEs) (Lakshminarayanan et al., 2017) have 199

been used to decompose uncertainty by modeling 200

prediction variability through either posterior sam- 201

pling or model disagreement. 202

However, these approaches are impractical for 203

LLMs because their enormous size makes repeated 204

weight sampling or training multiple model in- 205

stances prohibitively expensive, and proprietary, 206

black-box APIs prevent access to internal parame- 207

ter distributions. Relatively few studies have exam- 208

ined this problem in the context of large language 209

models. One recent work (Hou et al., 2023), with a 210

similar purpose of our study, introduces a method 211

called “input clarification ensembling”, which first 212

generates multiple clarified variants of a potentially 213

ambiguous prompt and then aggregates the model’s 214

outputs over those variants to decompose total un- 215

certainty into its aleatoric and epistemic compo- 216

nents. In contrast, our approach infers the source of 217

uncertainty directly from the distribution of gener- 218

ated answers without modifying the original input 219

question. Furthermore, it enables fine-grained attri- 220

bution by identifying the specific pieces of knowl- 221

edge that are missing, which is not supported by 222

previous methods. 223

3 Preliminary 224

In this section, we present a preliminary study 225

comparing the overall accuracy of various uncer- 226

tainty quantification methods, including Verbaliza- 227

tion (VERB) (Tian et al., 2023; Xiong et al., 2023), 228

Perplexity (PPL) (Huang et al., 2023; Duan et al., 229

2023), and Self-Consistency (SC) (Wang et al., 230

2022). Our findings suggest the Self-Consistency 231

approach generally outperforms alternative meth- 232

ods, positioning it as a promising starting point for 233

investigating the sources of uncertainty. 234

In detail, we conducted experiments on three 235

benchmarks: GSM8K (Cobbe et al., 2021), MATH 236

(Hendrycks et al., 2021), and Natural Questions 237

(NQ) (Kwiatkowski et al., 2019)—using two rep- 238

resentative models, Llama3-8B-Instruct (Meta AI, 239

2024) and GPT-4o (OpenAI, 2024a). Each method 240

is evaluated using three standard criteria: (1) Ex- 241

pected Calibration Error (ECE): measures the gap 242

between predicted confidence and actual accuracy, 243

indicating how well confidence scores align with 244

correctness (Guo et al., 2017). (2) AUROC: eval- 245

3



Model Dataset Method ECE ↓ AUROC ↑ Brier ↓

Llama3-8B-
Instruct

GSM8K
VERB 0.146 0.636 0.182
PPL 0.056 0.694 0.160
SC 0.054 0.891 0.084

MATH
VERB 0.585 0.631 0.558
PPL 0.474 0.652 0.428
SC 0.139 0.723 0.226

NQ
VERB 0.282 0.613 0.279
PPL 0.548 0.520 0.523
SC 0.140 0.745 0.187

GPT-4o

GSM8K
VERB 0.077 0.663 0.076
PPL – – –
SC 0.031 0.824 0.047

MATH
VERB 0.585 0.631 0.558
PPL – – –
SC 0.182 0.828 0.186

NQ
VERB 0.455 0.641 0.443
PPL – – –
SC 0.140 0.693 0.118

Table 1: Performance comparison of uncertainty quan-
tification methods. Perplexity-based metrics (PPL) can-
not be computed for the black-box GPT-4o model, so it
is omitted for GPT-4o.

uates the method’s ability to distinguish correct246

from incorrect answers based on uncertainty scores247

(Fawcett, 2006). (3) Brier Score: computes the248

mean squared difference between predicted prob-249

abilities and true outcomes, capturing the calibra-250

tion of uncertainty estimates (Brier, 1950) (Fur-251

ther details are provided in the Appendix A). Ta-252

ble 1 presents these results side by side. Across all253

datasets and both LLMs, Self-Consistency (SC)254

achieves the lowest ECE, the highest AUROC255

for mistake detection, and the best (lowest) Brier256

scores, indicating its strong ability to deliver reli-257

able uncertainty estimates. Accordingly, we adopt258

Self-Consistency as our default uncertainty mea-259

sure for the subsequent analysis.260

4 Method261

Our preliminary evaluation demonstrated that Self-262

Consistency produces well-calibrated uncertainty263

estimates. Motivated by this finding, we investigate264

whether the pattern of disagreement among multi-265

ple samples can reveal why a model is uncertain,266

not merely how much.267

To illustrate, consider the example in Figure 1,268

which reflects uncertainty arising from an under-269

specified question. For another detailed case, con-270

sider the example in Figure 2. By aggregating re-271

sponses for the question “Which sequence of energy272

transformations occurs after a battery-operated273

flashlight is turned on?”, we find that the model274

Analysis: The main difference lies in how the battery’s role is
understood. Some answers mistakenly treat electrical energy
as the starting point, overlooking that the battery is a source
of chemical energy.… ** Possible Missing Knowledge: Some
responses lack an understanding that the battery itself stores
chemical energy, not electrical…**…

Q: Which sequence of energy transformations occurs after a
battery-operated flashlight is turned on?
A. electrical -> light -> chemical B. electrical -> chemical -> light
C. chemical -> light -> electrical D. chemical -> electrical -> light

A1: The correct answer is B: electrical → chemical → light. The
battery provides electrical energy, which triggers a chemical
reaction in the bulb, producing light energy.

A10: The correct answer is D: chemical → electrical → light.
The battery’s chemical energy is converted into electrical
energy, which then powers the light source to produce light.

…

Figure 2: An example of using LLM to diagnose un-
certainty for a sample question: ten responses were
collected, with options B and D each selected five times.
To illustrate, two representative responses are shown.

selects “electrical -> chemical -> light” or “chemi- 275

cal -> electrical -> light”. Referring to the detailed 276

analysis from the model as shown in Figure 2, the 277

primary divergence lies in the model’s interpreta- 278

tion of the battery’s role. The former one assume 279

that the battery directly contains electrical energy, 280

whereas the latter one correctly recognize that the 281

battery stores chemical energy, which is then con- 282

verted into electrical energy to power the light. This 283

discrepancy reveals a knowledge gap in the model’s 284

understanding of battery function, which underlies 285

its uncertainty. Notably, a manual analysis requires 286

substantial specialized domain knowledge. There- 287

fore, in our work, we leverage this insight and pro- 288

pose a framework that uses an auxiliary LLM to 289

automatically diagnose this source of uncertainty. 290

4.1 Notation and Definitions 291

To propose our pipeline, we first introduce the nec- 292

essary notation and definitions. Given a target 293

model f(·) for investigation, we let Q denote an in- 294

put question and let {A1, . . . , AN} be N answers 295

sampled from the model. Define the set of unique 296

answers as V = {v1, v2, . . . , vK}. We estimate the 297

probability of each distinct answer vk by: 298

P (vk) =
1

N

N∑
j=1

1(Aj = vk), (1) 299

where 1(·) is the indicator function. Then, the un- 300

certainty of the model to the question Q can be 301

measured by the Shannon entropy of this distribu- 302
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Tom has N answers to the same question. Here are the question and
answers:
Please analyze the possible reasons for the variations in these 
answers. Consider the following options and explain which one is most 
likely the cause:
A. The question is unclear or misleading. (The question lacks specific

details (e.g., time, place, or context) that could lead to confusion 
or contains misleading or incorrect background information that 
could lead to a wrong interpretation.)

B. Tom lacks sufficient knowledge to answer the question accurately. 
(Tom may have misunderstood the topic, confused historical facts, 
or failed to verify the correct information.)

C. Both A and B. (The question is unclear or misleading, and Tom also 
lacks sufficient knowledge to provide an accurate answer.)

Question (𝑄)

Ans1 (𝐴1)

Ans2 (𝐴2)

AnsN (𝐴𝑁)

…

Please analyze the differences among these answers and identify what 
essential knowledge or reasoning Tom might be missing that leads to 
the inconsistencies. Focus on abstract, domain -neutral principles
rather than simply reiterating case-specific details. 
Your Response Should Include:
1. Key Differences: Briefly list the main inconsistencies among the 

answers. 
2. Missing Knowledge (Specific Concept): Identify one precise

concept that would help resolve the disagreement. Avoid general 
topics; focus on the exact uncertainty in scientific reasoning.

A. Question Ambiguity B. Knowledge Gaps C. Both

High Uncertainty Filter: 
𝑼 𝑸  >  𝝉Uncertainty Attribution

Missing Knowledge or Concept

Knowledge-Gap Extraction

Target
Model

Auxiliary
Model

Auxiliary
Model

Figure 3: Framework of our pipeline for extracting the
precise source of uncertainty: (1) Filter high-uncertainty
samples; (2) Uncertainty Source Diagnosis: Uncertainty
Attribution and Knowledge-Gap Extraction.

tion (Shannon, 1948; Wang et al., 2022):303

U(Q) = −
K∑
k=1

P (vk) logP (vk), (2)304

which captures how widely the answers are spread305

over V: higher entropy indicates greater disagree-306

ment among the N samples and therefore higher307

uncertainty. Finally, we set a threshold τ so308

any question with U(Q) > τ is marked as high-309

uncertainty and selected for deeper analysis.310

4.2 Framework311

Given the notation and definitions, we now describe312

the two-phase, two-step pipeline for extracting the313

precise source of uncertainty1. The architecture of314

our pipeline is illustrated in Figure 3.315

1The pseudocode for the entire framework are presented
in Appendix C.

