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Abstract
Neural Temporal Point Processes (TPPs) have
emerged as the primary framework for predicting
sequences of events that occur at irregular time in-
tervals, but their sequential nature can hamper per-
formance for long-horizon forecasts. To address
this, we introduce a novel approach that incorpo-
rates a diffusion generative model. The model
facilitates sequence-to-sequence prediction, al-
lowing multi-step predictions based on histori-
cal event sequences. In contrast to previous ap-
proaches, our model directly learns the joint prob-
ability distribution of types and inter-arrival times
for multiple events. The model is composed of
two diffusion processes, one for the time intervals
and one for the event types. These processes inter-
act through their respective denoising functions,
which can take as input intermediate representa-
tions from both processes, allowing the model to
learn complex interactions. We demonstrate that
our proposal outperforms state-of-the-art base-
lines for long-horizon forecasting of TPPs.

1. Introduction
Predicting sequences of events has many practical applica-
tions, including forecasting purchase times and modeling
transaction patterns or social media activity. The problem
requires a dedicated model because it involves the com-
plex task of jointly modeling two challenging data types:
strictly positive continuous data for inter-arrival times and
categorical data representing event types.

Early works employed intensity-based models such as the
Hawkes process (Liniger, 2009). This modelling choice
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Figure 1. Visualization of the cross-diffusion generating process
for 15 example Stackoverflow sequences. The colors indicates
the different categories. We start by generating noisy sequences
(t = T ). Once we reach the end of the denoising process (t = 0),
we recover sequences similar to ground truth sequences.

has advantages, including interpretability — it specifies the
dynamics between events in the sequence explicitly. Sub-
sequent efforts targeted integrating deep learning methods
within the intensity framework (Mei & Eisner, 2017; Zuo
et al., 2020; Yang et al., 2022).

Although they can fit complex distributions, intensity-based
formulations have drawbacks (Shchur et al., 2020a). As
generative modeling research has developed, TPP models
have moved away from the intensity parameterization, with
more flexible specifications allowing them to use the full
potential of recent generative models (Shchur et al., 2020a;
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Gupta et al., 2021; Lin et al., 2022).

Until recently, research has focused on next event forecast-
ing. In (Xue et al., 2022; Deshpande et al., 2021), attention
has turned to longer horizons, with the goal being forecast-
ing multiple events. Recently proposed methods remain
autoregressive, which can lead to a faster accumulation of
error, as we illustrate in our experiments, but they are paired
with additional modules that strive to mitigate this.

Our proposal goes a step further by directly generating a
sequence of events. Consequently, our model can capture
intricate interactions within the sequence of events between
arrival times and event types. The crux of our proposed
architecture is depicted in Fig. 1. We introduce coupled
denoising diffusion processes to learn the probability distri-
bution of the event sequences. One is a categorical diffusion
process; the other is real-valued. The interaction of the neu-
ral networks that model the reverse processes allows us to
learn dependencies between event type and interarrival time.
Fig. 1 provides a visualization of the generation process1.

Our approach significantly outperforms existing baselines
for long-term forecasting, while also improving efficiency.
Our experimental analysis provides insights into how the
model achieves this: it can capture more complex correla-
tion structures and is better at predicting distant events.

2. Problem Statement
Consider a sequence of events denoted by s+ =
{(x+

i , ei)}1≤i≤T , where x+
i ∈ (0,∞) corresponds to the

time interval between the events ei and ei−1, and the event
ei belongs to one of K categories: ei ∈ C, |C| = K.
The +-superscript is used to emphasize that the time-
intervals are strictly positive. Given that we observe the
start of a sequence (the context) s+c = {(x+

i , ei)}1≤i≤I (or
x+
c = [x+

1 , ..., x
+
I ] and ec = [e1, ..., eI ] in vector form)

with I < T , the goal is to forecast the remaining events.
The dataset consists of a set of sequences: D = {s+,j}Mj=1

of potentially varying length.

Next N events forecasting In this setting, the task is
to predict the following N events in the sequence s+u :
x+
u = [x+

I+1, ..., x
+
I+N ] and eu = [eI+1, ..., eI+N ]. We

also consider a slightly different setting: interval forecast-
ing, where the task is to predict the events in a given time
interval. We include the description of that setting with the
metrics and methodology in Appendix A.1.

1The code and implementation are available at our official
repository
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Figure 2. Architectural overview of our model CDiff. We employ
two interacting denoising diffusion processes, one categorical and
one real-valued, to model the high-dimensional event sequences.
The neural networks modeling the reverse diffusion steps interact,
allowing them to learn dependencies between event types and
interarrival times. Generating an entire sequence at once avoids
the error propagation that can plague autoregressive models.

3. Related Work
We now briefly review and discuss relevant TPP modelling
and forecasting literature. Bosser & Taieb (2023) and
Shchur et al. (2021) provide more comprehensive reviews.

Hawkes-based methods. Early TPP forecasting ap-
proaches target single-event prediction (Next N=1 event
forecasting) and adopt an intensity-based formulation (Ras-
mussen, 2011). The multivariate Hawkes Process (MHP)
(Liniger, 2009) is the basis for many models (Du et al.,
2016; Mei & Eisner, 2017; Zuo et al., 2020; Yang et al.,
2022). Some approaches retain the intensity function but
deviate from the MHP, incorporating graph learning (Zhang
et al., 2021), non-parametric methods (Pan et al., 2021) or
meta-learning (Bae et al., 2023). Other research addresses
the efficiency (Shchur et al., 2020b; Nickel & Le, 2020) and
expressiveness (Omi et al., 2019).

Non-Hawkes methods Striving to develop more effec-
tive models by departing from the intensity formulation,
Shchur et al. (2020a) use a log-normal distribution paired
with normalising flows. Lin et al. (2022) explore multiple
conditional generative models for time forecasting includ-
ing diffusion, variational inference, Generative Adversarial
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Networks (GANs), and normalizing flows. In all of these
models, the types and interarrival times are modelled as
conditionally independent given the history.

These works limit themselves to modelling a single upcom-
ing event (N=1). As a result, they do not exploit the models’
impressive ability to represent complex high dimensional
data. In addition, modelling type and interarrival time inde-
pendently is undesirable given that different event types can
often be associated with very different arrival patterns.

Long horizon forecasting Xue et al. (2022) and Desh-
pande et al. (2021) consider long horizon forecasting. Xue
et al. (2022) generate multiple candidate prediction se-
quences and introduce a selection module that aims to learn
to select the best candidate. Deshpande et al. (2021) intro-
duce a hierarchical architecture and a ranking objective to
improve prediction of the number of events in each interval.

Although these works explicitly target long horizon forecast-
ing, their generation mechanisms remain sequential. The
techniques try to mitigate the error propagation in sequen-
tial models, but fundamentally they still only learn a model
for p({eh+1, x

+
h+1}|{ei, x

+
i }i≤h). As a result, the algo-

rithms retain the core limitations of one-step ahead autore-
gressive forecasting. The approach of directly modeling a
sequence of events has been explored in the non-marked set-
ting (Lüdke et al., 2023). When there are no marks (which
indicate different event types), the observed sequence of
time intervals can be treated as (iid) samples from a con-
ditional intensity distribution. Consequently, Lüdke et al.
(2023) can directly parameterize the diffusion with a Pois-
son distribution in their Add-and-thin model. This differs
from our approach – we model the interaction between event
types and time intervals by learning the joint distribution.
For completeness, we include a comparison in the Appendix
with a modified version of Add-and-thin augmented with a
naive event type predictor module.

4. Methodology
Model Overview Our proposal is to tackle the multi-event
forecasting problem by directly modelling a complete se-
quence of N events. We therefore frame our problem as
learning the conditional distribution P (S+

u = su|sc), where
s+u = (eu,x

+
u ) is the sequence of event types and interval

to forecast and s+c = (ec,x
+
c ) is the historical (context)

sequence. We introduce our Cross-Diffusion (CDiff) model,
which comprises two interacting diffusion processes.

In a nutshell, we diffuse simultaneously both the time in-
tervals and the event types of the target sequence: We first
apply a Box-Cox transformation to the inter-arrival time
values to transition from the strictly positive continuous do-
main (X+ ∈ (0,+∞)) to the more convenient unrestricted

real space (X ∈ (−∞,+∞)). We use S = (X,E) instead
of S+ = (X+, E) to indicate the event sequence with X
in the unrestricted real space. We gradually add Gaussian
noise to the transformed time intervals and uniform cate-
gorical noise to the types S0, S1, . . . , ST until only noise
remains in ST . S0 denotes the target sequence Su. During
training, we learn denoising distributions pθ(St−1|St, sc)
that can undo each of the noise-adding steps. Our denoising
functions are split in two, but interact with each other, which
is why we call our model “cross-diffusion.” After training,
we sample from P (Su|sc) by sampling noise ST , then grad-
ually reversing the chain by sampling from pθ(St−1|St, sc)
until we recover S0. A high-level summary of our approach
is illustrated in Fig. 2. The specifics of the model and its
training are provided in the subsequent sections.

4.1. Model Details

A TPP model can be divided into two components (Lin et al.,
2022): 1) the encoder of the variable length context sc; and
2) the generative model of the future events. We focus on
the latter and adopt the transformer-based context encoder
proposed by Xue et al. (2022) in order to generate a fixed-
dimensional context representation denoted as h = fθ(s

+
c ).

Again, we first apply a Box-Cox transformation to the inter-
arrival time values to transition from the strictly positive con-
tinuous domain (X+ ∈ (0,+∞)) to the more convenient
unrestricted real space (X ∈ (−∞,+∞)). This allows us
to model the variables with Gaussian distributions in the
diffusion process. Appendix A.5 provides more detail.

Although the target distribution consists of a combination
of categorical and continuous variables, we can define a
single diffusion process for it. To achieve this, we begin by
defining a forward/noisy process that introduces T new ran-
dom variables, which are noisier versions of the sequence,
represented by S0 = (X0, E0):

q(X1:T , E1:T |X0, E0) =

T∏
t=1

q(Xt, Et|Xt−1, Et−1). (1)

For a diffusion model we strive to learn the inverse de-
noising process by learning the intermediate distributions
pθ(St−1|St, sc). The log likelihood of the target distribution
log q(S0|sc) is obtained by marginalizing over the denois-
ing process. Following the diffusion model setup of (Ho
et al., 2020), this marginalization can be approximated as:

log q(S0|sc) ≥ Eq(S0|sc)

[
log pθ(S0|S1, sc)

−KL(q(ST |S0, sc)||q(ST |sc))

−
T∑

t=2

KL
(
q(St−1|St, S0, sc)||pθ(St−1|St, sc)

)]
. (2)

Hence, we can summarize the generative diffusion model
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approach as follows: by minimizing the KL-divergences
between the learned distributions pθ(St−1|St, sc) and the
noisy distributions q(St−1|St, S0, sc) at each t, we maxi-
mize the log likelihood of our target log q(S0|sc).

Cross-diffusion for modeling event sequences As Xu

and Eu are in different domains, we cannot apply a stan-
dard noise function to q(Xt, Et|Xt−1, Et−1). Instead, we
factorize the noise-inducing distribution q(St|St−1) =
q(Xt|Xt−1)q(Et|Et−1). It is important to stress that this
independence is only imposed on the forward (noise-adding)
process. We do not assume independence in q(S0|sc) and
our reverse diffusion process, described below, allows us
to learn the dependencies. Denoting by Cat(; p) a categori-
cal distribution with parameter p, and given an increasing
variance schedule {β1, . . . , βT }, the forward process is:

q(St|St−1) =q(Xt|Xt−1)q(Et|Et−1), (3)

q(Xt|Xt−1) =N (Xt;
√
1− βtXt−1, βtI), (4)

q(Et|Et−1) =Cat(Et; (1− βt)Et−1 + βt/K), (5)
q(XT ) =N (XT ; 0, I), (6)
q(ET ) =Cat(ET ; 1/K), (7)

Next, we have to define the denoising process pθ(St−1|St).
We can express the joint distribution as:

pθ(St−1|St, sc) =pθ(Xt−1|St, Et−1, sc)pθ(Et−1|St, sc),
(8)

pθ(Et−1|St, sc) =Cat(Et−1|πθ(Xt, Et, t, sc)), (9)
pθ(Xt−1|St, Et−1, sc) =N (Xt−1;µθ(Xt, Et−1, t, sc), σt).

(10)

Here we choose to fix σt = βt and µθ and πθ are learnable.
With the presented approach, during denoising, we first sam-
ple event types, and then conditioned on the sampled event
types, we sample inter-arrival times. We can also choose to
do the reverse. A sensitivity study in Appendix A.12 shows
that this choice has a negligible effect on performance.

This can be viewed as two denoising processes that interact
through the learnable functions µθ and πθ. One models
the inter-arrival times (Gaussian) and one models the event
types (Categorical). The denoising processes are condi-
tioned on the historical event sequence sc and they are inter-
acting with each other (through conditioning on et−1 and
xt). Therefore, we modify the standard parametrization of
µθ(xt, t) and πθ(et, t) from (Ho et al., 2020; Hoogeboom
et al., 2021) to include these additional inputs. Rather than
directly learning µ and π, we express them in terms of two
other functions ϵ and ϕ to facilitate learning.

Introducing αt ≜ 1 − βt and ᾱt ≜
∏

i≤t αi, the time
denoising process is parameterized as:

µθ(xt, et−1, t, sc) =
xt√
αt

− βtϵθ(xt, et−1, t, sc)√
αt

√
1− ᾱt

. (11)

The denoising step of the event type is parameterized differ-
ently. Its learnable component is parameterized to directly
predict, at step t, the targeted distribution of the data E0,
modeled as ê0, from the event type, et, the (transformed)
time interval, xt, the denoising step t, and the context sc:

ê0 = ϕθ(et,xt, t, sc).. (12)

This prediction ê0 is then combined with the current et
through a weighted sum, and subsequently normalized to
obtain the parameters of the categorical distribution for Et−1

(parameterized as πθ(xt, et, t, sc) in Eqn 9):

θ(et, ê0) = [αtet +
1− αt

K
]⊙ [ᾱt−1ê0 +

1− ᾱt−1

K
],

θ̃ ≜ θ(et, ê0), (13)

πθ(xt, et, t, sc) = θ̃/

K∑
k=1

θ̃k. (14)

Here ⊙ denotes the Hadamard product. This concludes our
description of the parameterization of the denoising process.
The learnable components of CDiff are ϵθ, ϕθ and fθ. In
our experiments, we use transformer-based networks that
we describe in Section 5.4.

With a trained model pθ(S0|sc), given a context sequence
sc, we can generate samples of the next N events, ŝ0 ∼
pθ(S

0|sc). To form the final predicted forecasting sequence
ŝu, we generate multiple samples, calculate the average time
intervals, and set the event types to the majority types. With
an abuse of notation, we denote this averaging of sequences
as ŝu ≜ 1

A

∑A
a=1 ŝ

0
a, ŝ0a ∼ pθ(S

0|sc).

4.2. Optimization

The log-likelihood objective is provided in Equation (2).
We can separate the objective for the joint q(S0) into stan-
dard optimization terms of either continuous or categorical
diffusion using Equation (8).

