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Abstract

In recent years, it has been shown empirically that standard disentangled latent
variable models do not support robust compositional learning in the visual do-
main. Indeed, in spite of being designed with the goal of factorising datasets
into their constituent factors of variations, disentangled models show extremely
limited compositional generalisation capabilities. On the other hand, object-centric
architectures have shown promising compositional skills, albeit these have 1) not
been extensively tested and 2) experiments have been limited to scene composition
— where models must generalise to novel combinations of objects in a visual scene
instead of novel combinations of object properties. In this work, we show that
these compositional generalisation skills extend to this later setting. Furthermore,
we present evidence pointing to the source of these skills and how they can be
improved through careful training. Finally, we point to one important limitation
that still exists which suggests new directions of research.

1 Introduction

A hallmark of human intelligence is compositional generalisation, namely, our ability to perceive
and comprehend novel combinations of familiar elements. For example, in the domain of vision, as
long as we can perceive red triangles and blue squares, then we can also perceive blue triangles and
green squares. This gives humans the ability to make “infinite use of finite means” [Von Humboldt
et al., 1999, Chomsky, 2014, Smolensky, 1988, McCoy et al., 2021] and it is a key priority for AI to
achieve human-like abilities. However, it has proven a challenge for neural network models of vision.

In the context of generative vision models, it was first hypothesized that disentangled representations
based on the Variational Auto-Encoder (VAE) architecture could support such compositional gen-
eralisation abilities [Duan et al., 2020]. While this was a reasonable hypothesis, which had some
preliminary experimental support [Higgins et al.], subsequent work showed that such results where
not robust and they didn’t extend across different levels of difficulty in generalisation [Montero et al.,
2020, 2022].Furthermore these results extended to most popular architectures at the time in both
supervised and unsupervised settings [Schott et al., 2021].

Recent work on the other hand has shown that models which perform perceptual grouping — i.e.
which decompose images into constituent objects — exhibit increased compositional generalisation
capabilities [Singh et al., 2021, Frady et al., Wiedemer et al.]. However, these results typically focused
on scene compositions i.e. generalisation to novel configurations of known objects in a scene. This is
however, a fundamentally different challenge to the one posed by composition of different object
properties, both intrinsic (like shape and color) and extrinsic ones(like position and rotation), since
the former requires manipulating the relation between objects and the later the relation between their
parts and how this is translated from proximal to distal representations [Pizlo, 2001].
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Figure 1: Slot Attention generalisation results: Reconstructions for a model when trained on all but
some combinations of generative factors. The model is tested on said excluded combinations. Left)
Generalisation results when excluding half of the combinations of the colors with the pill shape in
3DShapes. Right) Analogous test on dSprites where we exclude half of the rotations of the heart.

This has left the problem of compositional generalisation across novel combinations of object
properties relatively unexplored. Instead most research in this area this area is focused on text-to-
image (e.g. such as DALL-E) which assume the presence of language, or the use of Geometric Deep
Learning approaches which exploit invariances and symmetries in the domain Bronstein et al. [2021].

In this work we turn our attention back to this question of object-level compositional generalisation
(which we will refer to as simply compositional generalisation), but instead focus on exploring
the capabilities of models that poses less inductive biases than the ones using either language or
invariances. We will test object-centric models (specifically SlotAttention [Locatello et al., 2020] and
a specific variation which we introduce later) on standard compositional generalisation tasks. Our
contribution are as follows:

1. We show that SA can solve object-level compositional generalisation conditions that were
found to be challenging in Montero et al. [2022] — specifically, the condition described
there as recombination-to-range (R2R), where a range of combinations for two factors are
removed from training.

2. We show that the model still struggles when shape needs to be combined with novel rotations,
like due to this condition requiring the model to reconstruct novel local features when shapes
are rotated.

3. We introduce a novel dataset to test whether this theory, and show that when novel rotations
only change the global configuration of a shape but not it’s local features the models then
succeeds.

4. Finally we show that when trained with this novel dataset, the model even manages to solve
extrapolation conditions where it must reconstruct novel shapes.