Phase I: High-Uncertainty Filtering. For each 316

question Q, we generate N answers and com- 317

pute its uncertainty score U(Q) according to Eq.2, 318

which adheres the basic pipeline of Self Consis- 319

tency for uncertainty estimation. We then select 320

only those samples with U(Q) > τ for subsequent 321

analysis, since high-uncertainty cases indicate pos- 322

sible mistakes (refer Section 3). 323

Phase II: Two-Step Diagnosis. 324

(1) Uncertainty Attribution. Concatenate each 325

filtered question Q with its N answers and prompt 326

an auxiliary LLM to analyze and attribute the uncer- 327

tainty. To guide this process, we design a prompt 328

framed around a fictional character (“Tom”) who 329

holds N answers to the same question (see the 330

prompt in green part of Figure 3). It is because 331

prior work suggests that models reason more reli- 332

ably when evaluating others’ responses rather than 333

their own (Lin et al., 2022). This third-person fram- 334

ing helps reduce self-reference bias and encourages 335

more consistent judgments. We extend the con- 336

ventional two-way decomposition (epistemic and 337

aleatoric uncertainty) into the following: 338

1. Question Ambiguity — the question itself 339

is unclear or under-specified, leading to di- 340

vergent interpretations. This category corre- 341

sponds to aleatoric uncertainty, as it arises 342

from inputs that allow multiple plausible in- 343

terpretations due to their inherent vagueness. 344

2. Knowledge Gaps — the model fails to retrieve 345

or apply the necessary factual or conceptual 346

information. This replaces the traditional epis- 347

temic category. 348

3. Both — the case involves both an ambiguous 349

question and a missing knowledge component, 350

jointly causing uncertainty. 351

(2) Knowledge-Gap Extraction. For samples 352

with label L ∈ {Knowledge Gaps,Both}, we con- 353

catenate the original question Q with its N answers 354

and prompt the auxiliary LLM to identify the spe- 355

cific fact or concept that is missing from the re- 356

sponse generation, and we denote it as K. See the 357

blue part of Figure 3, the prompt guides the model 358

to analyze the key differences among the responses; 359

and identify the specific piece of missing knowl- 360

edge that could explain these differences. This 361

module is crucial as it enables us to precisely iden- 362

tify which specific piece of knowledge is missing 363

or misunderstood, in complex reasoning tasks that 364
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involve multiple pieces of knowledge (see more dis-365

cussions in the experiments in Section 5.2). This366

process is also illustrated in the example shown in367

Figure 2, where the multiple answers of the LLM368

reveal that the uncertainty stems from an unclear369

understanding of the “battery’s function”, instead370

of other concepts. This capability is crucial be-371

cause it pinpoints the exact missing knowledge.372

This capability is crucial because it pinpoints the373

exact missing knowledge, enabling targeted inter-374

ventions, such as injecting the identified facts into375

the context to boost model performance.376

5 Experiments377

In this section, we present comprehensive experi-378

ments to validate the effectiveness of our proposed379

method for identifying the source of uncertainty380

in LLMs. Specifically, our experiments focus on381

answering two core questions:382

(i) Can the Uncertainty Attribution module accu-383

rately distinguish between different sources384

of uncertainty? (Section 5.1)385

(ii) Does the Knowledge-Gap Extraction module386

reliably reveal the knowledge deficiencies in387

the reasoning process? (Section 5.2)388

Unless explicitly stated for certain ablation or repli-389

cation scenarios, we use GPT o1-mini (OpenAI,390

2024b) as the auxiliary model throughout our ex-391

periments, given its strong reasoning capabilities.392

5.1 Validation of Uncertainty Attribution393

In this subsection, we evaluate whether the Un-394

certainty Attribution module can effectively distin-395

guish among three sources of uncertainty: Question396

Ambiguity, Knowledge Gaps, and Both.397

Setup. We validate the module on benchmarks398

containing abundant ambiguous questions. Am-399

bigQA (Min et al., 2020) consists of open-ended400

Natural Questions that admit multiple valid an-401

swers; we evaluate on its 2,002-sample validation402

set. OpenBookQA (Mihaylov et al., 2018) com-403

prises elementary-level, multiple-choice science404

questions; we use the first 500 examples from405

its training set. We use Llama3-8B-Instruct and406

GPT-3.5-turbo (OpenAI, 2023) as target models407

since they exhibit substantial uncertainty on the408

two benchmarks, yielding enough high-uncertainty409

cases for meaningful analysis. For each question,410

we generate N = 10 answers as a balance be- 411

tween reliable uncertainty estimation and compu- 412

tational cost, following common practice in self- 413

consistency methods, and compute their uncer- 414

tainty scores. We then apply a threshold τ = 0.89, 415

chosen to exclude confident cases while retaining 416

enough high-uncertainty samples for analysis. 417

Experimental Design. Although datasets like 418

AmbigQA annotate certain questions as ambigu- 419

ous, these annotations are rather subjective and 420

such questions may not actually be ambiguous to 421

the model. Thus, in our experiment, we instead as- 422

sess the accuracy of our uncertainty attribution by 423

comparing the reduction in uncertainty before and 424

after clarification across three categories to assess 425

this module’s effectiveness. In particular, for each 426

high-uncertainty question, we generate a clarified 427

version (see Appendix D for the detailed proce- 428

dure of clarification) (Kuhn et al., 2022; Zhang and 429

Choi, 2023), then sample N answers with the tar- 430

get model and recompute uncertainty. If the target 431

LLM’s uncertainty drops by a large margin after 432

clarification, it suggests the uncertainty is highly 433

likely due to “Question Ambiguity”. 434

Results. The experiment results are shown in Ta- 435

ble 2. Clarification leads to the greatest reduction 436

in uncertainty for samples labeled as Question Am- 437

biguity, followed by Both, and then Knowledge 438

Gaps. On AmbigQA, Llama3-8B-Instruct achieves 439

relative uncertainty reductions of 37.1%, 28.1%, 440

and 24.3% for the three categories, while GPT- 441

3.5-turbo yields comparable reductions of 42.1%, 442

32.3%, and 30.2%. This pattern demonstrates that 443

our attribution aligns with the model’s behavior: 444

uncertainty caused by ambiguity is significantly 445

reduced once the question is clarified. Notably, 446

“Knowledge Gaps” cases exhibit a modest decrease, 447

since the extra clarification can enhance model un- 448

derstanding to reduce uncertainty. In the only base- 449

line work (Hou et al., 2023), they also employ the 450

idea of input clarification to attribute uncertainty. 451

Our result in Table 2 shows high alignment with 452

their results. Overall, these findings confirm the 453

validity of our Uncertainty Attribution module2. 454

In our study, the auxiliary model is more ad- 455

vanced than the target model, which may not reflect 456

realistic deployment scenarios. Thus, we replicate 457

the key experiments using a single LLM (Llama3- 458

2Representative examples of multiple responses and their
analyses are provided in Appendix E.
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Dataset Model Label Unc. (Before) Unc. (After) Unc. Reduction Unc. Reduction Rate (%)

AmbigQA

Llama3-8B
-Instruct

Question Ambiguity 1.869 1.176 0.693 37.08
Both 2.005 1.442 0.563 28.08
Knowledge Gaps 1.902 1.440 0.462 24.30

GPT-3.5
-turbo

Question Ambiguity 1.522 0.881 0.641 42.09
Both 1.673 1.133 0.540 32.29
Knowledge Gaps 1.572 1.097 0.475 30.20

OpenbookQA

Llama3-8B
-Instruct

Question Ambiguity 1.340 0.441 0.899 67.08
Both 1.264 0.585 0.680 53.75
Knowledge Gaps 1.058 0.511 0.547 51.69

GPT-3.5
-turbo

Question Ambiguity 1.171 0.846 0.324 27.70
Both 1.349 1.028 0.322 23.84
Knowledge Gaps 1.214 0.926 0.288 23.72

Table 2: Validation results of Uncertainty Attribution. All results are computed on high-uncertainty samples. Unc.
denotes model uncertainty. Unc. (Before) and Unc. (After) refer to the average uncertainty before and after
clarification, respectively. Unc. Reduction indicates the absolute decrease in uncertainty, while Unc. Reduction
Rate (%) quantifies the relative reduction.

Dataset Label Unc.
(Before)

Unc.
(After)

Unc.
Reduction

Unc. Reduct.
Rate (%)

AmbigQA
Question Ambig. 1.92 1.39 0.53 27.73
Both 1.96 1.51 0.45 22.90
Knowledge Gaps 1.91 1.50 0.41 21.38

OpenbookQA
Question Ambig. 1.37 0.44 0.93 67.74
Both 1.13 0.41 0.72 63.60
Knowledge Gaps 1.23 0.66 0.57 46.72

Table 3: Evaluation results using Llama3-8B-Instruct
for both generation and analysis. Table format and
metrics follow those of Table 2.