Starting with the first log term, we separate it as:

Eq(S0|sc)

[
log pθ(S0|S1, sc)

]
≈

M∑
j=1

log pθ(x
j
0|x

j
1, ê

j
0, s

j
c) + log pθ(e

j
0|x

j
1, e

j
1, s

j
c), (15)

with êj0∼pθ(E0|xj
1, e

j
1, s

j
c), e

j
1 ∼ q(E1|ej0, sjc), and xj

1 ∼
q(X1|xj

0, s
j
c). Next, we split the individual KL terms

from (2) similarly:

Eq(S0|sc)

[
KL

(
q(St−1|St,0, sc)||pθ(St−1|St, sc)

)]
=

Eq(S0|sc)

[
KL

(
q(Xt−1|Xt,0, sc)||pθ(Xt−1|St, Et−1, sc)

)]
+ Eq(S0|sc)

[
KL

(
q(Et−1|Et,0, sc)||pθ(Et−1|St, sc)

)]
.

(16)
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The target distribution of the event type can be expressed
compactly by substituting the true e0 in Eqn (13):

θ̄post(et, e0) ≜ θ(et, e0)/

K∑
k=1

θ(et, e0)k, (17)

q(et−1|et, e0) = Cat(et−1|θ̄post(et, e0)) . (18)

We can therefore apply the typical optimization techniques
of either continuous and categorical diffusion on each term:

Eq(S0|sc)

[
KL

(
q(Et−1|Et,0, sc)||pθ(Et−1|St, sc)

)]
≈ −

M∑
j=1

∑
k

θ̄post(e
j
t , e

j
0)k · log

θ̄post(e
j
t , e

j
0)k

πθ(x
j
t , e

j
t , t, s

j
c)k

(19)

with ejt ∼ q(Et|ej0, sjc), x
j
t ∼ q(Xt|xj

0, s
j
c) for the event

variables, and:

Eq(S0|sc)

[
KL

(
q(Xt−1|Xt,0, sc)||pθ(Xt−1|St, Et−1, sc)

)]
≈ −

M∑
j=1

∥ϵ− ϵθ(
√
ᾱtx

j
0 +

√
1− ᾱtϵ, t, ê

j
t−1, s

j
c)∥2

(20)

with ejt ∼ q(Et|ej0), xj
t ∼ q(Xt|xj

0), êjt−1 ∼
pθ(Et−1|xj

t , e
j
t , s

j
c) and ϵ ∼ N (0, 1) for the continuous

interarrival time variables.

Our final objective is hence given by:

L =

M∑
j=1

(
log pθ(x

j
0|x

j
1, ê

j
0, s

j
c) log pθ(e

j
0|x

j
1, e

j
1, s

j
c)

−
T∑

t=2

(
∥ϵ− ϵθ(

√
ᾱtx

j
0 +

√
1− ᾱtϵ, t, ê

j
t−1, s

j
c)∥2

+

K∑
k=1

θ̄post(e
j
t , e

j
0)k · log

θ̄post(e
j
t , e

j
0)k

πθ(x
j
t , e

j
t , t, s

j
c)k

))
. (21)

Finally, we adhere to the common optimization approach
used in diffusion models and optimize only one diffusion
timestep term per sample instead of the entire sum. The
timestep is selected by uniformly sampling t ∼ U(0, T ).
We employ the algorithm from (Song et al., 2021) to accel-
erate the sampling. Appendix A.11 provides further details.

5. Experiments
In our experiments, we set N = 20 (but include results for
N = 5, 10). For each sequence in the dataset D = {sj}Mj=1,
we set the last N events as su and set all earlier events as
the context sc. Means and standard deviations are computed

over 10 trials. We train for a maximum of 500 epochs and
report the best trained model based on the validation set.
Hyperparameter selection uses the Tree-Structured Parzen
Estimator hyperparameter search algorithm from Bergstra
et al. (2011). To avoid numerical error when applying the
Box-Cox transformation to the x+ values, we first add 1e-7
to all time values and then scale by 100. We transform back
to x+ after we estimate x using the inverse Box-Cox trans-
formation, with the same parameter obtained from the train
set, and downscale by 100. The detailed model description
is in Appendix A.10, along with sensitivity studies for some
of the hyperparameters.

5.1. Datasets

We use six real-world datasets. Taobao (Zhu et al., 2018)
tracks user clicks made on a website; Taxi (Whong, 2014)
contains trips to neighborhoods by taxi drivers; StackOver-
flow (Leskovec & Krevl, 2014) tracks the history of posts
on stackoverflow; Retweet (Zhou et al., 2013) tracks user
interactions on social media; MOOC (Kumar et al., 2019)
tracks user interactions within an online course system; and
Amazon (Ni et al., 2019) tracks the sequence of product cat-
egories reviewed by a group of users. We focus on datasets
containing sequences with multiple events as our goal is
multi-event prediction. Our synthetic dataset is generated
from a Hawkes model. We follow Xue et al. (2022) for
the train/val/test splits, which we report in Appendix A.4,
together with additional dataset details.

5.2. Baselines

We compare our CDiff model with one naive and 6 state-
of-the-art baselines for event sequence modeling. When
available, we use reported hyperparameters, and otherwise
we employ a tuning procedure (see Appendix A.6).

• Homogeneous Poisson Process (naive) is a constant in-
tensity function. For the type prediction, we compute the
marginal categorical distribution over the training set.

• Neural Hawkes Process (NHP) (Mei & Eisner, 2017) is
a Hawkes-based model that uses a continuous LSTM.

• Attentive Neural Hawkes Process (AttNHP) (Yang
et al., 2022) is a Hawkes-based model that integrates
attention. It is the SOTA for single event forecasting.

• Log-Normal Mixture Model (LNM) (Shchur et al.,
2020a) is an intensity-free temporal point process with
the feature of fast sampling.

• Temporal Conditional Diffusion Denoising Model
(TCDDM) (Lin et al., 2022) is a diffusion based gen-
erative model that relies on the assumption of conditional
independence between inter-arrival time and event type.

• Dual-TPP (Deshpande et al., 2021): Dual-TPP targets
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long horizon forecasting by jointly learning a distribution
of the count of events in segmented time intervals.

• HYPRO (Xue et al., 2022) is the SOTA for multi-
event/long horizon forecasting. It uses AttNHP as a base
model, but includes a sequence selection module.

5.3. Evaluation Metrics

Assessing long-horizon performance is challenging as we
must compare mixed-type vectors. There is no existing
proper scoring rule. Therefore, we report multiple metrics.

Optimal Transport Distance (OTD): We use the OTD
to compare event sequences, following Mei et al. (2019).
L(ŝu, su) is the minimum cost of editing a predicted event
sequence ŝu into the ground truth su. To accomplish this
edit, we must identify the best alignment – a one-to-one par-
tial matching a – of the events in the two sequences. We use
the algorithm from (Mei et al., 2019) to find this alignment,
and report the average OTD values when using various dele-
tion/insertion cost constants C = {0.05, 0.5, 1, 1.5, 2, 3, 4}.
Appendix A.3 presents more details about this metric.

RMSEe assesses how well the event type distribution in the
predicted sequence matches ground truth. For each type k,
we count the number of type-k events in x+

u , denoted Ck,
as well as that in x̂+

u , denoted Ĉk. We report the root mean

square error RMSEe =
√

1
M

∑M
j=1

1
K

∑K
k=1(C

j
k − Ĉj

k)
2.

We also report time-series forecasting metrics: RMSEx+ ,
MAPE, and sMAPE (a normalized MAPE). Ap-
pendix A.3 provides metric details.

5.4. Implementation details

Since all methods are generative, we can generate several
samples to form the final predictions êu and x̂+

u . We gener-
ate 5 samples from P (S+

u |S+
c = s+c ) and average the time

vectors to form x̂+
u , and use majority voting over the event

vectors to form êu. For the history encoder fθ, we adopt
the architecture in AttNHP (Yang et al., 2022), which is a
continuous-time Transformer module. For the two diffu-
sion denoising functions ϵθ(·), ϕθ(·), we use the PyTorch
built-in transformer block (Paszke et al., 2019). We use the
following positional encoding from (Zuo et al., 2020) for
the sequence index i in the fθ(·) transformer:

[m(yj , D)]i =

{
cos(yj/10000

i−1
D ) if i is odd ,

sin(yj/10000
i
D ) if i is even.

(22)

Appendix A.13 provides more details about the positional
encoding implementation and its use for the diffusion
timestep t. For the diffusion process, we use a cosine β
schedule, as proposed by Nichol & Dhariwal (2021). Ap-
pendix A.6 provides provides more detail concerning hyper-
parameters.

6. Results
Table 1 presents results of a subset of experiments for four
selected metrics on real-world datasets. Complete results are
in Appendix A.15. We test for significance using a paired
Wilcoxon signed-rank test at the 5% significance level.

In alignment with previous findings, AttNHP consistently
outperforms NHP, reaffirming its position as the SOTA sin-
gle event forecasting method. HYPRO ranks as the second-
best baseline since it leverages AttNHP as its base model
and is designed for multi-event forecasting. Attention-based
TCDDM and AttNHP show comparable results, while RNN
models like NHP and others fall behind. The basic Homo-
geneous Poisson model ranks lowest. Our CDiff method
consistently surpasses all baselines, often with a statisti-
cally significant margin, a trend that holds across various
experiments, datasets, and metrics, as shown in Figure 3.

Figure 3(left) demonstrates CDiff’s consistent top ranking.
The middle and right panels show its outperformance for
event type and time interval metrics. RNN-based mod-
els like LNM, NHP, and Dual-TPP fall short in long-term
forecasting compared to attention-based models. TCDDM
and LNM, while better at timing predictions, struggle with
event type forecasting. This limitation is likely due to their
assumption of conditional independence for event type pre-
diction, which may impair their ability to capture complex
relationships between event types and inter-arrival times.

6.1. CDiff can model complex inter-arrival times

We first examine the learned marginal distribution for time
intervals. We use the Taobao dataset for our analysis because
it is a relatively challenging dataset, with 17 event types and
a marginal distribution of inter-arrival times that appears to
be multi-modal. From the histograms of inter-arrival time
prediction in Fig. 4, we see that CDiff is better at capturing
the ground truth distribution. CDiff is effective at generating
both longer intervals, falling within the range (3h25,∞],
and shorter intervals, within the range (0, 0.01h].

In contrast, HYPRO and AttNHP, the most competitive
models, struggle to generate a sufficient number of values
at the extremities of the marginal distribution. This also
impacts the methods’ ability to capture the joint relationship
between time intervals and event types. To illustrate this, we
consider two of the event categories for the Taobao dataset,
and we plot the count histograms of the time intervals for
categories 7 and 16 in Figure 5.

First, it is noticeable that HYPRO and AttNHP fail to gen-
erate an adequate number of events for these specific cate-
gories, resulting in counts lower than the ground truth. In
contrast, CDiff generates the appropriate quantity. This
implies that CDiff is better at capturing the marginal cat-
egorical distribution of events. For both event types, the
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Table 1. OTD, RMSEe, RMSEx+ and sMAPE of real-world datasets reported in mean ± s.d. Best are in bold, the next best is underlined.
*indicates stat. significance w.r.t to the best method.

Taxi Taobao
OTD RMSEe RMSEx+ sMAPE OTD RMSEe RMSEx+ sMAPE

HYPRO 21.653 ± 0.163 1.231 ± 0.015∗ 0.372 ± 0.004∗ 93.803 ± 0.454∗ 44.336 ± 0.127 2.710 ± 0.021∗ 0.594 ± 0.030∗ 134.922 ± 0.473∗

Dual-TPP 24.483± 0.383∗ 1.353 ± 0.037∗ 0.402 ± 0.006∗ 95.211 ± 0.187∗ 47.324 ± 0.541∗ 3.237 ± 0.049∗ 0.871 ± 0.005∗ 141.687 ± 0.431∗

Attnhp 24.762± 0.217∗ 1.276 ± 0.015∗ 0.430± 0.003∗ 97.388 ± 0.381∗ 45.555 ± 0.345∗ 2.737 ± 0.021 0.708 ± 0.010∗ 134.582 ± 0.920∗

NHP 25.114 ± 0.268∗ 1.297± 0.019∗ 0.399± 0.040∗ 96.459 ± 0.521∗ 48.131 ± 0.297∗ 3.355 ± 0.030∗ 0.837 ± 0.009∗ 137.644 ± 0.764∗

LNM 24.053 ± 0.609∗ 1.364 ± 0.032∗ 0.384 ± 0.005∗ 95.719 ± 0.779∗ 45.757 ± 0.287∗ 3.193 ± 0.043∗ 0.575 ± 0.012∗ 127.436 ± 0.606
TCDDM 22.148 ± 0.529 1.309 ± 0.030 ∗ 0.382 ± 0.019 90.596 ± 0.574 45.563 ± 0.889 ∗ 2.850 ± 0.058 0.569 ± 0.015 126.512 ± 0.491

CDiff 21.013 ± 0.158 1.131 ± 0.017 0.351 ± 0.004 87.993 ± 0.178 44.621 ± 0.139 2.653 ± 0.022 0.551 ± 0.002 125.685 ± 0.151
StackOverflow Retweet

OTD RMSEe RMSEx+ sMAPE OTD RMSEe RMSEx+ sMAPE

HYPRO 42.359±0.170 1.140 ± 0.014 1.554 ± 0.010∗ 110.988 ± 0.559 ∗ 61.031±0.092∗ 2.623 ± 0.036∗ 30.100 ± 0.413∗ 106.110± 1.505
Dual-TPP 41.752±0.200 1.134 ± 0.019 1.514 ± 0.017∗ 117.582 ± 0.420 ∗ 61.095±0.101 ∗ 2.679 ± 0.026∗ 28.914 ± 0.300 106.900± 1.293
AttNHP 42.591 ± 0.408∗ 1.142 ± 0.011 1.340 ± 0.006 108.542 ± 0.531 60.634 ± 0.097 2.561 ± 0.054 28.812 ± 0.272∗ 107.234± 1.293∗

NHP 43.791 ± 0.147∗ 1.244 ± 0.030∗ 1.487 ± 0.004∗ 116.952 ± 0.404∗ 60.953 ± 0.079∗ 2.651 ± 0.045∗ 27.130 ± 0.224 107.075 ± 1.398∗

LNM 46.280 ± 0.892∗ 1.447 ± 0.057 ∗ 1.669 ± 0.005 ∗ 115.122 ± 0.627 ∗ 61.715 ± 0.152∗ 2.776 ± 0.043 ∗ 27.582 ± 0.191 106.711 ± 1.615 ∗

TCDDM 42.128 ± 0.591 1.467 ± 0.014∗ 1.315 ± 0.004 107.659 ± 0.934 60.501 ± 0.087 2.387 ± 0.050 27.303 ± 0.152 106.048 ± 0.610

CDiff 41.245 ± 1.400 1.141 ± 0.007 1.199 ± 0.006 106.175± 0.340 60.661 ± 0.101 2.293 ± 0.034 27.101 ± 0.113 106.184 ± 1.121
MOOC Amazon

OTD RMSEe RMSEx+ sMAPE OTD RMSEe RMSEx+ sMAPE

HYPRO 48.621 ± 0.352 1.169 ± 0.094 0.410 ± 0.005 143.045 ± 7.992 38.613 ± 0.536∗ 2.007 ± 0.054 0.477 ± 0.010∗ 82.506 ± 0.84
Dual-TPP 50.184 ± 1.127 1.312 ± 0.019∗ 0.435 ± 0.006∗ 147.003 ± 2.908∗ 42.646 ± 0.752∗ 2.562 ± 0.202 0.482 ± 0.012∗ 86.453 ± 2.044
AttNHP 49.121 ± 0.720∗ 1.297 ± 0.049 0.420 ± 0.009 147.756 ± 4.812 39.480 ± 0.326 2.166 ± 0.026∗ 0.476 ± 0.033 84.323 ± 1.815∗

NHP 51.277 ± 1.768∗ 1.458 ± 0.063∗ 0.442 ± 0.007∗ 148.913 ± 11.628∗ 42.571 ± 0.293∗ 2.561 ± 0.060 0.519 ± 0.023∗ 92.053 ± 1.553∗

LNM 52.890 ± 1.151∗ 1.428 ± 0.061∗ 0.454 ± 0.008∗ 149.987 ± 16.581∗ 43.820 ± 0.232∗ 3.050 ± 0.286∗ 0.481 ± 0.145∗ 90.910 ± 1.611∗

TCDDM 50.739 ± 0.765∗ 1.407 ± 0.112∗ 0.429 ± 0.015 145.745 ± 11.835 42.245 ± 0.174∗ 2.998 ± 0.115∗ 0.476 ± 0.111 83.826 ± 1.508

CDiff 47.214 ± 0.628 1.095 ± 0.048 0.411 ± 0.009 146.361 ± 14.837∗ 37.728 ± 0.199 2.091 ± 0.163 0.464 ± 0.086 81.987 ± 1.905

ground truth exhibits many very short intervals (the first bin)
and then a rapid drop. CDiff manages to follow this pat-
tern, while also accurately capturing the number of events
in the tail (the final bin). HYPRO and AttNHP struggle to
match the rapid decay. In the bottom panel, they also fail to
produce many large inter-arrival times. These observations
may be attributed to the fact that HYPRO and AttNHP rely
on exponential distributions to model time intervals and are
autoregressive whereas our architecture does not rely on a
parametric TPP model and jointly models the distribution
of the N events in the sequence.

