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Abstract
Finite-sum optimization has wide applications
in machine learning, covering important prob-
lems such as support vector machines, regression,
etc. In this paper, we initiate the study of solv-
ing finite-sum optimization problems by quantum
computing. Specifically, let f1, . . . , fn : Rd → R
be ℓ-smooth convex functions and ψ : Rd →
R be a µ-strongly convex proximal function.
The goal is to find an ϵ-optimal point for
F (x) = 1

n

∑n
i=1 fi(x) + ψ(x). We give

a quantum algorithm with complexity Õ
(
n +√

d+
√
ℓ/µ
(
n1/3d1/3 + n−2/3d5/6

))
,1 improv-

ing the classical tight bound Θ̃
(
n +

√
nℓ/µ

)
.

We also prove a quantum lower bound Ω̃(n +
n3/4(ℓ/µ)1/4) when d is large enough. Both our
quantum upper and lower bounds can extend to
the cases where ψ is not necessarily strongly con-
vex, or each fi is Lipschitz but not necessarily
smooth. In addition, when F is nonconvex, our
quantum algorithm can find an ϵ-critial point us-
ing Õ(n+ ℓ(d1/3n1/3 +

√
d)/ϵ2) queries.

1. Introduction
In machine learning, especially supervised learning, it is
common that the overall loss function can be written as a
sum of loss functions at each data point. In particular, let
f1, . . . , fn : Rd → R be a sequence of functions, our goal
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1The Õ and Ω̃ notations omit poly-logarithmic terms, i.e.,
Õ(f) = O(f poly(log f)) and Ω̃(f) = Ω(f poly(log f)).

is to find an approximate minimum of the function

F (x) := f(x) + ψ(x), (1)

where f(x) satisfies

f(x) =
1

n

n∑
i=1

fi(x) (2)

and ψ(x) is a known convex function, sometimes referred to
as the proximal function. For instance, given n training data
(x1, y1), . . . , (xn, yn) where xi ∈ Rd−1,yi ∈ R for each
i ∈ [n], if fi is the square loss fi(w, b) = (w⊤xi−yi−b)2
for w ∈ Rd−1 and b ∈ R, then Eq. (2) gives linear least
squares regression of these data. In general, such finite-sum
optimization problems arises in many places in machine
learning, statistics, and operations research, such as support
vector machines, logistic regression, Lasso, etc.

Finite-sum optimization has been widely studied in previ-
ous literature given their wide applicability. Zhang (2004)
solved finite-sum optimization by randomly selecting an in-
dex i ∈ [n] and applying stochastic gradient descent (SGD).
More efficient algorithms apply variance reduction, includ-
ing SAG by Roux et al. (2012), SDCA by Shalev-Shwartz &
Zhang (2013), SVRG by Johnson & Zhang (2013), and also
many other works (Zhang et al., 2013; Defazio et al., 2014;
Xiao & Zhang, 2014; Allen-Zhu & Yuan, 2016; Allen-Zhu
& Hazan, 2016b; Reddi et al., 2016; Shalev-Shwartz, 2016;
Allen-Zhu, 2017; 2018; Lin et al., 2018).

More recently, quantum computing is rapidly advancing and
there is also significant interest in quantum algorithms for
continuous optimization faster than classical counterparts.
This began with quantum algorithms for solving linear and
semidefinite programs (Brandão & Svore, 2017; van Apel-
doorn & Gilyén, 2019; Brandão et al., 2019; van Apeldoorn
et al., 2017; Casares & Martin-Delgado, 2020; Kerenidis &
Prakash, 2020), then for general convex optimization (Apel-
doorn et al., 2020; Chakrabarti et al., 2020), and now there
are also quantum algorithms for slightly nonconvex prob-
lems (Li & Zhang, 2022; Chen et al., 2023), escaping saddle
points in nonconvex landscapes (Zhang et al., 2021; Childs
et al., 2022), and also finding global minima in some spe-
cial classes of nonconvex problems (Liu et al., 2023; Leng
et al., 2023). On the other hand, quantum lower bounds for
convex optimization (Garg et al., 2021; Garg et al., 2021)
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and nonconvex optimization (Gong et al., 2022; Zhang &
Li, 2023) are also established. However, these optimization
results mainly investigate the block-box setting with a single
function f(x), and the perspective of quantum algorithms
for finite-sum stochastic optimization is widely open.