2 Object-level Compositional Generalisation in Object-centric Models

It was argued in Montero et al. [2022] that a possible cause for the failures at combinatorial gen-
eralisation described in Montero et al. [2020] and Schott et al. [2021] was that, despite learning
disentangled representations, the generative models did not segment images into their constituent
parts. Thus, when faced with novel combinations of properties that determine the same element of
an image (e.g. novel combinations of shape and color), they could not manipulate the individual
elements in an image in order to change the relevant property (e.g. the location) without affecting the
representation of other properties.

Table 1: Quantitative results on standard datasets. Pixel-wise sum of squared errors for both an
SA and a WAE model on the same datasets and conditions showed in Figure 1. For 3DShapes models
with a score below 20 tend to be visually indistinguishable. For dSprites, the same effect tends to
happen at 10.

Shapes3D dSprites
Model Train Test Train Test

SlotAE 1.63 9.76 1.50 3.06
WAE 18.66 180.34 7.10 14.20
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Figure 2: Pentomino shapes a) The twelve Pentomino shapes and their names2. We construct the
dataset by performing affine transformations of these shapes: 5 values of scale, 40 values of rotation
and 20 values of translation along each of the X and Y axis. b) The low-level features that comprise
the different shapes. From top to bottom: straight lines, convex right angles and concave right angles.

We test a SlotAttention (SA) model on these same conditions for which disentangled models failed in
Montero et al. [2022]: novel combinations of shape and position in dSprites, and novel combinations
of shape and color in 3DShapes (see Appendix B for more details). Results can be seen in Figure 1.

The results on the left show a clear success for the 3DShapes dataset, where previous disentangled
models failed catastrophically. Given the architectural properties of SA it is also easy to pinpoint to
why this can be the case. First, SA possesses in-built positional knowledge in the form of position
embeddings. This allows the model to capture the relation between different patches in the scene,
and amongst them, the ones that encode parts of the same object. This should allow the model to
map how those different patches will change when asked to produce a different rotation. Second,
the SlotDecoder forces reconstructions to be performed on a per-object basis, reinforcing the innate
bias of the model to limit it’s representations to aggregations of patches that should be manipulated
together.

The above is further illustrated with the results obtained on dSprites. On the right, the model fails
when tested on novel combinations of shape and rotations on dSprites (half of the rotations of the
heart where excluded). However, while the model reconstructions are worse, they do not constitute a
complete failure as was the case in previous studies. In fact it seems like the model correctly identifies
the required shape and rotation, but fails to properly reconstruct them. We hypothesize that in this
image space, features are orientation specific which means that removing some of them prevents the
model from learning how to reconstruct them. In the next section we explore how far we can push
these models when we correct for said issue in the training data.

2.1 Pushing the Generalisation Capabilities of Object-centric Models

To test whether the previous failures when known shapes are presented in novel rotations are the result
of models not having access to the correct local features during learning, we create a dataset where all
local features are trained and test whether the model succeeds when tested on equivalent conditions
(excluded shape and rotation combinations). We designed said dataset using the Pentomino shapes:
sets of five blocks arranged into different shapes which we vary along different factors of variation as
in dSprites ( (Figure 2), see Appendix B.1 for more details).

Notice that in this dataset all low-level features are straight lines or right angles (Figure 5, panel b).
Thus even when presented with a novel combination of shape and rotation as before, we can be more
confident that the low-level features are not novel and the model only needs to respect the global
configuration of the different parts of the shape. This is in contrast to dSprites where a novel rotation
of a shape such as the heart requires reconstructing a novel local-feature (e.g. the small dip of the
heart in a novel rotation is effectively a novel feature in the image frame of reference).