6.2. CDiff can forecast long horizon events

CDiff is explicitly designed to perform multi-event predic-
tion, so we expect it to be better at predicting long horizon
events, i.e., those near the end of the prediction horizon,
such as events N−1 and N . To verify this, we perform the
following experiment. We collect sequences of errors for
time intervals. For each sequence to predict of length N , we
compute a sequence of absolute errors made at each time
interval: [δ1, . . . , δN ] where δi = |x+

i − x̂+
i |. We can there-

fore construct a set of error sequences {[δj1, . . . , δ
j
N ]}Mj=1

for each baseline for a given dataset of M test sequences.

In general, a sequence of errors [δ1, . . . , δN ] is expected to
increase, as it is harder to predict events further in the future.
Our goal is to compare how fast this error is growing for the
various forecasting approaches.

To do so, we use a one-tailed Wilcoxon signed-paired test
to test our method, CDiff, against each baseline for each
error step δi. We report the p-values for each different event
index i. The tested null hypothesis is that the median of the
population of differences between the paired data of CDiff
error minus baseline error is equal or greater than zero. For
later time intervals, rejection of the hypothesis implies that,
with statistical significance, the median of the CDiff δi is
smaller than the median of baseline δi. In Table 2, the p-
values generally decrease as we move further into the future,
showing an overall trend that the error of the competing
baselines is increasing more rapidly than that of CDiff.

Table 2. The p-values obtained from the Wilcoxon signed-paired
tests, comparing CDiff vs HYPRO, AttNHP, NHP and Dual-TPP
at various future steps δi (step i = 1, 5, 10, 20).

Taobao p-value δ1 p-value δ5 p-value δ10 p-value δ20

HYPRO 5.10e-3 1.704e-4 1.855e-06 2.099e-07
AttNHP 3.117e-1 6.157e-2 1.149e-3 9.440e-4
NHP 2.488e-09 2.777e-09 6.798e-11 1.061e-13
Dual-TPP 2.030e-05 1.511e-05 2.368e-13 3.725e-09

Stackoverflow p-value δ1 p-value δ5 p-value δ10 p-value δ20

HYPRO 1.396e-07 1.913e-4 1.585e-10 1.427e-09
AttNHP 9.327e-4 3.192e-4 8.882e-06 4.146e-07
NHP 4.671e-3 8.490e-06 1.769e-3 3.127e-06
Dual-TPP 3.816e-05 8.887e-07 1.194e-08 3.542e-08
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Figure 3. Left) Stacked column chart of ranks of the algorithms across the 5 datasets for all the metrics. We collect the rank for each
metric (9 metrics in total, as we include additional metrics from the interval forecasting experiment described in the Appendix A.1). The
x-axis is the rank, and the y-axis is the proportion adding up to 1. Middle) Stacked column chart of ranks only for time-related metrics
(RMSEx+ , MAPE, sMAPE, RMSE|s+|, MAE|s+|). Right) Stacked column chart of ranks only for type-related metric (RMSEe).
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Figure 4. Histogram of true and predicted inter-arrival times for
the Taobao dataset. Note that the bin widths gradually increase to
make visual comparison easier.

6.3. Forecasting shorter horizons

Figure 6 presents the results for shorter horizons: N =
1, 5, 10. See Appendix A.9 for more detailed results on
the single event forecasting case, i.e., N = 1. All meth-
ods improve as we reduce the forecasting horizon. For
RMSEe, all models perform similarly to N = 20. The
performance difference grows as the prediction horizon in-
creases. For sMAPE, CDiff outperforms the other models
even for single event forecasting, and the outperformance
increases rapidly with the prediction horizon. We attribute
this to CDiff’s ability to model more complex inter-arrival
distributions.

6.4. Sampling and training efficiency

Table 4 summarizes the sampling time, number of trainable
parameters, and training time for all methods across three
datasets. Starting with sampling time, CDiff outperforms
most models, except for LNM, due to its non-autoregressive
nature allowing for simultaneous generation of all events in
the sequence. Regarding space complexity, CDiff naturally
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Figure 5. Histogram of true and predicted inter-arrival times for
cases when the next event is type e=7 (top) and e=16 (bottom) for
the Taobao dataset. Bin widths gradually increase so that counts
are more comparable.

has the largest number of parameters (except for Taxi, which
is a simpler task) as the dimension of the predicted vectors is
N times larger than all the other methods that generate one
event at a time. To account for the complexity difference
and ensure that CDiff’s superior performance is not due to
additional parameters, we conduct further experiments with
a fixed number of parameters in Appendix A.7. In terms
of training time, LNM is the most efficient, whereas CDiff,
AttNHP, and NHP share similar training durations. Dual-
TPP requires more time due to its count component, and
HYPRO, which must also generate samples during training,
demands the most training time.

8



Interacting Diffusion Processes for Event Sequence Forecasting

1 5 10 20
Horizon N

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
M

S
E

e

TCDDM

LNM

Dual-TPP

NHP

AttNHP

HYPRO

CDiff

1 5 10 20
Horizon N

107

108

109

110

111

112

113

114

sM
A

P
E
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Table 3. Complexity analysis on three datasets for N = 20. The
training time is for 500 epochs. The experiments were run on a
GeForce RTX 2070 SUPER machine.

HYPRO DualTPP Attnhp LNM TCDDM CDiff

Ta
xi

Sampling (sec/su ) 0.265 0.158 0.136 0.079 0.227 0.104
num. param. (K) 40.5 40.1 19.3 19.1 20.3 17.1
Training (mins) 95 45 35 20 45 35

Ta
ob

ao Sampling (sec/su ) 0.325 0.240 0.209 0.094 0.285 0.129
num. param. (K) 40.1 19.7 19.6 17.3 20.3 62.6
Training (mins) 105 60 45 30 60 45

St
ac

k. Sampling (sec/su ) 0.294 0.207 0.191 0.111 0.233 0.133
num. param. (K) 41.0 40.3 20.1 19.6 20.3 63.9
Training (mins) 105 60 45 35 60 45

6.5. Ablation – Joint vs Independent modeling of time
and event type

In the ablation study, we verify whether it is necessary to
model the joint distribution in order to achieve better per-
formance. In order to demonstrate this, we conduct a new
experiment by introducing an independent model. In this
model, we model the future sequence P (S0|sc) using two
independent processes (always conditioned on the same
context sc) P (S0|sc) = P (X0|sc)P (E0|sc). In CDiff, we
model the joint distribution by conditioning the time interval
denoising distributions on the event type denoising distribu-
tions, and vice versa, as in Equations (9) and (10). In this
ablation study we remove this interaction and strive to learn
independent denoising distributions:

Cat(Et−1|πθ(Et, t, sc)) (23)
N (Xt−1|µθ(Xt, t, sc), σt) (24)

The results are presented in Table 4. For each metric and
dataset we present, CDiff is always better than CDiff-indep,
confirming that modeling the joint distribution is necessary.
Moreover, we can see that CDiff-indep is not even the sec-
ond best baseline; HYPRO is the second best or best method
for half of the metrics, while CDiff-indep is the second best
for 3/8 of the metrics. The ablation study thus highlights
that: i) using a diffusion model to predict a sequence of mul-
tiple events is an effective strategy, even if the dependencies

between event type and time interval are ignored (CDiff-
indep is the second or third-best method); ii) modelling
the dependencies via cross-diffusion leads to a significant
performance improvement.

Table 4. OTD, RMSEe, RMSEx+ and sMAPE of Amazon and
Stackoverflow reported in mean ± s.d. for comparison between
conditional independent version of CDiff and the baselines. *indi-
cates stat. significance w.r.t to the best method.

Amazon OTD RMSEe RMSEx+ sMAPE

HYPRO 38.61 ± 0.54∗ 2.01 ± 0.05 0.48 ± 0.01∗ 82.51 ± 0.84
Dual-TPP 42.65 ± 0.75∗ 2.56 ± 0.20 0.48 ± 0.01∗ 86.45 ± 2.04
AttNHP 39.48 ± 0.33 2.17 ± 0.03∗ 0.48 ± 0.03 84.32 ± 1.82∗

NHP 42.57 ± 0.29∗ 2.56 ± 0.06 0.52 ± 0.02∗ 92.05 ± 1.55∗

LNM 43.82 ± 0.23∗ 3.05 ± 0.29∗ 0.48 ± 0.15∗ 90.91 ± 1.61∗

TCDDM 42.25 ± 0.17∗ 3.00 ± 0.12∗ 0.48 ± 0.11 83.83 ± 1.51

CDiff-indep 40.49 ± 0.60∗ 2.70 ± 0.24∗ 0.47 ± 0.04 84.77± 1.32∗

CDiff 37.73 ± 0.20 2.09 ± 0.16 0.46 ± 0.09 81.99 ± 1.91

Stackoverflow OTD RMSEe RMSEx+ sMAPE

HYPRO 42.36±0.17 1.14 ± 0.01 1.55 ± 0.01∗ 110.99 ± 0.56 ∗

Dual-TPP 41.75±0.20 1.13 ± 0.02 1.51 ± 0.02∗ 117.58 ± 0.42 ∗

AttNHP 42.59 ± 0.41∗ 1.14 ± 0.01 1.34 ± 0.01 108.54 ± 0.53
NHP 43.79 ± 0.15∗ 1.24 ± 0.03∗ 1.49 ± 0.00∗ 116.95 ± 0.40∗

LNM 46.28 ± 0.89∗ 1.45 ± 0.06 ∗ 1.67 ± 0.01 ∗ 115.12 ± 0.63 ∗

TCDDM 42.13 ± 0.59 1.47 ± 0.01∗ 1.32 ± 0.00 107.66 ± 0.93

CDiff-indep 42.19 ± 0.14 1.35 ± 0.12∗ 1.26 ± 0.01 106.71 ± 0.44
CDiff 41.25 ± 1.40 1.14 ± 0.01 1.20 ± 0.01 106.18 ± 0.34

7. Limitations
Although offering impressive performance, there are lim-
itations specific to our approach of modelling N events
at once. Unlike previous autoregressive approaches, our
method requires the practitioner to select a fixed number of
events N to be modeled by the diffusion generative model.
This can prove challenging when dealing with data that ex-
hibits highly irregular time intervals (x+

i ). Essentially, if the
length of time spanned by a fixed number of events varies
significantly, then it will lead to a substantial variation in the
nature and complexity of the forecasting task. This effect
was not observed in the datasets we considered, as none
displayed such high irregularities.

8. Conclusion
We have proposed a diffusion-based generative model, CD-
iff, for event sequence forecasting. Extensive experiments
demonstrate the superiority of our approach over existing
baselines for long horizons. The approach also offers im-
proved sampling efficiency. Our analysis sheds light on
the mechanics behind the improvements, revealing that our
model excels at capturing intricate correlation structure and
at predicting distant events.

9



Interacting Diffusion Processes for Event Sequence Forecasting

Acknowledgement
We acknowledge the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC) [funding
reference number 260250] and of the Fonds de recherche
du Québec.
Cette recherche a été financée par le Conseil de recherches
en sciences naturelles et en génie du Canada (CRSNG),
[numéro de référence 260250] et par les Fonds de recherche
du Québec.

Impact Statement
Forecasting methods for temporal point processes are im-
pactful as they have many applications. In general, accurate
forecasting has the typical positive impact of optimizing re-
source usage efficiency but also can raise privacy concerns.
In particular for TPP models, the specific applications of
these algorithms and even the datasets used to benchmark
those models include monitoring consumer behavior. This
poses a potential risk of malicious exploitation.

References
Bacry, E., Bompaire, M., Deegan, P., Gaïffas, S., and

Poulsen, S. V. Tick: a python library for statistical learn-
ing, with an emphasis on hawkes processes and time-
dependent models. J. Mach. Learn. Res., 18(214):1–5,
2018.

Bae, W., Ahmed, M. O., Tung, F., and Oliveira, G. L. Meta
temporal point processes. In Proc. Int. Conf. on Learning
Representations (ICLR), 2023.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In Adv. Neural
Info. Process. Syst. (NeurIPS), 2011.

Bosser, T. and Taieb, S. B. On the predictive accuracy of
neural temporal point process models for continuous-time
event data. Trans. on Mach. Learn. Res., June 2023.

Deshpande, P., Marathe, K., De, A., and Sarawagi, S. Long
horizon forecasting with temporal point processes. In
Proc. Int. Conf. on Web Search and Data Mining (WSDM),
2021.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-
Rodriguez, M., and Song, L. Recurrent marked temporal
point processes: Embedding event history to vector. In
Proc. Int. Conf. Data Min. Knowl. Discov. (SIGKDD),
2016.

Gupta, V., Bedathur, S. J., Bhattacharya, S., and De, A.
Learning temporal point processes with intermittent ob-
servations. In Proc. Int. Conf. on Artif. Intell. and Stats.
(AISTAT), 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Adv. Neural Info. Process. Syst.
(NeurIPS), 2020.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. In Adv. Neural Info. Process.
Syst. (NeurIPS), 2021.

Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic
embedding trajectory in temporal interaction networks.
In Proc. Int. Conf. Data Min. Knowl. Discov. (SIGKDD),
2019.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford large
network dataset collection, 2014.

Lin, H., Wu, L., Zhao, G., Liu, P., and Li, S. Z. Exploring
generative neural temporal point process. Trans. Mach.
Learn. Res., August 2022.

Liniger, T. J. Multivariate Hawkes Processes. PhD thesis,
ETH Zurich, 2009.

Lüdke, D., Biloš, M., Shchur, O., Lienen, M., and Günne-
mann, S. Add and thin: Diffusion for temporal point
processes. In Adv. Neural Info. Process. Syst. (NeurIPS),
2023.

Mei, H. and Eisner, J. The neural hawkes process: A neu-
rally self-modulating multivariate point process. In Adv.
Neural Info. Process. Syst. (NeurIPS), 2017.

Mei, H., Qin, G., and Eisner, J. Imputing missing events
in continuous-time event streams. In Proc. Int. Conf.
Machine Learning. (ICML), 2019.