8B-Instruct) for both answer generation and uncer-459

tainty analysis. As shown in Table 3, the overall460

trends mirror those obtained with o1-mini: uncer-461

tainty reduction still follows the order Question462

Ambiguity > Both > Knowledge Gaps across both463

datasets, which reconfirms our conclusion.464

5.2 Validation of Knowledge-Gap Extraction465

In this subsection, we check whether Knowledge-466

Gap Extraction module can identify the specific467

knowledge that contributes to model uncertainty.468

Setup. We select two challenging subdomains,469

Physics and Chemistry, from the MMLU-Pro470

dataset (Wang et al., 2024). It is a highly de-471

manding benchmark featuring expert-level, cross-472

disciplinary multiple-choice questions designed to473

test advanced reasoning capabilities across profes-474

sional domains. Each question includes ten answer475

options, often requiring nuanced understanding and476

multi-step inference. Moreover, due to the curated477

nature of MMLU-Pro, the questions are generally478

well-formed and unambiguous, allowing us to pro-479

ceed directly with knowledge extraction without480

performing prior uncertainty attribution. These481

characteristics make MMLU-Pro a suitable testbed 482

for rigorously evaluating whether our module can 483

identify and compensate for missing knowledge 484

in complex reasoning scenarios. We evaluate our 485

method across four LLMs: Llama3-8B-Instruct, 486

GPT-3.5-turbo, GPT-4o, and o1-mini. All other 487

settings are identical to those in Section 5.1. 488

Experimental Design. To validate the effective- 489

ness of our knowledge extraction module, we sup- 490

plement the original question with relevant “exter- 491

nal knowledge”, which are retrieved based on the 492

missing concept identified by our module. Then, 493

we check whether it can improve the model’s per- 494

formance. Specifically, for each high-uncertainty 495

sample labeled as Knowledge Gaps or Both, we 496

first extract a concise description of the key miss- 497

ing knowledge. The extracted knowledge phrase 498

is used as a query via the OpenAI web-search tool 499

(OpenAI, 2025a,b) to retrieve a short passage that 500

explains the concept in more detail. For example, if 501

the missing knowledge involves an unclear under- 502

standing of how a battery works, we retrieve a brief 503

explanation of battery functionality. The retrieved 504

passage is prepended to the original question as 505

additional context. We then sample N answers 506

from the target model, compute uncertainty and 507

accuracy after injecting the retrieved knowledge, 508

and compare these metrics to the original results to 509

assess the module’s effectiveness. 510

Results. The validation results are presented in 511

Table 4. Our method effectively identifies spe- 512

cific knowledge gaps, as evidenced by consistent 513

improvements in both uncertainty and accuracy 514

across all models and datasets after knowledge 515
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Dataset Model
Before After Unc. Reduction

Rate(%)
Acc. Improvement

Rate(%)Unc. Acc. (%) Unc. Acc. (%)

MMLU-Pro-Physics

Llama3-8B-Instruct 1.83 28.29 1.59 34.78 13.26 6.49
GPT-3.5-turbo 1.81 39.43 1.65 43.48 8.97 4.05
GPT-4o 1.76 29.63 0.94 72.22 46.51 42.59
o1-mini 1.39 50.00 1.05 70.83 24.63 20.83

MMLU-Pro-Chemistry

Llama3-8B-Instruct 1.90 30.77 1.64 35.90 13.64 5.13
GPT-3.5-turbo 1.88 41.67 1.63 50.00 13.45 8.33
GPT-4o 1.77 37.04 0.71 74.07 60.01 37.04
o1-mini 1.58 52.17 1.33 56.52 15.69 4.35

Table 4: Validation results of Knowledge-Gap Extraction. All results are computed on high-uncertainty samples.
Unc. denotes uncertainty and Acc. denotes accuracy. Before refers to the original performance, while After reflects
performance with knowledge added.Unc. Reduction Rate indicates the relative decrease in uncertainty, and Acc.
Improvement Rate represents the increase in accuracy.

injection. Particularly notable are the results for516

GPT-4o, which achieves uncertainty reductions of517

46.51% and 60.01%, accompanied by accuracy im-518

provements of 42.59% and 37.04% on Physics and519

Chemistry, respectively. Furthermore, when both520

the target and auxiliary models are instantiated as521

o1-mini, we still observe significant gains: on the522

Physics subset, uncertainty decreases by 24.63%523

and accuracy increases by 20.83%, underscoring524

that our framework’s effectiveness derives from its525

design rather than reliance on any particular model.526

Additional results are provided in Appendix B.527

Additional Analysis. In our result from Table 4,528

the additionally retrieved knowledge does not al-529

ways lead a correct answer. To investigate the530

reason, we randomly sampled 20 high-uncertainty531

questions from MMLU-Pro-Physics and 20 from532

MMLU-Pro-Chemistry for manual inspection. In533

the samples, even after knowledge injection, the534

model still erred on 12 Physics and 11 Chemistry535

samples. Under these errors, we find they usu-536

ally stem from lapses in logic and the complexity537

of multi-step calculations For an example (which538

presented in Figure 12 in Appendix), when ad-539

dressing the acid–base pH calculation, our method540

identifies the Knowledge Gap as “Stoichiomet-541

ric Calculations in Acid–Base Reactions”. The542

incorrect responses exhibit mole–concentration543

confusion (mole ↔ concentration; Answers 2,544

6), limiting-reagent misidentification (Answers 1,545

7), arithmetic/logarithm slip-ups (Answers 3, 10),546

and pH/pOH formula misuse (Answer 8). Simi-547

larly, in Figure 13 the model mis-uses the phase-548

inversion rule and optical-path-difference formula,549

and makes arithmetic or unit-conversion mistakes.550

Under these types of knowledge gaps, the model551

will still make mistake even supplementary in- 552

formation is provided. In contrast, in cases like 553

those in Figures 11 and 10—where only concep- 554

tual knowledge is missing—knowledge injection 555

alone sufficed to correct the model’s output. This 556

contrast shows that, although our module reliably 557

diagnoses exactly which fact or principle is miss- 558

ing, solving gaps that require multi-step quantita- 559

tive reasoning may demand not just better context 560

but also improvements in the model’s inferential 561

and arithmetic capacities. Crucially, these observa- 562

tions do not detract from our method’s validity: our 563

primary goal is to identify the source of uncertainty. 564

The detailed error analysis, together with the over- 565

all reductions in uncertainty and improvements in 566

accuracy, confirms that our Knowledge-Gap Ex- 567

traction module accurately pinpoints the factual 568

deficits driving model uncertainty. 569

6 Conclusion 570

In this paper, we propose a unified and generaliz- 571

able framework for diagnosing the source of uncer- 572

tainty in LLMs, addressing a critical gap in the cur- 573

rent literature. By analyzing disagreement across 574

multiple generated answers, our method identifies 575

whether uncertainty arises from question ambigu- 576

ity, missing specific knowledge during inference, 577

or both. Experiments across diverse models and 578

datasets show that our framework can effectively 579

diagnose the source of uncertainty. In particular, 580

its ability to pinpoint missing knowledge elements 581

offers a new perspective for improving reasoning 582

performance in LLMs. Overall, precisely diag- 583

nosing these uncertainty sources enables targeted 584

interventions that reduce uncertainty, bolster model 585

trustworthiness, and facilitate reliable deployment 586

in sensitive, high-stakes applications. 587
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7 Limitations588

Inference Cost. One limitation of our framework589

lies in its inference cost. Since each question590

requires sampling multiple responses (N = 10)591

and then running two rounds of auxiliary analysis592

(Uncertainty Attribution and Knowledge-Gap Ex-593

traction), the total number of model invocations594

can be substantial. This repeated generation and595

classification may limit the method’s scalability in596

latency-sensitive or resource-constrained environ-597

ments, such as real-time applications or deploy-598

ment on edge devices.599

Lack of Direct Evaluation Metrics. Because di-600

agnosing the source of uncertainty in LLMs is a601

relatively new task, there are no established quanti-602

tative metrics for (i) the accuracy of the uncertainty603

labels produced in the first step, nor for (ii) the604

precision of the extracted knowledge in the second605

step. We considered using a separate LLM to score606

or validate these outputs, but LLM-based evalua-607

tion is itself subjective, highly sensitive to prompt608

design, and often unreliable for fine-grained judg-609

ments. Manual annotation could help, but it in-610

troduces human subjectivity and does not scale.611

Instead, we validated the first step by measuring612

differential uncertainty reduction across the three613

label categories after input clarification. We vali-614

dated the second step by measuring performance615

gains after injecting retrieved knowledge. The first616

validation cannot provide a precise measure of attri-617

bution accuracy because it relies on indirect behav-618

ioral signals rather than ground-truth labels. The619

second validation may understate the true value620

of the extracted information because models some-621

times fail to fully comprehend the provided context,622

a limitation driven both by their reasoning capacity623

and by the inclusion of relatively long passages624

that dilute focus on the key facts. Nonetheless,625

in the absence of established benchmarks for un-626

certainty diagnosis, our combined behavioral and627

performance-based evaluation remains the most rig-628

orous and objective framework currently available.629
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A Preliminary Evaluation Details828