To facilitate our analysis we will test a simplified version of the SA architecture. In this version there
is only one slot which must perform figure ground segmentation (hence we name it FgSeg). As in
SA the model, it uses an attention mechanism, but instead of slots competing to explain patches of
data, the latent must only integrate information about the foreground while ignoring the background.
During reconstruction we use a simplified version of the SlotDecoder where instead of using a

2Modified from Pentomino Naming Conventions. R.A. Nonenmacher, CC BY-SA 4.0, via Wikimedia
Commons.
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Figure 3: Generalization to novel shape and rotation combinations in the Pentomino dataset.
Generalization reconstructions for both FgSeg and a WAE control model. The models where trained
on 11 of the 12 Pentomino shapes and tested at reconstructing a held out one in different configurations
of position, rotation and scale.

Softmax to decide which slot is responsible for reconstructing a particular pixel, we use a Sigmoid
activation function which determines if the latent must reconstruct a particular pixel. Thus the model
is encouraged to only represent the Pentomino shape, and not the full image. This makes analysing
the model easier as having slots compete to explain the Pentomino object (a.k.a. the figure) tends
to split said object amongst the different slots. Additionally, it is easier to explore how the object is
represented if we know it is encoded in the only available latent.

2.2 Compositional Generalisation Results

We train FgSeg on the Pentomino dataset, excluding half of the rotations for a 4 of the shapes (out
of a total of 12). We then test the model on these excluded shapes as before. To control that the
model performance is not only due to the qualitative differences in the dataset, we compare against a
Wasserstein Auto-Encoder (WAE, Tolstikhin et al. [2017]) tested on the same generalisation condition
(Figure 3).

The figure clearly shows that, while the WAE fails to reconstruct novel rotations of a known shape,
the FgSeg model succeeds, which shows that a perceptual grouping model can solve previously
challenging generalisation conditions given an appropriate dataset — one where novel combinations
of factors do not imply the presence of novel local features in image space.

A quantitative measure is presented in Table 2, showing that the qualitative examination is supported
by the scores achieved by the model. In this case, training scores refers to validation on a randomly
sampled held-out dataset. In all cases the FgSeg model achieves better scores than the WAE model,
though the generalisation for property prediction, while better, still doesn’t match the validation
performance.

Table 2: Novel shape-rotation combination scores on the Pentomino dataset. Scores for both
FgSeg and the baseline WAE on the Pentomino dataset. Reconstruction scores are in P-MSE, while
rotation prediction uses plain MSE. Classification is in accuracy.

Reconstruction Shape Classification Rotation Prediction
Model Train Test Train Test Train Test

WAE 5.30 10.55 48.97 25.76 0.20 0.48
FgSeg 1.11 2.15 97.7 49.92 0.022 0.42

2.3 Extrapolation results

Given this success, what happens if we now test the model on an extrapolation condition — where the
model must reconstruct completely novel shapes? We show that, perhaps surprisingly, the model can
also succeed when tested on reconstructing three novel shapes in the Pentomino dataset, effectively
learning how to recombine the local features in the Pentomino dataset into potentially arbitrary shapes
(Figure 4).

We quantify this success, showing how the FgSeg model’s reconstruction scores change as we exclude
more and more shapes from the training data. We see that between that there is no significant drop
from 1 to three, and only after removing half of the shapes (6) do we start to see a drop in performance.
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Figure 4: New shape extrapolation On the left, Slot Attention reconstructions of a novel shape, in
this case the W. Left to right, different values of rotation sampled uniformly over the whole range
of values [0, 360) can be seen. On the right, the same results for WAE. It is clear that SA succeeds
where WAE does not.
Table 3: Pentomino shape-rotation generalisation. Reconstruction scores for extrapolation condi-
tions of increasing number of novel shapes. Reconstruction error in P-MSE.

Data Split One Novel Shape Three Novel Shapes Six Novel Shapes

Train 1.65 1.29 1.25
Test 2.47 2.63 6.37

3 Discussion

We have shown that SA can solve compositional generalisation challenges that posed a significant
issue for standard auto-encoder generative models. Furthermore, we have shown that failures in
those datasets are likely due to the fact that some local features are effectively removed from the
dataset when we exclude certain combinations, and that if we control for this fact, we can achieve
generalsation for more complex factor combinations such as novel combinations of shape and rotation.