Ni, J., Li, J., and McAuley, J. Justifying recommenda-
tions using distantly-labeled reviews and fine-grained as-
pects. In Proc. Conf. Empir. Methods Nat. Lang. Process.
and the Int. Joint Conf. Nat. Lang. Process. (EMNLP-
IJCNLP), 2019.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In Proc. Int. Conf. Machine
Learning. (ICML), 2021.

Nickel, M. and Le, M. Learning multivariate hawkes pro-
cesses at scale. arXiv preprint arXiv:2002.12501, 2020.

Omi, T., ueda, n., and Aihara, K. Fully neural network
based model for general temporal point processes. In Adv.
Neural Info. Process. Syst. (NeurIPS), 2019.

Pan, Z., Wang, Z., Phillips, J. M., and Zhe, S. Self-adaptable
point processes with nonparametric time decays. In Adv.
Neural Info. Process. Syst. (NeurIPS), 2021.

10



Interacting Diffusion Processes for Event Sequence Forecasting

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Adv. Neural
Info. Process. Syst. (NeurIPS), volume 32, 2019.

Rasmussen, J. G. Lecture notes:Temporal point processes
and the conditional intensity function. arXiv preprint
arXiv:1806.00221, 2011.

Shchur, O., Biloš, M., and Günnemann, S. Intensity-free
learning of temporal point processes. In Proc. Int. Conf.
on Learning Representations (ICLR), 2020a.

Shchur, O., Gao, N., Biloš, M., and Günnemann, S. Fast and
flexible temporal point processes with triangular maps.
In Adv. Neural Info. Process. Syst. (NeurIPS), 2020b.

Shchur, O., Turkmen, A. C., Januschowski, T., and Günne-
mann, S. Neural temporal point processes: A review. In
Proc. Int. Joint Conf. on Artif. Intell. (IJCAI), 2021.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In Proc. Int. Conf. on Learning Repre-
sentations (ICLR), 2021.

Tukey, J. W. On the comparative anatomy of transforma-
tions. Ann. Math. Stat., 28(3):602–632, 1957.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
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A. Appendix
A.1. Interval Forecasting

In this time-based setting, the task is to predict the events that occur within a given subsequent time interval t′, i.e., s+u :
x+
u = [x+

I+1, ...] and eu = [eI+1, ...] such that ||x+
u ||1 ≤ t′.

This different setting also calls for different metrics, and the predicted ŝ+u and ground truth s+u can have a different number
of events. We report both OTD and the RMSEe metrics as they are robust to a varying number of events. We also report
additional metrics that compare the number of events predicted:

1. MAE|s+| =
1
M

∑M
j=1

∣∣|s+,j
u | − |ŝ+,j

u |
∣∣;

2. RMSE|s+| =
√

1
M

∑M
j=1(|s

+,j
u | − |ŝ+,j

u |)2.

For our experiment, we retain the same context sequences sc that were used for the next N events forecasting setting..
Table 5 details the time interval values t′ of three experiments (long, medium and short horizon) for each dataset.

Table 5. Time interval for interval forecasting problem.

Dataset t′ long t′ medium t′ short train/val/test units

Synthetic 2 1 0.5 1500/400/500 second
Taxi 4.5 2.25 1.125 1300/200/400 hour
Taobao 19.5 9.25 5.25 1300/200/500 hour
Stack. 220 110 55 1400/400/400 day
Retweet 500 250 150 1400/600/800 second
MOOC 3.5 1.5 1 2400/717/1039 hour
Amazon 20 10 5 3500/1000/1500 hour

A.2. CDiff methodology for interval Forecasting

To adapt our CDiff model to this setting, we select a number of events, denoted as N , and repeatedly generate N -length
sequences until we reach the end of the forecasting window t′. That is, while ||x+

u ||1 ≤ t′, we integrate the current s+u into
the context s+c and regenerate N additional events that we attach at the end of s+u . We set N to be the maximum number of
events observed within the given time interval in the training data.

A.3. Metrics details and more OTD results

The time-interval metrics are given by;

RMSEx =

√√√√ 1

M

M∑
j=1

||x+,j
u − x̂+,j

u ||22, (25)

MAPE =
1

M

M∑
j=1

100

N

N∑
i=1

|x+,j
u,i − x̂+,j

u,i |
|x+,j

u,i |
(26)

sMAPE =
1

M

M∑
j=1

100

N

N∑
i=1

δji , δ
j
i =

2|x+,j
u,i − x̂+,j

u,i |
|x+,j

u,i |+ |x̂+,j
u,i |

. (27)

In the calculation of Optimal Transport Distance (OTD), the deletion cost hyperparameter, denoted by Cdel, plays a pivotal
role. Yang et al. (2022) provided a full description and pseudo code for the dynamic algirthm to calculate the OTD. This
parameter quantifies the expense associated with the removal or addition of an event token, irrespective of its category. For
our experimentation, we chose a variety of Cdel values—0.05, 0.5, 1, 1.5, 2, 3, 4—based on the recommendations provided
by (Xue et al., 2022). Subsequently, we calculated the mean OTD. In the following section, the OTD metrics are delineated
for each individual Cdel value. As evidenced by Fig. 7 and 8, our model outperforms across the board for the varying
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(a) Synthetic dataset for N = 20 forecasting
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Figure 7. OTD for each specific deletion/addition cost for N = 20 forecasting, we chose a variety of Cdel values—0.05, 0.5, 1, 1.5, 2, 3, 4—
based on the recommendations in (Xue et al., 2022). Subsequently, we calculated the mean and s.d. of OTD across all the datasets.
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(c) Stackoverflow dataset interval forecasting
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Figure 8. OTD for each specific deletion/addition cost for interval forecasting. We calculated the mean and s.d. of OTD across all the
datasets for different Cdel values.
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Cdel settings overall. We also see that the OTD steadily increases overall, and that different C can permute the ordering
of the competing baselines. For low Cdel, our method is outperformed by HYPRO and AttNHP sometimes, but this trend
is reversed for larger Cdel values for almost all datasets. This reflects the fact that the proposed CDiff method is better at
predicting the number of events, so fewer deletions or additions are required.

A.4. Dataset details

• Taobao (Zhu et al., 2018) This dataset captures user click events on Taobao’s shopping websites between November
25 and December 03, 2017. Each user’s interactions are recorded as a sequence of item clicks, detailing both the
timestamp and the item’s category. All item categories were ranked by frequency, with only the top 16 retained; the
remaining were grouped into a single category. Thus, we have K = 17 distinct event types, each corresponding to a
category. The refined dataset features 2,000 of the most engaged users, with an average sequence length of 58. The
disjoint train, validation and test sets consist of 1300, 200, and 500 sequences (users), respectively, randomly sampled
from the dataset. The time unit is 3 hours; the average inter-arrival time is 0.06 (i.e., 0.18 hour).

• Taxi (Whong, 2014) This dataset contains time-stamped taxi pickup and drop off events with zone location ids in New
York city in 2013. Following the processing procedure of (Mei et al., 2019), each event type is defined as a tuple of
(location, action). The location is one of the 5 boroughs (Manhattan, Brooklyn, Queens, The Bronx, Staten Island). The
action can be either pick-up or drop-off. Thus, there are K = 5× 2 = 10 event types in total. The values k = 0, . . . , 4
indicate pick-up events and k = 5, . . . , 9 indicate drop-off events. A subset of 2000 sequences of taxi pickup events
with average length 39 are retained. The average inter-arrival time is 0.22 hour (time unit is 1 hour.) The disjoint train,
validation and test sets are randomly sampled and are of sise 1400, 200, and 400 sequences, respectively.

• StackOverflow (Leskovec & Krevl, 2014) This dataset contains two years of user awards from a question-answer
platform. Each user was awarded a sequence of badges, with a total of K = 22 unique badge types. The train,
validation and test sets consist of 1400, 400 and 400 sequences, resepctively, and are randomly sampled from the
dataset. The time unit is 11 days; the average inter-arrival time is 0.95.

• Retweet (Zhou et al., 2013) This dataset contains sequences of user retweet events, each annotated with a timestamp.
These events are segregated into three categories (K = 3), denoted by: “small”, “medium”, and “large” users. Those
with under 120 followers are labeled as small users; those with under 1363 followers are medium users, while the
remaining users are designated as large users. Our studies focus on a subset of 9000 retweet event sequences. The
disjoint train, validation and test sets consist of 6000, 1500, and 1500 sequences, respectively, randomly sampled from
the dataset.

• MOOC (Kumar et al., 2019) This datasets contains sequences of records of student interactions within an online
course platform. Each interaction represents an event and can manifest in different forms (97 distinct types), such
as viewing a video, completing a quiz, and other activities. We utilized the pre-processing approach described by
(Bosser & Taieb, 2023) in their extensive study on temporal point processes. This involved narrowing down the event
types to a total of 50. Observing that a significant number of event sequences had less than or equal to 20 events, we
chose to exclude these shorter sequences. Consequently, this process resulted in retaining 4,156 out of the initial 7,047
sequences, focusing on those with more than 20 events.

• Amazon (Ni et al., 2019) The dataset contains time-stamped user product review behavior from January 2008 to
October 2018. It consists of sequences of product review events for individual users. Each event in these sequences
includes the timestamp and the category of the product reviewed, with every category corresponding to a distinct event
type. The study is conducted on a subset comprising the 5200 most active users, each having an average sequence
length of 70 events. This led to a refinement of the event types to a total of K = 16.

• Synthetic Multivariate Hawkes Dataset The synthetic dataset is generated using the tick2 package provided by Bacry
et al. (2018), using the Hawkes process generator. Our study uses the same equations proposed by Lin et al. (2022).
There are 5 event types. The impact function gj,i(y) measuring the relationship (impact) of type i on type j and is

2tick package can be found at https://github.com/X-DataInitiative/tick
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Figure 9. Inter-arrival time marginal histogram for synthetic dataset before (left) and after (right) boxcox transformation

uniformly-randomly chosen from the following four functions:

ga(y) = 0.99 exp(−0.4y)

gb(y) = 0.01 exp(−0.8y) + 0.03 exp(−0.6y) + 0.05 exp(−0.4y)

gc(y) = 0.25| cos 3y| exp(−0.1y)

gd(y) = 0.1(0.5 + y)2

(28)

A.5. Box-Cox Transformation

For our study, the inter-arrival time marginal distribution shown in Fig.9 (left) is clearly not a normal distribution. Since
the diffusion probabilistic model we employ is a Gaussian-based generative model, we use the Box-Cox transformation to
transform the inter-arrival time data, so that the transformed data approximately obeys a normal distribution.

The Box-Cox transformation (Tukey, 1957) is a family of power transformations that are used to stabilize variance and
make data more closely follow a normal distribution. The transformation is defined as:

x(λ) =

{
xλ−1

λ if λ ̸= 0,

log(x) if λ = 0.
(29)

Here:

• x is the original data;

• x(λ) is the transformed data; and

• λ is the transformation parameter.

The inter-arrival time is strictly larger than 0 but it can be extremely small because of the scale of the dataset. Therefore,
in order to prevent numerical errors in tbe Box-Cox transformation we add 1× 10−7 time units to all inter-arrival times.
We then scale all values by 100. We use the scaled inter-arrival time data from the train set to obtain the fitted λ shown in
Eq.29 and apply the transformation with the fitted λ to the inter-arrival time data for both the validation dataset and test
dataset. Fig.9 shows an example of marginal histogram of inter-arrival time for the Synthetic train set before (left) and
after (right) the Box-cox transformation. We transform back the predicted sequence inter-arrival times with the same fitted
λ obtained from the train set and undo the scaling by 100. We use the Box-cox transformation function from the SciPy3

package provided by Virtanen et al. (2020).

3The SciPy package is available at https://github.com/scipy/scipy
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Table 6. Sets of hyperparameters. Underlined values are those selected by the Tree-Structured Parzen Estimator (Bergstra et al., 2011)
Parameters num. heads num. layers time embedding Transformer feed-forward embedding num. diffusion steps LR

Synthetic {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}
Taxi {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}
Taobao {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}
Stackoverflow {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} { 0.001, 0.0025, 0.005}
Retweet {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}
MOOC {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}
Amazon {1,2,4} {1, 2, 4} {4, 8, 16, 32, 64, 128} {8, 16, 32, 64, 128, 256} {50, 100, 200, 300, 500} {0.001, 0.0025, 0.005}

A.6. Hyper-parameters

Table 6 specifies the hyperparameters that we use for our experiments and the candidate values. We train for a maximum of
500 epochs and we select the best hyperparameters using the Tree-Structured Parzen Estimator (Bergstra et al., 2011). We
have also performed a sensitivity study for the number of diffusion steps. As we can see in the following table, the method
is not too sensitive to the number of diffusion steps. There is no sudden variation of performance as we gradually decreases
the number of diffusion steps. A too low number of steps (25 and 50 steps in our case) is worst overall for all metrics and
datasets. Once we use more steps (100, 200 or 500 steps) the performance becomes similar and the hyperparameter search
sill select the best number of steps for each dataset.

Table 7. Ablation study on the number of diffusion steps. *indicates stat. significance w.r.t to the best method.
Taxi (Diffusion Step 100) OTD RMSEe RMSEx+ sMAPE

CDiff 21.013 ± 0.158 1.131 ± 0.017 0.351 ± 0.004 87.993 ± 0.178
CDiff-25 22.083 ± 0.410 1.135 ± 0.022 0.351 ± 0.004 87.963 ± 0.252
CDiff-50 21.045 ± 0.228 1.131 ± 0.019 0.352 ± 0.007 88.129 ± 0.193
CDiff-100 – – – –
CDiff-200 21.545 ± 0.314 1.133 ± 0.015 0.351 ± 0.010 87.839 ± 0.397
CDiff-500 22.107 ± 0.244 1.138 ± 0.036 0.353 ± 0.009 88.053 ± 0.480

StackOverflow (Diffusion Step 200) OTD RMSEe RMSEx+ sMAPE

CDiff 41.245 ± 1.400 1.141 ± 0.007 1.199 ± 0.006 106.175± 0.340
CDiff-25 42.742 ± 0.146∗ 1.169 ± 0.030∗ 1.331 ± 0.016∗ 109.941± 0.322∗

CDiff-50 42.094 ± 0.444 1.172± 0.042∗ 1.306 ± 0.008 107.055± 0.400
CDiff-100 41.578 ± 0.261 1.139 ± 0.017 1.27 ± 0.022 105.365 ± 0.59
CDiff-200 – – – –
CDiff-500 41.507 ± 0.16 1.153 ± 0.019 1.181 ± 0.23 107.842 ± 0.500

A.7. Comparison with fixed model size

To ensure a fair comparison, we conducted an experiment to compare CDiff and AttNHP with a similar number of parameters.
We employed two methods to increase the number of parameters for AttNHP.

In the first way, we attach additional inference heads to the autoregressive baselines, until the number of parameters matches
the size of our model. We denote the number of additional heads that are predicting future events in the name (for example,
method with 2 heads is denoted as method-2). If the baseline has 2 additional heads, the first head is trained to predict the
next event of the sequence (as usual), and the second head is trained to predict the second future event of the sequence. At
inference, the model predicts the next 2 events, then integrates those 2 events into the context sequence sc to predict the next
2 events (which would then be the 3rd and 4-th prediction) until N events have been predicted.

In the second, we increase the number of parameters for the baselines to match the number of parameters of our method.
We denote it by method-L. Since we already used a hyperparameter search for each baseline, the increased number of
parameters did not improve the results. We include it for completeness.

In the Table.8, we can see that neither the inclusion of additional heads nor the increase in the number of parameters is
sufficient to reach CDiff’s performance. Adding additional heads actually hurts the performance; for all datasets and all
metrics, AttNHP-3 is worse than the initial baseline AttNHP.

