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Abstract

Distributional discrepancy between training and test data can lead models to make
inaccurate predictions when encountering out-of-distribution (OOD) samples in
real-world applications. Although existing graph OOD detection methods lever-
age data-centric techniques to extract effective representations, their performance
remains compromised by structural redundancy that induces semantic shifts. To
address this dilemma, we propose RedOUT, an unsupervised framework that in-
tegrates structural entropy into test-time OOD detection for graph classification.
Concretely, we introduce the Redundancy-aware Graph Information Bottleneck
(ReGIB) and decompose the objective into essential information and irrelevant re-
dundancy. By minimizing structural entropy, the decoupled redundancy is reduced,
and theoretically grounded upper and lower bounds are proposed for optimization.
Extensive experiments on real-world datasets demonstrate the superior performance
of RedOUT on OOD detection. Specifically, our method achieves an average im-
provement of 6.7%, significantly surpassing the best competitor by 17.3% on the
ClinTox/LIPO dataset pair.

1 Introduction

Deep learning models have achieved impressive success across a wide range of tasks, yet they can
behave unpredictably when faced with out-of-distribution (OOD) data that differ significantly from
the training distribution, making high-confidence but incorrect predictions. OOD detection [3, 44, 47]
seeks to identify such inputs and is critical for reliable deployment in open-world scenarios. This
challenge becomes even more pronounced for graph-structured data due to the non-Euclidean nature
and complex topological structures.

Recent advancements [9, 20, 39] in graph OOD detection can be broadly divided into two main
categories. (1) End-to-end methods [20] aim to train OOD-specific graph neural networks
(GNNs) [13, 46] from scratch using only unlabeled ID data. These approaches typically lever-
age unsupervised objectives such as graph contrastive learning (GCL) to extract discriminative
representations that can separate ID and OOD samples during inference (▷ Figure 1(a)(i)). (2)
Post-hoc methods [9, 39] employ well-trained GNNs and fine-tune OOD detectors to refine the
predictions or representations at inference time (▷ Figure 1(a)(ii)). Specifically, GOODAT [39]
stands out by directly optimizing a learnable graph masker on test samples without altering the
pre-trained model. This test-time setting with data-centric modification is more practical for removing
the dependency on labeled training data or model retraining.

Despite significant advancements in the aforementioned data-centric paradigm, a less-explored
challenge persists. While pre-trained models can effectively extract information from ID data, they
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Figure 1: (a) A schema comparison. (b) A toy example of distinctive components within test graphs.
(c) Scoring distributions before/after structural entropy (abbr. SE) minimization.

lack ground-truth information indicative of the underlying distribution when inferring on both ID
and OOD test data, which is often embedded within the graph structure. As illustrated in the toy
example in Figure 1(b), graphs in test batches comprise distinctive components (highlighted by
dashed circles) and irrelevant structural elements. Effectively capturing these distinctive components
can intuitively differentiate OOD samples from ID graphs. However, the pervasive presence of similar
irrelevant structural elements hinders current methods from accurately capturing and distinguishing
these essential structures between ID and OOD data. Although GOODAT [39] tries to address this
concern by utilizing graph maskers to identify subgraphs in test data that are similar to those in
ID graphs from training datasets, it fundamentally relies on learnable graph augmentations. These
augmentations can inadvertently alter the semantic information of substructures or lead to information
loss, thereby compromising the reliability of OOD detection.

To capture the distinctive information while preserving structural semantics, we first decompose
the information within graph into essentiality and redundancy, leveraged by the graph information
bottleneck [45]. Structural entropy, which provides a hierarchical abstraction to measure structural
complexity [15], further inspires us to utilize the technology to eliminate decoupled redundant
information. We compute the scoring distributions of graph representations before and after structural
entropy minimization on the AIDS/DHFR dataset pair (with AIDS as ID dataset and DHFR as OOD
dataset), as shown in Figure 1(c). From score density plots, we observe that after structural entropy
minimization, OOD scores exhibit smaller variance and a decrease in the overlap between OOD and
ID samples. This intuitively demonstrates that by removing redundancy, the more distinctive parts of
graphs are retained, enabling more effective differentiation of the distributions.

In this paper, we propose an innovative redundancy-aware test-time graph OOD detection framework,
termed RedOUT, aiming at endowing well-trained models with the ability to extract the essential
structural information from test graphs effectively. Concretely, we introduce the Redundancy-aware
Graph Information Bottleneck (ReGIB) and decompose the objective into distinctive essential view
and irrelevant redundancy. By minimizing structural entropy, coding tree is constructed to instantiate
the essential view, effectively removing redundancy. To make the overall objectives tractable, we
establish upper and lower bounds for optimizing essential and redundant information. A comparison
between RedOUT and existing methods is illustrated in Figure 1(a). It is important to note that
structural entropy minimization serves as a preprocessing step, utilizing an approximation algorithm
that does not require additional learning. Leveraging hierarchical representation learning based on
the coding tree, we calibrate OOD scores to get better predictions without modifying the parameters
of pre-trained models. Extensive experiments on real-world datasets demonstrate the superiority of
RedOUT against state-of-the-art (SOTA) baselines. The contributions of this work are as follows:

• We propose a novel framework for test-time unsupervised graph OOD detection, termed RedOUT.
To the best of our knowledge, this is the first trial to endow trained models with the ability to
capture the essential structural information of graphs during test-time.
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• We introduce the ReGIB to decouple the essential and redundant information within graphs, where
coding tree with minimized structural entropy is instantiated as essential view. We further introduce
the upper and lower bounds for optimizing the ReGIB objectives.

• Extensive experiments validate the effectiveness of RedOUT, demonstrating the superior perfor-
mance over SOTA baselines in unsupervised OOD detection.

2 Notations and Preliminaries
Before formulating the research problem, we first provide some necessary notations. Let G =
(V, E ,X) represent a graph, where V is the set of nodes and E is the set of edges. The node features
are represented by the feature matrix X ∈ Rn×df , where n = |V| is the number of nodes and df
is the feature dimension. The structure information can also be described by an adjacency matrix
A ∈ Rn×n, so a graph can be alternatively represented by G = (A,X). Notation with its description
can be found in Appendix A.

Unsupervised Pre-training with Contrastive Loss. In the general graph contrastive learning
paradigm for graph classification, two augmented graphs are generated using different graph aug-
mentation operators. Subsequently, representations are generated using a GNN encoder, and further
mapped into an embedding space by a shared projection head for contrastive learning. A typical
graph contrastive loss, InfoNCE [5, 53], treats the same graph Gi in different views Gα

i and Gβ
i

as positive pairs and other nodes as negative pairs. The graph contrastive learning loss LCl can be
formulated as:

LCl(G
α, Gβ) = − 1

N

N∑
i=1

log
esim(Zα

i ,Zβ
i )/τ∑N

j=1,j ̸=i e
sim(Zα

i ,Zα
j )/τ

, (1)

where Zα
i and Zβ

i are graph-level representations on Gα
i and Gβ

i , N denotes the batch size, τ is the
temperature coefficient, and sim(·, ·) stands for cosine similarity function.

In this study, inspired by GOOD-D[20], we employ 5 layers of GIN [46] as the backbone and
adopt a perturbation-free augmentation strategy to construct view Gγ = (A,P), where P is formed
by concatenating pi = [p

(rw)
i ||p(lp)

i ]. Specifically, the random walk diffusion encoding p
(rw)
i =

[RWii,RW2
ii, · · · ,RWr

ii] ∈ Rr, where RW = AD−1 is the random walk transition matrix, and D is
the diagonal degree matrix. The Laplacian positional encoding p

(lp)
i = [I−D− 1

2AD− 1
2 ]ii. With the

original graph G as the basic view, loss LCl(G,Gγ) is computed to optimize the pre-trained model.

Test-time Graph-level OOD Detection. Following GOODAT [39], we consider an unlabeled
ID dataset Did = {Gid}N where graphs are sampled from distribution Pid and an OOD dataset
Dood = {Good}N ′ sampled from a different distribution Pood. Given a graph G from Did

test ∪ Dood
test,

test-time graph OOD detection aims to detect whether G originates from Pid or Pood utilizing a GNN
f pre-trained on ID graphs Did

train ⊂ Did. Specifically, the objective is to learn an OOD detector
D(·, ·) that assigns an OOD detection score s = D(f,G), with a higher s indicating a greater
probability that G is from Pood (note that Did

test ∩ Did
train = ∅, Did

test ⊂ Did, and Dood
test ⊂ Dood).

Structural Entropy. Structural entropy is initially proposed [15] to measure the uncertainty of
graph structure, revealing the essential structure of a graph. The structural entropy of a given graph
G = {V, E ,X} on its coding tree T is defined as:

HT (G) = −
∑
vτ∈T

gvτ
vol(V)

log
vol(vτ )

vol(v+τ )
, (2)

where vτ is a node in T except for root node and also stands for a subset Vτ ∈ V , gvτ is the number
of edges connecting nodes in and outside Vτ , v+τ is the immediate predecessor of vτ and vol(vτ ),
vol(v+τ ) and vol(V) are the sum of degrees of nodes in vτ , v+τ and V , respectively.

3 Methodology
This section elaborates on RedOUT with its framework shown in Figure 2. We first derive the
Redundancy-aware Graph Information Bottleneck (ReGIB) (▷ Sec. 3.1) by decomposing the objective
into essential information and irrelevant redundancy, and introduce their upper and lower bounds.
Additionally, we construct coding tree with minimized structural entropy as the essential view and
instantiate the ReGIB with tractable bounds for efficient optimization (▷ Sec. 3.2).
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3.1 The Principle of ReGIB
According to the graph information bottleneck (GIB) principle [45], retaining optimal representation
on a graph view should involve maximizing mutual information (MI) between the output and ground-
truth labels (i.e., max I(f(G);Y )) while reducing mutual information between input and output (i.e.,
min I(G; f(G))). This can be expressed as follows:

minGIB ≜ −I(f(G);Y ) + βI(G; f(G)), (3)

where β is the Lagrangian parameter to balance the two terms, Y is the ground-truth labels, and I(·; ·)
denotes the mutual information between inputs.

①②

③

Optimal Redundant

G Y G �

Essential

(a) Vanilla GIB (b) ReGIB
Figure 3: Comparison between the basic GIB and
proposed ReGIB. Note ReGIB balances signals
1⃝, 2⃝ with optimal f(G∗) to capture the essential

information and discard redundancy.

As mentioned, ID and OOD graphs can be distin-
guished based on distinctive structures. In this
section, we introduce G∗ with essential informa-
tion of the original graph G in test-time setting
for the first time, extending the GIB principle.

Compared to vanilla GIB, the proposed ReGIB
accounts for the fact that the model pre-trained
solely on ID graphs, struggles to generalize to
unseen distribution, leading to the representa-
tions containing not only the optimal compo-
nents but also irrelevant redundancy (▷ Fig-
ure 3(b)). Moreover, for unsupervised tasks,
the predicted label Ỹ is used as a surrogate for
the unknown label distribution, enabling training without access to ground-truth labels Y . Thus, by
substituting G∗ and Ỹ into Eq. (3), we have:

min−I(f(G∗); Ỹ ) + βI(G∗; f(G∗)). (4)

Besides, due to semantic shifts in representations during test-time, the dual information sources
(f(G∗) and Ỹ ) may contain redundany. Therefore, it is crucial to further decouple the dependence
among f(G∗), f(G), and Ỹ .

Proposition 1 (Lower Bound of I(f(G∗); Ỹ )).

I(f(G∗); Ỹ ) = I(f(G∗); f(G)) + I(f(G∗); Ỹ |f(G))− I(f(G∗); f(G)|Ỹ )

≥ I(f(G∗); f(G)) − I(f(G∗); f(G)|Ỹ ) .
(5)

Eq. (7) and (15) Eq. (8) and (16)

Proofs for Proposition 1 is provided in Appendix C.2.
Definition 3.1 (Redundancy-aware Graph Information Bottleneck). Given a test graph G, and the
pseudo-label Ỹ predicted by pre-trained f , ReGIB aims to capture the distinctive structure G∗ with
essential information and further learn the optimal representation f(G∗) that satisfies:

minReGIB ≜ −I(f(G∗); f(G)) + I(f(G∗); f(G)|Ỹ ) + βI(G∗; f(G∗)). (6)
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Remark. Intuitively, the first term I(f(G∗); f(G)) is the prediction term, which encourages that
essential information to the graph property is preserved. The last two terms I(f(G∗); f(G)|Ỹ ) and
I(G∗; f(G∗)) are used for compression, which encourage that irrelevant redundant information
is dropped. Since the well-trained model f tends to make accurate predictions on ID graphs, its
predictions for OOD graphs, which are unseen during training, are more random. The model struggles
to identify distinctive structural information and similar redundant structures. However, with the
distinctive patterns of G∗, ReGIB can provide ground-truth information to calibrate the model’s
predictions on test graphs. A further comparison of ReGIB and GIB on an argumentation view is
conducted in Appendix C.9.