To our surprise, when trained and tested on this qualitatively different dataset, the model was even
able to solve extrapolation tasks that require reconstruction of unseen shapes. This shows once a
again that careful data curation can have a significant effect on model capabilities when combined
with the right architecture. Our results also show that we may not require stronger inductive biases
such as the ones introduce in Singh et al. [2022] to solve these tasks, and that separation into discrete
tokens describing values of the properties is likely only needed for higher-level cognitive tasks (such
as reasoning and planning)

Indeed our follow-up experiments suggest that the models learn abstract representations of the
concepts present in said dataset. When using the learned embeddings from FgSeg to fit a classification
model for the shape property, we find that a linear classifier is unable to correctly solve the problem,
and instead we must use a non-linear one such as a Support Vector Machine. Even then, such a
classifier is unable to correctly classify the held-out combinations from using the test embeddings
without jointly training both i.e. it does not generalise in the same way the reconstruction does
(see Appendix D). Extracting or learning such higher level concepts using/from the representations
produced by these simpler models is thus an interesting direction for future research.

One way to accomplish this could be to design architecture that incorporate more principles from
the Gestalt theory of perception, of which FgSeg and and SA only implement a subset of, namely
figure-ground segmentation and perceptual-grouping [Wagemans et al., 2012, Yantis, 2001, Treisman
and Gelade, 1980]. Principles such as common-fate (the idea that the visual system is biased towards
grouping together features that move together in time to the same object representation), could
potentially further constrain the model and induce more general representations of shape, and idea
that has been preeliminary explored in Tangemann et al. [2021].
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A Limitations

We have presented our results using a single model. In our preliminary tests we trained several models
on the generalisation conditions and found that there was no significant difference in performance
for those baseline tests. As such, we conducted the rest of the experiments using only one seed per
tests. Additionally, we also tested SLATE on the same conditions of dDsprites and 3DShapes and
found that it performed qualitatively the same. As such we elected to not test it further as we believe
it unlikely that it would perform differently.

Another limitation is that visualising the latent space provided no useful information. This is
unsatisfying since raw scores tend to not provide a full picture of how the models are performing a
given task.

B Datasets

We first test SA models on hard combinatorial generalisation conditions such as the recombination-
to-range ones identified in (Montero et al., 2022). Namely, we test the following conditions for the
three datasets:

• 3DShapes: Contains the 6 generative factors: [floor hue, wall hue, object hue,
scale, shape, orientation]. Colors are defined in the HSV format, and the values
correspond to the hue component. Here orientation defines the angle of point-of-view for
the scene. The objects themselves do not rotate. The hard condition in this case is all images
such that [shape=pill, object-hue=> 0.5], which were excluded from the training set.
Again, these are pills colored as any of the colors in the second half of the HSV spectrum.
These colors (shades of blue, purple, etc) were observed on the other shapes, and the pill
was observed with other colors such as red and orange. See Burgess and Kim [2018].

• dSprites: Contains the following generative factors: [shape, scale, orientation, posi
tion X, position Y]. Orientation here refers to the rotation of the shape along it’s center
of mass. The hard condition is all images such that [shape=heart, rotation< 180], which
were excluded from the training set. Thus, no squares rotated beyond the 180 are seen during
training and the model must reconstruct them at test time. We also excluded redundant
rotations for the training data since shapes such as the ellipsis and the square, unlike the
heart, are less than 360◦ symmetrical. See Matthey et al..

Notice that excluding a combination of a shape with another factor means that said shape will not
be seen the same number of times during training. For example in the dSprites condition defined
above squares will be observed half as many times as the other two shapes. To ensure that shapes
are observed an equal amount of times, we sample instances from the dataset with the following
probabiliy:

p(xi, gi) =
1

|{(xj , gj) ∈ Dtrain | gj [shape] == gi[shape]}|
(1)

This ensures that images in the training set that belong to the shape that is used in the generalisation
condition (e.g. the square in dSprites) are seen as frequently as other shapes. Of course there will
be less variation in the factor that is used to test said generalisation condition (e.g. position along
the X-axis), however these have a larger number of values so they are less likely to be the cause of
over-fitting.