Although it is true that our model has more parameters than the baselines (approximately 1.5x more), it is better than the
baselines in terms of the other complexity metrics that we report (namely training time and sampling time).
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Table 8. Comparison between multi-head AttNHP, AttNHP with more parameters and CDiff. OTD, RMSEe, RMSEx+ and sMAPE of
real-world datasets reported in mean ± s.d. Best are in bold, the next best is underlined.

Taxi OTD RMSEe RMSEx+ sMAPE

AttNHP 24.762± 0.217∗ 1.276 ± 0.015∗ 0.430± 0.003∗ 97.388 ± 0.381∗

AttNHP-3 26.376± 0.229∗ 1.554 ± 0.022∗ 0.452± 0.005∗ 105.860± 0.504∗

AttNHP-L 24.174± 0.245∗ 1.274 ± 0.022∗ 0.434 ± 0.002∗ 97.645± 0.693∗

CDiff 21.013 ± 0.158 1.131 ± 0.017 0.351 ± 0.004 87.993 ± 0.178

Taobao OTD RMSEe RMSEx+ sMAPE

AttNHP 45.555 ± 0.345∗ 2.737 ± 0.021 0.708 ± 0.010∗ 134.582 ± 0.920∗

AttNHP-3 48.967± 0.072∗ 3.877± 0.012∗ 0.933± 0.005∗ 136.130± 0.619∗

AttNHP-L 46.515± 0.191∗ 2.897 ± 0.019 0.697± 0.005 132.276± 0.993∗

CDiff 44.621 ± 0.139 2.653 ± 0.022 0.551 ± 0.002 125.685 ± 0.151

A.8. Add-and-thin comparison

Lüdke et al. (2023) proposed Add-and-thin model to perform multi-step forecasting for time intervals only. There is no
consideration or modeling of event type. Since our work is focused on modeling the joint interaction between time intervals
and event types, we cannot directly comparison with this method. However, for completeness, we can include a modified
version by augmenting the add-thin-add model with a simple event type predictor module. This event type predictor model
is based on the marginal probabilities of the training set. As we can see in the Table.9, this modified Add-and-thin-augm.
is outperformed by CDiff for both the event type metrics and the time interval metrics, further demonstrating the importance
of modeling the joint interaction of type and time. We would stress, however, that this modified version of Add-and-thin was
not presented in the original paper.

Table 9. OTD, RMSEe, RMSEx+ and sMAPE of real-world datasets reported in mean ± s.d. Best are in bold, the next best is underlined.
*indicates stat. significance w.r.t to the best method.

Taxi OTD RMSEe RMSEx+ sMAPE

HYPRO 21.653 ± 0.163 1.231 ± 0.015∗ 0.372 ± 0.004∗ 93.803 ± 0.454∗

LNM 24.053 ± 0.609∗ 1.364 ± 0.032∗ 0.384 ± 0.005∗ 95.719 ± 0.779∗

Add-and-Thin-augm. 24.929 ± 0.737∗ – 0.632 ± 0.018 ∗ 107.070 ± 0.590 ∗

CDiff 21.013 ± 0.158 1.131 ± 0.017 0.351 ± 0.004 87.993 ± 0.178

Taobao OTD RMSEe RMSEx+ sMAPE

HYPRO 44.336 ± 0.127 2.710 ± 0.021∗ 0.594 ± 0.030∗ 134.922 ± 0.473∗

LNM 45.757 ± 0.287∗ 3.193 ± 0.043∗ 0.575 ± 0.012∗ 127.436 ± 0.606

Add-and-Thin-augm. 49.030 ± 0.943∗ – 1.300 ± 0.032 ∗ 144.597 ± 0.699 ∗

CDiff 44.621 ± 0.139 2.653 ± 0.022 0.551 ± 0.002 125.685 ± 0.151
StackOverflow OTD RMSEe RMSEx+ sMAPE

HYPRO 42.359±0.170 1.140 ± 0.014 1.554 ± 0.010∗ 110.988 ± 0.559 ∗

LNM 46.280 ± 0.892∗ 1.447 ± 0.057 ∗ 1.669 ± 0.005 ∗ 115.122 ± 0.627 ∗

Add-and-Thin-augm. 45.693 ± 0.368∗ – 1.620± 0.090 ∗ 111.468 ± 0.702∗

CDiff 41.245 ± 1.400 1.141 ± 0.007 1.199 ± 0.006 106.175± 0.340

Retweet OTD RMSEe RMSEx+ sMAPE

HYPRO 61.031±0.092∗ 2.623 ± 0.036∗ 30.100 ± 0.413∗ 106.110± 1.505
LNM 61.715 ± 0.152∗ 2.776 ± 0.043 ∗ 27.582 ± 0.191 106.711 ± 1.615 ∗

Add-and-Thin-augm. 61.013 ± 0.190∗ – 32.010 ± 0.046 ∗ 116.895 ± 0.607 ∗

CDiff 60.661 ± 0.101 2.293 ± 0.034 27.101 ± 0.113 106.184 ± 1.121

A.9. Next single event prediction

Figure 6 in our paper illustrates how the sequence length for prediction affects the overall ranking of the baselines. We
include the specific results for N = 1 in Table 10 format here to improve readability for Figure 6.

A.10. Detailed Model details

Here we explain the learnable functions in Eq.11 and Eq.12: ϕθ(et, xt, s, t) and ϵθ(et, xt−1, s, t) serve as denoising functions
for the type diffusion process and the time diffusion process, respectively.
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Table 10. RMSEx+ , Accuracy, sMAPE and Error Rate for N = 1 of real-world datasets reported in mean ± s.d. Since we only have
one event, we can report the Error Rate of our single event type prediction. Best are in bold, the next best is underlined. HYPRO and
Dual-TPP with single event forecasting will become AttNHP and RMTPP. *indicates stat. significance w.r.t to the best method.

Taxi RMSEx+ ↓ Accuracy ↑ sMAPE ↓
AttNHP 0.321 ± 0.003 0.905 ± 0.007 85.132 ± 0.261
RMTPP 0.335 ± 0.006 0.907 ± 0.010 89.115 ± 0.753
NHP 0.340 ± 0.007 0.910 ± 0.007 90.625 ± 0.608
LNM 0.377 ± 0.009∗ 0.904 ± 0.007 90.032 ± 0.470∗

CDiff 0.337 ± 0.009 0.909 ± 0.004 87.124 ± 0.608

Taobao RMSEx+ ↓ Accuracy ↑ sMAPE ↓
AttNHP 0.527 ± 0.004 0.468 ± 0.011 129.133 ± 1.354
RMTPP 0.531 ± 0.007∗ 0.468 ± 0.021 131.432 ± 1.992∗

NHP 0.531 ± 0.004∗ 0.458 ± 0.009 133.693 ± 2.246∗

LNM 0.532 ± 0.007∗ 0.450 ± 0.007∗ 126.009 ± 1.482

CDiff 0.516 ± 0.009 0.477 ± 0.003 127.121 ± 1.356

• The history embedding is derived from a history encoder that processes s, transforming it into an embedding with a
dimension of 4×M . This results in the overall sequence having dimensions of RL×(4×M).

• For time values t within the range of 0 to Nstep, where Nstep denotes the total number of diffusion steps, the time t
undergoes a transformation into a positional encoding as described in Equation 21. The positional encoding t is then a
vector in RM .

• xt, ∈ RL
+, has its dimension expanded to RL×M for the function ϕθ(et, xt, s, t), RL×(2×M) for ϵθ(et, xt−1, s, t) with

the same transformation specified in Equation 21.

• et denotes a sequence of one-hot vectors. Its dimension is augmented through a learnable event embedding matrix in
RM×K , with the k-th column providing an M -dimensional embedding for the event type k. The resulting sequence
embedding falls within RL×M for the function ϵθ(et, xt−1, s, t), RL×(2×M) for ϕθ(et, xt, s, t)

• To get the sequence order of the event tokens, an additional positional encoding specific to the order is computed. The
event token order is converted into a positional encoding following Equation 21, resulting in dimensions of RL×(4×M).

• By concatenating the embeddings for the diffusion time step, inter-arrival time, and event type, we obtain an embedding
in RL×(4×M). We incorporate the positional encoding by summing the positional encoding to the concatenated
embedding.

• This sequence of embeddings is then processed by a transformer block, facilitating cross-attention between the history
embedding (in RL×(4×M)) and the embedding of the forecasted event token sequences (in RL×(4×M)), yielding an
output dimension of 4M .

• Finally, a linear projection is applied to the inter-arrival time embedding to convert it into R, and for the event type
embedding, a linear projection converts it into RK , followed by a softmax function to get the logits of et.

A.11. Sampling Details

In order to achieve a faster sampling time, we leverage the work of Song et al. (2021). We can re-express Eq.11 as follows

xt−1 =
√
ᾱt−1(

xt −
√
1− ᾱtϵθ(xt, t, et, sc)√

ᾱt
) +

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t, et, sc) + σtz (30)

Given a trained DDPM model, we can specify {σt}τt=1 and specify τ ⊂ {1, 2, .., T} to accomplish the acceleration. In
Eq.30, if we set σt = 0 then we are performing DDIM (Denoising Diffusion Implicit Model) acceleration as in (Song et al.,
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Figure 10. 100% Stacked column chart of ranks of different CDiff across the 5 datasets for all the metrics.

2021). For event type acceleration, we choose to directly jump steps, because for multinomial diffusion (Hoogeboom et al.,
2021), instead of predicting noise, we predict e0. Therefore, our acceleration relies on decreasing the number of times we
recalculate ê0 = ϕθ(et,xt, t, sc). That is, given a sub-set τ ⊂ {1, 2, .., T}, we only recalculate ê0 |τ | times. In practice, we
found it does not harm the prediction but it significantly accelerates the sampling due to ϕθ(·) requiring the majority of the
computation effort.

A.12. Comparison with p(x, e) and p(e|x)p(x)

Mathematically, p(x, e) = p(e|x)p(e) = p(x|e)p(e), so there should not be any theoretical difference between sampling
the event type and interarrival time jointly or sampling one first and then the other, conditioned on the first. We conducted an
experiment to check that this was also observed in the practical implementation. Fig.10 shows that the order of sampling
does not have a major effect, although there is a minor advantage to either jointly sampling from p(x, e) or sampling the
event type first (i.e., from p(e|x)p(e)). This perhaps reflects that it is easier to learn the conditional inter-arrival time
distributions, which may have slightly simpler structure.

A.13. Positional Encoding for CDiff

We use the transformer architecture as a denoising tool for reversing the diffusion processes. Therefore, we encode the
position of both the diffusion step and the event token’s order.

It is important that our choice of encoding can differentiate between these two different types of position information. To
achieve this, we use as input (i+ yN ), where i is the order of the event token in the noisy event sequence, and yN is the last
timestamp of the historical event sequence.

into Eq. 22 (shown also below) for the order of the predicted sequence. This approach distinctly differentiates the positional
information of the predicted event sequence from the diffusion time step’s positional encoding. The positional encoding is
then:

[m(yj , D)]i =

{
cos(yj/10000

i−1
D ) if i is odd ,

sin(yj/10000
i
D ) if i is even.

(31)

A.14. More Diffusion Visualization

Figure 11 shows the reverse process of CDiff for Taxi dataset (on the left) and Taobao dataset (on the right). Upon inspection,
it is evident that the recovered sequences bear a strong resemblance to their respective ground truth sequences, both in terms
of inter-arrival time patterns and event classifications.

In the Taxi dataset, the original sequences prominently feature events colored in Cyan and Orange. This indicates a high
frequency of these two event categories, a pattern which is consistently replicated in the sequences derived from CDiff.

Conversely, for the Taobao dataset, the ground truth predominantly showcases shorter inter-arrival times, signifying closely
clustered events. However, there are also occasional extended inter-arrival times introducing gaps in the sequences. Notably,
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Figure 11. Visualization of the cross-diffusion generating process for 15 examples sequences of the Taxi dataset (left) and the Taobao
dataset (right). The colors indicates the different categories. We start by generating noisy sequences (t = T ). Once we reach the end of
the denoising process (t = 0), we have recovered sequences similar to the ground truth sequences. We cut the sequence based on the time
range so that every sequence can be aligned.

this dichotomy is accurately reflected in the reconstructed sequences.

A.15. Tables of results with different evaluation metrics for different horizon

Tables 11, 12 and 13 show the results of all metrics across all models for all datasets with different prediction horizons. We
test for significance using a paired Wilcoxon signed-rank test at the 5% significance level.
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Table 11. Results for all metrics across 7 different datasets for N = 20 events forecasting and long interval forecasting, bold case
indicates the best, under line indicates the second best, * indicates stats. significance w.r.t. the method with the lowest value.

Synthetic dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 20.609 ± 0.328 2.464 ± 0.039 0.104 ± 0.002∗ 717.417 ± 56.443 100.535 ± 0.084∗ 20.224 ± 0.236∗ 2.409 ± 0.082 1.608 ± 0.103 0.573 ± 0.049
Dual-TPP 22.117 ± 0.368∗ 2.506 ± 0.044∗ 0.108 ± 0.001∗ 724.681 ± 28.097∗ 100.857 ± 0.624∗ 21.521 ± 0.375∗ 2.511 ± 0.050∗ 2.297 ± 0.117∗ 0.952 ± 0.057∗

Attnhp 21.843 ± 0.316∗ 2.509 ± 0.051∗ 0.104 ± 0.004∗ 682.086 ± 63.199 101.117 ± 0.295∗ 21.153 ± 0.206∗ 2.509 ± 0.048∗ 2.806 ± 0.073∗ 0.809 ± 0.033∗

NHP 21.541 ± 0.203∗ 2.462 ± 0.018∗ 0.109 ± 0.001∗ 786.866 ± 31.782∗ 99.622 ± 0.426∗ 20.541 ± 0.203∗ 2.462 ± 0.021∗ 1.411 ± 0.048 0.588 ± 0.013∗

LogNM 22.082 ± 0.225∗ 2.932 ± 0.028∗ 0.109 ± 0.005∗ 815.764 ± 32.480∗ 102.207 ± 0.472∗ 21.713 ± 0.198∗ 2.914 ± 0.019∗ 1.982 ± 0.078∗ 0.741 ± 0.054
TCDDM 21.270 ± 0.528 2.796 ± 0.027∗ 0.102 ± 0.002 700.630 ± 40.377 100.237 ± 0.275∗ 20.912 ± 0.310 2.735 ± 0.026 1.959 ± 0.03∗ 0.816 ± 0.011∗

Homog. Poisson 22.595 ± 0.198∗ 2.946 ± 0.023∗ 0.129 ± 0.001∗ 1025.234 ± 139.141∗ 101.973 ± 0.380∗ 22.179 ± 0.298∗ 2.918 ± 0.037∗ 2.903 ± 0.065∗ 0.991 ± 0.067∗

CDiff 19.788 ± 0.343 2.375 ± 0.021 0.098 ± 0.02 668.287 ± 51.873 98.933 ± 0.573 19.674 ± 0.125 2.370 ± 0.061 1.932 ± 0.094 0.812 ± 0.051∗

Taxi dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 21.653 ± 0.163 1.231 ± 0.015∗ 0.372 ± 0.004∗ 252.761 ± 6.827 93.803 ± 0.454∗ 19.632 ± 0.179 1.550 ± 0.026 4.326 ± 0.063∗ 2.781 ± 0.088∗