The key to our objective is how to obtain the distinctive structure G∗ and how to acquire the most
optimal and essential information based on pseudo-labels while eliminating irrelevant redundancy in
representations. Thus, we introduce the lower and upper bounds for Eq. (6).
Proposition 2 (Lower Bound of I(f(G∗); f(G))).

I(f(G∗); f(G)) ≥ −LCl(G
∗, G) + log(N). (7)

Proposition 3 (Upper Bound of I(f(G∗); f(G)|Ỹ )). For any Q(f(G)|Ỹ ), the variational upper
bound of conditional mutual information I(f(G∗); f(G)|Ỹ ) is:

I(f(G∗); f(G)|Ỹ ) ≤ EP

[
log

P(f(G), f(G∗)|Ỹ )

P(f(G∗)|Ỹ )Q(f(G)|Ỹ )

]
. (8)

Proofs for Proposition 2 and 3 are provided in AppendixC.3 and C.4.

Redundancy-eliminated Essential Information. The key to effectively distinguishing between
ID and OOD graphs lies in maximizing the elimination of redundancy while preserving essential
information. Suppose the optimal view G∗ can capture the essential information while eliminating
redundancy of graph G. Here, we first provide the definition of essential view as follows.
Definition 3.2. The essential view with redundancy-eliminated information is supposed to be a
distinctive substructure of the given graph.

Based on the above analysis, the redundancy-eliminated view should retain the minimal amount of
information while capturing the most distinctive structural patterns. The mutual information between
G and G∗ can be formulated as:

I(G∗;G) = H(G∗)−H(G∗|G), (9)

whereH(G∗) is the entropy of G∗ andH(G∗|G) is the conditional entropy of G∗ conditioned on G.
Theorem 3.3. The information in G∗ is a subset of information in G (i.e.,H(G∗) ⊆ H(G)); thus,
we have:

H(G∗|G) = 0. (10)
The detailed proof of Theorem 3.3 is shown in Appendix C.5. Here, the mutual information between
G and G∗ can be rewritten as:

I(G∗;G) = H(G∗). (11)

Proposition 4 (Upper Bound of I(G∗; f(G∗))). Given the tuple (G,G∗, f(G∗)), the learning proce-
dure follows the Markov Chain < G→ G∗ → f(G∗) >. Accordingly, to acquire the essential view
with essential information, we need to optimize:

min I(G∗; f(G∗)) ≤ min I(G∗;G) = minH(G∗). (12)

To eliminate redundancy, we introduce structural entropy as a measure of the information content
within the hierarchy of the graph. Thus, we argue that the view obtained by minimizing structural
entropy of a given graph represents the redundancy-eliminated information, serving as an essential
view that retains the graph’s distinctive substructure.

To extract optimal and essential representations on G∗, we aim to maximize I(f(G∗); f(G)) and
minimize I(f(G∗); f(G)|Ỹ ) to obtain the optimal encoder, such that:

f∗ = argmax
f

I(f(G∗); f(G))− I(f(G∗); f(G)|Ỹ ). (13)

We also analytically provide theoretical guarantee for redundant and essential information as follows.
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Theorem 3.4. According to Proposition 2, optimizing loss LCl(G
∗, G) is equivalent to maximizing

the mutual information I(f(G∗); f(G)), which could lead to the maximization of I(f(G∗);Y ).

Remark. Theorem 3.4 (See proof in Appendix C.6) reveals that our essential view enables the
encoder to preserve more information associated with the ground-truth labels, which will boost the
performance of downstream tasks.
Theorem 3.5 (Bounds of Redundant and Essential Information). Suppose the encoder f is imple-
mented by a GNN as powerful as the 1-WL test. Suppose G is a countable space and thus G′ is a
countable space, where ∼= denotes equivalence (G1

∼= G2 if G1, G2 cannot be distinguished by the
1-WL test). Define PG′×Y(G

′, Y ′) = PG×Y(G ∼= G′, Y ) and T ′(G′) = EG∽PG
[T ∗(G)|G ∼= G′]

for G′ ∈ G. Then, the optimal f∗ and G∗ to RedOUT satisfies:

1. I(G∗;Y ) = I(f∗(G∗);Y ) ≥ I(t′(G′);Y ),

2. I(f∗(G);G|Y ) ≤ minT I(t′(G′);G′))− I(t′(G′);Y ),

where t∗(G) = G∗, t′(G′) ∼ T ′(G′), t′∗(G′) ∼ T ′∗(G′), (G, Y ) ∼ PG×Y and (G′, Y ) ∼ PG′×Y .

Therefore, the encoder optimized by ReGIB enables encoding a representation that has limited
redundant information and more essential information (See proof in Appendix C.7).

3.2 ReGIB Principle Instantiation
To optimize ReGIB, we begin by constructing coding tree to instantiate essential information, and
then specify the lower and upper bounds defined in Proposition 2, 3 and 4.

Coding Tree Construction (Instantiation for G∗). For any given test graph, we construct an
essential view of the graph with minimal structural entropy, as defined by Eq. (12). Specifically,
according to structural information theory [15], the structural entropy of a graph needs to be calcu-
lated with the coding tree. Besides the optimal coding tree with minimum structural entropy (i.e.,
min∀T {HT (G)}), a fixed-height coding tree is often preferred for its better representing the fixed
natural hierarchy commonly found in real-world networks. Therefore, the k-dimensional structural
entropy of G is defined on coding tree with fixed height k:

H(k)(G) = min
∀T :Height(T )=k

{HT (G)}. (14)

The total process of generation of a coding tree with fixed height k can be divided into two steps: 1)
construction of the full-height binary coding tree, and 2) compression of the binary coding tree to
height k. Given root node vr of the coding tree T , all original nodes in graph G = (V, E) are treated
as leaf nodes. Correspondingly, based on SEP [42], we design two efficient operators, MERGE
and DROP, to construct a coding tree T with minimum structural entropy. An overview of these
operators is shown in Algorithm 1 (in Appendix D).

Remark. The coding tree, as a hierarchical abstraction of the original graph structure, can be
considered a contrastive view T = argminHT (G), which serves as an instantiation of the essential
information in graph G. By minimizing structural entropy, this essential view T effectively reduces
redundant information from the graphs while preserving distinctive structural features, enabling the
capture of distinct patterns between ID and OOD samples.

Representing Learning on Essential Information. Within the test-time OOD detection setting,
the parameters of the pre-trained model are frozen. To maintain the optimal representation of the
essential information, we update parameters of the coding tree encoder based on the tree essential
view T constructed during preprocessing. Specifically, the encoder is designed to iteratively transfer
messages from the bottom to the top. Formally, the l-th layer of the encoder can be written as,
x
(l)
v = MLP(l)

(∑
u∈C(v) x

(l−1)
u

)
, where xi

v is the feature of v in the i-th layer of coding tree T , x0
v

is the input feature of leaf nodes, and C(v) refers to the children of v. The aggregated node features
from the (l−1)-th layer of coding tree are used as inputs for the l-th layer, continuing the propagation
towards the top of the tree. Once the features reach the root node, a readout function is applied to
obtain the tree embedding ZT .

Instantiation for I(f(G∗); f(G)). Based on the lower bound derived in Eq. (7), the mutual
information between the essential view G and basic view G is estimated by:

I(f(G∗); f(G))
.
= −LCl(G

∗, G). (15)
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Table 1: OOD detection results in terms of AUC (%, mean ± std). The best and runner-up results are
highlighted with bold and underline, respectively. A.A. is short for average AUC. A.R. implies the
abbreviation of average rank. The results of baselines are derived from the published works, with
unreported results denoted by ‘−’.

ID dataset BZR PTC-MR AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol A.A. A.R.OOD dataset COX2 MUTAG DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

Non-deep Two-step Methods
PK-LOF 42.22±8.39 51.04±6.04 50.15±3.29 50.47±2.87 48.03±2.53 51.33±1.81 49.16±3.70 53.10±2.07 50.00±2.17 50.82±1.48 49.63 14.9
PK-OCSVM 42.55±8.26 49.71±6.58 50.17±3.30 50.46±2.78 48.07±2.41 51.33±1.81 48.82±3.29 53.05±2.10 50.06±2.19 51.00±1.33 49.52 14.8
PK-iF 51.46±1.62 54.29±4.33 51.10±1.43 51.67±2.69 50.67±2.47 49.87±0.82 52.28±1.87 51.47±1.33 50.81±1.10 50.85±3.51 51.45 12.9
WL-LOF 48.99±6.20 53.31±8.98 50.77±2.87 52.66±2.47 52.28±4.50 51.92±1.58 51.47±4.23 52.80±1.91 51.29±3.40 51.26±1.31 51.68 12.1
WL-OCSVM 49.16±4.51 53.31±7.57 50.98±2.71 51.77±2.21 51.38±2.39 51.08±1.46 50.38±3.81 52.85±2.00 50.77±3.69 50.97±1.65 51.27 13.0
WL-iF 50.24±2.49 51.43±2.02 50.10±0.44 51.17±2.01 51.07±2.25 50.25±0.96 52.60±2.38 50.78±0.75 50.41±2.17 50.61±1.96 50.87 14.2

Deep Two-step Methods
InfoGraph-iF 63.17±9.74 51.43±5.19 93.10±1.35 60.00±1.83 58.73±1.96 56.28±0.81 56.92±1.69 53.68±2.90 48.51±1.87 54.16±5.14 59.60 9.9
InfoGraph-MD 86.14±6.77 50.79±8.49 69.02±11.67 55.25±3.51 81.38±1.14 59.97±2.06 58.05±5.46 70.49±4.63 48.12±5.72 77.57±1.69 65.68 8.5
GraphCL-iF 60.00±3.81 50.86±4.30 92.90±1.21 61.33±2.27 59.67±1.65 56.81±0.97 55.55±2.71 59.41±3.58 47.84±0.92 62.12±4.01 60.65 10.2
GraphCL-MD 83.64±6.00 73.03±2.38 93.75±2.13 52.87±6.11 79.09±2.73 58.30±1.52 60.31±5.24 75.72±1.54 51.58±3.64 78.73±1.40 70.70 6.3

End-to-end Training Methods
OCGIN 76.66±4.17 80.38±6.84 86.01±6.59 57.65±2.96 67.93±3.86 46.09±1.66 59.60±4.78 61.21±8.12 49.13±4.13 54.04±5.50 63.87 9.3
GLocalKD 75.75±5.99 70.63±3.54 93.67±1.24 57.18±2.03 78.25±4.35 66.28±0.98 64.82±3.31 73.15±1.26 55.71±3.81 86.83±2.35 72.23 6.1
GOOD-Dsimp 93.00±3.20 78.43±2.67 98.91±0.41 61.89±2.51 79.71±1.19 65.30±1.27 70.48±2.75 81.56±1.97 66.13±2.98 91.39±0.46 78.68 3.4
GOOD-D 94.99±2.25 81.21±2.65 99.07±0.40 61.84±1.94 79.94±1.09 66.50±1.35 80.13±3.43 82.91±2.58 69.18±3.61 91.52±0.70 80.73 2.4

Test-time and Data-centric Methods
GTrans 55.17±5.04 62.38±2.36 60.12±1.98 49.94±5.67 51.55±2.90 61.67±0.73 50.81±3.03 64.02±2.10 58.54±2.38 76.31±3.85 59.05 10.0
AAGODS+ 76.75 − − 66.22 59.00 64.26 − 67.80 − − − −
AAGODL+ 76.00 − − 65.89 62.70 57.59 − 57.13 − − − −
GOODAT 82.16±0.15 81.84±0.57 96.43±0.25 66.29±1.54 79.03±0.03 68.92±0.01 68.83±0.02 77.07±0.03 62.46±0.54 85.91±0.27 76.89 3.9

RedOUT 95.06±0.54 94.45±1.66 99.98±0.16 66.75±2.02 79.54±0.72 71.67±0.50 92.97±0.84 92.60±0.23 86.56±0.76 95.00±0.54 87.46 1.3
Improve △+0.07 △+12.61 △+0.91 △+0.46 ∇ △+2.75 △+12.84 △+9.69 △+17.38 △+3.48 △+6.73 △

Instantiation for I(f(G∗); f(G)|Ỹ ). To specify the variational upper bound, we treat the similarity
between ZT and Z given the predicted label Ỹ = argmax(softmax(Z)) as an approximation of the
log-likelihood logP(f(G)|f(G∗), Ỹ ), and set Q(f(G)|Ỹ ) = EZ−∼P(f(G)|Ỹ )e

sim(Z−,ZT ), where Z−

are negative samples drawn from the conditional distribution P(f(G)|Ỹ ). Thus, I(f(G∗); f(G) | Ỹ )
can be approximately instantiated as (Proof in Appendix C.8):

I(f(G∗); f(G)|Ỹ )
.
= LCRI(G,G∗), (16)

where LCRI is conditional redundancy-eliminated loss, i.e.,

LCRI(G,G∗) ≜ Eỹ∼P(Ỹ )EZ,ZT∼P(f(G),f(G∗)|ỹ)

[
sim(Z,ZT )− logEZ−∼P(f(G)|ỹ)e

sim(Z−,ZT )
]
.