A.1 Uncertainty Quantification Methods829

Verbalization Given input question x and a sin-830

gle model response ŷ =M(x), we prompt:831

Question: “x”832

Answer: “ ŷ”833

Provide the reasoning correctness834

probability for the answer.835

The model’s numeric reply u ∈ [0, 1] is taken as836

the verbalization confidence score pVERB
θ (ŷ | x).837

Perplexity Let the answer ŷ = [t1, . . . , tm] be838

the model’s token sequence (excluding any end-of-839

sequence token). We collect the likelihood of each840

token under its conditional context,841

ℓi = pθ(ti | x, t<i),842

and define the geometric-mean confidence843

pPPLθ (ŷ | x) = exp
( 1

m

m∑
i=1

ln ℓi

)
.844

Self-Consistency For each input x, we sample n 845

independent answers {ŷi}ni=1 ∼M(· | x). Let 846

ŷ∗ = argmax
a

∣∣{ i : ŷi = a}
∣∣ 847

be the most frequent answer, and let f∗ = |{ i : 848

ŷi = ŷ∗}| denote its count. We then define the 849

self-consistency confidence as 850

pSCθ (x) =
f∗

n
, 851

i.e. the relative frequency of the majority answer 852

among the n samples. 853

A.2 Experimental Setup 854

We evaluate on three benchmarks by selecting the 855

first 300 examples of GSM8K and MATH, and 856

the first 200 examples of Natural Questions. For 857

Verbalization and Perplexity, we generate one re- 858

sponse per question. For Self-Consistency, we draw 859

N = 10 samples per question to estimate pSC. All 860

experiments use Llama3-8B-Instruct and GPT-4o. 861

A.3 Evaluation Metrics 862

Expected Calibration Error (ECE) Partition 863

predictions into K confidence bins {Bk} and com- 864

pute 865

ECE =
K∑
k=1

|Bk|
N

∣∣acc(Bk)− conf(Bk)
∣∣, 866

where acc(Bk) is the empirical accuracy and 867

conf(Bk) the average confidence in bin k (Guo 868

et al., 2017). 869

AUROC Compute the Area Under the Receiver 870

Operating Characteristic curve by ranking predic- 871

tions by uncertainty and measuring true/false posi- 872

tive rates (Fawcett, 2006). 873

Brier Score For each example i, let ui be the pre- 874

dicted confidence and yi ∈ {0, 1} the correctness 875

indicator. Then 876

BS =
1

N

N∑
i=1

(ui − yi)
2, 877

which captures both calibration and sharpness of 878

the uncertainty estimates (Brier, 1950). 879
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Dataset Model
Before After Unc. Reduction

Rate(%)
Acc. Improvement

Rate(%)Unc. Acc. (%) Unc. Acc. (%)

MMLU-Pro-Physics
Llama3-8B-Instruct 1.83 28.29 1.58 35.60 13.90 7.31
GPT-3.5-turbo 1.87 37.61 1.57 43.28 15.92 5.67
GPT-4o 1.75 35.72 1.15 50.00 34.35 14.28

MMLU-Pro-Chemistry
Llama3-8B-Instruct 1.83 30.71 1.61 34.64 12.04 3.93
GPT-3.5-turbo 1.85 39.68 1.68 40.71 9.52 1.03
GPT-4o 1.76 34.94 1.66 35.31 5.29 0.38

MMLU-Pro-Law
Llama3-8B-Instruct 1.35 18.09 0.67 23.21 50.01 5.12
GPT-3.5-turbo 1.42 26.73 0.88 30.50 38.11 3.76
GPT-4o 1.41 40.63 0.82 44.72 58.27 4.09

Table 5: Validation results of Knowledge-Gap Extraction. All results are computed on high-uncertainty samples.
Unc. denotes uncertainty and Acc. denotes accuracy. Before refers to the original performance, while After reflects
performance with knowledge added.Unc. Reduction Rate indicates the relative decrease in uncertainty, and Acc.
Improvement Rate represents the increase in accuracy.

B Additional Results880

B.1 Experimental Setup881

In the main experiments (Section 5.2), retrieved882

knowledge were obtained via web search. To eval-883

uate whether prompt-based context synthesis can884

serve as a viable alternative to external retrieval,885

we instead generate the missing knowledge context886

directly with o1-mini using a concise prompt (Fig-887

ure 6). We conduct these ablations on the Physics,888

Chemistry, and Law subsets of MMLU-Pro. All889

other settings remain the same: sample N = 10890

answers per question; apply the same uncertainty891

threshold τ = 0.89; and prepend the generated con-892

text before re-evaluating uncertainty and accuracy.893

B.2 Results894

Table 5 presents the prompt-only validation of our895

Knowledge-Gap Extraction module. Across the896

three MMLU-Pro sub-domains, we again observe897

clear improvements in both uncertainty and accu-898

racy after context injection. In the Physics subset,899

uncertainty falls by 13.90%–34.35% and accuracy900

rises by 7.31%–14.28%; in Chemistry, uncertainty901

decreases by 5.29%–12.04% with accuracy gains of902

0.38%–3.93%; and in Law, uncertainty is reduced903

by 38.11%–58.27% while accuracy improves by904

3.76%–5.12%. These results confirm that—even905

when missing knowledge is synthesized via prompt906

rather than retrieved externally—our module re-907

mains effective at diagnosing and mitigating knowl-908

edge deficiencies to reduce uncertainty and boost909

model performance.910

C Pseudocode of Framework 911

The complete procedure for our two-phase, two- 912

step uncertainty diagnosis framework is detailed 913

in Algorithm 1. Given a test set of questions 914

D = {Q(i)}Mi=1, the model first generates N in- 915

dependent answers per question using stochastic 916

decoding. Each question is then assigned an un- 917

certainty score U(Q(i)) computed as described in 918

Eq. 2. Only samples with U(Q(i)) > τ are retained 919

for further analysis, as low-uncertainty cases offer 920

limited diagnostic value. 921

For each retained question, we apply a structured 922

diagnostic process consisting of two steps. In the 923

first step—Uncertainty Attribution—we prompt the 924

LLM to identify whether the cause of uncertainty 925

arises from ambiguity in the question, a knowledge 926

gap, or both. This classification is produced using a 927

third-person prompt format to reduce self-reference 928

bias. In the second step—Knowledge-Gap Extrac- 929

tion—we prompt the LLM to extract the specific 930

missing fact or concept K(i) that would resolve 931

the observed inconsistency. This step is applied 932

only when the uncertainty is attributed to a knowl- 933

edge gap or both causes. The final output of the 934

pipeline includes an uncertainty label L(i) for each 935

high-uncertainty question and, when applicable, a 936

corresponding knowledge snippet K(i). 937

D Prompts 938

We provide the full prompt templates used for each 939

stage of our framework below. Each prompt is care- 940

fully designed to guide the model through a struc- 941

tured diagnostic or generation process; complete 942

examples and formatting details are as follows: 943

1. Uncertainty Attribution Prompt (Figure 4): 944
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Algorithm 1 Pipeline for Uncertainty Diagnosis

Input: Test set D = {Q(i)}Mi=1, threshold τ , num-
ber of samples N

Output: For each Q(i): uncertainty label L(i) and,
if applicable, knowledge snippet K(i)

1: for each Q(i) ∈ D do
2: {A(i)

j }Nj=1
LLM←−−− Q(i)

3: Compute uncertainty U(Q(i)) via Eq. 2
4: if U(Q(i)) > τ then
5: L(i) LLM←−−− PromptUA

(
Q(i), {A(i)

j }
)

// Uncertainty Attribution
6: if L(i) ̸= Question Ambiguity then
7: K(i) LLM←−−− PromptKGE

(
Q(i), {A(i)

j }
)