Dual-TPP 24.483± 0.383∗ 1.353 ± 0.037∗ 0.402 ± 0.006∗ 285.590 ± 8.088∗ 95.211 ± 0.187∗ 20.952 ± 0.278∗ 1.627 ± 0.033∗ 4.995 ± 0.150∗ 3.795 ± 0.107∗

Attnhp 24.762± 0.217∗ 1.276 ± 0.015∗ 0.430± 0.003∗ 286.869 ± 9.973∗ 97.388 ± 0.381∗ 20.588 ± 0.208∗ 1.590 ± 0.024 4.915 ± 0.116∗ 3.509 ± 0.112∗

NHP 25.114 ± 0.268∗ 1.297± 0.019∗ 0.399± 0.040∗ 281.306 ± 8.271∗ 96.459 ± 0.521∗ 21.134 ± 0.148∗ 1.632 ± 0.030∗ 4.883 ± 0.119∗ 3.526 ± 0.135∗

LogNM 24.053 ± 0.609∗ 1.364 ± 0.032∗ 0.384 ± 0.005∗ 282.173 ± 4.532∗ 95.719 ± 0.779∗ 20.422 ± 0.224 1.603 ± 0.033 5.072 ± 0.066∗ 3.796 ± 0.116∗

TCDDM 22.148 ± 0.529 1.309 ± 0.030∗ 0.382 ± 0.019 259.944 ± 7.220 90.596 ± 0.574 20.191 ± 0.271 1.589 ± 0.064∗ 4.530 ± 0.118∗ 2.953 ± 0.237
Homog. Poisson 25.104 ± 0.083∗ 1.391 ± 0.032∗ 0.407 ± 0.002∗ 280.065 ± 7.541∗ 97.689 ± 0.613∗ 21.880 ± 0.175∗ 1.685 ± 0.019∗ 5.117 ± 0.151∗ 3.849 ± 0.105∗

CDiff 21.013 ± 0.158 1.131 ± 0.017 0.351 ± 0.004 243.2 ± 7.725 87.993 ± 0.178 19.028 ± 0.224 1.329 ± 0.029 3.690 ± 0.097 2.593 ± 0.124

Taobao dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 44.336 ±0.127 2.710 ±0.021∗ 0.594 ±0.030∗ 6397.66 ± 154.977 134.922 ± 0.473∗ 42.525 ± 0.151 ∗ 2.810 ± 0.028 4.022 ± 0.067 3.019 ± 0.017∗

Dual-TPP 47.324 ± 0.541∗ 3.237 ± 0.049∗ 0.871 ±0.014∗ 8325.564 ± 245.765∗ 141.687 ± 0.431∗ 38.530 ± 0.263∗ 4.439 ± 0.019∗ 5.893 ± 0.088∗ 3.832 ± 0.016∗

Attnhp 45.555 ± 0.345∗ 2.737 ± 0.021 0.708 ± 0.011∗ 6250.83 ± 265.440 134.582 ± 0.920∗ 43.624 ± 0.282∗ 2.855 ± 0.020 4.097 ± 0.016 2.892 ± 0.024
NHP 48.131 ± 0.297∗ 3.355 ± 0.030∗ 0.837 ± 0.009∗ 7909.437 ± 149.274∗ 137.644 ± 0.764∗ 38.204 ± 0.302 3.515 ± 0.028∗ 5.41 ± 0.081∗ 3.998 ± 0.027∗

LogNM 45.757 ± 0.287∗ 3.193 ± 0.043∗ 0.575 ± 0.012∗ 6558.437 ± 170.430 127.436 ± 0.606 39.769 ± 0.615 3.085 ± 0.076 4.914 ± 0.137∗ 3.814 ± 0.096∗

TCDDM 45.563 ± 0.889∗ 2.850 ± 0.058 0.569 ± 0.015 6843.217 ± 278.296 126.512 ± 0.491 42.441 ± 0.434∗ 2.940 ± 0.094 4.231 ± 0.158 2.883 ± 0.057
Homog. Poisson 52.990 ± 0.234∗ 3.288 ± 0.022∗ 0.906 ± 0.012∗ 35474.601 ± 3495.078∗ 151.689 ± 0.615∗ 41.476 ± 0.811∗ 3.519 ± 0.036∗ 6.567 ± 0.083∗ 4.731 ± 0.075∗

CDiff 44.621 ± 0.139 2.653 ± 0.011 0.551 ± 0.013 6850.359 ± 165.400 125.685 ± 0.151 40.783 ± 0.059∗ 2.831 ± 0.009 4.103 ± 0.034 2.947 ±0.019

Stackoverflow dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 42.359 ± 0.170 1.140 ± 0.014 1.554 ± 0.010∗ 2013.055 ± 160.862∗ 110.988 ± 0.559∗ 38.460 ± 0.204 1.294 ± 0.016 2.672 ± 0.019∗ 1.496 ± 0.017
Dual-TPP 41.752 ± 0.200 1.134 ± 0.019 1.514 ± 0.017∗ 1729.83 ± 67.928∗ 117.582 ± 0.420∗ 38.474 ± 0.274 1.364 ± 0.019 3.332 ± 0.088∗ 1.753 ± 0.036∗

Attnhp 42.591 ± 0.408∗ 1.145 ± 0.011 1.340 ± 0.006 1519.740 ± 52.216 108.542 ±0.531 39.76 ± 0.373∗ 1.385 ± 0.014∗ 3.424 ± 0.023∗ 1.813 ± 0.014∗

NHP 43.791 ± 0.147∗ 1.244 ± 0.030∗ 1.487 ± 0.004∗ 1693.977 ± 113.300∗ 116.952 ± 0.404∗ 40.453 ± 0.188∗ 1.447 ± 0.012∗ 3.552 ± 0.051∗ 1.793 ± 0.057∗

LogNM 46.280 ± 0.892∗ 1.447 ± 0.057∗ 1.669 ± 0.005∗ 2133.278 ± 163.516 115.122 ± 0.627∗ 42.594 ± 0.148∗ 1.507 ± 0.027 3.714 ± 0.078∗ 1.864 ± 0.076∗

TCDDM 42.128 ± 0.591 1.467 ± 0.014∗ 1.315 ± 0.004 1762.121 ± 64.437 107.659 ± 0.934 38.697 ± 0.718 1.444 ± 0.019 2.623 ± 0.044 1.428 ± 0.070
Homog. Poisson 45.923 ± 0.286∗ 1.374 ± 0.022 1.359 ± 0.012∗ 2762.4786 ± 196.091∗ 116.447 ± 0.418∗ 43.288 ± 0.503∗ 1.539 ± 0.016∗ 3.459 ± 0.039∗ 1.778 ± 0.051∗

CDiff 41.245 ± 1.400 1.141 ± 0.007 1.199 ± 0.006 1667.884 ± 32.220 106.175 ± 0.340 37.659 ± 0.334 1.421 ± 0.015∗ 1.726 ± 0.043 1.239 ± 0.029

Retweet dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 61.031 ± 0.092∗ 2.623 ± 0.036∗ 30.100 ± 0.413∗ 19686.811 ± 966.339∗ 106.110 ± 1.505 59.292 ± 0.197 3.011 ± 0.029 3.109 ± 0.092 1.858 ± 0.067
Dual-TPP 61.095 ± 0.101∗ 2.679 ± 0.026∗ 28.914 ± 0.300 17619.400 ± 1003.001∗ 106.900 ± 1.293 59.164 ± 0.069 2.981 ± 0.041∗ 2.548 ± 0.133∗ 1.608 ± 0.028∗

Attnhp 60.634 ± 0.097 2.561 ± 0.054 28.812 ± 0.272∗ 15396.198 ± 1058.618 107.234 ± 1.293∗ 59.302 ± 0.160 2.832 ± 0.057 2.736 ± 0.119 1.554 ± 0.084
NHP 60.953 ± 0.079 2.651 ± 0.045∗ 27.130 ± 0.224 15824.614 ± 1039.258 107.075 ± 1.398∗ 59.395 ± 0.098 2.780 ± 0.046 2.649 ± 0.104∗ 1.650 ± 0.044∗

LogNM 61.715 ± 0.152∗ 2.776 ± 0.043∗ 27.582 ± 0.191 17914.114 ± 919.022 106.711 ± 1.615∗ 59.223 ± 0.247 2.815 ± 0.095 2.873 ± 0.118 1.847 ± 0.095∗

TCDDM 60.501 ± 0.087 2.387 ± 0.050 27.303 ± 0.152 16070.5290 ± 540.227 106.048 ± 0.610 59.934 ± 0.122 2.762 ± 0.189 2.131 ± 0.090 1.129 ± 0.055
Homog. Poisson 61.224 ± 0.135∗ 3.179 ± 0.066∗ 35.125 ± 0.083 16800.047 ± 1793.164∗ 117.581 ± 0.500∗ 59.304 ± 0.194 2.920 ± 0.075∗ 3.076 ± 0.041∗ 1.901 ± 0.079∗

CDiff 60.661 ± 0.101 2.293 ± 0.034 27.101 ± 0.113 16895.629 ± 741.331 106.184 ± 1.121 59.744 ± 0.574 2.661 ± 0.030 2.132 ± 0.131 1.088 ± 0.031

Mooc dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 48.621 ± 0.352 1.169 ± 0.094 0.410 ± 0.005 12592.704 ± 235.279 143.045 ± 7.992 42.985 ± 0.113∗ 1.037 ± 0.027 5.769 ± 0.207 2.777 ± 0.119
Dual-TPP 50.184 ± 1.127 1.312 ± 0.019∗ 0.435 ± 0.006∗ 12511.299 ± 131.275 147.003 ± 2.908∗ 41.295 ± 0.074 1.272 ± 0.016∗ 6.121 ± 0.159∗ 3.255 ± 0.051
AttNHP 49.121 ± 0.720∗ 1.297 ± 0.049 0.420 ± 0.009 12838.668 ± 296.147 147.756 ± 4.812 43.001 ± 0.111∗ 1.038 ± 0.025 5.591 ± 0.083 2.597 ± 0.076
NHP 51.277 ± 1.768∗ 1.458 ± 0.063∗ 0.442 ± 0.007∗ 13082.583 ± 352.970 148.913 ± 11.628∗ 40.933 ± 0.204 1.298 ± 0.016∗ 6.160 ± 0.080 3.337 ± 0.047∗

LogNM 52.890 ± 1.151∗ 1.428 ± 0.061∗ 0.454 ± 0.008∗ 14868.891 ± 315.812 149.987 ± 16.581∗ 41.003 ± 0.127 1.307 ± 0.039∗ 5.895 ± 0.057∗ 2.838 ± 0.063
TCDDM 50.739 ± 0.765∗ 1.407 ± 0.112 0.429 ± 0.015 12409.522 ± 267.312 145.745 ± 11.835 42.662 ± 0.200 1.199 ± 0.057∗ 5.634 ± 0.094 2.663 ± 0.091
Homog. Poisson 58.568 ± 0.147∗ 1.161 ± 0.004 0.536 ± 0.002∗ 235478.446 ± 353.632 175.587 ± 10.333∗ 43.442 ± 0.716∗ 1.088 ± 0.037∗ 6.943 ± 0.155∗ 3.741 ± 0.112∗

CDiff 47.214 ± 0.628 1.095 ± 0.048 0.411 ± 0.009 12243.367 ± 188.453 146.361 ± 14.837∗ 42.118 ± 0.171∗ 1.041 ± 0.021 5.584 ± 0.186 2.566 ± 0.092

Amazon dataset

N = 20 events forecasting Interval forecasting t′ long
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 38.613 ± 0.536∗ 2.007 ± 0.054 0.477 ± 0.010∗ 1247.592 ± 96.544 82.506 ± 0.840 38.229 ± 0.052 1.995 ± 0.005 0.986 ± 0.011 0.414 ± 0.004
Dual-TPP 42.646 ± 0.752∗ 2.562 ± 0.202 0.482 ± 0.012∗ 1414.225 ± 70.306 86.453 ± 2.044 40.987 ± 0.490∗ 2.410 ± 0.034∗ 1.269 ± 0.011∗ 0.617 ± 0.003∗

AttNHP 39.480 ± 0.326 2.166 ± 0.026∗ 0.476 ± 0.033 1372.409 ± 53.202 84.323 ± 1.815∗ 39.870 ± 0.641 2.042 ± 0.031 0.998 ± 0.008 0.417 ± 0.005
NHP 42.571 ± 0.293∗ 2.561 ± 0.060 0.519 ± 0.023∗ 1426.601 ± 16.437∗ 92.053 ± 1.553∗ 41.110 ± 0.272∗ 2.447 ± 0.053∗ 1.278 ± 0.005∗ 0.603 ± 0.005∗

LNM 43.820 ± 0.232∗ 3.050 ± 0.286∗ 0.481 ± 0.145∗ 1523.064 ± 312.396∗ 90.910 ± 1.611∗ 41.953 ± 0.395 2.872 ± 0.015∗ 1.268 ± 0.007∗ 0.614 ± 0.009∗

TCDDM 42.245 ± 0.174∗ 2.998 ± 0.115∗ 0.476 ± 0.111 1086.146 ± 94.188 83.826 ± 1.508 40.432 ± 0.307 2.797 ± 0.048 0.996 ± 0.004∗ 0.429 ± 0.003∗

Homog. Poisson 43.940 ± 0.360∗ 4.870 ± 0.019∗ 0.691 ± 0.004∗ 1775.151 ± 37.202∗ 112.392 ± 0.464∗ 42.713 ± 0.474∗ 3.526 ± 0.037∗ 1.524 ± 0.009∗ 0.934 ± 0.006∗

CDiff 37.728 ± 0.199 2.091 ± 0.163 0.464 ± 0.086 1189.691 ± 71.215 81.987 ± 1.905 37.068 ± 0.038 2.058 ± 0.009 0.961 ± 0.018 0.416 ± 0.006
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Table 12. Results for all metrics across 7 different datasets for N = 10 events forecasting and medium interval forecasting, bold case
indicates the best, under line indicates the second best, * indicates stats. significance w.r.t. the method with the lowest value

Synthetic dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 12.962 ± 0.128 1.747 ± 0.041 0.104 ± 0.006 612.354 ± 21.017 99.473 ± 0.767 13.263 ± 0.213 1.721 ± 0.011 1.404 ± 0.023 0.561 ± 0.029
Dual-TPP 14.141 ± 0.125∗ 1.965 ± 0.053∗ 0.108 ± 0.008∗ 713.157 ± 30.615∗ 99.688 ± 0.672∗ 13.919 ±0.271∗ 1.777 ± 0.019∗ 2.109 ± 0.048∗ 0.667 ± 0.033∗

Attnhp 13.916 ± 0.110 1.851 ± 0.039∗ 0.103 ± 0.009 587.161 ± 41.113 100.041 ± 0.551∗ 13.654 ± 0.163 1.799 ± 0.018∗ 1.517 ± 0.045∗ 0.741 ± 0.019∗

NHP 13.588 ± 0.313 1.801 ± 0.016∗ 0.107 ± 0.005∗ 712.673 ± 66.121∗ 99.343 ± 0.721∗ 13.551 ± 0.197∗ 1.801 ± 0.030 1.408 ± 0.051 0.590 ± 0.027
LogNM 13.969 ± 0.266∗ 1.915 ± 0.029∗ 0.105 ± 0.004 667.876 ± 58.456∗ 99.552 ± 0.901 13.784 ± 0.192∗ 1.779 ± 0.029 1.493 ± 0.043∗ 0.571 ± 0.033
TCDDM 13.503 ± 0.160 1.863 ± 0.037 0.105 ± 0.001 632.431 ± 42.223 99.267 ± 0.576 13.559 ± 0.177∗ 1.761 ± 0.032 1.485 ± 0.025∗ 0.631 ± 0.011∗