(17)

Optimization. Regarding objectives in Eq. (15) and (16), the overall optimization objective is:

L = LCl + λLCRI , (18)

where λ is a trade-off hyperparameter. When implementing OOD detection, we employ this overall
loss L as the OOD detection score.

4 Experiment
In this section, we empirically evaluate the effectiveness of the proposed RedOUT.2 Detailed settings
and additional results can be found in Appendix E.

Datasets. For OOD detection, we employ 10 pairs of datasets from two mainstream graph data
benchmarks (i.e., TUDataset [24] and OGB [11]) following GOOD-D [20]. We also conduct
experiments on anomaly detection settings, where the samples in minority class or real anomalous
class are viewed as anomalies. Further details are shown in Appendix E.1.

Baselines. We compare RedOUT with 18 competing baseline methods, including 6 graph kernel
based methods [32, 38], 4 GCL [20, 34, 49] based methods, 4 end-to-end training methods [21, 51],
1 test-time training methods [12], and 3 data-centric OOD detection methods [9, 39]. More details
about implementation are provided in Appendix E.2.

Evaluation and Implementation. We evaluate RedOUT with a popular OOD detection metric, i.e.,
the area under receiver operating characteristic Curve (AUC). Higher AUC values indicate better
performance. The reported results are the mean performance with standard deviation after 5 runs.

2The code of RedOUT is available at: https://github.com/name-is-what/RedOUT.
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4.1 Performance on OOD Detection

In this section, we compare our proposed methods with 18 competing methods in OOD detection tasks.
From the comparison results in Table 1, we observe that RedOUT achieves superior performance
improvements, which outperforms other baselines on 9 out of 10 dataset pairs and ranks first on
average among all baselines with an average rank (A.R.) of 1.3. Concretely, RedOUT achieves an
average AUC of 87.46, outperforming all compared methods by 6.7% over the second-best approach
GOOD-D [20]. Moreover, RedOUT delivers nearly a 10% performance gain on 4 pairs of molecular
datasets. Notably, on the ClinTox/LIPO dataset pair, RedOUT surpasses the best competitor by
17.3%. These findings highlight the superiority of RedOUT in OOD detection tasks, demonstrating
its strong capability to capture essential information in graph data.

We also observe that RedOUT does not achieve the absolute best results on the IMDB-B/IMDB-M
dataset pair. We consider this phenomenon to be within our expectation, as for molecular graphs,
semantic information is directly manifested in their structural composition (e.g., molecular functional
groups), thereby enhancing effectiveness. In contrast, for social networks such as IMDB-B and
IMDB-M, which originate from the same data source and differ only in labels, the inherent semantic
information is similarly reflected structurally, making it challenging to distinguish based solely on
structure. A further explanation is provided through a case study in Sec. 4.5.

Time Complexity Analysis. Given a graph G = (V, E), the time complexity of coding tree
construction is O(h(|E| log |V|+ |V|)), in which h is the height of coding tree T after the first step. In
general, the coding tree T tends to be balanced in the process of structural entropy minimization, thus,
h will be around log |V|. Furthermore, a graph generally has more edges than nodes, i.e., |E| ≫ |V|.
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Figure 4: Scalability of coding tree construction
on Erdős-Rényi graphs with |E| = 2|V|.

To evaluate the efficiency of RedOUT, we plot
the runtime and memory usage at peak time on
Erdős-Rényi graphs with |E| = 2|V| shown in
Figure 4. The results illustrate that from smaller
scales to the OGB datasets (e.g., ogbg-code2,
with an average count of around 100 nodes),
the runtime and memory usage scale up nearly
linearly with |V|, which is consistent with the
theoretical analysis above. RedOUT remains
efficient even for graph sizes that exceed those
of OGB datasets. We also compared the time
consumption in Appendix E.6.

4.2 Performance on Anomaly Detection Table 2: Anomaly detection results in terms of AUC
(%, mean ± std). The best and runner-up results are
highlighted with bold and underline, respectively.

Dataset ENZYMES DHFR BZR IMDB-B REDDIT-B

PK-OCSVM 53.67±2.66 47.91±3.76 46.85±5.31 50.75±3.10 45.68±2.24
PK-iF 51.30±2.01 52.11±3.96 55.32±6.18 50.80±3.17 46.72±3.42
WL-OCSVM 55.24±2.66 50.24±3.13 50.56±5.87 54.08±5.19 49.31±2.33
WL-iF 51.60±3.81 50.29±2.77 52.46±3.30 50.20±0.40 48.26±0.32
GraphCL-iF 53.60±4.88 51.10±2.35 60.24±5.37 56.50±4.90 71.80±4.38
OCGIN 58.75±5.98 49.23±3.05 65.91±1.47 60.19±8.90 75.93±8.65
GLocalKD 61.39±8.81 56.71±3.57 69.42±7.78 52.09±3.41 77.85±2.62
GOOD-Dsimp 61.23±4.58 62.71±3.38 74.48±4.91 65.49±1.06 87.87±1.38
GOOD-D 63.90±3.69 62.67±3.11 75.16±5.15 65.88±0.75 88.67±1.24
GTrans 38.02±6.24 61.15±2.87 51.97±8.15 45.34±3.75 69.71±2.21
GOODAT 52.33±4.74 61.52±2.86 64.77±3.87 65.46±4.34 80.31±0.85

RedOUT 77.64±5.64 65.51±4.95 89.62±4.72 67.48±0.59 89.81±2.54

To investigate if RedOUT can generalize to
the anomaly detection setting [21, 51], we con-
duct experiments on 5 datasets following the
benchmark in GOOD-D [20]. From the results
shown in Table 2, we find that RedOUT shows
significant performance improvements com-
pared to other baselines, owing to the strong
capability to capture essential patterns. More
experiments on other 5 datasets for anomaly
detection can be found in Appendix E.8.

4.3 Ablation Study

In this section, we conduct ablation experiments on all OOD detection datasets to analyze the
effectiveness of two variants by separately removing LCl and LCRI . Results are presented in
Table 3. Ablating LCl prevents the pre-trained model from obtaining a new optimal representation
for calibrating the OOD score. In contrast, ablating LCRI impairs the removal of irrelevant redundant
information. This further demonstrates the effectiveness of ReGIB in disentangling essential and
redundant information. Concretely, we witness RedOUT surpassing both variants, which provides
insights into the effectiveness of the proposed losses and demonstrates their importance in achieving
better performance for capturing essential information.
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Table 3: Ablation study results of RedOUT and its variants in terms of AUC (%, mean ± std). The
best and runner-up results are highlighted with bold and underline, respectively.

LCl LCRI
BZR PTC-MR AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol

COX2 MUTAG DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

✗ ✓ 93.04±1.83 86.38±4.72 98.79±0.30 58.76±3.02 73.28±2.13 65.06±1.49 87.63±4.41 86.38±1.54 76.75±3.03 91.61±2.32
✓ ✗ 92.73±1.71 89.40±2.84 98.77±0.16 58.73±2.81 72.67±2.13 67.05±1.35 88.66±4.40 85.99±1.69 76.90±2.43 91.81±1.77

✓ ✓ 95.06±0.54 94.45±1.66 99.98±0.16 66.75±2.02 79.54±0.72 71.67±0.50 92.97±0.84 92.60±0.23 86.56±0.76 95.00±0.54

4.4 Parameter Study

The Height k of Graph’s Natural Hierarchy. Here, we delve deeper into the effect of the height k
on the graph’s natural hierarchy. The specific performance of RedOUT under each height k, ranging
from 2 to 5, on OOD detection is shown in Figure 5. We can observe that the optimal height k with
the highest accuracy varies among datasets. We also conducted experiments on the impact of coding
tree height on anomaly detection datasets, as detailed in Appendix E.9.
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Figure 5: The natural hierarchy of graph.
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Figure 6: The sensitivity of hyperparameter λ.
Sensitivity Analysis of λ. To analyze the sensitivity of λ for RedOUT, we alter the value from
1e-04 to 1. The AUC w.r.t different selections of λ is plotted in Figure 6. Results demonstrate the
performance is sensitive to changes in λ and contains a reasonable range across different datasets.

4.5 Visualization and Case Study

ID Graph
OOD Graph

(a) w.r.t Z

ID Graph
OOD Graph

(b) w.r.t ZT

ID Graph
OOD Graph

(c) w.r.t GOODAT

Figure 7: T-SNE visualization of embeddings,
where Z is from the pre-trained model, and ZT

is from the coding tree encoder.

Visualization. The embeddings learned by Red-
OUT on AIDS/DHFR are visualized using t-
SNE [37] in Figure 7(a)-(c). The representa-
tions Z from the pre-trained model tend to blend
ID and OOD graphs. The limitation of GOO-
DAT [39] lies in the relatively small representa-
tion space, which results in over-compression of
representations and consequently diminishes the
discriminability between ID and OOD samples.
In contrast, the representation gap in ZT is most
prominent, highlighting its superior effective-
ness in capturing essential structures.

Case Study. To further investigate the suboptimal performance of RedOUT on social networks, we
visualize the essential structures extracted on IMDB-B and IMDB-M, as shown in Figure 8(a)-(b).
These datasets share similar structural characteristics (e.g., star-shaped and mesh-like patterns) but
differ in the nature of classification task (binary versus multi-class). The similarity in structural
semantics suggests that the intrinsic information captured by the coding tree may not sufficiently dis-
tinguish these datasets from a structural standpoint, consistent with the results in Table 1. In contrast,
Figure 8(c)-(d) illustrates the extracted essential structures on PTC-MR and MUTAG, highlighting
RedOUT’s capability in molecular datasets where structural differences are more pronounced and
crucial for OOD detection. Additional case studies and analyses are provided in Appendix E.10.

5 Related Work

Graph Out-of-distribution Detection. Graph OOD detection aims to distinguish OOD graphs from
ID ones to address the excessive confidence predictions. Lots of existing methods [54, 16, 17] focus
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(a) IMDB-M (b) IMDB-B (c) PTC-MR (d) MUTAG

Figure 8: Visualization of the essential structure based on the coding tree preserved by RedOUT on
IMDB-B/IMDB-M and PTC-MR/MUTAG dataset pairs.

on improving the generalization ability of GNNs for specific downstream tasks like node classification
through supervised learning, rather than identifying OOD samples. Other advancements [9, 20, 39]
focus on training OOD-specific GNN models or enable well-trained models in a post-hoc manner
with training or test samples. In this work, we provide a novel perspective for identifying OOD
graphs at test-time by focusing on essential information based on structural entropy.

Structural Entropy. Structural entropy [15], an extension of Shannon entropy [31], quantifies system
uncertainty by measuring the complexity of graph structures through the coding tree. Structural
entropy has been widely applied in various domains [50, 42, 48, 41, 40], such as dynamic network
analysis [19], hierarchical community detection [43], and graph structure learning [55]. In our work,
we apply structural entropy to capture the distinctive structure with essential information on test
graphs for test-time OOD detection.

Discussion and Comparison with Related Methods. Here, we elucidate the association between
our proposed RedOUT and two prominent methods, namely GOODAT [39] and SEGO [10].

• GOODAT. GOODAT [39] first introduced the setting of test-time OOD detection, where a plug-
and-play graph masker is trained to decompose the test-time graph into two subgraphs. Although
GOODAT is built upon the GIB principle, it does not consider the redundancy in graph structures
and cannot guarantee that the subgraph decomposition preserves semantic information. In contrast,
RedOUT is the first to theoretically decouple GIB into redundant and essential components, and
improves OOD detection for pre-trained models by explicitly removing redundancy at test-time.

• SEGO. SEGO [10] stands out as a pioneering work specifically crafted for unsupervised OOD
detection, achieving promising results through a pre-hoc operation that minimizes structural en-
tropy. It is noteworthy that SEGO is a fully end-to-end method trained from scratch, which differs
from the setting considered in this paper. Although SEGO also follows structural information
principles, it does not investigate what constitutes redundancy or how it should be removed. In
contrast, our approach is the first to isolate redundancy from the perspective of GIB and extract
the essential structural information.