B.1 The Pentominos Dataset

To adjudicate between these two views we unfortunately cannot rely on the dSprites dataset since the
shapes used to generate it share few low-level features amongst them. Indeed the most prominent
features (the curve of the ellipsis, the right angles of the square and the dip of the heart) are unique to
each of them. Thus we introduce a new dataset based on the pentomino shapes to tackle this issue.

The pentomino shapes are simple, sprite-like shapes, composed of five equal side squares in different
configurations that are joined edge-to-edge (see Figure 5.a). There are twelve such shapes in total
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Table 4: Pentomino generative factors. The generative factor values used to generate the Pentomino
dataset used in our experiments.

Generative factor No. of values Values
Shape 12 F, I, L, N, P, T, U, V, W, X, Y, Z
Scale 5 1.5, 1.8, 2.1, 2.4, 2.7, 3.0
Rotation 40 Evenly spaced in (0◦, 351◦)
Position-X 20 Evenly spaced in (-1, 1)
Position-Y 20 Evenly spaced in (-1, 1)

Figure 5: Pentomino shapes a) The twelve pentomino shapes and their names4. We construct the
dataset by performing affine transformations of these shapes: 5 values of scale, 40 values of rotation
and 20 values of translation along each of the X and Y axis. b) The low-level features that comprise
the different shapes. From top to bottom: straight lines, convex right angles and concave right
angles. c) Example stimuli containing different configurations of the different factors, with each
shape represented once.

without taking into account rotations or mirror symmetries (the so-called free pentominos). It is
then clear how these shapes solve our issue: The low-level features that compose all the shapes are
straight-lines, convex right angles and concave right angles (Figure 5.b). Moreover, all shapes have at
least one instance of each of these features with the sole exception of the “I” which does not have a
concave right angle (notice that it is impossible to create a polygon without the other two).

To generate the dataset we use similar variations in the generative factors as in dSprites with an
important caveat. Because there are 12 shapes as opposed to 3, we reduce the range of values that
three of the generative factors (scale, position x, and position y) can take so that the dataset is not
much larger. We preserve the 40 values of rotation since this is one of the factors we wish to test. For
the rest, apart from the already established 12 values of shape, we use 5 values of scale and 20 values
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for the position along each of the X and Y axis. This amounts to a total of 960000 (as opposed to the
737280 examples in dSprites). See Table 4.

C Extra results

C.1 Shape-rotation Generalisation

As in the previous section, we define a combinatorial generalisation condition that excludes some
shape and rotation values:

• Novel shape and rotation combinations: We exclude combinations such that [shape
∈ {F, P, T,W}, rotation > 180◦]. We selected these shapes so that there are a couple of
shapes that are similar to other shapes in the training data at those rotations (T and Y, W
and V or U), and other two (F and P) that are very distinct. The fist pair tests if the model
will confuse when the rotation value is novel and the latter if it will be able to produce a
reconstruction for which it is harder to interpolate. Four shapes also allows us to maintain
a similar ratio of 1:3 excluded to included during training for the shape factor (4 of 12
excluded here vs 1 of 3 in dSprites).

As in the previous section, we remove the redundant rotations of the I, X and Z shapes and correct for
the unbalance of presentations of the shapes as defined by Equation 1. We use the same architecture
and training configuration that we used for dSprites for both FgSeg and WAE. We use the latter as a
baseline. We also use this baseline to control for the increase in the amount of shapes with respect to
dSprites. If FgSeg was to succeed in this new dataset, it could be argued that this is because having
twelve shapes gives the model more opportunity to learn a proper representation of what constitutes a
shape. A success at generalisation by FgSeg and failure from a baseline model would rule out this
possibility, which means the former’s success is much more interesting than if both succeed.

o

The results can be seen in Figure 6. Reconstructions are plotted along the circumference according
to the ground truth rotation value. For simplicity we keep the other generative factors fixed at the
midpoint value. In the case of FgSeg we see that the results are very impressive. The model shows no
sign of confusing either to rotation or the shape of unseen combinations. Thus they clearly support
the second view over the first one described in the introduction to this section: errors committed on
novel shape-rotation combinations are due to decoder errors.

