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Abstract
We introduce “Partition Generative Models”
(PGMs), a novel approach to masked genera-
tive modeling (MGMs), particularly effective for
masked diffusion language modeling (MDLMs).
PGM divides tokens into two distinct groups and
employs sparse attention patterns to prevent cross-
group information exchange. Hence, the model
is trained to predict tokens in one group based
solely on information from the other group. This
partitioning strategy eliminates the need for MASK
tokens entirely. While traditional MGMs ineffi-
ciently process MASK tokens during generation,
PGMs achieve greater computational efficiency
by operating exclusively on unmasked tokens.
Our experiments on OpenWebText with a context
length of 1024 tokens demonstrate that PGMs
deliver at least 5x improvements in both latency
and throughput compared to MDLM when using
the same number of sampling steps, while gen-
erating samples with better generative perplexity
than MDLM. Finally, we show that PGMs can
be distilled with Self-Distillation Through Time
(SDTT), a method originally devised for MDLM,
in order to achieve further inference gains.

1. Introduction
Masked generative modeling (MGM) excels at sampling
from complex data distributions by iteratively denoising
masked inputs. In fact, the MGM paradigm has proven suc-
cessful in various modalities, such as images (Chang et al.,
2022), video (Yu et al., 2023; Villegas et al., 2022), and au-
dio spectrograms (Comunità et al., 2024). In particular, re-
cent advances leveraging discrete diffusion (Campbell et al.,
2022; Zhao et al., 2024; Lou et al., 2024; Sahoo et al., 2024;
Shi et al., 2025; Ou et al., 2025) and discrete flow matching
(Campbell et al., 2024; Gat et al., 2024) have shown that
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Figure 1. Latency results: PGM (ours) achieves better generative
perplexity and at least 5x improvements in latency compared to
MDLM on OpenWebText (Gokaslan & Cohen, 2019). All sam-
pling uses power-of-2 step counts. Standard models are evaluated
with 32 to 1024 steps, while the model distilled with SDTT uses
from 8 to 1024 steps. The improvements come from our special-
ized neural network architecture.

MGM can also be applied to text generation, challenging
the traditional dominance of autoregressive modeling in this
domain.

Modern MGMs use transformer architecture (Vaswani et al.,
2023) with bidirectional attention to reconstruct masked to-
kens. This simple approach, which can be seen as a form of
generalized BERT (Devlin et al., 2019) model, can generate
new samples by iteratively denoising a sequence of masked
inputs.

Despite their ability to generate high-quality samples,
MGMs face two key inference efficiency challenges com-
pared to autoregressive models (ARMs). Firstly, unlike
ARMs, which benefit from KV caching (Pope et al., 2022),
MGM transformer encoders must recompute all activations
in each decoding step. Secondly, MGMs process many
masked tokens that carry minimal information, particularly
in the early sampling stages, when most tokens are masked.
In contrast, ARMs only need to process tokens they have
already generated.

In this work, we introduce “Partition Generative Models”
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(PGM). This novel approach does not require processing
masked tokens during training and inference and can be im-
plemented using simple attention masking. The key insight
behind PGM is simple: during training, instead of masking
tokens, we partition them into two disjoint groups and train
the model to predict one group from the other. As shown
in Figure 2 (right), PGMs only process unmasked tokens
during sampling. In contrast, MGMs must always handle
full-length sequences. This leads to a significant perfor-
mance gain for PGMs. Furthermore, while most MGMs
compute predictions for all missing positions, PGMs can
produce logits solely for the positions that will be effectively
denoised in the current sampling step.

Our main contributions can be summarized as follows.

• We introduce “Partition Generative Models” (PGM), a
simple and effective alternative to Masked Generative
Modeling (MGM). We propose an encoder-decoder
variant of the diffusion transformer (Peebles & Xie,
2023) that does not need to process any masked token
at inference.

• PGM achieves a reduction of 1.95 in perplexity in
LM1B (Chelba et al., 2014), compared to masked dif-
fusion language models (MDLM) (Sahoo et al., 2024).
In OpenWebText (Gokaslan & Cohen, 2019), PGMs
can generate samples of better quality than MDLM
with a 5- 5.5x improvement in throughput and latency,
when using the same number of sampling steps as
MDLM.

• Additionally, we show that PGMs can be distilled (De-
schenaux & Gulcehre, 2025) and achieve 10.73x better
latency and superior generative perplexity than GPT-2
with KV caching.

2. Background
2.1. Generative Language Modeling

Language modeling addresses the task of generating se-
quences of discrete tokens (xi) from a vocabulary X =
Z<N = {0, ..., N − 1}. A language model generates
sequences of length L, defined as elements of XL ={
x(i) = (x

(i)
0 , . . . , x

(i)
L−1) : x

(i)
j ∈ X

}NL

i=0
. The training

data set D :=
{
x(0), . . . , x(K−1) : x(i) ∈ XL

}
contains

K such sequences. One fundamental objective of language
modeling is to generate samples similar to those of the
unknown distribution p0 : XL → [0, 1] that induced the
training data set D.

2.2. Masked Generative Modeling

In MGM, the vocabulary X includes a special MASK token
absent from the training set D. During training, the MASK
token is used to replace a fraction of the original tokens in
the input sequences x ∈ D. Formally, we train a denoiser
xθ : XL → RL×N with learnable parameters θ. To generate
new samples, we initialize the sampling procedure with
sequences composed entirely of MASK tokens. The model
then iteratively replaces a subset of these masked tokens
according to a predefined algorithm, for example, denoising
a random subset of the MASK tokens. The training objective
of the denoiser xθ can generally be written as follows:

LMGM := Ex∼D,t∼U [0,1] [w(t)CE(xθ(zt; t),x)] , (1)

where t determines the proportion of tokens to mask. The
corrupted sequence zt is generated by independently mask-
ing each token in x with time-dependent probability pt. For
simplicity, we could set pt = t. The weighting function
w : [0, 1] → R≥0 allows us to assign a different impor-
tance to each noise level. Finally, CE(x, y) denotes the
cross-entropy loss between the predicted logits x and the
target integer labels y. Oftentimes, the cross-entropy loss
is applied exclusively to masked tokens. In such cases, the
denoiser model xθ is implemented in such a way that it
assigns all probability mass to the input token at positions
where the input tokens are not masked.

2.3. Masked Diffusion Language Modeling

“Masked diffusion language models” (MDLM) are sequence
generative models that operate in discrete space. MDLMs
have demonstrated performance comparable to Autoregres-
sive models in validation perplexity and text generation
quality. In this work, we use MDLM as our baseline MGM
implementation and focus experiments on text generation.