Further comparisons and analysis3 can be found in Appendix E.5 and E.6.

6 Conclusion
In this paper, we present a redundancy-aware test-time OOD detection framework, termed RedOUT,
aiming at endowing well-trained GNN models with the ability to extract essential information
for the first time. Concretely, we propose the Redundancy-aware Graph Information Bottleneck
and decompose the objective into essential information and irrelevant redundancy. By minimizing
structural entropy, coding tree is constructed to instantiate the essential view, and tractable bounds
are introduced for efficient optimization. Extensive experiments on real-world datasets demonstrate
the superior performance of RedOUT over state-of-the-art baselines in unsupervised OOD detection.
One limitation is that we mainly consider the graph-level tasks, and leave extending our method to
the node-level test-time OOD detection for future explorations.

Acknowledgements
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3Since SEGO adopts a data-centric preprocessing strategy to assist OOD-specific training, it does not fall

under the category of native end-to-end methods. Therefore, we compare it separately with RedOUT in Table 8.
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A Notation Table

As an expansion of the notations in our work, we summarize the frequently used notations in Table 4.

B Related Work

Graph Out-of-distribution Detection. Graph OOD detection aims to distinguish OOD graphs from
ID ones to address the excessive confidence predictions. Lots of existing methods [54, 16, 17] focus
on improving the generalization ability of GNNs for specific downstream tasks like node classification
through supervised learning, rather than identifying OOD samples. Other advancements [9, 20, 39]
focus on training OOD-specific GNN models or enable well-trained models in a post-hoc manner
with training or test samples. In this work, we provide a novel perspective for identifying OOD
graphs at test-time by focusing on essential information based on structural entropy.
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Table 4: The most frequently used notations in this paper.
Notations Descriptions

G = (V, E ,X) Graph with the node set V and edge set E
V The set of nodes in the graph
E The set of edges in the graph
X The feature matrix

Pid, Pood The distribution where the graphs are sampled from
Y ∈ {0, 1} The label of test graph

Ỹ The predicted label of test graph
A The adjacency matrix of the graph

G = (A,X) The original graph as the basic view
Gγ = (A,P) Perturbation-free augmentation on G

H The structural entropy
T Tree essential view of the graph
k The coding tree height
Z Graph embedding from the well-trained GNN model
ZT Tree embedding

L,LCl,LCRI Overall loss, contrastive loss and conditional redundancy-eliminated loss
λ Hyperparameter for loss trade-off

Structural Entropy. Structural entropy [15], an extension of Shannon entropy [31], quantifies system
uncertainty by measuring the complexity of graph structures through the coding tree. Structural
entropy has been widely applied in various domains [50, 42, 48, 41, 40], such as dynamic network
analysis [19], hierarchical community detection [43], and graph structure learning [55]. In our work,
we apply structural entropy to capture the distinctive structure with essential information on test
graphs for test-time OOD detection.

Discussion and Comparison with Related Methods. Here, we elucidate the association between
our proposed RedOUT and two prominent methods, namely GOODAT [39] and SEGO [10].

• GOODAT. GOODAT [39] first introduced the setting of test-time OOD detection, where a plug-
and-play graph masker is trained to decompose the test-time graph into two subgraphs. Although
GOODAT is built upon the GIB principle, it does not consider the redundancy in graph structures
and cannot guarantee that the subgraph decomposition preserves semantic information. In contrast,
RedOUT is the first to theoretically decouple GIB into redundant and essential components, and
improves OOD detection for pre-trained models by explicitly removing redundancy at test-time.

• SEGO. SEGO [10] stands out as a pioneering work specifically crafted for unsupervised OOD
detection, achieving promising results through a pre-hoc operation that minimizes structural en-
tropy. It is noteworthy that SEGO is a fully end-to-end method trained from scratch, which differs
from the setting considered in this paper. Although SEGO also follows structural information
principles, it does not investigate what constitutes redundancy or how it should be removed. In
contrast, our approach is the first to isolate redundancy from the perspective of GIB and extract
the essential structural information.

Further comparisons and analysis4 can be found in Appendix E.5 and E.6.

C Theoretical Justification

C.1 Preliminaries for Mutual Information

Definition C.1 (Informational Divergence). The informational divergence (also called relative entropy
or Kullback-Leibler distance) between two probability distributions p and q on a finite space X (i.e.,

4Since SEGO adopts a data-centric preprocessing strategy to assist OOD-specific training, it does not fall
under the category of native end-to-end methods. Therefore, we compare it separately with RedOUT in Table 8.
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a common alphabet) is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

[
log

p(X)

q(X)

]
. (19)

Remark C.1. DKL(p||q) measures the distance between p and q. However, D(·||·)) is not a true
metric, and it does not satisfy the triangular inequality. DKL(p||q) is non-negative and zero if and
only if p = q.
Definition C.2 (Mutual Information). Given two discrete random variables X and Y , the mutual
information (MI) I(X;Y ) is the relative entropy between the joint distribution p(x, y) and the product
of the marginal distributions p(x)p(y), namely,

I(X;Y ) =DKL(p(x, y)||p(x)p(y))

=
∑

x∈X,y∈Y

p(x, y) log
( p(x, y)

p(x)p(y)

)
=

∑
x∈X,y∈Y

p(x, y) log
(p(x|y)
p(x)

)
.

(20)

Remark C.2. I(X;Y ) is symmetrical in X and Y , i.e., I(X;Y ) = H(X)−H(X|Y ) = H(Y )−
H(Y |X) = I(Y ;X).

C.2 Proof for Proposition C.3

Proposition C.3 (Lower Bound of I(f(G∗); Ỹ )).

I(f(G∗); Ỹ ) ≥ I(f(G∗); f(G))− I(f(G∗); f(G)|Ỹ ). (21)

Proof.

I(f(G∗); Ỹ ) = I(f(G∗); f(G)) + I(f(G∗); Ỹ |f(G))− I(f(G∗); f(G)|Ỹ ). (22)

Since mutual information is non-negative, i.e.,

I(f(G∗); Ỹ |f(G)) ≥ 0. (23)

This implies that:

I(f(G∗); Ỹ ) ≥ I(f(G∗); f(G))− I(f(G∗); f(G)|Ỹ ). (24)

C.3 Proof for Proposition C.4

To begin with, we revisit the graph contrastive learning loss LCl, formally expressed as:

LCl(G
α, Gβ) = − 1

N

N∑
i=1

log
esim(Zα

i ,Zβ
i )/τ∑N

j=1,j ̸=i e
sim(Zα

i ,Zα
j )/τ

, (25)

where N denotes the batch size, τ is the temperature coefficient, and sim(·, ·) stands for cosine
similarity function.
Proposition C.4 (Lower Bound of I(f(G∗); f(G)).

I(f(G∗); f(G)) ≥ −LCl(G
∗, G) + log(N). (26)

Proof. From [27], we easily get a lower bound of mutual information between Zα
i and Zβ

i .

E(Gα,Gβ)

[
log

esim(Zα
i ,Zβ

i )∑N
j=1,j ̸=i e

sim(Zα
i ,Zα

j )

]
=

1

N

N∑
i=1

log
esim(Zα

i ,Zβ
i )∑N

j=1,j ̸=i e
sim(Zα

i ,Zα
j )
≤ I(Zα

i ,Z
β
i )− log(N).

(27)
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According to Eq. (25), we get

LCl(G
α, Gβ) = −E(Gα,Gβ)

[
log

esim(Zα
i ,Zβ

i )∑N
j=1,j ̸=i e

sim(Zα
i ,Zα

j )

]
= − 1

N

N∑
i=1

log
esim(Zα

i ,Zβ
i )∑N

j=1,j ̸=i e
sim(Zα

i ,Zα
j )
.

(28)
Thus, minimizing LCl(G

α, Gβ) is equivalent to maximize the lower bound of I(Zα
i ,Z

β
i ).

Therefore, we have
−LCl(G

α, Gβ) ≤ I(Zα
i ,Z

β
i )− log(N), (29)

which is equivalent to:

I(f(G∗); f(G)) ≥ −LCl(G
∗, G) + log(N). (30)

This indicates that minimizing the contrastive loss LCl(G
∗, G) is equivalent to maximizing the lower

bound of the mutual information I(f(G∗); f(G)).

C.4 Proof for Proposition C.7

We first apply the upper bound proposed in the Variational Information Bottleneck [1].

Lemma C.5 (Variational Upper Bound of Mutual Information). Given any two variables X and Y ,
we have the variational upper bound of I(X;Y ):

I(X;Y ) = EP(X,Y )

[
log

P(Y |X)

P(Y )

]
= EP(X,Y )

[
log

P(Y |X)Q(Y )

P(Y )Q(Y )

]
= EP(X,Y )

[
log

P(Y |X)

Q(Y )

]
−DKL [P(Y )∥Q(Y )]︸ ︷︷ ︸

non-negative

≤ EP(X,Y )

[
log

P(Y |X)

Q(Y )

]
. (31)

Lemma C.6 (Variational Upper Bound of Conditional Mutual Information). For any Q(U |Y ),

I(U ;V |Y ) ≤ EP(U,V,Y )

[
log

P(V |U, Y )

Q(V |Y )

]
. (32)

Proof. According to Lemma C.5, we can derive a variational upper bound for the conditional mutual
information I(U ;V |Y ). First, the conditional mutual information can be expressed as:

I(U ;V |Y ) = EP(U,V,Y )

[
log

P(U, V |Y )

P(U |Y )P(V |Y )

]
. (33)

Using the properties of conditional probability, we have

P(U, V |Y ) = P(V |U, Y )P(U |Y ). (34)

Substituting this into the expression for mutual information, we obtain:

I(U ;V |Y ) = EP(U,V,Y )

[
log

P(V |U, Y )P(U |Y )

P(U |Y )P(V |Y )

]
= EP(U,V,Y )

[
log

P(V |U, Y )

P(V |Y )

]
. (35)

Next, introduce a variational distribution Q(V |Y ) for V , and utilize the logarithmic identity:

log
P(V |U, Y )

P(V |Y )
= log

P(V |U, Y )

Q(V |Y )
− log

P(V |Y )

Q(V |Y )
. (36)
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Therefore, the mutual information can be re-expressed as:

I(U ;V |Y ) = EP(U,V,Y )

[
log

P(V |U, Y )

Q(V |Y )

]
− EP(V,Y )

[
log

P(V |Y )

Q(V |Y )

]
= EP(U,V,Y )

[
log

P(V |U, Y )

Q(V |Y )

]
−DKL[P(V |Y )∥Q(V |Y )]︸ ︷︷ ︸

non-negative

.
(37)

Since the KL divergence is non-negative, we have a variational upper bound for the conditional
mutual information:

I(U ;V |Y ) ≤ EP(U,V,Y )

[
log

P(V |U, Y )

Q(V |Y )

]
. (38)

Similarly, if we introduce a variational distribution Q(U |Y ) for U :

I(U ;V |Y ) ≤ EP(U,V,Y )

[
log

P(U |V, Y )

Q(U |Y )

]
. (39)

In summary, the conditional mutual information I(U ;V |Y ) can be upper bounded as:

I(U ;V |Y ) ≤ EP(U,V,Y )

[
log

P(V |U, Y )

Q(V |Y )

]
or I(U ;V |Y ) ≤ EP(U,V,Y )

[
log

P(U |V, Y )

Q(U |Y )

]
. (40)

Proposition C.7 (Upper Bound of I(f(G∗); f(G)|Ỹ )). For any Q(f(G)|Ỹ ), the variational upper
bound of conditional mutual information I(f(G∗); f(G)|Ỹ ) is:

I(f(G∗); f(G)|Ỹ ) ≤ EP

[
log

P(f(G), f(G∗)|Ỹ )

P(f(G∗)|Ỹ )Q(f(G)|Ỹ )

]
. (41)

Proof. Since I(U ;V |Y ) ≤ EP(U,V,Y )

[
log P(V |U,Y )

Q(V |Y )

]
in Lemma C.6, let U = f(G∗), V = f(G),

we have

I(f(G∗); f(G)|Ỹ ) ≤ EP

[
log

P(f(G)|f(G∗), Ỹ )

Q(f(G)|Ỹ )

]
, (42)

where P(f(G)|f(G∗), Ỹ ) is the true conditional distribution P(f(G)|f(G∗), Ỹ ), and Q(f(G)|Ỹ ) is
a variational distribution used to approximate P(f(G)|Ỹ ). Based on the multiplication rule,

P(f(G), f(G∗)|Ỹ ) = P(f(G)|f(G∗), Ỹ )P(f(G∗)|Ỹ ). (43)

This implies that

P(f(G)|f(G∗), Ỹ ) =
P(f(G), f(G∗)|Ỹ )

P(f(G∗)|Ỹ )
. (44)

Substituting this into the variational upper bound, we have

I(f(G∗); f(G)|Ỹ ) ≤ EP

[
log

P(f(G)|f(G∗), Ỹ )

Q(f(G)|Ỹ )

]

= EP

[
log

P(f(G), f(G∗)|Ỹ )

P(f(G∗)|Ỹ )Q(f(G)|Ỹ )

]
.