// Knowledge-Gap Extraction
8: end if
9: end if

10: end for

Frames the task around a fictional charac-945

ter (“Tom”) who offers multiple answers,946

asks the auxiliary LLM to compare these re-947

sponses, and choose among “Question Am-948

biguity,” “Knowledge Gaps,” or “Both” as949

the source of disagreement. This third-person950

setup reduces self-reference bias and encour-951

ages consistent classification.952

2. Knowledge-Gap Extraction Prompt (Fig-953

ure 5): Instructs the auxiliary LLM to first954

summarize key differences across the sam-955

pled answers and then pinpoint the single, pre-956

cise piece of missing factual or conceptual957

knowledge that would resolve the inconsis-958

tency. The prompt explicitly breaks the task959

into two steps—difference analysis and knowl-960

edge identification—to ensure clarity and fo-961

cus.962

3. Knowledge Synthesis Prompt (Figure 6):963

Takes a concise knowledge keyword or con-964

cept identified in the previous step and in-965

structs o1-mini to generate a self-contained966

explanatory snippet. This snippet includes967

a clear definition, core explanation, and any968

critical conditions or formulas, formatted as a969

standalone block that can be prefixed to any970

question as supplemental context. It is only971

employed in the appendix B experiments.972

4. Input Clarification Prompt (Figure 7): Guides973

the model to detect real-world ambiguities974

in the original question—such as unspecified 975

timeframes, locations, or referents—and, if 976

needed, to inject succinct, fact-grounded clari- 977

fications without altering the question’s intent. 978

If the question is already clear, the prompt 979

simply reproduces it unchanged. 980

E Examples 981

We present six examples (text truncated for brevity). 982

Figures 8 and 9 illustrate the Uncertainty Attribu- 983

tion step. By comparing multiple responses, our 984

method correctly classifies one AmbigQA question 985

as Both (under-specified phrasing + missing fact) 986

and one OpenBookQA item as Question Ambiguity 987

alone. This demonstrates that the attribution mod- 988

ule can reliably pinpoint the nature of uncertainty. 989

The remaining four cases (discussed in Section 5.2) 990

focus on Knowledge-Gap Extraction: In two exam- 991

ples without heavy calculation (Figure 10, Figure 992

11), injecting the extracted conceptual fact fully 993

resolves uncertainty and yields the correct answer 994

with low entropy. In two more complex examples 995

(Figure 12, Figure 13) involving multi-step numeri- 996

cal or physical–chemical reasoning, the model still 997

errs after context injection. Nonetheless, in each 998

case the extracted knowledge gap is precisely the 999

missing formula or principle, confirming our mod- 1000

ule’s ability to localize exactly which piece of do- 1001

main knowledge the model failed to apply. 1002
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Tom has 10 answers to the same question. Here are the question and answers:

Question: [Specific Question Here]
Answer 1: [Specific Answer 1 Here]
Answer 2: [Specific Answer 2 Here]
…
Answer 10: [Specific Answer 10 Here]

Please analyze the possible reasons for the variations in these answers. Consider the following
options and explain which one is most likely the cause:

- A. The question is unclear or misleading. (The question lacks specific details (e.g., time, place, 
or information that could lead to a wrong interpretation.)
- B. Tom context) that could lead to confusion or contains misleading or incorrect background lacks 
sufficient knowledge to answer the question accurately. (Tom may have misunderstood the topic, 
confused historical facts, or failed to verify the correct information.)
- C. Both A and B. (The question is unclear or misleading, and Tom also lacks sufficient knowledge to
provide an accurate answer.)

Figure 4: Prompt template for the Uncertainty Attribution step via multi-answer analysis.

Tom has 10 answers to the same question. Here are the question and answers:

Question: [Specific Question Here]
Answer1: [Specific Answer1 Here]
Answer2: [Specific Answer2 Here]
…
Answer10: [Specific Answer10 Here]

Your task is to analyze the differences among these answers and identify the essential *topics of 
missing or uncertain knowledge* that lead to these inconsistencies.

Please structure your response as follows:

- 1. Key Differences: Briefly list the main inconsistencies among the answers.
- 2. Missing Knowledge (Specific Concept): Identify one precise concept that would help resolve the 
disagreement. Avoid general topics; focus on the exact uncertainty in scientific reasoning.

Figure 5: Prompt template for the Knowledge-Gap Extraction step via multi-answer analysis.

Concept: [Missing Knowledge (Specific Concept)]

Your task is to generate a complete, self-contained knowledge snippet based solely on this concept. 
The snippet should include:

- 1. Definition: A clear, concise definition of the concept.  
- 2. Core Explanation: A paragraph describing the principle in depth and illustrating its importance 
in scientific reasoning.
- 3. Key Details: Any critical conditions, formulas, or boundaries that define the concept’s 
applicability.

Produce the snippet as a standalone text block that can be prefixed to any question to supply the
essential missing knowledge.

Figure 6: Prompt template for synthesizing a standalone “knowledge snippet” for a given concept.

In this task, you will analyze a question to determine if it contains ambiguities based on real-world 
facts. Consider the following aspects of ambiguity: 
- Entities, objects, or events have multiple references or interpretations. 
- Unclear timestamps (e.g., "When" without specifying a year or date).
- Unclear locations (e.g., "Where" without a specific place). 
- Unclear answer types (e.g., "Who" could refer to a person or a team). 

If the question is ambiguous:
- Add clarifications by providing specific conditions or explanations grounded in real-world facts. 
- Do not change the intent or semantics of the question. 

If the question is clear:
- Output the question as it is.

**Input** 
Original Question: [Specific Question Here]

**Output Format** 
Clarified Question:

Figure 7: Prompt template for the Input Clarification step, used to detect and resolve ambiguities.
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Question: Who played tony in only fools and horses? 

Answer 1: A classic British sitcom! In the BBC comedy series \"Only Fools and Horses\", the character of Anthony \"Tony\" Mullen, 
also known as \"Tony the Bookmaker\", was played by actor Patrick Murray.
Answer 2: A classic British TV show! In the popular BBC sitcom \"Only Fools and Horses\", the character Tony, also known as 
\"Trigger\", was played by actor Roger Lloyd-Pack.
Answer 3: The character of Tony Angelino, the lovable but dodgy businessman, was played by actor Kenneth MacDonald in the 
BBC sitcom \"Only Fools and Horses\".
Answer 4: The character Tony in the British sitcom "Only Fools and Horses" was played by actor Patrick Murray.
Answer 5: The character of Tony Angelotti in the BBC sitcom "Only Fools and Horses" was played by actor Kenneth MacDonald.
Answer 6: The character of Tony, the lovable but dodgy market trader, was played by actor James Whale in the BBC sitcom "Only 
Fools and Horses".
Answer 7: A classic British sitcom! In the BBC sitcom "Only Fools and Horses", the character of Anthony "Tony" Mullen was played 
by actor Patrick Murray.
Answer 8: A classic British sitcom! The character of Tony Carpenter was played by actor James Bolam in the BBC sitcom "Only 
Fools and Horses".
Answer 9: The character Tony in the British sitcom "Only Fools and Horses" was played by actor Patrick Murray.
Answer 10: The character of Tony Angelino, the uncle of Rodney Trotter, was played by actor Kenneth MacDonald in the British 
sitcom "Only Fools and Horses". 

Analysis: After reviewing the variations in Tom’s answers to the question “Who played Tony in Only Fools and Horses?”, the most 
likely cause is:  C. Both A and B
Explanation:
1. Unclear or Misleading Question: The question lacks specificity regarding which “Tony” is being referred to in the context of 
*Only Fools and Horses*. The show primarily features main characters like Del Boy, Rodney, and Trigger, but does not prominently 
feature a character named Tony. This ambiguity can lead to confusion, causing respondents to guess or mix up minor characters 
or even characters from other shows.
2. Insufficient Knowledge: The wide range of answers, some of which contain inaccuracies (e.g., incorrect actor–character 
associations or referencing actors unrelated to the show), suggests that Tom may not have a strong grasp of the show’s details. 
This lack of precise knowledge leads to inconsistent and sometimes incorrect responses.

Figure 8: Example from an AmbigQA sample where the Uncertainty Attribution module pinpoints the source of
uncertainty.

Question: slope is a measure of the difference in elevation from the top to the base of a
Options: A. penny. B. tower  C. pyramid  D. box 

Answer 1: The correct answer is B: tower. Only a tower has a defined vertical rise over a horizontal base, making it the only 
structure with a measurable slope under classical definitions.
Answer 2: The correct answer is C: pyramid. A pyramid’s triangular faces rise at a fixed incline from base to apex, giving it a natural 
geometric slope that can be precisely calculated.
Answer 3: The correct answer is C: pyramid. Its four triangular sides slope uniformly upward from the base to the apex, whereas a 
penny is flat, a tower is strictly vertical, and a box has no inclined faces.
Answer 4: The correct answer is C: pyramid. The slope is defined by the angle between each triangular side and the horizontal 
base—an attribute unique to a pyramid’s precise geometry.
Answer 5: The correct answer is B: tower. A tower’s façade or walls exhibit an incline measured as rise over run, unlike the flat 
coin, the right-angled pyramid faces, or the box’s uninclined surfaces.
Answer 6: The correct answer is B: tower. Only a tower has a clear elevation change from base to top with measurable incline; the 
other shapes lack both distinct top and classic slope.
Answer 7: The correct answer is B: tower. Its gradual rise from foundation to summit defines slope in architectural terms; a penny, 
pyramid, or box do not exhibit that continuous incline.
Answer 8: The correct answer is B: tower. A tower often includes angled surfaces—walls or roofs—whose steepness is measured 
as slope, in contrast to the other shapes’ flat or sharp-edged geometry.
Answer 9: The correct answer is B: tower. The steepness of a tower’s side (rise over run) defines its slope; the other options lack 
comparable continuous incline or structural rise.
Answer 10: The correct answer is C: pyramid. The ratio of its height to half its base width defines the consistent slope of its 
faces—unlike the flat, vertical, or right-angled alternatives.