Discrete absorbing diffusion process MDLMs define a
forward process that corrupts the data and a backward pro-
cess that recovers it. For each token in the sequence, the
forward process linearly interpolates between one-hot en-
coding of each token in x and π, the absorbing distribution
that assigns all mass to the MASK token. Formally:

q(zt|x) := Categorical(zt;αtx+ (1− αt)π), (2)

where αt defines the noise injection schedule for t ∈ [0, 1].
This schedule must be such that αt ∈ [0, 1], αt is strictly
decreasing as t increases, and should satisfy the boundary
conditions α0 ≈ 1 and α1 ≈ 0. The process is termed
”absorbing” because the corruption is irreversible. Once a
token becomes a MASK token, it remains masked throughout
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(a) Masked Generative Modeling (MGM)
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(b) Partition Generative Modeling (PGM)

Figure 2. Masked Generative Modeling (MGM) vs. Partition Generative Modeling (PGM). Training: PGMs receive feedback at
every position, while MGMs usually only apply loss to masked tokens. Inference: PGMs process only unmasked tokens, working with
shorter sequences and predicting logits only for tokens to denoise. MGMs must process full-length sequences and compute logits at all
positions. Important note: PGMs use a specialized architecture that ensures predictions for position i never depend on the token at
position i.

the forward process. The posterior sampling distribution
pθ(zs|zt) uses the same analytical form as the true poste-
rior p(zs|zt,x), where x denotes a sample from the data
distribution. Since x is not available during sampling, the
output of the denoiser xθ is used in place of x. Formally,
pθ(zs|zt) := q(zs|zt,x = xθ(zt; t)). To derive a simple
expression for pθ(zs|zt), MDLM enforces that unmasked
tokens are carried over during reverse diffusion, which in-
duces the following expression:

pθ(zs|zt) =

{
Cat(zs; zt), zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
(1−αt)

)
, zt = m

(3)

Training objective MDLM trains the denoiser xθ us-
ing a continuous-time negative evidence lower bound
(NELBO) (Sohl-Dickstein et al., 2015), which provides
a tighter bound to the log-likelihood of the data than the
discrete-time NELBO (Kingma et al., 2023). The de-
noiser defines a learned posterior distribution pθ(zs|zt) :=
q(zs|zt,xθ(zt, t)), and the NELBO simplifies to a weighted
cross-entropy loss between ground-truth samples x and the

predictions of the denoiser xθ:

L∞
NELBO = Eq

∫ t=1

t=0

α′
t

1− αt
log⟨xθ(zt, t),x⟩dt. (4)

2.4. Self-Distillation Through Time

“Self-Distillation Through Time” (SDTT) (Deschenaux &
Gulcehre, 2025) speeds up the sampling of MDLMs through
a process similar to “Progressive Distillation” (Salimans
& Ho, 2022). SDTT creates student and teacher copies
from a pre-trained MDLM. The student learns to match the
prediction that the teacher makes in two steps of size dt.
After convergence, the student can be used for a new round
of distillation with a step size of 2dt, further decreasing the
number of sampling steps to match the original teacher by a
factor of two.

3. Partition Generative Modeling
3.1. Motivations

“Partition Generative Modeling” (PGM) is based on MGM
but introduces key modifications to the training and sam-
pling procedures. Most notably, PGMs eliminate the need

3
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Figure 3. PGM-compatible transformer architecture. RoPE (Su
et al., 2023) is applied before every attention layer but not shown
for clarity. (A) Decoder layer with cross-attention to the encoder
output and no self-attention between tokens. (B) GroupSwap layer
that exchanges information between group 0 and group 1 positions,
enabling each group to make predictions based on tokens from
the other group. (C) Encoder layer with sparse, group-wise self-
attention.

for MASK tokens.

Training As seen in Figure 2a (left), in a single forward
pass of an MGM, a loss can be computed for the masked
positions only. In contrast, autoregressive language (AR)
models receive a training signal at every position in a sin-
gle forward pass. Intuitively, this discrepancy could make
MGMs less sample-efficient than AR models. We design
PGMs such that we can compute the loss at every position in
the sequence in a single forward pass, as shown in Figure 2b
(left).

Sampling MGMs typically employ bidirectional architec-
tures trained on fixed-length inputs. Consequently, during
sampling, these models process arrays with the same dimen-
sions as those used during training. Hence, during the ini-
tial sampling steps, the neural network processes primarily
MASK tokens. These tokens provide minimal information,
only indicating the current noise level. On the other hand,
autoregressive models only process previously generated
tokens. Additionally, MGMs compute predictions for all
masked positions, whereas autoregressive models only gen-
erate predictions for the one position to denoise. PGMs
only process previously generated tokens and compute pre-
dictions solely for tokens that will be denoised (Figure 2b,
right). Hence, PGMs maintain the parallel decoding ca-
pabilities of MGMs while offering substantial inference
speedups.

3.2. Approach

Partitioning tokens instead of masking For a training se-
quence x ∈ D, we partition tokens into two distinct groups
labeled 0 and 1, rather than using mask tokens. From the
perspective of each group, tokens in the other group will not
be visible due to constraints on the neural network architec-
ture, even though no explicit MASK token is used. Because
each training sequence is partitioned into two groups that
predict each other, PGMs implement a mechanism that cre-
ates two subtraining examples per ”physical” sequence in
the batch. Hence, a similar performance improvement could
be expected as if we were training an MGM with a twice
larger batch size, with complementary masking between
copies. We isolate and study the effect of complementary
masking from the neural architecture in Section 5.3.

Training objective Let g ∈ {0, 1}L be the binary se-
quence that denotes the group index of each token in x. We
train a denoiser network xθ that takes as input x and g, and
we ensure that only tokens in the same group are involved
with each other to avoid information leakage. From the
objective, xθ is trained to predict its input, which is only
useful because of the constraints on the attention:

LPGM := Ex∼D,t∼U [0,1]

[
wPGM(g, t)CE(xθ(x;g; t),x)

]
.

(5)

The key distinction from Equation 1 lies in the weighting
function wPGM. Let t ∈ [0, 1] be the probability of assigning
a token to the group 1. Hence, the tokens in group 0 perceive
a noise level of t, while those in group 1 perceive a noise
level of 1−t. Therefore, we must scale the loss for tokens in
group 0 according to the noise level t, and by 1−t for tokens
in group 1. Let w represent the weighing function used
to train an MGM. Then, the corresponding PGM weight
function wPGM is defined as

wPGM(g, t)i =

{
w(t) if gi = 0

w(1− t) if gi = 1.
(6)

We adopt the weighting function of MDLM, namely w(t) =
α′

t

1−αt
, defined in Equation 4. A visual comparison of the

training processes for MGM and PGM is provided in Fig-
ure 2 (left).

Sampling Since PGMs are trained without communica-
tion between tokens in different partitions, PGMs can pro-
cess only unmasked tokens (Figure 2b, right) during infer-
ence. Assuming the same posterior distribution pθ(zs|zt)
(Equation 3) as MDLM, an MGM denoises MASK tokens
randomly and independently with probability αs−αt

1−αt
. When

implemented as a PGM, it means that one can equivalently
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select a subset of tokens and compute predictions exclu-
sively for those positions, which drastically improves the
inference efficiency while retaining the parallel generation
abilities. To simplify the implementation of batched sam-
pling, PGM can denoise a fixed number of tokens at each
sampling step, unlike MDLM, which denoises a random
number of tokens. The pseudocode is presented in Algo-
rithm 1. PGMs can also sample a random number of tokens
at each step, though this requires padding batched sequences.
We provide the pseudocode for this approach in Algorithm
2 and compare the perplexity, latency, and throughput of
both approaches in Table 4.