(45)
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(a) MI between original 
graph and anchor view.

(b) MI when anchor view G* 
is substructure of graph G.
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ℋ(G)ℋ(G*)
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ℋ(G)

ℋ(G*)
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ℋ( f (G))

ℋ( f (G*))

(c) MI when  f  is the well-
trained GNN encoder on G.

Figure 9: Venn diagram of the mutual information between original graph and essential view.

C.5 Proof of Theorem C.9

In this section, we present the proof of the statement H(G∗|G) = 0. First, we repeat the property
that the target essential view should own:
Definition C.8. The essential view with redundancy-eliminated information is supposed to be a
distinctive substructure of the given graph.

Now, let G∗ be the target essential view of graph G, the MI between G and G∗ (i.e., I(G∗;G)) can
be formulated as:

I(G∗;G) = H(G∗)−H(G∗|G), (46)
whereH(G∗) is the structural entropy of G∗ andH(G∗|G) is the conditional entropy of G∗ condi-
tioned on G. Before the proof, as shown in Figure 9, the Venn diagram on the left suggests the mutual
information (MI) between the original graph and the essential view in general cases, while the Venn
diagram on the right reveals the MI relationship when the essential view is a substructure of the given
original graph (i.e., complies with Definition C.8).
Theorem C.9. The information in G∗ is a subset of information in G (i.e.,H(G∗) ⊆ H(G)); thus,
we have

H(G∗|G) = 0. (47)

Proof. According to the definition of Shannon entropy [31], i.e.,

H(X) = −
∑
x∈X

P(x) logP(x), (48)

we follow the formulation of graph MI in [35] that X is a set of node representations drawn from an
empirical probability distribution of graph G, we have

H(G∗|G) = H(X∗|X). (49)

So the conditional entropy can be written as:

H(X∗|X) =
∑
x∈X

P(x)H(X∗|X = x)

=−
∑
x∈X

P(x)
∑

x∗∈X∗

P(x∗|x) logP(x∗|x)

=−
∑
x∈X

∑
x∗∈X∗

P(x∗, x) logP(x∗|x)

=−
∑
x∗,x

P(x∗, x) logP(x∗|x).

(50)

Considering that G∗ complies with the Definition C.8, the illustration of the probability distribution
of G∗ and G is shown Figure 9(b). Here, let us first discuss that when x ∈ X and x /∈ X∗, we have

P(x∗, x) = 0. (51)

Therefore, we can transform Eq. (50) to:
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H(X∗|X) =−
∑
x∗,x

P(x∗, x) logP(x∗|x)

=−
∑
x∗,x∗

P(x∗, x∗) logP(x∗|x∗)−
∑

x∗,x/∈X∗

P(x∗, x) logP(x∗|x)

=−
∑

x∗∈X∗

∑
x∗∈X∗

P(x∗, x∗) logP(x∗|x∗)

=−
∑

x∗∈X∗

P(x∗)
∑

x∗∈X∗

P(x∗|x∗) logP(x∗|x∗)

=
∑

x∗∈X∗

P(x∗)H(X∗|X∗ = x∗)

=H(X∗|X∗)

=0. (52)

Therefore, given ∀x ∈ X , we have
H(G∗|G) = H(X∗|X) = 0. (53)

Accordingly, we have
I(G∗;G) = H(G∗). (54)

C.6 Proof of Theorem C.12

With the essential view eliminating redundant information, we also theoretically prove that our
RedOUT effectively captures the maximum mutual information between the representations obtained
from the essential view and labels by minimizing the contrastive loss in Eq. (1). The InfoMax
principle has been widely applied in representation learning literature [2, 28, 36]. MI quantifies the
amount of information obtained about one random variable by observing the other random variable.
We first introduce two lemmas.
Lemma C.10. Given that f is a GNN encoder with learnable parameters and G∗ is the target essential
view of graph G. If I(f(G∗); f(G)) reaches its maximum, then I(f(G∗);G) will also reach its
maximum.

Proof. Because f(G) is a function of G,

I(f(G∗);G) = I(f(G∗); f(G);G) + I(f(G∗);G|f(G))

= I(f(G∗); f(G)) + I(f(G∗);G|f(G)).
(55)

Thus,
I(f(G∗); f(G)) = I(f(G∗);G)− I(f(G∗);G|f(G)). (56)

While maximizing I(f(G∗); f(G)), either I(f(G∗);G) increases or I(f(G∗);G|f(G)) decreases.
When I(f(G∗);G|f(G)) reaches it minimum value of 0, I(f(G∗);G) will definitely increase. Hence,
the process of maximizing I(f(G∗); f(G)) can lead to the maximization of I(f(G∗);G) as well.

Lemma C.11. Given the essential view G∗ of graph G and an encoder f , we have
I(f(G∗);G) ≤ I(f(G∗);Y ) + I(G;G∗|Y ). (57)

Proof.
I(f(G∗);G) =I(f(G∗);G;Y ) + I(f(G∗);G|Y )

=I(f(G∗);Y )− I(f(G∗);Y |G) + I(f(G∗);G|Y ).
(58)

Due to the non-negativity of mutual information,
I(G;G∗|Y ) = I(f(G∗);G;G∗|Y ) + I(G;G∗|Y, f(G∗))

≥ I(f(G∗);G;G∗|Y ) (the non-negativity of I)
= I(f(G∗);G|Y ).

(59)
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According to Eq. (58) and (59), we get

I(f(G∗);G) + I(f(G∗);Y |G) = I(f(G∗);Y + I(f(G∗);G|Y )

≤ I(f(G∗);Y ) + I(G;G∗|Y ).
(60)

Thus,
I(f(G∗);G) ≤ I(f(G∗);Y ) + I(G;G∗|Y ). (61)

Theorem C.12. According to Proposition 2, optimizing the contrastive loss LCl(G
∗, G) is equivalent

to maximizing I(f(G∗); f(G)), which could lead to the maximization of I(f(G∗);Y ).

Proof. Minimizing the contrastive loss LCl(G
∗, G) is equivalent to maximizing a lower bound of

the mutual information between the latent representations of two views of the graph, and can be
viewed as one way of mutual information maximization between the latent representations (i.e.,
max I(f(G∗); f(G))). Consequently, the optimization of LCl(G

∗, G) is equivalent to maximizing
I(f(G∗); f(G)).

According to Lemma C.10, we know that maximizing I(f(G∗); f(G)) is equivalent to maximizing
I(f(G∗);G), i.e.,

max I(f(G∗); f(G))⇒ max I(f(G∗);G). (62)

According to Lemma C.11, we have

I(f(G∗);G) ≤ I(f(G∗);Y ) + I(G;G∗|Y ). (63)

Since
I(G;G∗) = I(G;G∗|Y ) + I(G;G∗;Y ), (64)

it follows that
I(G;G∗|Y ) ≤ I(G;G∗). (65)

By combining Eq. (63) and Eq. (65), we obtain:

I(f(G∗);G) ≤ I(f(G∗);Y ) + I(G;G∗|Y )

≤ I(f(G∗);Y ) + I(G;G∗)
(66)

Thus,
I(f(G∗);G)− I(G;G∗) ≤ I(f(G∗);Y ). (67)

Since the Eq. (54) in Theorem C.9 we have already proven that I(G∗;G) = H(G∗), and G∗ is the
essential view of graph G obtained by minimizing structural entropy (i.e., minH(G∗)), it follows
that

min I(G;G∗) = minH(G∗). (68)

Thus,
max I(f(G∗);G)− I(G∗;G) ≤ max I(f(G∗);Y ). (69)

Therefore, minimizing the contrastive loss LCl(G
∗, G) is equivalent to maximizing I(f(G∗); f(G)).

At this point, I(f(G∗);G) reaches its maximum, and I(G∗;G) reaches its minimum, thereby
maximizing I(f(G∗);Y ).

C.7 Proof of Theorem C.15

Definition C.13 (Graph Quotient Space). Define the equivalence ∼= between two graphs G1
∼= G2 if

G1, G2 cannot be distinguished by the 1-WL test. Define the quotient space G′ = G/ ∼=.

So every element in the quotient space, i.e., G′ ∈ G′, is a representative graph from a family of graphs
that cannot be distinguished by the 1-WL test. Note that our definition also allows attributed graphs.
Definition C.14 (Probability Measures in G′). Define PG′ over the space G′ such that PG′(G′) =
PG(G ∼= G′) for any G′ ∈ G′. Further define PG′×Y(G

′, Y ′) = PG×Y(G ∼= G′, Y = Y ′). Given a
GDA T (·) defined over G, define a distribution on G′, T ′(G′) = EG∼PG [T (G)|G ∼= G′] for G′ ∈ G′.
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Theorem C.15 (Bounds of Redundant and Essential Information). Suppose the encoder f is imple-
mented by a GNN as powerful as the 1-WL test. Suppose G is a countable space and thus G′ is a
countable space, where ∼= denotes equivalence (G1

∼= G2 if G1, G2 cannot be distinguished by the
1-WL test). Define PG′×Y(G

′, Y ′) = PG×Y(G ∼= G′, Y ) and T ′(G′) = EG∽PG
[T ∗(G)|G ∼= G′]

for G′ ∈ G. Then, the optimal f∗ and G∗ to RedOUT satisfies:

1. I(G∗;Y ) = I(f∗(G∗);Y ) ≥ I(t′(G′);Y ),

2. I(f∗(G);G|Y ) ≤ minT I(t′(G′);G′))− I(t′(G′);Y ),

where t∗(G) = G∗, t′(G′) ∼ T ′(G′), t′∗(G′) ∼ T ′∗(G′), (G, Y ) ∼ PG×Y and (G′, Y ) ∼ PG′×Y .

Proof. Because G and G′ are countable, PG and PG′ are defined over countable sets and thus discrete
distribution. Later we may call a function z(·) can distinguish two graphs G1, G2 if z(G1) ̸= z(G2).

Moreover, for notational simplicity, we consider the following definition. Because f∗ is as powerful
as the 1-WL test. Then, for any two graphs G1, G2 ∈ G, G1

∼= G2, f∗(G1) = f∗(G2). We may
define a mapping over G′, also denoted by f∗ which simply satisfies f∗(G′) :≜ f∗(G), where
G ∼= G′, and G ∈ G and G′ ∈ G′.
We first prove the statement 1, i.e., the lower bound. Given G∗, G∗ ⇒ f∗(G∗) is an injective
deterministic mapping because of the injective f∗. Therefore, we have

I(f∗(G);Y ) = I(G∗;Y ). (70)

Given t′∗(G′), t′∗(G′) → f∗(t′∗(G′)) is an injective deterministic mapping. Therefore, for any
random variable Q,

I(f∗(t′∗(G′));Q) = I(t′∗(G′);Q),

where G′ ∼ PG′ , t′∗(G′) ∼ T ′∗(G′).

Of course, we may set Q = Y . So,

I(f∗(t′∗(G′));Y ) = I(t′∗(G′);Y ), (71)

where (G′, Y ) ∼ PG′×Y , t
′∗(G′) ∼ T ′∗(G′).

Because of the data processing inequality [6] and T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′], we further
have

I(f∗(t∗(G));Y ) ≥ I(f∗(t′∗(G′));Y ), (72)

where (G′, Y ) ∼ PG′×Y , (G,Y ) ∼ PG×Y , t
′∗(G′) ∼ T ′∗(G′), t∗(G) ∼ T ∗(G). Further because of

the data processing inequality [6],

I(f∗(G);Y ) ≥ I(f∗(t∗(G));Y ). (73)

Combining Eq. (71), (72), (73), we have

I(f∗(G∗);Y ) = I(f∗(t∗(G));Y ) ≥ I(f∗(t′∗(G′));Y ) = I(t′∗(G′);Y ) ≥ min
T

I(t′(G′);Y ),

(74)

which concludes the proof of the lower bound.

We next prove the statement 2, i.e., the upper bound. Recall that T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′]
and t′∗(G′) ∼ T ′∗(G′).