Homog. Poisson 15.532 ± 0.197∗ 2.057 ± 0.018∗ 0.143 ± 0.005∗ 1014.814 ± 72.140∗ 101.156 ± 0.601∗ 15.240 ± 0.232∗ 1.923 ± 0.087∗ 1.740 ± 0.049∗ 1.041 ± 0.019∗

CDiff 13.792 ± 0.251 1.786 ± 0.019 0.096 ± 0.005 419.982 ± 52.083 99.063 ± 0.523 13.371 ± 0.572 1.773 ± 0.017∗ 1.473 ± 0.035∗ 0.632 ± 0.015∗

Taxi dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 11.875 ± 0.172 0.764 ± 0.008 0.363 ± 0.002 261.896 ± 33.712 89.524 ± 0.552 10.184 ± 0.191 0.906 ± 0.019 2.976 ± 0.093 2.216 ± 0.061
Dual-TPP 13.058 ± 0.220∗ 0.966 ± 0.011∗ 0.395 ± 0.003∗ 268.407 ± 41.313∗ 90.812 ± 0.497∗ 11.031 ± 0.227∗ 1.044 ± 0.027∗ 3.478 ± 0.147∗ 2.547 ± 0.127∗

Attnhp 12.542 ± 0.336 0.823 ± 0.007 0.376 ± 0.003∗ 253.040 ± 37.710 92.812 ± 0.129 10.339 ± 0.194∗ 0.929 ± 0.031 3.249 ± 0.099∗ 2.341 ± 0.147∗

NHP 13.377 ± 0.184∗ 0.922 ± 0.009∗ 0.397 ± 0.005∗ 269.204 ± 28.418∗ 92.182 ± 0.384∗ 11.115 ± 0.209∗ 1.044 ± 0.017∗ 3.523 ± 0.102∗ 2.548 ± 0.121∗

LogNM 12.765 ± 0.106∗ 1.004 ± 0.013∗ 0.383 ± 0.015∗ 263.311 ± 26.418 93.120 ± 0.526∗ 10.527 ± 0.140∗ 0.958 ± 0.033∗ 3.398 ± 0.158∗ 2.431 ± 0.106∗

TCDDM 11.885 ± 0.149 1.121 ± 0.072∗ 0.385 ± 0.009∗ 254.312 ± 33.659 90.703 ± 0.356 10.209 ± 0.337∗ 0.998 ± 0.035∗ 3.441 ± 0.201∗ 2.339 ± 0.154
Homog. Poisson 14.209 ± 0.097∗ 1.402 ± 0.033∗ 0.397 ± 0.004∗ 279.410 ± 19.417∗ 96.350± 0.513∗ 11.059 ± 0.172 ∗ 1.112 ± 0.0315∗ 4.065 ± 0.197∗ 2.994 ± 0.251∗

CDiff 11.004 ± 0.191 0.785 ± 0.007 0.350 ± 0.002 236.572 ± 35.459 90.721 ± 0.291 9.335 ± 0.211 0.926 ± 0.023 2.972 ± 0.111 2.117 ± 0.090

Taobao dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 21.547 ± 0.138∗ 1.527 ± 0.035∗ 0.591 ± 0.019 5968.317 ± 240.664 133.147 ± 0.341 20.101 ± 0.127∗ 1.671 ± 0.012∗ 2.403 ± 0.042 1.391 ± 0.023
Dual-TPP 23.691 ± 0.203∗ 2.674 ± 0.032∗ 0.873 ± 0.010∗ 8413.261 ± 222.427∗ 139.271 ± 0.348∗ 18.817 ± 0.215 1.738 ± 0.010∗ 4.207 ± 0.076∗ 2.352 ± 0.021∗

Attnhp 21.683 ± 0.215 1.514 ± 0.015∗ 0.608 ± 0.011∗ 6034.771 ± 170.267 135.271 ± 0.395 20.653 ± 0.162∗ 1.342 ± 0.009 2.221 ± 0.045 1.297 ± 0.011
NHP 24.068 ± 0.331∗ 2.769 ± 0.033∗ 0.855 ± 0.013∗ 7734.518 ± 276.670∗ 137.693 ± 0.225∗ 18.991 ± 0.278∗ 1.862 ± 0.014∗ 3.995 ± 0.077∗ 2.437 ± 0.017∗

LogNM 23.195 ± 0.039∗ 2.429 ± 0.045∗ 0.602 ± 0.037∗ 6719.015 ± 163.868 127.411 ± 0.573 19.383 ± 0.402∗ 1.826 ± 0.005∗ 3.634 ± 0.058∗ 1.745 ± 0.014∗

TCDDM 21.012 ± 0.520 2.598 ± 0.047 0.610 ± 0.022∗ 6630.487 ± 259.540 132.7112 ± 0.774 20.032 ± 0.691∗ 1.558 ± 0.015∗ 2.951 ± 0.069∗ 1.649 ± 0.0183
Homog. Poisson 27.353 ± 0.426∗ 2.772 ± 0.016∗ 0.887 ± 0.014∗ 19301.747 ± 349.301∗ 155.236 ± 0.729∗ 19.251 ± 0.221∗ 1.920 ± 0.009∗ 5.001 ±0.022 ∗ 3.209 ± 0.011∗

CDiff 21.221 ± 0.176 1.416 ± 0.024 0.535 ± 0.016 6718.144 ± 161.416 126.824 ± 0.366 19.677 ± 0.103∗ 1.438 ± 0.012 2.307 ± 0.059 1.160 ± 0.019

Stackoverflow dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 21.062 ± 0.372 0.921 ± 0.019 1.235 ± 0.006 1925.362 ± 149.208∗ 107.566 ± 0.218∗ 18.523 ± 0.301 0.907 ± 0.013 2.327 ± 0.040 1.339 ± 0.033
Dual-TPP 21.229 ± 0.394∗ 0.936 ± 0.013 1.223 ± 0.010∗ 1845.469 ± 103.450∗ 107.274 ± 0.200∗ 19.155 ± 0.116∗ 0.923 ± 0.011∗ 2.344 ± 0.053∗ 1.478 ± 0.038∗

Attnhp 22.019 ± 0.220∗ 0.978 ± 0.023 1.225 ± 0.007∗ 1571.807 ± 99.921 100.137 ± 0.167 19.487 ± 0.130∗ 0.973 ± 0.013∗ 2.415 ± 0.026∗ 1.455 ± 0.025∗

NHP 21.655 ± 0.314∗ 0.970 ± 0.014∗ 1.266 ± 0.003∗ 1698.947 ± 123.208 108.867 ± 0.361∗ 19.314 ± 0.098∗ 0.959 ± 0.017∗ 2.481 ± 0.035∗ 1.419 ± 0.031∗

LogNM 22.339 ± 0.322∗ 0.970 ± 0.011 1.251 ± 0.005 1841.119 ± 71.077∗ 105.674 ± 0.337 19.303 ± 0.137 0.955 ± 0.014 2.751 ± 0.028∗ 1.487 ± 0.046∗

TCDDM 22.042 ± 0.193∗ 1.205 ± 0.014 1.228 ± 0.010∗ 1772.325 ± 221.358∗ 108.1113 ± 0.112∗ 18.920 ± 0.125 0.930 ± 0.015 2.472 ± 0.033 1.293 ± 0.050
Homog. Poisson 23.115 ± 0.318∗ 1.012 ± 0.027 1.327 ± 0.004∗ 2105.433 ± 88.409∗ 108.322 ± 0.315∗ 22.714 ± 0.300∗ 0.973 ± 0.023∗ 2.889 ± 0.020∗ 1.597 ± 0.021∗

CDiff 20.191 ± 0.455 0.916 ± 0.010 1.180 ± 0.003 1880.59 ± 78.283 102.367 ± 0.267∗ 18.268 ± 0.167 0.883 ± 0.009 2.107 ± 0.031 1.219 ± 0.023

Retweet dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 31.743 ± 0.068∗ 1.927 ± 0.027∗ 33.683 ± 0.245∗ 17696.498 ± 986.684∗ 105.073 ± 0.958 27.411 ± 0.190 2.013 ± 0.032∗ 2.741 ± 0.108∗ 1.971 ± 0.031∗

Dual-TPP 31.652 ± 0.075∗ 1.963 ± 0.038∗ 28.104 ± 0.486∗ 17553.619 ± 731.120∗ 106.721 ± 0.774∗ 28.357 ± 0.176∗ 1.991 ± 0.050∗ 1.963 ± 0.094 1.615 ± 0.037
Attnhp 30.337 ± 0.065 1.823 ± 0.031∗ 26.310 ± 0.333 14377.241± 1319.797 106.021 ± 1.011 26.787 ± 0.114 1.961 ± 0.029 1.981 ± 0.115∗ 1.597 ± 0.058∗

NHP 30.817 ± 0.090 1.713 ± 0.024 27.010 ± 0.429∗ 15214.175± 695.184∗ 107.053 ± 1.390∗ 27.617 ± 0.099∗ 1.997 ± 0.047∗ 1.959 ± 0.124∗ 1.562 ± 0.080∗

LogNM 31.974 ± 0.032∗ 1.942 ± 0.062∗ 28.825 ± 0.221 17339.802 ± 765.475∗ 106.014 ± 0.633 27.283 ± 0.078∗ 1.995 ± 0.026∗ 2.327 ± 0.126 1.649 ± 0.069
TCDDM 32.006 ± 0.074 1.789 ± 0.094 29.124 ± 0.405 18874.939 ±828.544 106.738 ± 0.791 27.993 ± 0.230 2.035 ± 0.047∗ 1.997 ± 0.215 1.337 ± 0.080
Homog. Poisson 30.885 ± 0.017 1.987 ± 0.036∗ 33.241 ± 0.512∗ 17892.301 ± 355.213∗ 114.286 ± 0.753∗ 26.950 ± 0.306 1.987 ± 0.026∗ 2.774 ± 0.118∗ 2.023 ± 0.0355∗

CDiff 31.237 ± 0.078∗ 1.745 ± 0.036 26.429 ± 0.201 15636.184 ± 713.516 105.767 ± 0.771 27.739 ± 0.105 1.973 ± 0.036 1.907 ± 0.111 1.299 ± 0.043

Mooc dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 25.861 ± 0.352 1.032 ± 0.073 0.391 ± 0.002 11931.797 ± 254.663 142.041 ± 5.730 22.640 ± 0.171∗ 0.921 ± 0.063 4.956 ± 0.277 2.214 ± 0.057
Dual-TPP 28.785 ± 0.384∗ 1.087 ± 0.012∗ 0.421 ± 0.006∗ 12721.909 ± 126.31 146.841 ± 4.188∗ 22.359 ± 0.083∗ 1.028 ± 0.009 5.573 ± 0.173∗ 2.931 ± 0.029∗

AttNHP 26.765 ± 0.221∗ 1.054 ± 0.009 0.421 ± 0.011 13138.381 ± 372.632∗ 144.641 ± 3.093∗ 23.185 ± 0.071∗ 0.958 ± 0.044 5.105 ± 0.040 2.491± 0.050
NHP 27.371 ± 0.632∗ 1.134 ± 0.064 0.429 ± 0.007∗ 13275.513 ± 262.612∗ 143.526± 9.509∗ 21.275 ± 0.051 1.038 ± 0.026∗ 5.349 ± 0.077∗ 3.163 ± 0.043∗

LogNM 29.497 ± 0.325∗ 1.120 ± 0.037∗ 0.433 ± 0.013∗ 12692.049 ± 255.629 144.093 ± 5.077∗ 21.727 ± 0.183 1.121 ± 0.018∗ 5.297 ± 0.029 3.099 ± 0.060∗

TCDDM 24.515 ± 0.339 1.218 ± 0.065∗ 0.425 ± 0.019 11958.023 ± 267.593 143.293 ± 12.089 23.020 ± 0.145∗ 1.126 ± 0.052∗ 5.224 ± 0.075∗ 2.476 ± 0.049
Homog. Poisson 33.349 ± 0.143∗ 1.269 ± 0.006∗ 0.443 ± 0.016∗ 232853.735 ± 71.130∗ 168.305 ± 3.126∗ 21.950 ± 0.043 1.183 ± 0.017 6.036 ± 0.261∗ 3.330 ± 0.026 ∗

CDiff 24.544 ± 0.305 0.944 ± 0.032 0.404 ± 0.003 12052.014 ± 213.141 144.313 ± 8.726∗ 22.768 ± 0.125∗ 0.935 ± 0.074 5.120 ± 0.116∗ 2.439 ± 0.034

Amazon dataset

N = 10 events forecasting Interval forecasting t′ medium
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 24.956 ± 0.663 1.765 ± 0.039 0.442 ± 0.015 1211.590 ± 62.458 83.401 ± 1.033 24.096 ± 0.043∗ 1.678 ± 0.024 0.987 ± 0.009 0.408 ± 0.010
Dual-TPP 25.929 ± 0.280∗ 2.098 ± 0.101∗ 0.475 ± 0.008∗ 1376.448 ± 104.345∗ 82.352 ± 1.285 23.688 ± 0.411∗ 2.208 ± 0.094∗ 1.162 ± 0.031∗ 0.612 ± 0.009∗

AttNHP 24.116 ± 0.807 1.741 ± 0.039 0.454 ± 0.014 1323.165 ± 62.289 84.323 ± 1.815 24.278 ± 0.218∗ 1.693± 0.067 0.998 ± 0.005 0.431 ± 0.010
NHP 25.730 ± 0.497∗ 1.843 ± 0.053∗ 0.491 ± 0.048∗ 1426.601 ± 16.437∗ 89.135 ± 1.092∗ 22.506 ± 0.141 1.884 ± 0.092∗ 1.218 ± 0.006 0.566 ± 0.010∗

LNM 26.632 ± 0.519∗ 1.955 ± 0.112∗ 0.464 ± 0.066∗ 1555.852 ± 33.930∗ 89.305 ± 1.288∗ 23.049 ± 0.412 2.658 ± 0.030∗ 1.117 ± 0.009∗ 0.513 ± 0.008∗

TCDDM 25.091 ± 0.227∗ 1.778 ± 0.090 0.448 ± 0.082 1274.340 ± 92.095 82.105 ± 1.564 24.007 ± 0.109∗ 2.103 ± 0.043∗ 0.980 ± 0.004 0.430 ± 0.011
Homog. Poisson 28.945 ± 0.441∗ 3.076 ± 0.021∗ 0.700 ± 0.009∗ 2103.582 ± 38.491∗ 109.143 ± 0.304∗ 23.745 ± 0.738 1.988 ± 0.057∗ 1.423 ± 0.005∗ 0.847 ± 0.003∗

CDiff 24.230 ± 0.287 1.766± 0.079 0.450 ± 0.049 1146.530 ± 43.595 82.124 ± 2.094 23.994 ± 0.113∗ 1.503 ± 0.034 1.005 ± 0.010 0.409 ± 0.005
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Table 13. Results for all metrics across 7 different datasets for N = 5 events forecasting and small interval forecasting, bold case
indicates the best, under line indicates the second best, * indicates stats. significance w.r.t. the method with the lowest value

Synthetic dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 8.706 ± 0.138 1.216 ± 0.023 0.091 ± 0.003 510.171 ± 23.802∗ 98.857 ± 0.185 8.230 ± 0.210 1.184 ± 0.051∗ 1.281 ± 0.079∗ 0.724 ± 0.048∗