4. PGM Compatible Transformer Architecture
Figure 3 illustrates our proposed PGM-compatible trans-
former model. The architecture consists of three compo-
nents: an encoder, a GroupSwap layer, and a decoder.

Encoder The encoder consists of a series of partition-
wise transformer blocks. These blocks operate like standard
transformer blocks with bidirectional attention, with the
key difference that we prevent information from flowing
between different groups by masking entries in the attention
matrix that correspond to pairs of tokens in different groups.

Decoder The decoder consists of cross-attention layers,
where the keys and values are computed based on the output
of the encoder. In contrast, the queries are computed using
either the output of the GroupSwap layer (first block of the
decoder) or the output of the previous decoder block. Impor-
tantly, there is no self-attention layer in the decoder, which
allows efficient generation, as we can compute predictions
solely for positions to decode.

4.1. The GroupSwap Layer

In the encoder, the information remains separated by group:
tokens in group 0 only access information about tokens in
group 0, and likewise for group 1. However, we want the
neural network to make predictions for positions in group
1 based on information in group 0. Hence, we need to
exchange information between groups, and we implement
this exchange via a cross-attention layer that we call the
GroupSap layer, visualized in Figure 3 (B). Let g ∈ {0, 1}L
be a binary vector that identifies the membership of the
group at each position. After the GroupSwap layer, g̃, the
logical NOT of g, tracks which group the information at
each position originated from. The main design choice of
the GroupSwap layer is how to initialize cross-attention
queries. To avoid leakage, if g̃i = 0, then the query at
position i should not depend on the tokens from partition 1.

Data-Independent Initialization Let u ∈ RH denote a
learnable vector of dimension H . We initialize the queries
by replicating u along the sequence length and adding a
fixed positional encoding, followed by a layer norm and
a linear layer. Formally, let V ∈ RL×H denote the query
initialization such that Vi;· denotes the i-th row of V . then,

Vi;· = W
[
LN
(
u+ posi;·

)
+ b
]
, (7)

where W ∈ RH×H , b ∈ RH are learnable parameters
and LN denotes layer normalization (Ba et al., 2016). The
positional encoding is computed as

posi,j =

{
cos
(

i
100002j/H

)
if j < H/2

sin
(

i
100002j/H−1

)
otherwise

(8)

Data-Dependent Initialization Let X ∈ RL×H denote
the output of the encoder. We first compute a group-wise
aggregation operation over the sequence length, such as
logsumexp or mean, to obtain vectors Y0, Y1 ∈ RH ,
which represent the aggregation over groups 0 and 1, respec-
tively. Then, the data-dependent query initialization V ′ is
computed as,

V ′
i;· = Vi;· +

{
Y1, if gi = 0

Y0 otherwise.
(9)

5. Experiments
Empirically, we investigated the performance of PGMs on
language modeling and image generation tasks. We present
complete details of the hyperparameters of the experiments
in Appendix A.

5.1. Language Modeling Performance on LM1B

Experimental setting. We closely follow the MDLM
setup (Sahoo et al., 2024) closely and train models with
a context length of 128 tokens. The shorter documents are
padded to 128 tokens. We train a twelve-layer diffusion
transformer (Peebles & Xie, 2023) variant without time
conditioning and compare it with our Partition Transformer
(Section 4). We trained our models with a batch size of
512. We ablate on the architecture choices after training for
200k steps. The model with the best validation perplexity is
further trained up to 1M steps and compared with MDLM.

Results Table 1 (left) shows that the use of as many layers
in the encoder and decoder achieves the lowest validation
perplexity. Additionally, data-independent queries slightly
outperform data-dependent queries. After 1M steps, PGM
reaches a validation perplexity of 1.95 lower than MDLM.
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Algorithm 1 Simplified Sampling for PGMs

1: Input: Batch size BS, number of steps K, model length L, special BOS index
2: Output: Generated samples x
3: x← empty tensor(BS, 1) ▷ Initialize
4: x[:, 0]← BOS ▷ Set BOS as first token
5: k← L/K ▷ Number of tokens to denoise at each step
6: decoded positions← zeros(BS, 1) ▷ Keep track of already-decoded and positions to decode
7: positions to decode← 1+ rand row perm(BS, L-1) ▷ Each rows is a permutation of {1, ..., L}
8: for in range(K) do
9: pos to decode← positions to decode[:, :k] ▷ Random positions to be predicted

10: new values← pgm predict(x, decoded positions, pos to decode)
11: x← concat([x, new values], dim=1) ▷ Add new values to the sequence length dimension
12: decoded positions← concat([decoded positions, pos to decode], dim=1)
13: positions to decode← positions to decode[:, k:] ▷ Remove the k decoded positions
14: end for
15: out← reoder(x, decoded positions) ▷ Sort based on positions
16: return out

5.2. Language Modeling on OpenWebText

Experimental setting We closely follow MDLM (Sahoo
et al., 2024), and train models with a context length of 1024
tokens with sentence packing (Raffel et al., 2023). To ablate
the architecture, we train models for 200k steps and compare
them based on the validation perplexity. The two models
with the best performance are further trained until 1M steps
and compared with MDLM.

Architecture ablations Table 1 (right) shows that, as for
LM1B, allocating as many layers to the encoder and decoder
achieves the best validation perplexity. However, we find
that PGMs with the same number of layers as MDLMs
underperform in terms of validation perplexity. Therefore,
we experiment with growing the model by using either more
layers or growing the embedding dimension. Nonetheless,
at inference, our larger PGMs achieve at least a 5x latency
and throughput improvement against MDLM, as shown in
Figure 1 and Table 4. Empirically, increasing the embedding
dimension is more effective in terms of generation quality
and speed. We hypothesize that significant speedups in
inference could make PGMs particularly relevant for the
scaling of test-time computation (Madaan et al., 2023; Yao
et al., 2023; Snell et al., 2024; Wu et al., 2024; Chen et al.,
2024; Brown et al., 2024; Goyal et al., 2024), for example,
in reasoning tasks.

5.3. Disentangling the effect of the architecture and
complementary masking

To disentangle the contributions of PGM, we isolate the ef-
fect of complementary masking (subsection 3.2) by training
a standard bidirectional transformer encoder with double
batch size, using two complementary masked versions of
each input sequence. This approach establishes an upper

bound on potential performance gains, as it directly mea-
sures the impact of having complementary masks during
gradient updates. We evaluated regular MDLM against
MDLM with complementary masking in LM1B (Chelba
et al., 2014) and OpenWebText (Gokaslan & Cohen, 2019).