I(t′∗(G′);G′) = I(t′∗(G′); (G′, Y ))− I(t′∗(G′);Y |G′)]

(a)
= I(t′∗(G′); (G′, Y ))

= I(t′∗(G′);Y ) + I(t′∗(G′);G′|Y )

(b)

≥ I(f∗(t′∗(G′));G′|Y ) + I(t′∗(G′);Y ) (75)
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where (a) is because t′∗(G′) ⊥G′ Y , (b) is because the data processing inequality [6]. Moreover,
because f∗ could be as powerful as the 1-WL test and thus could be injective in G′ a.e. with respect
to the measure PG′ . Since f∗(G) = f∗(G′) and T ′(G′) = EG∼PG [T (G)|G ∼= G′],

I(t′(G′);G′) = I(f∗(t′(G′)); f∗(G′)) = I(f∗(t(G)); f∗(G)), (76)

where t′(G′) ∼ T ′(G′), t(G) ∼ T (G).

Since T ∗ = argminT I(G∗, G) where t∗(G) ∼ T ∗(G) and Eq. (76), we have

I(t′∗(G′);G′) = argmin
T

I(t′(G′);G′), (77)

Again, because f∗ could be as powerful as the 1-WL test, its counterpart defined over G′, i.e., f⋆

must be injective over G′ ∩ Supp(EG′∼PG′ [T ′∗(G′)]) a.e. with respect to the measure PG′ to achieve
such mutual information maximization. Here, Supp(µ) defines the set where µ has non-zero measure.

Because of the definition of T ′∗(G′) = EG∼PG [T ∗(G)|G ∼= G′],

G′ ∩ Supp(EG′∼PG′ [T ′∗(G′)]) = G′ ∩ Supp(EG∼PG [T ∗(G)]). (78)

Therefore, f∗ is a.e. injective over G′ ∩ Supp(EG∼PG [T ∗(G)]) and thus

I(f∗(t′∗(G′));G′|Y ) = I(f∗(t∗(G));G′|Y ), (79)

Moreover, as f∗ cannot cannot distinguish more graphs in G than G′ as the power of f∗ is limited by
1-WL test, thus,

I(f∗(t∗(G));G′|Y ) = I(f∗(t∗(G));G|Y ). (80)

Plugging Eq. (77),(79),(80) into Eq. (75), we achieve

I(f∗(G∗);G|Y ) = I(f∗(t∗(G));G|Y ) ≤ argmin
T

I(t′(G′);G′)− I(t′∗(G′);Y )

≤ argmin
T

I(t′(G′);G′)− I(t′(G′);Y ). (81)

where t′(G′) ∼ T ′(G′) = EG∼PG [T (G)|G ∼= G′] and t′∗(G′) ∼ T ′∗(G′) = EG∼PG [T ∗(G)|G ∼=
G′], which gives us the statement 1, which is the upper bound.

i) Enhancing Essential Information: statement 1 of Theorem C.15 highlights the effectiveness of
ReGIB in capturing essential information. It implies that the essential information G∗ is guaranteed
to have at least as much mutual information with the ground-truth labels Y as the augmented
representation t′(G′), which suggests that G∗ is highly informative with respect to the downstream
task.

ii) Limiting Redundant Information: statement 2 of Theorem C.15 establishes an upper bound on the
redundant information embedded in the representations. This aligns with the GIB principle (Eq. (3)
when β = 1), ensuring that the encoder f∗ captures only the necessary information from input graph
G that is relevant to the downstream task. The statement suggests that ReGIB is capable of producing
representations with limited redundant information, thereby enhancing the overall efficiency of the
representation learning process.

C.8 Proof of Instantiation for I(f(G∗); f(G)|Ỹ )

According to Proposition C.7, we have:

I(f(G∗); f(G)|Ỹ ) ≤ EP

[
log

P(f(G), f(G∗)|Ỹ )

P(f(G∗)|Ỹ )Q(f(G)|Ỹ )

]
. (82)

To specify the variational upper bound, we provide the proof for the instantiation of I(f(G∗); f(G)|Ỹ )
as follows.
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Figure 10: Venn diagram of comparison between the basic GIB, GIB with a random augmentation
view, and proposed ReGIB. Note ReGIB captures the essential information and discards redundancy,
wherein (c) 1⃝+ 3⃝ = I(f(G); Ỹ ), 1⃝+ 2⃝ = I(f(G∗); f(G)), 1⃝ = I(f(G∗); Ỹ ).

Proof. Since

I(U ;V |Y ) ≤ EP (U,V,Y )

[
log

esim(u,v)

1
N

∑N
i=1 e

sim(u,v−
i )

]

= EP (U,V,Y )

[
sim(u, v)− log

(
1

N

N∑
i=1

esim(u,v−
i )

)]
.

(83)

Here, we give the definition of the conditional redundancy-eliminated loss LCRI :

LCRI(G,G∗) ≜ Eỹ∼P(Y )EZ,ZT∼P(f(G),f(G∗)|ỹ)

[
sim(Z,ZT )− logEZ−∼P(f(G)|ỹ)e

sim(Z−,ZT )
]
.

(84)

Now, for Eq. (82), we treat the similarity between ZT and Z given the predicted predicted label
Ỹ = softmax(Z) as an approximation of the log-likelihood logP(f(G)|f(G∗), Ỹ ), and set

Q(f(G)|Ỹ ) = EZ−∼P(f(G)|Ỹ )e
sim(Z−,ZT ), (85)

where Z− are negative samples drawn from the conditional distribution P(f(G)|Ỹ ).

Thus, I(f(G∗); f(G) | Ỹ ) can be approximately instantiated as:

I(f(G∗); f(G)|Ỹ )
.
= LCRI(G,G∗), (86)

C.9 Further Comparison of ReGIB and GIB with Random Augmentation Views

In this section, we provide a comparative analysis of ReGIB and GIB with random augmentation
views from an argumentation perspective. Compared to the standard GIB with random augmentation
views (▷ Figure 10(a)), ReGIB addresses the limitations of models pretrained solely on ID data. Such
models often lack the generalization capability required for OOD data, which results in representations
that contain both relevant and irrelevant information (▷ Figure 10(c)). For unsupervised tasks,
models pretrained on ID data can leverage pseudo-labels Ỹ obtained from softmax outputs to reduce
dependence on ground-truth labels Y .

As discussed previously, ID and OOD graphs can be distinguished by their unique structural character-
istics. Through the proof of Theorem C.9, we show that essential structural information is embedded
within the original graph and can be extracted by minimizing structural entropy to obtain the essential
view G∗. Methods such as GOODAT [39], however, which use graph maskers to identify subgraphs
in test data similar to those in ID graphs, fundamentally rely on learnable graph augmentations. These
augmentations may inadvertently alter the semantic information of substructures or lead to informa-
tion loss, compromising the reliability of OOD detection. Specifically, as shown in Figure 10(b))
random augmentations on graph G can introduce redundant information captured by the pretrained
model, making it more difficult to extract the optimal and essential information.
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Figure 11: Overview of MERGE to construct full-height binary coding tree.
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Figure 12: Overview of DROP to squeeze the height of coding tree to k.

Since well-trained GNNs generally perform well on ID graphs but tend to produce more random
and unreliable predictions for unseen OOD graphs in the test data, their predictions fail to identify
distinctive structural information or recognize similar modifying structures. For graph data with
specific structures, the intrinsic semantic information is encoded in the structure itself. Unlike t(G)
which introduces random irrelevant information, G∗ is a hierarchical abstraction derived from the
original graph structure, obtained by minimizing the structural entropy of G. This process preserves
the essential structure without altering the semantic information. Therefore, the distinctive pattern of
G∗ serves as a form of ground-truth information to correct predictions on test graphs.

The primary objective of ReGIB is to obtain the distinctive structure G∗ and to extract as much
optimal and essential information as possible based on pseudo-labels while eliminating irrelevant
redundancies. Thus, ReGIB can be considered a special case of GIB with random augmentation views.
By placing t(G) entirely within the space of G in vanilla GIB, we derive ReGIB. In summary, ReGIB
eliminates irrelevant redundancies introduced by random modifications, effectively simplifying the
representation of the graph’s intrinsic structure and extracting optimal essential information without
adding unnecessary redundancies. In unlabeled OOD detection tasks and test-time settings that rely
solely on test samples, ReGIB proves to be more effective.

D Algorithms

To start with, we initialize a coding tree T by treating all nodes in V as children of root node vr. The
construction of the coding tree involves initially building a full-height binary tree with all nodes as
leaves and then optimizing this binary tree into a fixed-height coding tree. Specifically, during step 1,
an iterative MERGE(v1c , v

2
c ) is performed with the goal of minimizing structural entropy to obtain

a binary coding tree without height limitation. In this way, selected leaf nodes are combined to form
new community divisions with minimal structural entropy. Then, to compress height to a specific
hyper-parameter k, DROP(vm) is leveraged to merge small divisions into larger ones, and thus
the height of the coding tree is reduced, which is still following the structural entropy minimization
strategy. Eventually, the coding tree with fixed height k and minimal structural entropy is obtained.

Definition D.1. Assuming va and vb as two child nodes of root node vr, the function
MERGE(va, vb) is defined as adding a new node vj as the child of vr and the parent of va
and vb:

vj .children = {va, vb},
vr.children = {vj} ∪ vr.children.

(87)
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Since merging nodes in the original graph via the operator MERGE(va, vb) operator reduces the
structural entropy of graph G, the pair of child nodes to be merged should be the one that maximizes
the reduction in structural entropy, formally written as:

(va, vb) = argmax{HT (G)−HTab(G)|va, vb ∈ vr.children}. (88)

An overview of the MERGE operator is shown in Figure 11. To provide a more detailed explanation
of the coding tree construction process, we first revisit the definition of structural entropy as follows:

HT (G) = −
∑
vτ∈T

gvτ
vol(V)

log
vol(vτ )

vol(v+τ )
, (89)

where vτ is a node in T except for root node and also stands for a subset Vτ ∈ V , gvτ is the number
of edges connecting nodes in and outside Vτ , v+τ is the immediate predecessor of vτ and vol(vτ ),
vol(v+τ ) and vol(V) are the sum of degrees of nodes in vτ , v+τ and V , respectively. When two nodes
are merged into a new node (e.g., merging the pair (va, vb) into vj), the structural information of the
new node must satisfy the following equations:

gvj = gva + gvb − 2Cut(va, vb),

vol(vj) = vol(va) + vol(vb),
(90)

where Cut(va, vb) denotes the number of edges cut between nodes when merging (va, vb). Figure 13
illustrates the process of merging nodes in a graph and adding nodes to the corresponding coding tree
through an example.
Definition D.2. Given node vm and its parent node v+m in T , the operator DROP(vm) is defined as
adding the children of vm and itself to the child set of v+m:

v+m.children = v+m.children ∪ vm.children. (91)

Similarly, since creating a new node vm through the DROP(vm) operator also changes the structural
entropy of graph G, the selection of the new node vm should aim to minimize the change in structural
entropy, written as:

vm = argmin{HTm(G)−HT (G)|vm ∈ T, vm ̸= vr, vm /∈ V} (92)

An overview of the DROP operator is shown in Figure 12. The construction of coding tree with a
fixed height k primarily involves iterations through the two operators to obtain the minimum structural
entropy, which is shown in Algorithm 1.

E Experiment

E.1 Dataset Description

For OOD detection, we employ 10 pairs of datasets from two mainstream graph data benchmarks (i.e.,
TUDataset [24] and OGB [11]) following GOOD-D [20]. Specifically, we select 8 pairs of molecular
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Algorithm 1: Coding tree construction with height k via structural entropy minimization.
Input: A undirected graph G = (V, E); Specific height k > 1.
Output: Coding tree T with height k.

1 Initialize a coding tree T with root node vr and nodes in V as its children ;
2 // Step 1: full-height binary coding tree construction
3 while |vj .children| > 2 do
4 Select child node pair (va,vb)← Eq. (88) ;
5 MERGE(va, vb);
6 end
7 // Step 2: binary coding tree squeeze to height k
8 while Height(T ) > k do
9 Select node vm ←Eq. (92) ;

10 DROP(vm) ;
11 end
12 return coding tree T ;

Algorithm 2: Overall optimization process of RedOUT.
Input: Test graph sample G; Pre-trained GNN encoder f which is frozen; Coding tree

encoder fΘ; Number of test-time training epochs E; Hyperparameters λ.
Output: Optimized tree encoder f⋆

Θ; Predicted OOD score S.
1 Initialize parameters randomly;
2 // Instantiation for Redundancy-eliminated Essential Information
3 Construct redundancy-eliminated G∗ via structural entropy minimization← Eq. (14);
4 for i = 1, 2, · · · , E do
5 Obtain representations for original graph and coding tree, as Z = f(G), ZT = fΘ(G∗);
6 // Instantiation for Lower Bound of I(f(G∗); f(G)
7 Calculate contrastive loss, as LCl = −I(Z,ZT )← Eq. (15);
8 // Instantiation for Upper Bound of I(f(G∗); f(G)|Ỹ )

9 Calculate conditional redundancy-eliminated loss, as LCRI = I(Z,ZT |Ỹ )← Eq. (16);
10 Calculate the overall loss, as L ← Eq. (18);
11 Update parameter Θ by minimizing L and back-propagation;
12 end

datasets, 1 pair of protein datasets, and 1 pair of social network datasets. 90% of ID samples are used
for training, and 10% of ID samples and the same number of OOD samples are integrated together for
testing. The partitioning of ID samples for training, along with the division of ID and OOD samples
for testing, follows GOOD-D [20]. Detailed statistics of OOD detection datasets are compiled in
Table 5. Further detailed information about these datasets is categorized and described as follows.