Analysis: Based on the variations in Tom’s answers, the most likely cause is: A. The question is unclear or misleading.
Explanation:
1. Inconsistent Interpretation: - Tom’s answers oscillate between selecting **B: tower** and **C: pyramid** as the correct 
answer.  - This inconsistency indicates that the question’s phrasing might be open to multiple interpretations, leading to different 
conclusions based on how Tom perceives the term “slope” in context.
2. Ambiguity in Definitions: - Both a **tower** and a **pyramid** can be associated with slopes:  - A **tower** can have slopes 
in its design, such as inclined walls or roofs.  - A **pyramid** inherently has slopes as part of its geometric structure.  - Without 
clear context or specific criteria, Tom might reasonably argue for either option based on different interpretations of what aspect 
of “slope” the question is emphasizing.

Figure 9: Example from an OpenBookQA sample where the Uncertainty Attribution module pinpoints the source of
uncertainty.
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Question: Consider the Lewis structures for the following molecules: CO2, CO32-, NO2-, and NO3-. Which molecule or molecules 
exhibit sp2 hybridization around the central atom?
Options: A. NO₂⁻ only  B. CO₂ and CO₃²⁻  C. CO₂ only  D. CO₂ and NO₃⁻  E. NO₂⁻ and NO₃⁻  F. CO₃²⁻ and NO₃⁻
G. NO₃⁻ only  H. CO₂ and NO₂⁻  I. CO₃²⁻ only  J. CO₃²⁻, NO₂⁻, and NO₃⁻

Answer 1: The correct answer is D: CO₂ and NO₃⁻. CO₂ and NO₃⁻ both have trigonal planar arrangements around the central 
atom—each with π-bond character—requiring sp² hybridization.
Answer 2: The correct answer is E: NO₂⁻ and NO₃⁻. Both NO₂⁻ (bent with one double bond) and NO₃⁻ (trigonal planar with 
delocalized π bonds) exhibit sp² hybridization at nitrogen.
Answer 3: The correct answer is B: CO₂ and CO₃²⁻. In CO₂ (O=C=O) and CO₃²⁻ (trigonal planar carbonate), the central carbon uses 
three sp² orbitals to form σ bonds and one unhybridized p to form π bonds.
Answer 4: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Each of these ions has a planar geometry with at least one π bond 
around the central atom, indicating sp² hybridization.
Answer 5: The correct answer is B: CO₂ and CO₃²⁻. Both molecules feature a carbon center bonded in a trigonal planar fashion with 
π-bonding, consistent with sp² hybrid orbitals.
Answer 6: The correct answer is B: CO₂ and CO₃²⁻. Counting electron domains shows three bonding regions around C in both 
species, implying sp² hybridization.
Answer 7: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Their planar (or bent but 120°) geometries with π bonds require 
sp²-hybrid orbitals at the central atom.
Answer 8: The correct answer is B: CO₂ and CO₃²⁻. Focusing on σ-bond frameworks in planar structures, only CO₂ and CO₃²⁻ match 
sp² hybridization.
Answer 9: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Detailed orbital-overlap analysis revealed unhybridized p orbitals 
forming π bonds in these three ions, characteristic of sp² centers.
Answer 10: The correct answer is D: CO₂ and NO₃⁻. CO₂ and NO₃⁻ both show planar geometries with delocalized π systems around 
the central atom, fitting sp² hybridization.
Final Answer: B;  Uncertainty: 1.847

Knowledge Gap: Determining Hybridization from Molecular Geometry and Electron Domains

Answer 1: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. CO₃²⁻ (one double + two singles) and NO₂⁻ (one lone pair + two bonds) 
give three domains; NO₃⁻ (three bonds) also has three domains.
Answer 2: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Each central atom has three electron-density regions (double or single 
bonds, lone pairs) → sp².
Answer 3: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. sp² requires one s + two p orbitals (three domains) around C in CO₃²⁻ and 
N in NO₂⁻/NO₃⁻.
Answer 4: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Three regions of electron density around the central atom in each ion → 
sp².
Answer 5: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. CO₃²⁻ (trigonal planar), NO₂⁻ (bent but 120°), NO₃⁻ (trigonal planar) all 
use sp² orbitals.
Answer 6: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Three σ bonds or two σ + one lone pair around the central atom → sp².
Answer 7: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Only species with three electron domains (bonding + lone pairs) on the 
central atom are sp².
Answer 8: The correct answer is A: NO₂⁻ only. NO₂⁻ has two bonds + one lone pair (three domains); the others have either two or 
four domains.
Answer 9: The correct answer is J: CO₃²⁻, NO₂⁻, and NO₃⁻. Detailed orbital overlap shows three sp² σ–bonds around C in CO₃²⁻ and 
N in NO₂⁻/NO₃⁻.
Answer 10: The correct answer is A: NO₂⁻ only. Only NO₂⁻ has exactly three electron domains (two bonds + one lone pair) around 
N.
Final Answer: J;  Uncertainty: 0.722

Context: To find an atom’s hybridization from its molecular geometry and electron domains:
1. **Identify the Central Atom**  
   Determine which atom you’re examining.
2. **Count Electron Domains**  
   - Each σ bond (single, double or triple bond each count as one)  
   - Each lone pair counts as one domain  
3. **Compute Steric Number**  
   Steric number = (number of σ bonds) + (number of lone pairs)
4. **Map Steric Number to Hybridization**  
   | Domains | Hybridization | Electron-Domain Geometry    |
   |:-------:|:-------------:|:-----------------------------------------:|
   | 2       | sp            | Linear                                    |
   | 3       | sp²           | Trigonal planar / Bent                    |
   | 4       | sp³           | Tetrahedral / Trigonal pyramidal / Bent   |
   | 5       | sp³d          | Trigonal bipyramidal / See-saw / T-shaped / Linear |
   | 6       | sp³d²         | Octahedral / Square pyramidal / Square planar |
5. **Adjust for Lone Pairs**  
   Lone pairs occupy domains (thus contribute to steric number) but affect **molecular shape** rather than the count of hybrid 
orbitals.

Figure 10: Example from an MMLU-Pro-Chemistry sample where the model makes a correct prediction after
incorporating external knowledge.
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Question: Approximately how far away is the Andromeda Galaxy?
Options: A. 5 Mly B. 2.5 Mly C. 2.1 Mly D. 1.9 Mly E. 3.2 Mly F. 4 Mly G. 1.7 Mly H. 3.5 Mly I. 1.2 Mly J. 2.8 Mly

Answer 1: The correct answer is B: 2.5  Mly. M31 is the closest major spiral galaxy, approaching at ~250,000 mph; its distance 
(≈2.5 Mly) is confirmed by Cepheid variables, the Tully–Fisher relation, supernova light curves, and redshift.
Answer 2 :  The correct answer is B: 2.5  Mly. As a Local‑ Group member moving toward us at ~250,000 mph, its distance (≈2.5 
Mly) is derived from stellar motions, “standard candles” (Cepheids, supernovae), and parallax.
Answer 3 :  The correct answer is C: 2.1 Mly. M31’s distance can be estimated via Cepheid variables, Type Ia supernovae, and 
water masers, which yield values near 2.1 Mly (though most modern work centers on ≈2.5 Mly).
Answer 4 : The correct answer is B: 2.5  Mly. While early 20th century Cepheid work once gave ≈1.7 Mly, HST Cepheid and Gaia 
parallax data now consistently place M31 at ≈2.5 Mly.
Answer 5: The correct answer is C: 2.1 Mly. Planetary Nebula Luminosity Function measurements combined with water maser 
interferometry provide a distance of ≈2.1 Mly, independent of Cepheids or supernovae.
Answer 6 : The correct answer is G: 1.7  Mly. This reflects the earliest Cepheid-based distance; later HST/WFC3 work (2012) 
revised it to ≈2.54 Mly—historical estimates thus ranged ~1.7–2.6 Mly.
Answer 7 : The correct answer is C: 2.1 Mly. M31’s rotation speed (Tully–Fisher relation) and Cepheid data from HST/Spitzer give 
≈2.1 Mly.
Answer 8 : The correct answer is C: 2.1  Mly. Cepheid variables, Type Ia supernovae, and gas kinematics yield 2.1–2.5 Mly (2012 
HST preferred value: 2.537 ± 0.250 Mly).
Answer 9 : The correct answer is C: 2.1 Mly. Edwin Hubble’s stellar‑ brightness work, refined by Cepheids, supernovae, parallax, 
and Tully–Fisher, converges on ≈2.1 Mly.
Answer 10 :  The correct answer is G: 1.7 Mly. Early Cepheid measurements gave ~1.7 Mly; modern consensus (HST, Gaia) is ≈2.5 
Mly, but historical estimates cluster at ~1.7 Mly.
Final Answer: C;  Uncertainty: 1.485