Table 1 shows that while complementary masking reduces
the validation perplexity by 1.95 on LM1B, it offers negli-
gible benefits on OWT. This difference might explain why
PGMs with the same number of layers outperform MDLMs
on LM1B, but not on OWT. In fact, on both data sets, there
remains a gap between MDLM with complementary mask-
ing and PGM, which can be attributed to the neural network
architecture being used. Since complementary masking
does not lead to stronger models in OWT, we must increase
the size of the model to match the validation perplexity of
MDLM. However, recall that PGMs with more parameters
generate higher-quality text and are significantly faster than
MDLMs in inference (Figure 1). We investigate why com-
plementary masking helps on LM1B but not on OWT in
Section 5.7.

5.4. Further speedups via distillation

PGM already delivers improvements over MDLM in both
throughput and latency but we can push these gains further
by applying “Self Distillation Through Time” (SDTT) (De-
schenaux & Gulcehre, 2025). For simplicity, we apply the
distillation loss on partition 1, treating it as if it contained
MASK tokens. This simple strategy allows us to use the
original implementation of SDTT with few modifications.
We leave the design of new distillation methods for PGMs
to future work.

As shown in Figure 1, our best model, distilled with SDTT,
can, in 16 steps, generate samples with better generative
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Model (LM1B) Val. PPL ↓
200k steps

MDLM 34.29
MDLM (Compl. masking) 30.87
PGM 8 / 4 32.83
PGM 10 / 2 33.55
PGM 4 / 8 32.84
PGM 6 / 6 (lsm) 32.70
PGM 6 / 6 (mean) 33.89

1M steps
MDLM 27.67
MDLM (Compl. masking) 25.72

Model (OWT) Val. PPL ↓
200k steps

MDLM 25.35
MDLM (Compl. masking) 25.32
PGM 6 / 6 26.96
PGM 8 / 8 25.10
PGM 10 / 6 25.19
PGM 6 / 6 (dim. 1024) 23.75

1M steps
MDLM 23.07
MDLM (Compl. masking) 22.98
PGM 8 / 8 22.70
PGM 6 / 6 (dim. 1024) 21.43

Table 1. Perplexity evaluations. Validation perplexity of the Masked Diffusion Language Model (MDLM) and PGMs (ours) on LM1B and
OpenWebText (OWT). The row MDLM (Compl. masking) denotes an MDLM trained with the complementary masking strategy discussed
in Section 5.3. The row PGM k / m denotes a PGM with k encoder and m decoder layers, and we highlighted the best PGM results in
gray. lsm and mean denote the logsumexp and mean queries initializations (Section 4). Takeaway: using the same number of layers in the
encoder and decoder, and data-independent queries performed best. On LM1B, our PGM reaches 1.95 lower perplexity than MDLM after
1M steps. On OWT, we grow the embedding dimension or the number of layers to outperform OWT.

Model Acc. (%) ↑
MDLM 42.26
PGM 8 / 8 43.22
PGM 6 / 6 (dim. 1024) 41.22

Table 2. Accuracy on LAMBADA.

perplexity than MDLM would in 1024. This induces a
latency improvement of more than 280x over the original
MDLM. We compare PGM+SDTT with MDLM+SDTT in
Appendix B. Additionally, PGM+SDTT achieves a 10.73x
improvement over GPT-2 that uses KV-caching, while
achieving a lower generative perplexity. See Table 4 and
Table 5 for the exact numbers. [t]

5.5. PGM on ImageNet

We evaluated PGM against MDLM on VQGAN tokenized
images (Esser et al., 2021). Our preliminary results show
that while PGM still offers speedups on image data, the
gains are less pronounced than for text generation. This dif-
ference stems primarily from the need for a larger encoder
relative to the decoder in image tasks. Our experiments
are carried out on a smaller scale than a full MaskGIT im-
plementation (Chang et al., 2022), with a comprehensive
exploration of PGM architectures for images reserved for
future work. Additional details are provided in Appendix B.

5.6. Downstream Performance

We compare the downstream performance of our models on
the LAMBADA benchmark (Paperno et al., 2016). Table 2
shows that PGMs achieve a similar accuracy to MDLM, with
a slight advantage to the PGM variant with more layers.

5.7. Impact of Context Length on the Effectiveness of
Complementary Masking

There are three key differences between our experiments
on LM1B and OWT. First, we used different tokenizers:
bert-base-uncased for LM1B and GPT2’s tokenizer
for OWT, following the setup of MDLM (Sahoo et al., 2024).
Second, the context lengths differ significantly: 128 tokens
for LM1B versus 1024 for OWT. Third, we train on different
datasets, which might have different characteristics.

We observed that complementary masking helps when train-
ing on OWT using a shorter context length of 128 tokens
with the GPT-2 tokenizer. Indeed, after the 200k training
step, the MDLM with complementary masking achieved
a validation PPL of 37.92, outperforming the standard
MDLM, which reached 39.90. This evidence suggests that
complementary masking is particularly beneficial for appli-
cations with short context lengths.

6. Related Work
Diffusion on discrete space Although autoregressive
models currently dominate text generation, recent advances
in discrete diffusion (Austin et al., 2023; Lou et al., 2024;
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Shi et al., 2025; Sahoo et al., 2024; von Rütte et al., 2025;
Schiff et al., 2025; Haxholli et al., 2025) and discrete flow
matching (Campbell et al., 2024; Gat et al., 2024) have
demonstrated that MGMs can also generate text whose qual-
ity approaches samples from autoregressive models. Our
work focuses primarily on the text domain, where our ap-
proach appears to be particularly promising. Although re-
cent discrete diffusion and flow matching works focus on
the modeling choices in defining the diffusion process, we
focus on the inference efficiency. In principle, it should be
straightforward to use PGMs with a score parameterization
(Meng et al., 2023; Lou et al., 2024; Zhang et al., 2025)
instead of the mean parameterization (Sahoo et al., 2024;
Shi et al., 2025) that we use.

Accelerating diffusion models via distillation Relatively
few works on distillation have been explored for discrete
diffusion models. In particular, “Self-Distillation Through
Time” (SDTT) (Deschenaux & Gulcehre, 2025), inspired by
“Progressive Distillation” (Salimans & Ho, 2022) teaches
the student MGM to match multiple sampling steps of the
teacher MGM, given corrupted training examples. “Di4C”
(Hayakawa et al., 2025) teaches the MGM denoiser xθ the
correlation between different positions. Leveraging the un-
covered connection between discrete and continuous diffu-
sion, “DUO” (Sahoo et al., 2025) proposes “discrete con-
sistency distillation‘, a distillation method for uniform dis-
crete diffusion, inspired by consistency models (Song et al.,
2023). “Di[M]O” (Zhu et al., 2025) distills models with hy-
brid absorbing/uniform noise into one-step generators. In
contrast, PGMs offer latency and throughput acceleration
through a novel architecture, while remaining compatible
with distillation, as discussed in Section 5.4.