E.1.1 Molecular Datasets

• BZR [24] is a dataset focused on benzodiazepine receptor ligands, containing molecular structures
and associated binding affinities. It is crucial for drug design and discovery, specifically for
studying receptor-ligand interactions.

• PTC-MR [24] reports the carcinogenicity of 344 chemical compounds in male and female rats
and includes 19 discrete labels. It is utilized for predicting the carcinogenic potential of chemical
substances.

• AIDS [24] contains data on anti-HIV compounds, including their molecular structures and
biological activities, serving as a valuable resource for the development of anti-HIV drugs.

• ENZYMES [24] is a dataset consisting of protein structures classified into enzyme types based
on their functionality. It is used for protein function prediction and enzyme classification.

• COX2 [24] comprises data on cyclooxygenase-2 inhibitors, which are compounds with anti-
inflammatory properties. This dataset is essential for the research and development of anti-
inflammatory drugs.
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Table 5: Statistics of OOD detection datasets.
Dataset Pair Domain #ID train #ID test #OOD test

BZR / COX2 Molecules 364 41 41
PTC-MR / MUTAG Molecules 309 35 35

AIDS / DHFR Molecules 1800 200 200
Tox21 / SIDER Molecules 7047 784 784

FreeSolv / ToxCast Molecules 577 65 65
BBBP / BACE Molecules 1835 204 204
ClinTox / LIPO Molecules 1329 148 148

Esol / MUV Molecules 1015 113 113
ENZYMES / PROTEINS Proteins 540 60 60

IMDB-M / IMDB-B Social Networks 1350 150 150

Table 6: Further statistics of graph datasets.
Dataset #Feature #Graphs Avg. Nodes Avg. Edges Avg. Deg.

ENZYMES 1 600 32.63 62.13 1.90
PROTEIN 1 1113 39.06 72.82 1.86
IMDB-M 1 1500 18.00 65.93 5.07
IMDB-B 1 1000 19.77 96.53 4.88

Tox21 9 7831 18.57 19.29 1.04
SIDER 9 1427 33.64 35.66 1.05

FreeSolv 9 642 8.72 8.38 0.96
ToxCast 9 8576 18.78 19.26 1.03
BBBP 9 2039 24.06 25.95 1.08
BACE 9 1513 34.08 35.91 1.08

ClinTox 9 1477 26.15 27.88 1.07
LIPO 9 4200 27.04 29.11 1.09
Esol 9 1128 13.28 14.08 1.03

MUV 9 93087 24.23 26.27 1.08
BZR 1 405 35.75 38.14 1.07

COX2 1 467 41.22 44.52 1.05
PTC_MR 1 344 14.28 15.04 1.03
MUTAG 1 188 17.93 19.79 1.10

• MUTAG [24] has seven kinds of graphs derived from 188 mutagenic aromatic and heteroaromatic
nitro compounds. It is used for studying the mutagenicity of chemical substances.

• DHFR [24] includes dihydrofolate reductase inhibitors, important in the development of antibac-
terial and anticancer drugs, aiding in drug discovery and medicinal chemistry research.

• PROTEINS [24] contains data on protein structures and their functionalities. Nodes represent
secondary structure elements (SSEs), and edges connect neighboring elements in the amino acid
sequence or 3D space. This dataset is used for protein structure prediction and functional analysis.

• Tox21 [11] is a dataset containing toxicity data on 12 biological targets, which has been used in
the 2014 Tox21 Data Challenge and includes nuclear receptors and stress response pathways.

• BBBP [11, 23] includes records of whether a compound has the permeability property of pene-
trating the blood-brain barrier, essential for the design of central nervous system drugs.

• ClinTox [11, 26, 8] contains clinical toxicity data on a variety of drug compounds, classifying
drugs approved by the FDA and those that have failed clinical trials for toxicity reasons.

• ToxCast [11, 29] includes high-throughput screening data on the toxicity of chemical substances,
with measurements based on over 600 in vitro screenings. This dataset is used for large-scale
toxicity assessment and environmental health research.

• SIDER [11, 14] contains information on drug side effects, grouped into 27 system organ classes,
also known as the Side Effect Resource. It is utilized for predicting drug side effects and improving
drug safety profiles.
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Table 7: Statistics of anomaly detection datasets.
Dataset Pair Domain #ID train #ID test #OOD test

BZR Molecules 69 17 64
AIDS Molecules 1280 320 80
COX2 Molecules 81 21 73
NCI1 Molecules 1646 411 411
DHFR Molecules 368 93 59

ENZYMES Proteins 400 100 20
PROTEINS Proteins 360 90 133

DD Proteins 390 97 139
IMDB-B Social Networks 400 100 100

REDDIT-B Social Networks 800 200 200

• BACE [11, 33] includes qualitative binding results for a set of inhibitors of human β-secretase
1, which are potential treatments for Alzheimer’s disease. This dataset is used in Alzheimer’s
disease research and drug development.

• FreeSolv [11] includes data on the hydration free energy of small molecules, used for molecular
dynamics simulations and solubility studies.

• Esol [11] contains data on the aqueous solubility of compounds, used for studying compound
solubility and drug design.

• LIPO [11] includes data on the lipophilicity of chemical compounds. It is used for studying the
partitioning of compounds between water and oil phases, which is important in drug design.

• MUV [11, 7] includes data on the activity of compounds from virtual screening, designed for
validation of virtual screening techniques.

• HIV [11] contains experimentally measured abilities to inhibit HIV replication.

E.1.2 Protein Datasets

• PROTEINS [24] contains data on protein structures and their functionalities. Nodes represent
secondary structure elements (SSEs), and edges connect neighboring elements in the amino acid
sequence or 3D space. This dataset is used for protein structure prediction and functional analysis.

• ENZYMES [24] is a dataset consisting of protein structures classified into enzyme types based
on their functionality. It is used for protein function prediction and enzyme classification.

E.1.3 Social Network Datasets

• IMDB-BINARY [24] (abbreviated as IMDB-B) is derived from the collaboration of a movie
set. Each graph consists of actors or actresses, with edges representing their cooperation in a
movie. The label corresponds to movie’s genre. This dataset is used for movie classification and
recommendation system studies.

• IMDB-MULTI [24] (abbreviated as IMDB-M) consists of graphs derived from movie collabora-
tions which is similar to IMDB-BINARY, but with multi-class labels. It is utilized in multi-class
classification tasks in social network analysis.

We also conduct experiments on anomaly detection (AD) settings, where 10 datasets from TU-
Dataset [24] are used for evaluation. Following the setting in GlocalKD [21], the samples in the
minority class or real anomalous class are viewed as anomalies, while the rest are viewed as normal
data. Similar to [21, 51], only normal data are used for model training. Detailed statistics of anomaly
detection datasets are compiled in Table 7.

E.2 Baseline Details

We evaluate the performance of RedOUT by comparing it against 18 state-of-the-art baseline methods.
A detailed discussion of these methods is provided below.
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• Non-deep Two-step Methods. These methods first extract representations using hand-crafted
graph kernels and then apply classical OOD detectors. We adopt the Weisfeiler-Lehman (WL)
kernel [32] and the propagation kernel (PK) [25] to obtain graph-level representations. On top
of these, we apply local outlier factor (LOF) [4], one-class SVM (OCSVM) [22], and isolation
forest (iF) [18] for OOD detection.

• Deep Two-step Methods. These approaches employ self-supervised graph learning techniques
to generate expressive embeddings, followed by a separate OOD detector. We use two represen-
tative graph contrastive learning (GCL) methods, InfoGraph [34] and GraphCL [49], to learn
representations. For detection, we adopt iF [18] and Mahalanobis distance (MD) [30, 52], both of
which have demonstrated effectiveness in prior work.

• End-to-end Training Methods. These methods jointly optimize the representation learning
and OOD detection objective within a unified framework. We consider GOOD-D [20] as the
primary SOTA method in our comparison, which is a GCL-based method that has shown strong
performance in unsupervised OOD detection tasks. We also compare our approach with two graph
anomaly detection methods that are trained in an end-to-end manner. OCGIN [51], which uses a
GIN encoder trained with a support vector data description (SVDD) loss, and GLocalKD [21],
which identifies graph anomalies using local-global knowledge distillation.

• Test-time and Data-centric Methods. A typical test-time training method is GTrans [12], which
adapts representations via test-time contrastive alignment. Since GTrans is not explicitly designed
for graph OOD detection, its loss value is utilized as the OOD score. We conduct comparisons
based on the experimental results from GOODAT [39]. Data-centric methods leverage well-trained
GNN models to fine-tune OOD detectors for identifying OOD samples. These methods mainly
include the following approaches: AAGOD [9] employs a graph adaptive amplifier module, which
is integrated into a well-trained GNN to facilitate graph OOD detection. Specifically, AAGOD
exists in two versions: AAGOD-GINS+ and AAGOD-GINL+, corresponding to distinct OOD
evaluation methods. GOODAT [39] is the first to directly partition test data into two subgraphs
using data-centric techniques in a test-time setting, training a plug-and-play graph masker.

E.3 Configurations

We conduct the experiments with:

• Operating System: Ubuntu 20.04 LTS.

• CPU: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, 256GB RAM.

• GPU: Tesla V100 PCIe 32GB GPU.

• Software: Python 3.7, Pytorch 1.8, CUDA 11.0, and Pytorch-Geometric 2.0.1.

E.4 Additional Experiments Using Structural Entropy as Distinct Metric

By minimizing structural entropy, the structural uncertainty of the graph is reduced, which aids in
capturing essential information and identifying distinct patterns between ID and OOD samples. As
shown in the score density plots in Figure 1(c), by minimizing structural entropy, the overlap between
the representations of ID and OOD graph samples is significantly reduced.

To clarify, we do not treat structural entropy solely as distinct values, but construct a coding tree
that reduces redundancy and retains distinctive parts. To further illustrate the performance of using
structural entropy directly as distinct values for the OOD detection task, we conduct additional
experiments using the 95% range of structural entropy from ID training graphs for OOD detection
on test samples. The AUC results shown in Table 8 reveal that using structural entropy directly as
a metric causes a significant performance drop. Thus, we can analyze that structural entropy only
measures information but does not capture structural differences, and cannot be directly used as an
indicator of substantial information. In contrast, our method instantiates substantial information
through the encoding tree with minimized structural entropy, achieving good performance.
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Table 8: Additional results on using structural entropy as the distinct metric, compared with RedOUT,
for OOD detection in terms of AUC (%, mean ± std).

ID data BZR PTC-MR AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol
OOD data COX2 MUTAG DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

SE Metric 51.71±0.60 68.29±1.90 50.10±0.68 54.83±0.97 49.07±1.12 54.36±0.58 47.97±1.36 48.97±0.81 45.07±0.66 52.39±0.60
SEGO 96.66±0.91 85.02±0.94 99.48±0.11 64.42±4.95 80.27±0.92 66.67±0.82 90.95±1.93 87.55±0.13 78.99±2.81 94.59±0.94

RedOUT 95.06±0.54 94.45±1.66 99.98±0.16 66.75±2.02 79.54±0.72 71.67±0.50 92.97±0.84 92.60±0.23 86.56±0.76 95.00±0.54

E.5 Comparison Results of RedOUT with Structural Entropy Guided End-to-end Training

SEGO [10] is a recent approach that leverages structural entropy for unsupervised OOD detection.
In this section, we conduct a detailed comparison between our method and SEGO to highlight their
methodological differences and performance characteristics.

Difference in Settings. Firstly, the key differences between our RedOUT and SEGO lie in their
settings: RedOUT is designed to improve OOD detection at test-time without modifying pre-trained
models or requiring training data, whereas SEGO is an end-to-end unsupervised method that trains
from scratch. It is evident that the test-time setting is more practical for real-world applications.

Difference in Techniques. Regarding technical details, although both RedOUT and SEGO leverage
structural entropy to construct coding trees, their implementations and focal points differ significantly.
Specifically, SEGO merely discovers the phenomenon that minimizing structural entropy is beneficial
for the OOD detection task. In contrast, our RedOUT’s main contribution is the first to extend
GIB to redundancy-aware disentanglement by proposing ReGIB, which effectively eliminates
redundancy and captures essential information through theoretically grounded upper and lower bound
optimization.