Contributions. In this work, we initiate the study of the
quantum analogue of the standard finite-sum optimization
problem. We assume quantum access to a finite-sum oracle,
or access to a quantum finite-sum oracle for brevity, that
allows us to query the gradients of different fi’s at the same
time in quantum superpositions.
Definition 1 (Quantum finite-sum oracle). For an F : Rd →
R and sub-functions f1, . . . , fn : Rd → R satisfying the
finite-sum structure in Eq. (2), its quantum finite-sum oracle
OF is defined as2

OF |x⟩ ⊗ |i⟩ ⊗ |0⟩ → |x⟩ ⊗ |i⟩ ⊗ |∇fi(x)⟩ ∀i ∈ [n]. (3)

Here, the Dirac notation |·⟩ denotes input or output registers
made of qubits that may present as quantum superpositions.
Specifically, for an x ∈ Rd and a coefficient vector c ∈
Cn with

∑
i∈[n] |ci|2 = 1, the quantum register could be

in the quantum state |x⟩
∑

i∈[n] ci |i⟩ ⊗ |∇fi(x)⟩, which
is a quantum superposition over all these n sub-functions
simultaneously.3 If we measure this quantum state, we will
get ∇fi(x) with probability |ci|2. If we query OF with
no superposition over the first two registers, it collapses to
a classical finite-sum oracle that returns the gradient of a
specific fi at x.

Next, we characterize the objective functions using the fol-
lowing properties:

• L-Lipschitzness: For any x,y ∈ Rd,

∥f(x)− f(y)∥ ≤ L∥x− y∥.

• µ-strong convexity: For any x,y ∈ Rd,

f(x)− f(y) ≤ ∇f(x)⊤(x− y)− µ

2
∥x− y∥2.

2In this paper, whenever we access a quantum oracle U , it is
a unitary operation and we also have access to its corresponding
inverse operation denoted as U†, which satisfies U†U = UU† =
I . This is a standard assumption, explicitly or implicitly employed,
in previous research on quantum algorithms, see e.g., (Brassard
et al., 2002; Cornelissen et al., 2022; Sidford & Zhang, 2023).

3Note that we store real numbers in these quantum registers,
which solicit encoding from binary numbers to real numbers. Sim-
ilar to classical encoding, we represent a number as a binary string
and store each bit in a quantum bit. For example, for the real num-
ber 3.25, we encode by its binary representation 11.01, and then
represent this number using four qubits. This method is commonly
used when real numbers need to be manipulated mathematically in
quantum algorithms. Of course, this encoding method also incurs
errors when encoding real numbers, just like classical encoding,
thus we may consider precision beforehand when using this encod-
ing method. Basic operations can be implemented with constant
time overhead (Nielsen & Chuang, 2000).

• ℓ-smoothness: For any x,y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ ℓ∥x− y∥.

Finite-sum convex optimization. In this work, we sys-
tematically investigate the quantum analogue of the finite-
sum convex optimization problem.

Problem 1 (Quantum finite-sum convex optimization
(QFCO)). In the quantum finite-sum convex optimization
(QFCO) problem we are given query access to a quantum
finite-sum oracle OF for a convex function F : Rd → R
satisfying (1). The goal is to output an expected ϵ-optimal
point x∗ ∈ Rd satisfying E[F (x∗)] ≤ infx F (x) + ϵ.

We consider the following four cases of Problem 1:

1. ψ is µ-strongly convex, each fi is convex and ℓ-smooth,
and F (0) − F ∗ ≤ ∆. Example: ridge regression,
elastic net regularization;

2. ψ is not necessarily strongly convex, each fi is convex
and ℓ-smooth, and F achieves its minimum at x∗ with
∥x∗∥ ≤ R. Example: logistic regression, Lasso;

3. ψ is µ-strongly convex, each fi is convex and L-
Lipschitz (not necessarily smooth), and F (0)− F ∗ ≤
∆. Example: ℓ2-norm support vector machine;

4. ψ is not necessarily strongly convex, each fi is con-
vex and L-Lipschitz (not necessarily smooth), and F
achieves its minimum at x∗ with ∥x∗∥ ≤ R. Example:
ℓ1-norm support vector machine.