Non-autoregressive language models Any-order and
any-subset autoregressive models (Yang et al., 2020; Pan-
natier et al., 2024; Shih et al., 2022; Guo & Ermon, 2025)
learn an autoregressive distribution of tokens given arbi-
trary token subsets. In contrast, in this work, we accelerate
MDLMs (Sahoo et al., 2024), which do not enforce causal
attention on the tokens. “Block Diffusion” (Arriola et al.,
2025) (BD) proposes a hybrid architecture that interpolates
between an autoregressive and a discrete diffusion model.
Although BDs can generate tokens in parallel and allows
KV caching (Pope et al., 2022), BDs still require generat-
ing tokens in a (block-) autoregressive fashion. In contrast,
MDLM and PGMs can generate tokens in arbitrary orders.

Other modalities In images, “MaskGIT” (Chang et al.,
2022) demonstrates the power of MGMs. Trained on dis-
crete tokens from a VQGAN (Esser et al., 2021), MaskGIT
generates high-quality images in as few as 8 steps, lever-
aging the parallel token prediction abilities of the denois-
ing neural network. This makes MaskGIT substantially

faster than the autoregressive baseline (Esser et al., 2021).
MaskGIT has been successfully applied to other modalities,
including videos (Villegas et al., 2022; Yu et al., 2023) and
audio (Comunità et al., 2024). UniDisc (Swerdlow et al.,
2025) trains a multimodal MGM that can process both text
and image tokens, while we focus on a single modality in
this work.

7. Conclusion
We introduced Partition Generative Modeling (PGM), a
novel approach to masked generative modeling that elim-
inates MASK tokens. PGM achieves significant improve-
ments in inference speed while maintaining or improving
generation quality. We show that PGMs are compatible with
distillation methods devised for masked diffusion models,
and present preliminary results on images. Future work
could explore optimizations to the PGM architecture, in-
vestigating distillation techniques specifically designed for
PGMs, and extending the approach to multimodal settings.
Additionally, exploring how PGMs can be scaled to larger
sizes and longer context lengths are interesting directions.
Overall, PGM offers an interesting alternative to masked
generative models, with particular advantages for applica-
tions where inference speed is critical.

8. Limitations
We need to increase the parameter count of our models
to match the validation perplexity of the MDLM baseline
when using a context length of 1024. Although PGMs are
faster at inference, training is more costly (Appendix C).
When applying SDTT to PGMs, we observe smaller im-
provements in Generative Perplexity than on MDLM. This
suggests that the architecture can be further improved in fu-
ture work. While Partition Generative Modeling is a general
principle, the experiments on images are only preliminary,
and whether the proposed transformer architecture can be
applied in multimodal settings is a question to be studied in
future work.

Impact Statement
Language models are dual-use technologies, and thus, they
can have unethical uses, such as fake content generation,
and they can suffer from bias if applied to data sets that
are not carefully curated. This paper focuses specifically
on speeding up discrete diffusion language models at test
time to reduce their computational demands; while the per-
formance of our PGMs improves over MDLMs, it remains
unclear whether diffusion language models can overtake
large autoregressive models at scale, hence we do not have
specific concerns with regard to this contribution.
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Figure 4. Comparison of the performance of PGMs and MDLMs when modeling discrete image tokens. For a given compute budget,
PGMs outperform MDLMs. Note that we do not target state-of-the art result in this experiment, rather we compare the regular MDLM
and PGM that were used in experiments on text.

A. Experimental details
We trained all models from scratch rather than using the pre-trained models released by the MDLM authors. Our models
achieve comparable performance to the original work. On LM1B, we obtain a validation perplexity of 27.67 after 1M steps
(compared to MDLM’s reported 27.04), while on OWT, we reach 23.07 (versus MDLM’s 23.21).

Minor differences can be expected since estimating the perplexity of diffusion language models involves a Monte-Carlo
approximation of the NELBO (Equation 4) with finitely many samples. Although we used libraries (e.g PyTorch) with the
same version as MDLM, differences in compute environments and underlying software stacks may also contribute to these
variations. Since the performance gap is small, we are confident that we used the code of MDLM correctly.

A.1. LM1B

For the LM1B dataset, we employed the bert-base-uncased tokenizer with a context length of 128 tokens, padding
shorter sequences to 128 tokens. Our architecture consisted of a diffusion transformer (DiT) with 12 transformer blocks, 12
attention heads, a hidden dimension of 768 and a dropout rate of 0.1. We optimized the model using Adam (Kingma &
Ba, 2017) (learning rate 3e-4, betas of (0.9, 0.999), epsilon 1e-8) without weight decay. We based our implementation on
the official MDLM codebase. We trained with a global batch size of 512 across 8 GPUs (2 nodes with 4 GPUs), gradient
clipping at 1.0, and a constant learning rate with 2,500 steps of linear warmup. We trained for 1 million steps with an EMA
rate of 0.9999. Besides the neural network hyperparameters, the other parameters were unchanged when training the PGM.

A.2. OWT

For the OpenWebText (OWT) dataset, we used the GPT-2 tokenizer with a context length of 1024 tokens. Our architecture
consisted of a diffusion transformer (DiT) with 12 transformer blocks, 12 attention heads, a hidden dimension of 768, and a
dropout rate of 0.1. We optimized the model using Adam (Kingma & Ba, 2017) with a learning rate of 3e-4, betas of (0.9,
0.999), and epsilon of 1e-8, without weight decay. We trained with a global batch size of 512 across 16 GPUs (4 nodes with
4 GPUs). We applied gradient clipping at 1.0 and used a constant learning rate schedule with 2,500 steps of linear warmup.
The model was trained for 1 million steps with an EMA rate of 0.9999. Besides the neural network hyperparameters, the
other parameters were unchanged when training the PGM.
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Table 3. Latency and throughput for a single training step of the MDLMs and PGMs, computed on a single A100-SXM4-80GB GPU. On
LM1B, PGM introduce a negligible overhead over MDLM. On OWT, our PGM with 6 encoder and decoder layer and an embedding
dimension of 1024 achieves around 75% of the training throughput of MDLM. Recall that at inference, the same PGM is around 5x faster
than MDLM. On ImageNet, the PGM achieves 68% of the training throughput of MDLM.