Superior Performance of RedOUT. We further conduct a comparison experiment between RedOUT
and SEGO, as shown in Table 8, where our method outperforms SEGO on 8 out of 10 ID/OOD
dataset pairs.

E.6 Efficiency Analysis and Runtime Comparison

Given a graph G = (V, E), the time complexity of coding tree construction is O(h(|E| log |V|+ |V|)),
in which h is the height of coding tree after the first step. In general, the coding tree tends to be
balanced in the process of structural entropy minimization, thus, h will be around log |V|. Furthermore,
a graph generally has more edges than nodes, i.e., |E| ≫ |V|, thus the runtime almost scales linearly
in the number of edges.

Discussion on the Runtime Comparison. We compared RedOUT with GOODAT [39] in terms of
inference time on test data and the time consumption for coding tree construction (abbreviated as
Tree Constr.). For deep learning methods under other settings, we select the best-performing methods,
GOOD-D and GraphCL-MD. Shown in Table 9, the time overhead of RedOUT is comparable with
the baseline while achieving enhanced performance. Note that coding tree construction is a one-time
preprocessing step, it does not impact the efficiency of test-time inference.

Table 9: Time consumption on pre-training, coding tree con-
struction and test-time OOD detection.

ID dataset BZR PTC-MR ENZYMES IMDB-M FreeSolv
OOD dataset COX2 MUTAG PROTEIN IMDB-B ToxCast

Pre-training (s) 53.21 40.99 30.18 8.12 70.84

Tree Constr. (s) 0.14 0.04 0.15 0.09 0.38

GraphCL-MD (s) 27.94 21.71 14.43 10.64 40.02
GOOD-D (s) 323.36 320.77 137.5 33.59 356.44

GOODAT (s) 6.86 3.55 5.24 0.87 4.81
RedOUT (s) 7.51 5.65 2.88 0.28 7.51

The difference in speed is related to
the graph density. Specifically, since
GOODAT relies on training a graph
masker on test samples to separate
subgraphs, the iterative optimization
of the masker and representation learn-
ing of the two subgraphs become fre-
quent and time-consuming when deal-
ing with a large amount of edges in
dense graphs. In contrast, RedOUT
does not involve a masking design,
and the preprocessing step of coding
tree construction is non-trainable. For dense social network graphs such as IMDB-M/B, the higher
the graph density, the more pronounced the efficiency advantage of RedOUT compared to GOODAT.
Detailed dataset statistics can be found in Table 6.
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Discussion on the Efficiency of Trainable Parameters. We further analyze the number of pa-
rameters required during training for both RedOUT and GOODAT on specific datasets. RedOUT
only updates the parameters of tree encoder. Assuming the encoder has l layers, with each layer
consisting of a two-layer MLP with hidden dimension hid, the total number of trainable parameters
is approximately 2× l × hid× hid. In contrast, GOODAT5 updates both a feature masker and an
edge masker, with a parameter size of approximately batch_size × (n × d + 2 ×m), where n is
the number of nodes, m is the number of edges, and d is the feature dimension. The edge count is
doubled because reciprocal edges are automatically added for undirected graphs.

As shown in Table 6, dataset pairs such as IMDB-M/IMDB-B and ENZYMES/PROTEINS have
higher average node and edge counts. Taking IMDB-M/IMDB-B as an example, whose average
number of nodes is about 19, and the average number of edges is about 81. With a batch size of 128,
GOODAT requires around 128× (19× 1 + 2× 81) = 23, 168 parameters. In comparison, RedOUT
uses up to a 5-layer encoder (note that the analysis in Section 5.5 shows that 5 layers are not strictly
necessary for optimal performance) with hidden dimension 32, requiring 2× 5× 32× 32 = 10, 240
trainable parameters. Thus, for dense graphs with more edges on average, RedOUT requires fewer
parameters and less runtime. However, for sparser graphs such as PTC_MR/MUTAG, GOODAT’s
parameter count is 128×(16×1+2×17) = 6, 400, which is smaller than that of RedOUT. Therefore,
GOODAT is more efficient on sparse graphs.

E.7 Additional Results of Parameter Study on OOD Detection

We illustrate additional results of hyperparameter sensitivity analysis on OOD detection datasets in
Figure 14 and Figure 15. We provide additional analysis here.
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Figure 14: Additional results of the natural hierarchy of graph on OOD detection.
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Figure 15: Additional results of the sensitivity of hyperparameter λ on OOD detection.

Height k of Graph’s Natural Hierarchy on OOD Detection. We observe that the impact of
coding tree height on OOD detection performance in Figure 14 varies slightly across different
datasets. Specifically, height k can be interpreted as the number of hierarchical aggregations of
essential information. Corresponding to the number of layers in GNNs, the range of k values we
selected is from 2 to 5. The optimal value of k differs due to the varying graph structures of different
datasets, yet it fluctuates within a reasonable range. The current coding tree optimization algorithm
relies on the fixed height applied to the whole dataset, without considering the diversity among
samples. One potential direction for improving our method is to incorporate an adaptive coding tree
height to better extract essential structures in graphs, which we leave as our future work.

Sensitivity Analysis of λ on OOD Detection. To analyze the sensitivity of λ for RedOUT, we alter
the value from 1e-04 to 1. Results in Figure 15 demonstrate the performance is sensitive to changes
in λ and contains a reasonable range across different datasets.

5Source code of GOODAT is available at https://github.com/ee1s/goodat.
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Table 10: Anomaly detection results in terms of AUC (%, mean ± std). The best and runner-up
results are highlighted with bold and underline, respectively.

ID Dataset PROTEINS-full ENZYMES AIDS DHFR BZR COX2 DD NCI1 IMDB-B REDDIT-B A.A A.R.

PK-OCSVM 50.49±4.92 53.67±2.66 50.79±4.30 47.91±3.76 46.85±5.31 50.27±7.91 48.30±3.98 49.90±1.18 50.75±3.10 45.68±2.24 49.46 10.6
PK-iF 60.70±2.55 51.30±2.01 51.84±2.87 52.11±3.96 55.32±6.18 50.05±2.06 71.32±2.41 50.58±1.38 50.80±3.17 46.72±3.42 54.07 9.1
WL-OCSVM 51.35±4.35 55.24±2.66 50.12±3.43 50.24±3.13 50.56±5.87 49.86±7.43 47.99±4.09 50.63±1.22 54.08±5.19 49.31±2.33 50.94 9.7
WL-iF 61.36±2.54 51.60±3.81 61.13±0.71 50.29±2.77 52.46±3.30 50.27±0.34 70.31±1.09 50.74±1.70 50.20±0.40 48.26±0.32 54.66 8.9
GraphCL-iF 60.18±2.53 53.60±4.88 79.72±3.98 51.10±2.35 60.24±5.37 52.01±3.17 59.32±3.92 49.88±0.53 56.50±4.90 71.80±4.38 59.43 8.0
OCGIN 70.89±2.44 58.75±5.98 78.16±3.05 49.23±3.05 65.91±1.47 53.58±5.05 72.27±1.83 71.98±1.21 60.19±8.90 75.93±8.65 65.69 5.9
GLocalKD 77.30±5.15 61.39±8.81 93.27±4.19 56.71±3.57 69.42±7.78 59.37±12.67 80.12±5.24 68.48±2.39 52.09±3.41 77.85±2.62 69.60 4.2
GOOD-Dsimp 74.74±2.28 61.23±4.58 94.09±1.75 62.71±3.38 74.48±4.91 60.46±12.34 72.24±1.82 59.56±1.62 65.49±1.06 87.87±1.38 71.29 3.8
GOOD-D 71.97±3.86 63.90±3.69 97.28±0.69 62.67±3.11 75.16±5.15 62.65±8.14 73.25±3.19 61.12±2.21 65.88±0.75 88.67±1.24 72.26 2.7
GTrans 60.16±5.06 38.02±6.24 84.57±1.91 61.15±2.87 51.97±8.15 53.56±3.47 76.73±2.83 41.42±2.16 45.34±3.75 69.71±2.21 58.26 8.5
GOODAT 77.92±2.37 52.33±4.74 95.50±0.99 61.52±2.86 64.77±3.87 59.99±9.76 77.62±2.88 45.96±2.42 65.46±4.34 80.31±0.85 68.14 4.8

RedOUT 76.08±3.93 77.64±5.64 96.53±0.61 65.51±4.95 89.62±4.72 61.49±5.14 74.61±3.45 71.34±1.22 67.48±0.59 89.81±2.54 77.01 1.8
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Figure 16: The natural hierarchy of graph on AD datasets.
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Figure 17: The sensitivity of hyperparameter λ on AD datasets.

E.8 Additional Results of Anomaly Detection Performance

To investigate if RedOUT can generalize to the anomaly detection setting [51, 21], we conduct
experiments on 10 datasets following the benchmark in GLocalKD and GOOD-D [21, 20], where
only normal data are used for model training. The results are shown in Table 10. From the results, we
find that our method achieves the best performance on 5 out of 10 datasets and runner-up performance
on 3 datasets, with an average improvement of 4.75% over the SOTA. This demonstrates that RedOUT
indeed has a strong capability to transfer to anomaly detection tasks. Thus, we can conclude that
capturing common patterns in the anomaly detection setting is crucial, which is directly reflected in
the performance.

E.9 Additional Results of Parameter Study on Anomaly Detection

We also illustrate additional results of hyperparameter sensitivity analysis on anomaly detection
datasets in Figure 16 and Figure 17. We provide additional analysis here.

Height k of Graph’s Natural Hierarchy on Anomaly Detection. We also conducted experiments
on the impact of the coding tree height k on 10 anomaly detection datasets, as shown in Figure 16.
We observe that the impact of coding tree height on anomaly detection performance varies slightly
across different datasets.

Sensitivity Analysis of λ on Anomaly Detection. To analyze the sensitivity of λ for RedOUT,
we alter the value from 1e-04 to 1. The AUC w.r.t different selections of λ is plotted in Figure 17.
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Figure 18: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
BZR/COX2, where the first row is BZR and the second row is COX2.

Results demonstrate the performance is sensitive to changes in λ and contains a reasonable range
across different datasets.

E.10 Additional Case Study on ID/OOD Dataset Pairs

In this additional case study, we further demonstrate the effectiveness of our method in extracting the
intrinsic structural features of graphs. We visualize the graph structures extracted by the encoding tree
based on minimizing structural entropy on 10 pairs of ID/OOD datasets, as shown from Figure 18 to
Figure 27.

In these visualizations, the colored nodes represent different communities based on the subtree
structures of the coding tree. The edges marked with different colors are those involved in the
merging process during the construction of the coding tree, with each color indicating a different
subtree partition. We provide additional analysis as follows. RedOUT effectively extracts the distinct
intrinsic structures of ID and OOD graph data in datasets related to molecules, proteins, and social
networks, which is crucial for OOD detection. For graphs in social networks, which typically exhibit
high connectivity and edge density, incorporating node and edge attributes implies huge potential
to enhance the model’s representational capacity, beyond the essential structural information we
currently extract. However, the current IMDB-M/IMDB-B datasets do not incorporate node or edge
attributes. This is a promising direction that inspires us to take a deep exploration in our future work.
As illustrated in Figure 22, although the similarity in social network structures leads to suboptimal
performance on the IMDB-M/IMDB-B datasets, it still captures the differences in intrinsic structures.
Moreover, our method successfully extracts distinctive structures in the other datasets.

F Broader Impacts

Graph OOD detection contributes to improving the robustness of GNNs in safety-critical applications
and scientific discovery tasks such as drug design and protein interaction analysis. It is important
to ensure that such techniques are used to enhance reliability rather than to analyze user behavior
without proper authorization.
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Figure 19: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
PTC-MR/MUTAG, where the first row is PTC-MR and the second row is MUTAG.

Figure 20: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
AIDS/DHFR, where the first row is AIDS and the second row is DHFR.

Figure 21: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
ENZYMES/PROTEIN, where the first row is ENZYMES and the second row is PROTEIN.
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Figure 22: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
IMDB-M/IMDB-B, where the first row is IMDB-M and the second row is IMDB-B.

Figure 23: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
Tox21/SIDER, where the first row is Tox21 and the second row is SIDER.

Figure 24: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
FreeSolv/Toxcast, where the first row is FreeSolv and the second row is Toxcast.
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Figure 25: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
BBBP/BACE, where the first row is BBBP and the second row is BACE.

Figure 26: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
ClinTox/LIPO, where the first row is ClinTox and the second row is LIPO.

Figure 27: Visualizing of the essential structure based on the coding tree preserved by RedOUT on
Esol/MUV, where the first row is Esol and the second row is MUV.
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