Knowledge Gap: Astronomical Distance Measurement Techniques

Answer 1:  The correct answer is B: 2.5 Mly. This estimate comes from applying Redshift and Hubble’s Law—measuring 
Andromeda’s redshift and converting its recessional velocity via H₀ yields ≈2.5 Mly, consistent with multiple independent 
methods.
Answer 2:  The correct answer is B: 2.5 Mly. Here, the distance is derived from the observed redshift of M31; plugging that 
velocity into Hubble’s Law reproduces the well-established ≈2.5 Mly figure.
Answer 3:  The correct answer is B: 2.5 Mly. Using Hubble’s Law on Andromeda’s measured redshift gives ≈2.5 Mly, in agreement 
with Cepheid and supernova standard-candle calibrations. 
Answer 4:  The correct answer is B: 2.5 Mly. Type Ia supernovae observed in M31 serve as “standard candles,” and their peak 
brightness measurements yield a distance near 2.5 Mly.
Answer 5:  The correct answer is B: 2.5 Mly. Again, Redshift and Hubble’s Law applied to Andromeda’s spectrum provides the 
≈2.5 Mly value, corroborated by Cepheid and supernova data.
Answer 6:  The correct answer is B: 2.5 Mly. Cepheid variable stars in M31 follow a period–luminosity relation that, when 
calibrated against local Cepheids, gives ≈2.5 Mly. 
Answer 7:  The correct answer is B: 2.5 Mly. The Tully–Fisher relation uses M31’s rotation speed to infer its luminosity and hence 
distance, producing ≈2.5 Mly.
Answer 8:  The correct answer is B: 2.5 Mly. By measuring the Andromeda Galaxy’s rotation curve and applying the Tully–Fisher 
relation, one arrives at ≈2.5 Mly.
Answer 9:  The correct answer is B: 2.5 Mly. Once more, Redshift combined with Hubble’s Law converts the galaxy’s recessional 
velocity into ≈2.5 Mly.
Answer 10:  The correct answer is B: 2.5 Mly. Using the Tully–Fisher relation on M31’s rotational velocity yields a luminosity-
based distance estimate near 2.5 Mly.
Final Answer: B;  Uncertainty: 0.0

Context: Astronomical distance measurement techniques are methods used by astronomers to determine the distances to 
celestial objects. These techniques vary depending on the distance of the object, from nearby stars within our galaxy to distant 
galaxies billions of light-years away. Here are some common astronomical distance measurement techniques:

1. Parallax Method – used for nearby stars; measures apparent shift as Earth orbits the Sun; distance via trigonometry; effective 
up to a few thousand light-years.
2. Cepheid Variable Stars – luminosity–period relation; measure pulsation period for intrinsic brightness; compare to apparent 
brightness for distance; useful for nearby galaxies.
3. Tully-Fisher Relation – for spiral galaxies; luminosity scales with rotation speed; measure rotation to estimate luminosity and 
thus distance.
4. Type Ia Supernovae – consistent peak luminosity; compare observed to intrinsic brightness to calculate distance; important for 
distant galaxies.
5. Redshift & Hubble’s Law – for very distant galaxies; measure redshift to infer recessional velocity; apply Hubble’s Law (v = H₀d) 
to find distance.
6. Main Sequence Fitting – star clusters; align H–R diagram main sequence with that of a reference cluster; infer distance from the 
offset.
7. Surface Brightness Fluctuations – galaxies; analyze pixel-to-pixel brightness variations; use fluctuation amplitude to estimate 
distance.

Figure 11: Example from an MMLU-Pro-Physics sample where the model makes a correct prediction after
incorporating external knowledge.
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Question: A 50.0 mL sample of 0.0025 M HBr is mixed with 50.0 mL of 0.0023 M KOH. What is the pH of the resulting mixture?
Options: A. 6  B. 7  C. 3  D.1  E. 4  F. 11  G. 2  H. 12  I. 5  J.9

Answer 1: The correct answer is C: 3. Mixing 50 mL of 0.0025 M HBr (0.125 mmol H⁺) with 50 mL of 0.0023 M KOH (0.115 mmol 
OH⁻) leaves 0.010 mmol H⁺ in 100 mL, so [H⁺]=0.001 M and pH=–log₁₀(0.001)=3.
Answer 2: The correct answer is G: 2. You begin with 0.00125 mol H⁺ and 0.00115 mol OH⁻ in a total volume of 0.100 L, giving 
0.00010 mol excess H⁺ or [H⁺]≈0.0011 M; pH=–log₁₀(0.0011)≈2.04, which rounds to 2.
Answer 3: The correct answer is G: 2. After 0.0125 mol H⁺ (from HBr) reacts with 0.0115 mol OH⁻ (from KOH), 0.0010 mol H⁺ 
remains in 0.100 L, so [H⁺]=0.010 M and pH=–log₁₀(0.010)=2.
Answer 4: The correct answer is D: 1. With 0.0125 mol HBr and 0.0115 mol KOH, you have 0.0010 mol H⁺ left in 0.100 L 
([H⁺]=0.010 M); –log₁₀(0.010)=2, yet this solution unusually rounds to pH 1.
Answer 5: The correct answer is D: 1. Treating HBr and KOH as fully dissociated gives 0.0125 mol H⁺ and 0.0115 mol OH⁻, so 
0.0010 mol net H⁺ in 0.100 L ([H⁺]=0.010 M) and pH≈2, again rounded to 1.
Answer 6: The correct answer is D: 1. Subtracting 0.0023 M OH⁻ from 0.0025 M H⁺ yields 0.0002 M net H⁺ in 1 L, which they scale 
to 0.100 L as [H⁺]≈0.002 M; –log₁₀(0.002)≈2.7 is then rounded down to pH 1.
Answer 7: The correct answer is G: 2. As before, 0.0125 mol H⁺ minus 0.0115 mol OH⁻ leaves 0.0010 mol H⁺ in 0.100 L ([H⁺]=0.010 
M), giving pH=–log₁₀(0.010)=2.
Answer 8: The correct answer is A: 6. Using pH = 7.00 – log₁₀([OH⁻]/[H⁺]) with [OH⁻]=0.0115 M and [H⁺]=0.001 M yields pH≈5.94, 
rounding to 6.
Answer 9: The correct answer is G: 2. Treating KOH as limiting reagent, 0.0115 mol OH⁻ neutralizes 0.0115 mol H⁺, leaving 0.0010 
mol H⁺ in 0.100 L ([H⁺]=0.010 M), so pH=2.
Answer 10: The correct answer is C: 3. Calculating [H⁺]=0.0025 mol/0.100 L=0.025 M gives pH=–log₁₀(0.025)≈1.60, though this 
solution reports 3, indicating an arithmetic mismatch.
Final Answer: G;  Uncertainty: 1.847

Knowledge Gap: Stoichiometric Calculations in Acid-Base Reactions

Answer 1: The correct answer is G: 2. By writing the balanced equation \[\mathrm{HBr} + \mathrm{KOH} \rightarrow 
\mathrm{KBr} + \mathrm{H_2O}\], then calculating 0.0125 mol H⁺ versus 0.0115 mol OH⁻ in 0.100 L, you find 0.0010 mol excess 
H⁺ → [H⁺]=0.010 M and pH ≃  2.
Answer 2: The correct answer is C: 3. Although the original solution mis-added moles, the proper neutralization gives 0.00010 mol 
H⁺ leftover from 0.00125 mol H⁺ and 0.00115 mol OH⁻ in 0.100 L → [H⁺]=0.0010 M → pH ≃  3.
Answer 3: The correct answer is G: 2. Subtracting 0.0115 mol OH⁻ from 0.0125 mol H⁺ yields 0.0010 mol H⁺ in 0.100 L, so 
[H⁺]=0.010 M and pH ≃  2.
Answer 4: The correct answer is G: 2. Following the 1 : 1 mole ratio and calculating 0.0010 mol H⁺ left in 0.100 L gives pH = 2.
Answer 5: The correct answer is G: 2. Using the same stoichiometry—0.0125 mol HBr versus 0.0115 mol KOH—leaves 0.0010 mol 
H⁺ in 0.100 L → [H⁺]=0.010 M → pH = 2.
Answer 6: The correct answer is C: 3. Taking net [H⁺] = (0.0025 M – 0.0023 M) in 1 L (≈0.0002 M) scaled to 0.100 L yields 
[H⁺]≈0.002 M → pH ≃  2.7.
Answer 7: The correct answer is F: 11. Again, 0.0010 mol H⁺ remains in 0.100 L (pH = 2), and option 11 is the only entry listing “2” 
for this problem.
Answer 8: The correct answer is A: 6. Applying pH = 7 – log([OH⁻]/[H⁺]) with [OH⁻]=0.0115 M and [H⁺]=0.001 M gives pH ≃  5.94 
→ 6.
Answer 9: The correct answer is G: 2. Treating KOH as limiting leaves 0.0010 mol H⁺ in 0.100 L (pH = 2).
Answer 10: The correct answer is G: 2. Proper moles-subtraction yields [H⁺]=0.025 M → pH ≃  1.6 → 2.
Final Answer: G;  Uncertainty: 1.571