Model Forward Pass Forward + Backward

Latency (ms) Seq/sec Latency (ms) Seq/Sec

LM1B (context length 128, batch size 64, trained on 8 GPUs)
MDLM 0.03± 0.00 1′978.87± 44.21 0.08± 0.00 714.80± 15.47
PGM 6 / 6 0.03± 0.00 1′966.60± 102.14 0.08± 0.00 794.42± 18.81

OpenWebText (context length 1024, batch size 32, trained on 16 GPUs)
MDLM 0.13± 0.00 233.28± 2.58 0.39± 0.00 80.86± 0.15
PGM 8 / 8 0.17± 0.00 188.07± 0.75 0.47± 0.00 68.04± 0.08
PGM 6 / 6 (dim. 1024) 0.18± 0.00 176.47± 0.65 0.50± 0.00 62.85± 0.19

ImageNet (context length 257, batch size 128, trained on 4 GPUs)
MDLM 0.11± 0.01 1′066.98± 11.13 0.33± 0.00 385.77± 0.67
PGM 8 / 4 (dim=1024) 0.17± 0.01 727.43± 40.58 0.45± 0.02 279.15± 8.74

A.3. ImageNet

For the ImageNet dataset, we used a pre-trained VQGAN tokenizer (Esser et al., 2021; Besnier et al., 2025) with a
downsampling factor of 16, resulting in 256 tokens per image (16x16 grid). Our architecture consisted of a diffusion
transformer (DiT) with 12 transformer blocks, 12 attention heads, a hidden dimension of 768, and a dropout rate of 0.1. We
optimized the model using Adam with a learning rate of 3e-4, betas of (0.9, 0.999), and epsilon of 1e-8, without weight
decay. We trained with a global batch size of 512 across 4 GPUs on a single node. We applied gradient clipping at 1.0 and
used a constant learning rate schedule with 2,500 steps of linear warmup. The model was trained for 1 million steps with an
EMA rate of 0.9999. Instead of the whole ImageNet, we used the Imagenet256 datast, downloaded from Kaggle, as used in
prior work (Hu & Ommer, 2024). Besides the neural network hyperparameters, the other parameters were unchanged when
training the PGM. Since the dataset version does not have a predefined validation set, we use 50’000 randomly selected
ones as validation. We train our models to be class unconditional. We use a dictionary with 16′386 values, representing
the 16′384 values from the VQGAN codebook (Esser et al., 2021; Besnier et al., 2025), a MASK token and a special “BOS”
token.

A.4. Impact of Numerical Precision on Sampling

Prior work (Zheng et al., 2025) identified that Masked Diffusion Models often achieve lower generative perplexity results
because of underflow in the logits when sampling using 16-bit precision. The resulting decrease in token diversity can make
evaluations based solely on generative perplexity misleading. To ensure fair comparison across all models, we cast all logits
to FP64 before sampling for every model in our experiments, including GPT-2.

A.5. Sample-based evaluation

Generative perplexity We evaluate the quality of the generated text using the generative perplexity as our primary metric,
following previous work (Lou et al., 2024; Sahoo et al., 2024; Deschenaux & Gulcehre, 2025). The generative perplexity
measures how well a reference model (in our case, GPT-2 Large) can predict the next token in sequences generated by our
models. Specifically, we generate 1′024 samples from each model being evaluated. For each generated sample, we compute
the generative perplexity using GPT-2 Large as follows:

Perplexity = exp

(
− 1

N

N∑
i=1

log pGPT-2 Large(xi|x<i)

)
, (10)

where L is the length of the sequence, xi is the i-th token, and pGPT-2 Large(xi|x<i) is the probability assigned by GPT-2
Large to token xi given the preceding tokens x<i.
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Figure 5. Training loss of MDLM, MDLM with Complementary Masking (Section 5.3) and PGM. Complementary masking seems to
introduce spikes in the loss, even though it did not cause the models to diverge.

Unigram Entropy Unfortunately, a low generative perplexity can be achieved by generating repetitive text. To catch such
cases, we compute the average unigram entropy of the generated samples:

Unigram Entropy = − 1

N

N∑
i=1

∑
v∈X

c(v,x(i))

L
log

c(v,x(i))

L
, (11)

where X is the vocabulary, v is a token of the vocabulary, and c(v,x) is the empirical appearance count of the token v in the
sequence x. Low unigram entropy allows us to catch repetitive generation, as seen in prior work (Dieleman et al., 2022).

Fréchet Inception Distance and Inception Score For image generation tasks, we evaluate the quality of generated
images using the Fréchet Inception Distance (FID) (Heusel et al., 2018) and Inception Score (IS) (Salimans et al., 2016).
For efficiency, we use 10′000 generated images to compute those metrics.

B. Additional results
B.1. MDLM+SDTT vs PGM+SDTT

The precision of logits during sampling can have a significant effect on sample quality, as noted in Appendix A.4. Hence,
we cast all logits to FP64 prior to sampling, unlike the original MDLM and SDTT implementations.

Using a higher precision also impacts the distillation process, which works by compressing two sampling steps into one.
Therefore, generating the teacher targets using higher precision increases the final generative perplexity compared to the
results reported by SDTT, as shown in Table 6 and Figure 6. However, since we made only this minimal change while
otherwise using the official SDTT implementation, we are confident in the validity of our results.

For a fair comparison, we re-distilled our MDLM checkpoints with SDTT using higher precision. Specifically, we used
FP32 precision when generating teacher targets, allowing us to compare MDLM+SDTT against our PGM+SDTT with
the lowest generative perplexity. We observe that after distillation, the entropy of samples generated with MDLM+SDTT
decreases much more than the entropy of samples generated by PGM+SDTT. Figure 6 shows that MDLM+SDTT achieves
lower generative perplexity than PGM+SDTT, which indicates clear opportunities for architectural improvements in future
work.

C. Computational Costs
This section presents the computational costs associated with the models reported in this paper. We exclude costs associated
with exploratory experiments that yielded inferior results and were not included in this manuscript.

14
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C.1. Training Costs

Training PGMs is currently slower than training MGMs since we use torch.sdpa with dense tensor masks. Future
work should explore efficient kernels to address this limitation. Despite this training overhead, recall that we focus on the
inference efficiency. We measure the latency and throughput using a single NVIDIA A100-SXM4-80GB GPU, with results
reported in Table 3. We compute the mean and standard deviation over 100 batches after 2 warmup batches.

The total training duration approximately equals the per-step latency multiplied by the number of steps. Experiments with
complementary masking required twice the computational resources due to larger batch sizes and gradient accumulation.
Training times varied by dataset: approximately 22 hours for LM1B, 4.5 days for OWT, and 3.8 days for ImageNet.

C.2. Inference Costs

We evaluate the inference efficiency of PGMs compared to MDLMs and GPT-2 with KV caching. As shown in Figure 1,
PGMs achieve around 5- 5.5x improvements in latency and throughput over MDLM while reaching superior generative
perplexity. For inference measurements, we use a single NVIDIA A100-SXM4-80GB GPU and report both latency and
throughput metrics. The efficiency gain stems from the ability of PGMs to process only unmasked tokens during inference,
as illustrated in Figure 2. Table 4 compares MDLM and PGMs on the generative perplexity, unigram entropy, latency, and
throughput. We compute mean and standard deviation of the latency and throughput over 20 batches after two warmup
batches.

C.3. Training Stability

Complementary masking introduces occasional spikes in the training loss in both MDLMs and PGMs, as shown in Figure 5.
This phenomenon should be kept in mind when scaling PGMs to larger sizes. Despite these spikes, all runs converged on the
first attempt. We observed different precision requirements between models. MDLMs performed slightly better with BF16
precision, while PGMs showed improved results when using FP32 precision for the PyTorch Lightning trainer. Note that
in both cases, the neural network backbone computations were consistently performed in BF16. The precision difference
only affected operations outside the model, such as loss calculations, where models trained in FP32 achieved slightly lower
validation loss.