It is also clear that said improvement in generalization is not due to the increase in the number of
shapes as the results for WAE show clear and systematic failures at generalisation, especially for
rotations that are far from the ones observed during training, as should be expected.

C.2 Additional Extrapolation Results

We also test the model when excluding more than one shape from traning to test the degree to
which variety in the training examples influences the quality of the learned representations/genertive
mechanism:

• Three novel shapes: We exclude all instances where [shape ∈ {P, T,W}]. We include
P and T because when we tested WAEs these were routinely confused with F and Y
respectively. Thus it may increase the likelihood of SA failing by making the same mistakes.

• Half novel shapes: We further increase the number of shapes by excluding inputs such that
[shape ∈ {F, P,N, T, V,W}]. We just add F, V, Z to make it 6 out of 12 shapes excluded.

We also including raw reconstruction errors for all three conditions, including the one in the main
text (Figure 4).

On the other hand, removing more shapes does produce significant degradation in the reconstruction
quality. The results for this condition can be observed in Figure 8. For some shapes such as W we

4Modified from Pentomino Naming Conventions. R.A. Nonenmacher, CC BY-SA 4.0, via Wikimedia
Commons.
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Figure 6: Generalization to novel shape and rotation combinations in the Pentomino dataset.
Generalization reconstructions for both FgSeg and a WAE control model. Example rotations of the
excluded shape are plotted inside their circumference according to their rotation value. Samples
highlighted in red are novel combinations only seen during testing. The rest (highlighted in black
are used during training. Reconstructions for FgSeg and WAE are plotted on the outside in the
corresponding angle. FgSeg is always outside and WAE inside.

can see that the corners are not as well defined as before. For others like the T, the deformations are
more pronounced. In the case of the V it seems to even confuse it with the W on some examples.
Nonetheless, these results are still better than what we obtained with a WAE when excluding only
one shape. Thus we can conclude that while there is an effect of data diversity, the model is fairly
good at generalization even when a large number of examples are excluded form the training data.

D Testing predictivity of learned representations

Are the learned representations high level? In other words does the model learn concepts related
to each shape and color or does it solve the task using simpler, lower level representations? Unlike
disentangled VAEs it is not easy to directly visualise the latent representations of these models.
Instead we turn to prediction of the different concepts (such as the shape classes) as a way to assess
this. If models learn representations that are abstract, we should be able to use them to predict the
classes for both training and held out samples. We test this below. First of all, we see that models
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Figure 7: Extrapolation to three new shapes. Figure-ground Segmentation model reconstructions
when three shapes are excluded from training (P, T, W). Every pair of consecutive rows contains
images of one of the shapes at 10 different rotation values. These are taken at evenly spaced angels
from 180◦ to 360◦ and plotted increasingly from left to right. The rest of the generative factors are
kept constant. We can observe that the model achieves good quality reconstructions in spite of not
having seen these shapes at all.

do learn representations that are decodable using linear probes since we need at least a two-layer
MLP to achieve 100% accuracy on the training data. An even these models cannot achieve significant
prediction accuracy in the test data, which shows that the model’s representations are not abstract
after all.
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Figure 8: Extrapolation to six new shapes. Figure-ground Segmentation model reconstructions
when six shapes are excluded from training (F, P, N T, V, W). Every pair of consecutive rows contains
images of one of the shapes at 10 different rotation values. These are taken at evenly spaced angels
from 180◦ to 360◦ and plotted increasingly from left to right. The rest of the generative factors
are kept constant. Unlike the previous example, model reconstructions start to show significant
degradation.
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Figure 9: Testing abstract representations. On the left accuracy of three different probing models
when prediction the shape of training images using the representations learned by a Slot Attention
model: A simple Linear classifier trained with SGD, an MLP with one hidden layer and a Support
Vector Machine. On the right, the same models now tested on prediction shapes for novel images
using the slot embeddings obtained from the model.
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