We develop quantum algorithms for all the four cases of
Problem 1 respectively in Section 3. The query complexities
of these algorithms are summarized in the following.

Theorem 1 (Informal version of Theorem 4 and Corol-
lary 2). There exist four quantum algorithms that solve
all the cases of Problem 1, respectively, with the following
query complexities:

• Case 1: Õ
(
n+
√
d+

√
ℓ
µ

(
n1/3d1/3 + n−2/3d5/6

))
;

• Case 2: Õ
(
n+
√
d+R

√
ℓ
ϵ

(
n1/3d1/3+n−2/3d5/6

))
;

• Case 3: Õ
(
n+
√
d+ L√

λµ

(
n1/3d1/3 + n−2/3d5/6

))
;

• Case 4: Õ
(
n+
√
d+ LR

ϵ

(
n1/3d1/3 + n−2/3d5/6

))
.

Compared to Allen-Zhu (2017), our quantum algorithms
achieve a better query complexity when the dimension
d is relatively small. Prior to our work, Ozgul et al.
(2023) studied non-logconcave sampling from a distribution
π(x) ∝ exp(−βf(x)) where f(x) = 1

n

∑n
i=1 fi(x) is a
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finite sum of functions. As π(x) is larger when f(x) is
smaller, measuring such a distribution can in principle solve
the finite-sum optimization problem. However, compared to
our result, there algorithms have dimension factor being at
least Ω(d), and it is also not clear how large β should be to
reach the same criteria in optimization. As far as we know,
we give the first quantum algorithm with speedup for finite-
sum convex optimization. A more detailed comparison can
be found in Table 1.

We also establish quantum complexity lower bounds for the
four cases of Problem 1 respectively in Section 5, with the
specific forms as follows. These quantum lower bounds
confirm that the speedup for finite-sum optimization by
quantum computing is at most polynomial in all parameters.

Theorem 2 (Informal version of Corollary 3, Corollary 4,
Corollary 5, and Corollary 6). There exist four families of
functions corresponding to the four cases such that when
d is large enough, any quantum algorithm that finds an
ϵ-optimal point requires the following query complexities:

• Case 1: Ω̃
(
n+ n

3
4

(
ℓ
µ

) 1
4

)
;

• Case 2: Ω̃
(
n+ n

3
4

(
ℓ
ϵ

) 1
4 R

1
2

)
;

• Case 3: Ω̃
(
n+ n

3
4

(
1
ϵµ

) 1
4

L
1
2

)
;

• Case 4: Ω̃
(
n+ n

3
4

(
LR
ϵ

) 1
2

)
.

Finite-sum critical point computation. Additionally, we
develop a quantum algorithm for finding critical points,
i.e., points with small gradients, of (possibly) non-convex
functions in the finite-sum setting.

Problem 2 (Quantum finite-sum critical point computation
(QFCP)). In the quantum finite-sum critical point compu-
tation (QFCP) problem we are given query access to a
quantum finite-sum oracle OF for a (possibly) nonconvex
function F : Rd → R satisfying (1) where ψ(x) ≡ 0 and
each fi is ℓ-smooth. Moreover, F (0)− F ∗ ≤ ∆. The goal
is to output an expected ϵ-critical point x ∈ Rd satisfying
E∥∇f(x)∥ ≤ ϵ.

Leveraging Fang et al. (2018) and Sidford & Zhang (2023),
we develop a quantum algorithm that solves Problem 2:

Theorem 3 (Informal version of Theorem 5). There exist a
quantum algorithm that solves Problem 2 using an expected
Õ
(
n+

(
d1/3n1/3 +

√
d
)
/ϵ2
)

queries.

Compared to Fang et al. (2018) using O(n + n1/2/ϵ2)
queries, our quantum algorithm achieves a better query com-
plexity when d <

√
n.