C.4. Licensing

Our code and model artifacts will be released under the MIT license. Regarding datasets, the OWT dataset (Gokaslan &
Cohen, 2019) is available under the Apache License 2.0. We were unable to identify a specific license for the LM1B dataset
(Chelba et al., 2014). The images in ImageNet remain the property of their respective copyright holders.
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Algorithm 2 MDLM-equivalent sampling for PGMs.

1: Input: Batch size BS, number of steps K, model length L, special BOS index
2: Output: Generated samples x
3: x← empty tensor(BS, 1) ▷ Initialize
4: x[:, 0]← BOS ▷ Set BOS as first token
5: k← L/K ▷ Number of tokens to denoise at each step
6: clean positions← zeros(BS, 1) ▷ Keep track of clean and noisy positions
7: concrete lengths← ones(BS, 1) ▷ Keep track of the actual length of each sequence (some are padded).
8: noisy positions← 1+ rand row perm(BS, L-1)
9: for in range(K) do

10: n denoise per seq, noisy pos input← sample noisy(noisy positions, k) ▷ Algorithm Algorithm 3
11: new values← pgm predict(x, clean positions, noisy pos input)
12: x, clean positions, noisy positions, concrete lengths← extract predictions(
13: x, ▷ Algorithm Algorithm 4
14: clean positions,
15: noisy positions,
16: noisy pos input,
17: concrete lengths,
18: n denoise per seq,
19: new values)
20: end for
21: out← reoder(x, clean positions) ▷ Sort based on clean positions
22: return out

Algorithm 3 Sample the number of tokens to denoise from a binomial distribution and pad the input.

1: Input: Noisy positions tensor, probability of denoising prob denoise, model length L, concrete lengths tensor
2: Output: Noisy positions to denoise
3: n denoise per seq← binomial(BS, L, prob denoise) ▷ Sample from binomial distribution
4: n denoise per seq← min(n denoise per seq, L - concrete lengths) ▷ Don’t denoise more than available
5: denoise seq len← max(n denoise per seq, 0) ▷ Maximum number of tokens to denoise
6: if denoise seq len = 0 then
7: return empty tensor() ▷ Nothing to denoise
8: end if
9: noisy pos input← noisy positions[:, :denoise seq len] ▷ Some predictions won’t be used

10: return n denoise per seq, noisy pos input
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Algorithm 4 Extract the correct number of predictions per sequence

1: Input: x, concrete lengths, n denoise per seq, denoised token values, clean positions, noisy positions, noisy pos input
2: Output: Updated x, clean positions, noisy positions, concrete lengths
3: new concrete lengths← concrete lengths + n denoise per seq ▷ Update sequence lengths
4: n tok to add← max(new concrete lengths) - shape(x, 1) ▷ Calculate padding needed
5: if n tok to add ¿ 0 then
6: pad← zeros(BS, n tok to add) ▷ Create padding tensor
7: x← concat(x, pad, dim=1) ▷ Pad the sequences
8: clean positions← concat(clean positions, pad, dim=1) ▷ Pad the positions
9: end if

10: for i in range(BS) do
11: if n denoise per seq[i] = 0 then
12: continue ▷ Skip if no tokens to denoise
13: end if
14: x[i, concrete lengths[i]:new concrete lengths[i]]←
15: denoised token values[i, :n denoise per seq[i]]
16: clean positions[i, concrete lengths[i]:new concrete lengths[i]]←
17: noisy pos input[i, :n denoise per seq[i]]
18: noisy positions[i, :shape(noisy positions, 1) - n denoise per seq[i]]←
19: noisy positions[i, n denoise per seq[i]:]
20: end for
21: return x, clean positions, noisy positions, new concrete lengths
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Figure 6. Comparison of PGMs and MDLMs after distillation with SDTT on OWT. We see that PGMs achieve higher generative perplexity
than MDLM. This result suggests that our proposed PGM transformer architecture, while effective before distillation, can be improved in
future work.
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Table 4. Sample quality and efficiency on OpenWebText with different numbers of sampling steps. We generate sequences of 1024 tokens
with a batch size of 32 to measure the latency and throughput.

Model Gen. PPL ↓ Entropy ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

MDLM
32 steps 192.31 5.73 8.037± 0.01 4′077.08± 3.06
64 steps 142.58 5.69 15.82± 0.01 2′070.67± 0.69
128 steps 122.89 5.67 31.41± 0.01 1′043.22± 0.16
256 steps 113.96 5.66 62.54± 0.01 523.90± 0.06
512 steps 109.05 5.64 124.94± 0.16 262.26± 0.33
1024 steps 106.75 5.64 249.31± 0.11 131.42± 0.05

PGM 8 / 8 (uniform sampling)
32 steps 189.02 5.73 1.55± 0.01 21′120.99± 83.59
64 steps 143.79 5.69 3.00± 0.01 10′914.91± 41.69
128 steps 122.21 5.66 5.86± 0.02 5′585.57± 24.49
256 steps 112.48 5.65 11.64± 0.03 2′814.99± 9.33
512 steps 108.76 5.64 22.98± 0.02 1′425.89± 1.61
1024 steps 107.03 5.63 45.84± 0.03 714.71± 0.50

PGM 8 / 8 (non uniform sampling)
32 steps 194.09 5.73 2.07± 0.02 15′764.09± 192.12
64 steps 143.60 5.69 3.90± 0.07 8′405.14± 158.01
128 steps 124.38 5.67 7.41± 0.08 4′419.77± 53.27
256 steps 116.85 5.66 14.73± 0.19 2′223.6372± 28.47
512 steps 111.11 5.64 28.15± 0.32 1′163.79± 13.25
1024 steps 108.24 5.63 54.62± 0.66 599.97± 7.27

PGM 6 / 6 (dim. 1024, uniform sampling)
32 steps 185.16 5.73 1.59± 0.01 20′569.99± 95.63
64 steps 138.87 5.70 3.03± 0.01 10′805.31± 14.11
128 steps 116.95 5.67 5.93± 0.01 5′518.09± 13.46
256 steps 108.51 5.65 11.77± 0.01 2′782.78± 3.46
512 steps 101.94 5.63 23.25± 0.01 1′408.88± 1.05
1024 steps 99.64 5.62 46.31± 0.02 707.52± 0.34

PGM 6 / 6 (dim. 1024, non-uniform sampling)
32 steps 191.30 5.74 2.12± 0.07 15′415.56± 467.20
64 steps 138.67 5.69 3.940± 0.06 8′318.72± 135.47
128 steps 118.17 5.67 7.60± 0.09 4′311.80± 54.92
256 steps 108.93 5.65 14.84± 0.20 2′207.71± 29.71
512 steps 105.41 5.64 28.56± 0.33 1′147.17± 13.47
1024 steps 102.93 5.62 55.50± 0.36 590.37± 3.85
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Table 5. Sample quality and efficiency of PGM 6 / 6 (dim. 1024) with uniform sampling on OpenWebText with different numbers of
sampling steps after distillation with SDTT. We generate sequences of 1024 tokens with a batch size of 32 to measure the latency and
throughput. See Table 4 for un-distilled models.