Dual-TPP 8.644 ± 0.102∗ 1.280 ± 0.011∗ 0.093 ± 0.001∗ 453.129 ± 27.592∗ 98.683 ± 0.351 8.248 ± 0.235∗ 1.177 ± 0.047 1.161 ± 0.093∗ 0.560 ± 0.018∗

Attnhp 8.687 ± 0.149 1.225 ± 0.031 0.089 ± 0.003 415.593 ± 24.153 100.762 ± 0.020 8.342 ± 0.078 1.192 ± 0.040∗ 1.131 ± 0.059 0.528 ± 0.034
NHP 8.565 ± 0.098 1.207 ± 0.017 0.094 ± 0.002∗ 431.286 ± 30.272 100.861 ± 0.183∗ 8.128 ± 0.274 1.171 ± 0.053 1.217 ± 0.073∗ 0.608 ±0.023∗

LogNM 10.093 ± 0.145∗ 1.390 ± 0.019∗ 0.093 ± 0.005∗ 482.341 ± 29.601∗ 101.984 ± 0.147∗ 8.449 ± 0.093 1.244 ± 0.101∗ 1.239 ± 0.028∗ 0.552 ± 0.011
TCDDM 8.881 ± 0.112∗ 1.295 ± 0.008∗ 0.095 ± 0.001 472.54 ± 33.634 99.008 ± 0.251 8.593 ± 0.185 1.227 ± 0.061 1.221 ± 0.058∗ 0.524 ± 0.023
Homog. Poisson 10.23 ± 0.135∗ 1.268 ± 0.015∗ 0.101 ± 0.005∗ 486.35 ± 20.561∗ 101.357 ± 0.301∗ 10.587 ± 0.227∗ 1.265 ± 0.114∗ 1.475 ± 0.062∗ 0.679 ± 0.027∗

CDiff 8.459 ± 0.167 1.196 ± 0.015 0.088 ±0.002 473.506 ± 15.600 98.011 ± 0.197 8.095 ± 0.176 1.175 ± 0.059 1.068 ± 0.035 0.517 ± 0.039

Taxi dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 5.952 ± 0.126 0.500 ± 0.011 0.322 ± 0.004 221.745 ± 5.084 85.994 ± 0.227 4.780 ± 0.214 0.518 ± 0.010 1.893 ± 0.052 1.405 ± 0.108
Dual-TPP 7.534 ± 0.111∗ 0.636 ± 0.009∗ 0.340 ± 0.003 252.822 ± 3.853∗ 89.727 ±0.320 6.225 ± 0.117∗ 0.647 ± 0.029∗ 1.910 ± 0.043∗ 1.417 ± 0.081∗

Attnhp 6.441 ± 0.090 0.682 ± 0.010 0.347 ±0.002 259.480 ± 4.819∗ 89.070 ± 0.152 6.201 ± 0.111 0.642 ± 0.024 1.923 ± 0.062∗ 1.362 ± 0.095
NHP 7.405 ± 0.122∗ 0.641 ± 0.013∗ 0.351 ± 0.008∗ 231.504 ± 6.054∗ 91.625 ± 0.177∗ 6.244 ± 0.172∗ 0.653 ± 0.019∗ 1.927 ± 0.038∗ 1.387 ± 0.117∗

LogNM 7.209 ± 0.184∗ 0.608 ± 0.008 0.335 ± 0.003 255.600 ± 4.601∗ 90.512 ± 0.169 6.664 ± 0.143∗ 0.721 ± 0.013∗ 1.897 ± 0.044∗ 1.401 ± 0.079
TCDDM 5.877 ± 0.095 0.648 ± 0.015∗ 0.327 ± 0.005 246.121 ± 5.512 88.051 ± 0.240 5.792 ± 0.110 0.683 ± 0.024 1.910 ± 0.037∗ 1.395 ± 0.100
Homog. Poisson 6.905 ± 0.094∗ 0.692 ± 0.007∗ 0.393 ± 0.006∗ 272.51 ± 3.049∗ 94.501 ± 0.192∗ 6.520 ± 0.133∗ 0.797 ± 0.019∗ 2.057 ± 0.012∗ 1.584 ± 0.078∗

CDiff 5.966 ± 0.083 0.547 ± 0.007 0.318 ± 0.003 223.073 ± 6.221 89.535 ± 0.294 5.128 ± 0.148 0.603 ± 0.025 1.889 ± 0.019 1.363 ± 0.074

Taobao dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 11.317 ± 0.111 0.817± 0.037 0.573 ± 0.011∗ 4652.619 ±189.940 133.837 ± 0.524 11.546 ± 0.124∗ 0.866± 0.016 1.402± 0.062 0.654± 0.011
Dual-TPP 13.280 ± 0.092∗ 1.877±0.014∗ 0.691± 0.007∗ 6828.105 ± 235.303∗ 134.437± 0.458∗ 9.779± 0.194∗ 1.655± 0.028∗ 3.474± 0.037∗ 1.966±0.018∗

Attnhp 11.223 ± 0.145 0.873± 0.023 0.550± 0.014 4231.499± 155.699 132.266± 0.532 11.498± 0.175∗ 0.858± 0.020 1.312± 0.034 0.566± 0.024
NHP 11.973 ± 0.176∗ 1.910 ± 0.031∗ 0.712± 0.017∗ 5961.627± 183.108∗ 134.693± 0.369∗ 8.748± 0.294 1.718± 0.035∗ 3.297± 0.051∗ 2.001± 0.015∗

LogNM 11.052 ± 0.108∗ 1.941 ± 0.049∗ 0.601 ± 0.017 5006.301 ± 287.390 126.32 ± 0.591 10.395 ± 0.201∗ 1.304 ± 0.040∗ 1.932 ± 0.027∗ 0.994 ± 0.008
TCDDM 11.609± 0.184 1.690 ± 0.023∗ 0.675 ± 0.009 5042.501 ± 324.55∗ 129.009± 0.923∗ 11.203 ± 0.192∗ 1.209 ± 0.068∗ 2.003 ± 0.033 1.024 ± 0.020
Homog. Poisson 13.510 ± 0.203∗ 1.392 ± 0.034∗ 1.093 ± 0.047 5039.401 ± 442.580∗ 143.105 ± 0.699∗ 9.300 ± 0.225 1.527 ± 0.079∗ 3.342 ± 0.042∗ 2.401 ± 0.0028∗

CDiff 10.147 ± 0.140 0.730 ± 0.019 0.519 ± 0.008 4736.039 ± 114.586 124.339 ± 0.322 9.122 ± 0.179 0.861 ± 0.022 1.628± 0.033 0.730 ± 0.013

Stackoverflow dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 11.590± 0.186 0.586 ± 0.019 1.227± 0.018 1413.759± 79.723 109.014± 0.422 9.677± 0.117 0.530 ± 0.021 1.689 ± 0.017∗ 1.007± 0.030
Dual-TPP 11.719 ± 0.109∗ 0.591 ± 0.026∗ 1.296 ± 0.010∗ 1319.909 ± 121.366 106.697 ± 0.381 9.963 ± 0.230∗ 0.563 ± 0.023 1.572 ± 0.036 0.987 ± 0.042
Attnhp 11.595 ± 0.197 0.575 ± 0.009 1.188± 0.014 1418.384± 48.412 105.799± 0.516 9.787± 0.321 0.552± 0.018 1.559 ± 0.031∗ 0.963 ± 0.025
NHP 11.807± 0.155∗ 0.596 ± 0.015∗ 1.261±0.013∗ 1292.252± 133.873 108.074± 0.661∗ 10.809± 0.182∗ 0.570± 0.026∗ 1.716± 0.037∗ 1.033± 0.027∗

LogNM 13.124 ± 0.174∗ 0.702 ± 0.008∗ 1.182 ± 0.039 1335.23 ± 145.031 108.409 ± 0.692 11.015 ± 0.191∗ 0.629 ± 0.093∗ 1.664 ± 0.042∗ 1.032 ± 0.018∗

TCDDM 11.41 ± 0.129 0.630 ± 0.015∗ 1.201 ± 0.028 1412.195 ± 135.312 107.893 ± 0.942 10.23 ± 0.096∗ 0.611 ± 0.024∗ 1.532 ± 0.06 1.021 ± 0.010∗

Homog. Poisson 15.493 ± 0.144∗ 0.693 ± 0.013∗ 1.336 ± 0.059∗ 2034.235 ± 125.314 108.900 ± 0.074∗ 13.12 ± 0.073∗ 0.921 ± 0.045∗ 1.886± 0.008∗ 1.120 ± 0.039∗

CDiff 10.735 ± 0.183 0.571 ± 0.012 1.153 ± 0.011 1386.314 ± 57.750 100.586 ± 0.299 8.849 ± 0.187 0.545 ± 0.015 1.564 ± 0.029∗ 0.991± 0.035

Retweet dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 16.145± 0.096 1.105± 0.026 27.236± 0.259 22428.809 ± 780.393 103.052± 1.206 13.199 ± 0.089 1.201± 0.053 1.602± 0.096∗ 1.103± 0.075∗

Dual-TPP 16.050 ± 0.085 1.077± 0.027∗ 31.493±0.162∗ 15403.772± 831.413 101.322± 1.127 13.809± 0.048 1.197 ± 0.025∗ 1.478±0.082∗ 0.980 ± 0.038∗

Attnhp 16.124 ± 0.089 1.058 ± 0.029 29.247 ± 0.145 18377.481 ± 878.880 105.93 ± 1.380 14.120 ± 0.127∗ 1.144 ± 0.034 1.315 ± 0.070 0.862 ± 0.051
NHP 15.945 ± 0.094 1.113 ± 0.040∗ 32.367 ± 0.104∗ 22611.646 ± 797.268∗ 107.022 ± 1.077∗ 14.201 ± 0.119∗ 1.161 ± 0.023∗ 1.369 ± 0.102∗ 0.894 ± 0.025∗

LogNM 16.043 ± 0.222 1.313 ± 0.011∗ 30.853 ± 0.119 23084.93± 784.430 106.941 ± 2.031 13.937 ± 0.239 1.208 ± 0.029∗ 1.590 ± 0.113 0.874 ± 0.068
TCDDM 15.874 ± 0.053 1.194 ± 0.021∗ 28.530 ± 0.110 19093.229 ± 880.932 105.570 ± 0.94 14.771 ± 0.298∗ 1.340 ± 0.030∗ 1.275 ± 0.084 0.798 ± 0.028
Homog. Poisson 19.432 ± 0.033∗ 1.405 ± 0.008∗ 30.543 ± 0.083∗ 28094.854 ± 684.501∗ 108.591 ± 1.049∗ 15.039 ± 0.591∗ 1.347 ± 0.094∗ 1.898 ± 0.020∗ 1.091 ± 0.044∗

CDiff 15.858 ± 0.080 1.023± 0.036 26.078± 0.175 21778.765± 689.206 106.62± 1.008 14.073 ± 0.065∗ 1.127 ± 0.029 1.123 ±0.099 0.782 ± 0.063

Mooc dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 11.718 ± 0.240 0.811 ± 0.045 0.308 ± 0.015 12949.391 ± 441.590 142.735 ± 17.901 10.657 ± 0.092 0.692 ± 0.018 1.772 ± 0.034 0.890 ± 0.056
Dual-TPP 14.503 ± 0.334∗ 0.950 ± 0.027 0.412 ± 0.006∗ 14492.350 ± 294.754 146.100 ± 31.051∗ 9.443 ± 0.130∗ 0.845 ± 0.021∗ 2.107 ± 0.045∗ 1.335 ± 0.030∗

AttNHP 12.007 ± 0.214 0.854 ± 0.013∗ 0.297 ± 0.009 11049.592 ± 509.283 144.901 ± 24.093 10.201 ± 0.097∗ 0.775 ± 0.018 1.891 ± 0.029 1.084 ± 0.044
NHP 13.790 ± 0.327 0.983 ± 0.042∗ 0.394 ± 0.009 14092.491 ± 301.340 143.534 ± 15.324∗ 9.795 ± 0.204∗ 0.811 ± 0.021 1.960 ± 0.047 1.320 ± 0.084
LogNM 12.667 ± 0.255 0.818 ± 0.034 0.407 ± 0.016∗ 15030.593 ± 503.492 143.010 ± 25.029∗ 8.763 ± 0.113 0.796 ± 0.033 1.833 ± 0.042 1.230 ± 0.051∗

TCDDM 10.491 ± 0.134 0.825 ± 0.019 0.355 ± 0.007 13059.245 ± 109.501 142.941 ± 20.302 9.506 ± 0.107 0.753 ± 0.023 1.634 ± 0.094 1.046 ± 0.064
Homog. Poisson 15.203 ± 0.075∗ 1.007 ± 0.004∗ 0.582 ± 0.009∗ 18930.407 ± 404.338∗ 175.587 ± 10.333∗ 9.104 ± 0.058 0.924± 0.018∗ 2.296 ± 0.106∗ 1.203 ± 0.049∗

CDiff 10.019 ± 0.429 0.792 ± 0.028 0.310 ± 0.014 11304.592 ± 100.049 144.551 ± 25.537∗ 9.259 ± 0.212 0.686 ± 0.021 1.733 ± 0.104 0.923 ± 0.078

Amazon dataset

N = 5 events forecasting Interval forecasting t′ small
OTD RMSEe RMSEx+ MAPE sMAPE OTD RMSEe RMSE|s+| MAE|s+|

HYPRO 9.552 ± 0.172 1.397 ± 0.033 0.433 ± 0.008 1280.563 ± 45.347 82.847 ± 0.748 8.927 ± 0.052 1.284 ± 0.010 0.805 ± 0.004 0.391 ± 0.008
Dual-TPP 11.309 ± 0.093∗ 1.742 ± 0.302∗ 0.476 ± 0.010∗ 1420.118 ± 52.129 86.633 ± 0.573∗ 8.201 ± 0.490 1.408 ± 0.042∗ 1.007 ± 0.011∗ 0.517 ± 0.003∗

AttNHP 9.430 ± 0.131 1.117 ± 0.049 0.427 ± 0.033 1335.591 ± 55.930 83.121 ± 0.415 9.072 ± 0.059∗ 1.053 ± 0.041 0.763 ± 0.015 0.378 ± 0.007
NHP 11.273 ± 0.198∗ 1.431 ± 0.024 0.501 ± 0.009∗ 1456.240 ± 35.557 90.591 ± 0.667∗ 9.113 ± 0.135∗ 1.288 ± 0.018 0.978 ± 0.012∗ 0.493 ± 0.012∗

LNM 10.230 ± 0.224∗ 1.663 ± 0.168∗ 0.447 ± 0.015 1447.203 ± 112.480∗ 88.900 ± 0.610 9.042 ± 0.395 1.572 ± 0.031∗ 0.874 ± 0.007∗ 0.487 ± 0.009
TCDDM 10.557 ± 0.331∗ 1.409 ± 0.203 0.460 ± 0.032 1392.380 ± 84.213 82.401 ± 0.810 10.003 ± 0.120∗ 1.338 ± 0.014 0.793 ± 0.012 0.420 ± 0.005
Homog. Poisson 12.502 ± 0.155∗ 2.130 ± 0.028∗ 0.573 ± 0.007∗ 1839.291 ± 54.200∗ 105.831 ± 0.901∗ 8.923 ± 0.091 2.010 ± 0.014∗ 1.042 ± 0.010∗ 0.744 ± 0.011∗

CDiff 9.478 ± 0.081 1.326 ± 0.082 0.424 ± 0.018 1039.338 ± 43.030 81.287 ± 0.994 9.093 ± 0.049∗ 1.024 ± 0.016 0.784 ± 0.009 0.390 ± 0.007
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