Context: Stoichiometric calculations in acid-base reactions involve determining the quantities of reactants and products involved 
based on their balanced chemical equation. Here’s a step-by-step guide:
1. **Write the Balanced Chemical Equation:**  
   Identify the acid, base, and their products. Balance the equation to ensure the number of atoms of each element is equal on 
both sides. For example:  \[ \mathrm{HCl} + \mathrm{NaOH} \rightarrow \mathrm{NaCl} + \mathrm{H_2O}\]
2. **Determine the Moles of Known Substance:**  
   Use the given mass, volume, or concentration to calculate the moles of the reactant or product you know.  
   - For solutions: \( \text{moles} = \text{molarity} \times \text{volume (in liters)} \)  
   - For solids: \( \text{moles} = \frac{\text{mass}}{\text{molar mass}} \)
3. **Use Mole Ratios:**  
   From the balanced equation, relate the moles of the known substance to the moles of the unknown substance.
4. **Calculate Unknown Quantity:**  
   Convert moles of the unknown substance back to desired units (mass, volume, concentration).
**Example:**  
If you have 0.5 L of 0.1 M HCl, how many grams of NaOH are needed to neutralize it?
- Calculate moles of HCl:  \[ 0.1 \,\text{M} \times 0.5 \,\text{L} = 0.05 \,\text{moles} \]
- From the equation, mole ratio HCl : NaOH is 1 : 1, so moles of NaOH needed = 0.05 mol.  
- Calculate mass of NaOH:  \[ 0.05 \,\text{mol} \times 40 \,\frac{\text{g}}{\text{mol}} = 2 \,\text{g}\]
So, 2 grams of NaOH are needed to neutralize 0.5 L of 0.1 M HCl.

Figure 12: Example from an MMLU-Pro-Chemistry sample where the model makes a incorrect prediction after
incorporating external knowledge
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Question: White light is normally incident on a puddle of water (index of refraction 1.33). A thin (500 nm) layer of oil (index of 
refraction 1.5) floats on the surface of the puddle. Of the following, the most strongly reflected wavelength is
Options: A. 750 nm B. 350 nm C. 450 nm D. 650 nm E. 550 nm F. 500 nm G. 600 nm H. 400 nm I. 700 nm J. 800 nm

Answer 1: The correct answer is C: 450 nm. Total internal reflection at the oil–water interface combined with thin-film 
interference conditions favors mid-visible wavelengths; 450 nm sits closest to the constructive-interference maxima for a 500 nm 
oil layer and thus reflects most strongly.
Answer 2: The correct answer is G: 600 nm. For a 500 nm oil film, 2 n d ≈1500 nm gives m=2.5 → λ≈600 nm; this aligns with 
reflection at that wavelength.
Answer 3: The correct answer is D: 650 nm. Snell’s law gives a critical angle of ~48.6°, and the effective optical path 2 d/n ≈ 667 
nm falls nearest to 650 nm, making it the wavelength that experiences the strongest constructive interference.
Answer 4: The correct answer is B: 350 nm. Shorter wavelengths penetrate less before reflecting, and at 350 nm both TIR and 
film-thickness interference reinforce, boosting reflection at longer wavelengths.
Answer 5: The correct answer is E: 550 nm. The quarter-wavelength condition (λ = 2 d/(n₂–n₁)) for 500 nm oil yields λ≈550 nm, 
light of this wavelength constructively interferes and reflects strongly.
Answer 6: The correct answer is F: 500 nm. When the free-space wavelength matches the film thickness, multiple reflections 
interfere constructively at that same wavelength, producing the strongest reflected intensity at 500 nm.
Answer 7: The correct answer is D: 650 nm. Applying 2 n d = m λ for m=2 in a 500 nm oil layer (n=1.5) gives λ ≈ 667 nm, so 650 nm 
is the closest option that satisfies the constructive-interference requirement.
Answer 8: The correct answer is H: 400 nm. Since TIR efficiency increases at shorter wavelengths and 400 nm lies in the near-UV 
visible spectrum, it shows strong reflectivity under TIR conditions.
Answer 9: The correct answer is I: 800 nm. The Fresnel reflection coefficient R ∝ ((n₁–n₂)/(n₁+n₂))² slowly increases with 
wavelength, making the longest available wavelength (800 nm) the most strongly reflected by the oil layer.
Answer 10: The correct answer is B: 350 nm. Critical-angle analysis shows the smallest wavelength has the largest refractive-index 
contrast effect, so 350 nm light surpasses longer wavelengths under TIR at the oil–water boundary.
Final Answer: B;  Uncertainty: 2.922

Knowledge Gap: Thin-Film Interference Principles

Answer 1: The correct answer is G: 600 nm. Including the 180° phase shift at the oil–water interface (n₂ = 1.5 over n₁ = 1.33) turns 
the constructive condition into 2nt = (m + ½)λ. For m = 0, this gives λ = (2·1.5·500 nm)/0.5 = 600 nm, the first visible maximum.
Answer 2: The correct answer is D: 650 nm. Using the condition for constructive interference with a 180° phase shift at the 
oil–water interface (2 nt = (m + ½) λ), set n = 1.5, t = 500 nm, and m = 1. This gives λ = (2·1.5·500 nm)/1.5 ≈ 1000 nm/1.5 ≈ 667 nm, 
which rounds to 650 nm under the available options. 
Answer 3: The correct answer is F: 500 nm.  For m = 2 in 2nt = (m + ½)λ, λ = (2·1.5·500 nm)/2.5 = 600 nm; stepping to m = 3 gives 
λ = (2·1.5·500)/3.5 ≈ 429 nm, so the dominant visible maximum is at λ = 500 nm.
Answer 4: The correct answer is D: 650 nm. Solving 2nt = mλ for m = 2 yields λ = 750 nm; including the half-wavelength phase 
shift (2nt = (m + ½)λ) for m = 1 gives λ = (2·1.5·500)/1.5 ≈ 1000/1.5 ≈ 667 nm, closest to 650 nm.
Answer 5: The correct answer is A: 750 nm. Ignoring any phase shifts, the simplest constructive-interference condition 2nt = mλ 
with m = 2 gives λ = (2·1.5·500 nm)/2 = 750 nm, the first visible maximum without reversal.
Answer 6: The correct answer is B: 350 nm. Applying 2nt = (m + ½)λ for m = 3 yields λ = (2·1.5·500 nm)/3.5 ≈ 429 nm; increasing m 
to 4 brings λ ≈ 300 nm, so the closest listed is 350 nm.
Answer 7: The correct answer is H: 400 nm. Using 2nt = (m + ½)λ for m = 4 → λ = (2·1.5·500)/4.5 ≈ 333 nm; for m = 5 → λ ≈ 273 
nm, so the strongest mid-visible fringe is at 400 nm.
Answer 8: The correct answer is I: 700 nm. When m = 1 in 2nt = mλ you get 1500 nm; subtracting the half-wavelength reversal 
(2nt = (m + ½)λ) for m = 0 gives λ = 600 nm, so the next candidate under plain constructive is 700 nm.
Answer 9: The correct answer is E: 550 nm. Iterating 2nt = mλ for m = 2 gives 750 nm and m = 3 gives 500 nm; applying the 
half-shift shows a strong fringe near 550 nm.
Answer 10: The correct answer is G: 600 nm. Re-evaluating m = 0 in 2nt = (m + ½)λ with full phase reversal yields λ = 600 nm again 
as the most intense reflected color.
Final Answer: D;  Uncertainty: 2.922

Context: Thin-film interference occurs when light reflects off both the top and bottom of a thin layer, causing the two reflected 
waves to overlap and interfere.
1. **Film & Substrate:** A film (nanometers to micrometers thick) lies on a substrate (e.g., oil on water or anti-reflective film on 
glass).  
2. **Dual Reflections:** Incident light partly reflects at the film’s top surface; the remainder enters the film, reflects off its bottom 
surface, then exits.  
3. **Optical Path Difference:** The two reflected beams traverse different distances. This extra path (2 n t, where n = film index 
and t = thickness) determines their relative phase.  
4. **Phase Shifts on Reflection:** - Reflection into higher-n medium adds a half-wavelength (½ λ) phase shift.  
   - Reflection into lower-n medium adds no phase shift.  
5. **Constructive vs. Destructive:**  - Constructive when 2 n t = m λ (m = 0, 1, 2…), yielding bright maxima.  
   - Destructive when 2 n t = (m + ½) λ, producing dark minima.  
6. **Wavelength Dependence:** Different wavelengths satisfy these conditions at different angles or thicknesses, creating 
colorful fringes that shift with viewing angle or film thickness. 

Figure 13: Example from an MMLU-Pro-Physics sample where the model makes a incorrect prediction after
incorporating external knowledge
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