Model Gen. PPL ↓ Entropy ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

PGM 6 / 6 (dim. 1024, uniform sampling)
32 steps 185.16 5.73 1.59± 0.01 20′569.99± 95.63
64 steps 138.87 5.70 3.03± 0.01 10′805.31± 14.11
128 steps 116.95 5.67 5.93± 0.01 5′518.09± 13.46
256 steps 108.51 5.65 11.77± 0.01 2′782.78± 3.46
512 steps 101.94 5.63 23.25± 0.01 1′408.88± 1.05
1024 steps 99.64 5.62 46.31± 0.02 707.52± 0.34

+ SDTT (10k steps per round, loss in FP32, 7 rounds)
8 steps 176.62 5.48 0.51± 0.00 63′342.23± 206.49
16 steps 100.50 5.44 0.87± 0.00 37′607.96± 49.61
32 steps 72.19 5.40 1.59± 0.01 20′569.99± 95.63
64 steps 59.59 5.35 3.03± 0.01 10′805.31± 14.11
128 steps 55.44 5.31 5.93± 0.01 5′518.09± 13.46
256 steps 50.80 5.29 11.77± 0.01 2′782.78± 3.46
512 steps 49.72 5.27 23.25± 0.01 1′408.88± 1.05
1024 steps 49.48 5.28 46.31± 0.02 707.52± 0.34

+ SDTT (10k steps per round, loss in FP32, 5 rounds)
8 steps 268.81 5.62 0.51± 0.00 63′342.23± 206.49
16 steps 140.89 5.59 0.87± 0.00 37′607.96± 49.61
32 steps 92.06 5.54 1.59± 0.01 20′569.99± 95.63
64 steps 73.94 5.50 3.03± 0.01 10′805.31± 14.11
128 steps 64.45 5.47 5.93± 0.01 5′518.09± 13.46
256 steps 60.70 5.46 11.77± 0.01 2′782.78± 3.46
512 steps 57.94 5.44 23.25± 0.01 1′408.88± 1.05
1024 steps 57.26 5.43 46.31± 0.02 707.52± 0.34

+ SDTT (10k steps per round, loss in FP64, 7 rounds)
8 steps 223.52 5.57 0.51± 0.00 63′342.23± 206.49
16 steps 124.70 5.54 0.87± 0.00 37′607.96± 49.61
32 steps 86.64 5.49 1.59± 0.01 20′569.99± 95.63
64 steps 71.93 5.46 3.03± 0.01 10′805.31± 14.11
128 steps 63.35 5.43 5.93± 0.01 5′518.09± 13.46
256 steps 60.44 5.42 11.77± 0.01 2′782.78± 3.46
512 steps 58.29 5.40 23.25± 0.01 1′408.88± 1.05
1024 steps 58.33 5.41 46.31± 0.02 707.52± 0.34

+ SDTT (10k steps per round, loss in FP64, 5 rounds)
8 steps 289.35 5.66 0.51± 0.00 63′342.23± 206.49
16 steps 152.81 5.63 0.87± 0.00 37′607.96± 49.61
32 steps 101.61 5.59 1.59± 0.01 20′569.99± 95.63
64 steps 82.73 5.56 3.03± 0.01 10′805.31± 14.11
128 steps 70.36 5.53 5.93± 0.01 5′518.09± 13.46
256 steps 68.23 5.53 11.77± 0.01 2′782.78± 3.46
512 steps 65.69 5.51 23.25± 0.01 1′408.88± 1.05
1024 steps 64.22 5.50 46.31± 0.02 707.52± 0.34
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Table 6. Sample quality and efficiency after distillation of PGM 6 / 6 (dim. 1024) and MDLM. We generate sequences of 1024 tokens
with a batch size of 32 to measure the latency and throughput. See Table 4 for un-distilled models.

Model Gen. PPL ↓ Entropy ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

PGM+SDTT (10k steps per round, loss in FP32, 7 rounds)
32 steps 72.19 5.40 1.59± 0.01 20′569.99± 95.63
64 steps 59.59 5.35 3.03± 0.01 10′805.31± 14.11
128 steps 55.44 5.31 5.93± 0.01 5′518.09± 13.46
256 steps 50.80 5.29 11.77± 0.01 2′782.78± 3.46
512 steps 49.72 5.27 23.25± 0.01 1′408.88± 1.05
1024 steps 49.48 5.28 46.31± 0.02 707.52± 0.34

MDLM+SDTT (10k steps per round, loss in FP32, 7 rounds)
32 steps 56.34 5.27 8.037± 0.01 4′077.08± 3.06
64 steps 46.45 5.22 15.82± 0.01 2′070.67± 0.69
128 steps 40.61 5.18 31.41± 0.01 1′043.22± 0.16
256 steps − − 62.54± 0.01 523.90± 0.06
512 steps − − 124.94± 0.16 262.26± 0.33
1024 steps − − 249.31± 0.11 131.42± 0.05

Table 7. Sample quality and efficiency on ImageNet with different numbers of sampling steps.

Model FID ↓ IS ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

MDLM
8 steps 98.43 12.22 2.49± 0.01 26′331.16± 23.77
16 steps 81.80 14.87 4.72± 0.01 13′918.07± 4.57
32 steps 71.13 16.33 9.18± 0.01 7′164.60± 2.93
64 steps 67.07 17.13 18.09± 0.01 3′635.35± 1.09
128 steps 62.50 18.49 35.91± 0.01 1′831.69± 0.44
256 steps 54.47 19.40 71.56± 0.02 919.31± 0.26

PGM 8 / 4 (dim. 1024, non-uniform)
8 steps 102.34 11.56 1.70± 0.01 3′635.70± 421.41
16 steps 85.22 13.92 3.02± 0.02 21′725.97± 188.56
32 steps 74.69 16.06 5.65± 0.03 11′641.26± 67.16
64 steps 68.48 17.54 10.83± 0.10 6′070.08± 59.86
128 steps 65.83 18.71 20.46± 0.23 3′215.10± 35.89
256 steps 63.44 18.52 37.71± 0.52 1′744.82± 24.00

PGM 8 / 4 (dim. 1024, uniform)
8 steps 100.54 11.88 0.82± 0.00 79′838.18± 65.09
16 steps 84.42 14.44 1.54± 0.01 42′483.88± 49.88
32 steps 73.69 16.41 2.98± 0.01 22′006.84± 26.18
64 steps 66.00 17.66 5.90± 0.01 11′148.64± 8.70
128 steps 64.45 17.98 11.71± 0.01 5′615.94± 2.75
256 steps 61.37 19.09 23.33± 0.01 2′819.38± 0.58
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