Techniques. In our quantum algorithms, our main con-
tribution is leveraging quantum variance reduction with
speedup on the variance reduction step in the state-of-the-art
finite-sum optimization algorithms, in particular Katyusha
(Allen-Zhu, 2017) for the convex setting and SPIDER (Fang
et al., 2018) for the nonconvex setting. Technically, our
quantum speedup is originated from quantum mean estima-
tion (Montanaro, 2015). Classical i.i.d. random variables
with variance σ2 need Ω(σ2/ϵ2) samples to approximate
their mean within ϵ with high success probability (Dagum
et al., 2000), but quantum mean estimation by Montanaro
(2015) achieves sample complexity Õ(σ/ϵ). However, most
existing quantum mean estimation algorithms (Hamoudi &
Magniez, 2019; Hamoudi, 2021; Cornelissen et al., 2022;
Kothari & O’Donnell, 2023) have bias, which hinders their
combination with Katyusha (Allen-Zhu, 2017) and SPI-
DER (Fang et al., 2018) assuming unbiased inputs. Since
Katyusha and SPIDER are iterative algorithms, bias would
accumulate during the algorithm, jeopardizing their conver-
gence guarantee. Therefore, to achieve quantum speedup
for finite-sum optimization, an unbiased quantum mean esti-
mator is solicited. We apply the version by Sidford & Zhang
(2023), which employs a classical multi-level Monte-Carlo
(MLMC) scheme (Blanchet & Glynn, 2015; Asi et al., 2021)
to the multivariate mean estimation algorithm by Cornelis-
sen et al. (2022) to obtain an unbiased mean estimation.
Note that Cornelissen & Hamoudi (2023) also developed an
almost unbiased quantum mean estimation algorithm. How-
ever, it is applicable only in the one-dimensional case and
retains a slight degree of bias, making it complicated when
integrating with high-dimensional optimization algorithms.

In our quantum lower bounds, our primary contribution is
the combination of the classical randomized lower bounds
on finite-sum optimization (Woodworth & Srebro, 2016)
with quantum adversary methods. Existing quantum lower
bounds for optimization problems, such as Garg et al.
(2021); Zhang & Li (2022), were proved by the “zero-
chain” approach. They represented quantum algorithms
as sequences of unitaries and proved their lower bounds by
a hybrid argument where the information accessible at each
step of the algorithm is restricted. However, in the finite-
sum problem, since quantum algorithms have the capability
to access different sub-functions at the same time, such a
hybrid argument is not valid, and we cannot assume that the
algorithm accesses these sub-functions in a specific prede-
termined order. To address this issue, we apply the quan-
tum adversary method first introduced in Ambainis (2000),
which extends the hybrid method and takes an average over
many pairs of inputs. However, the original quantum adver-
sary method in Ambainis (2000; 2006) were designed for
lower bounding the query complexity of boolean functions,
but finite-sum optimization outputs a vector rather than a
single bit. Therefore, we employ a more powerful version
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Table 1: Comparisons between algorithms and lower bounds for finite-sum convex optimization, both in classical and quantum settings.
The columns from left to right cover the four cases respectively. n is the number of functions fi, ϵ is the error to the optimal value, ∆ is
an upper bound on the difference between F (0) and the optimal value, and R is an upper bound on the norm of the optimum x∗.

ℓ-Smooth L-Lipschitz
µ-Strongly Convex Convex µ-Strongly Convex Convex

Classical Upper Bound
(Allen-Zhu, 2017)

Õ
(
n+

√
nℓ
µ

)
Õ

(
n+R

√
nℓ
ϵ

)
Õ
(
n+ L

√
n
µϵ

)
Õ
(
n+ LR

√
n
ϵ

)
Classical Lower Bound

(Woodworth & Srebro, 2016)
Ω
(
n+

√
nℓ
µ log ∆

ϵ

)
Ω

(
n+R

√
nℓ
ϵ

)
Ω
(
n+

√
nL√
µϵ

)
Ω
(
n+

√
nLR√
ϵ

)
Quantum Upper Bound

(this work)
Õ
(
n+
√
d+

√
ℓ
µ

(
n

1
3 d

1
3 + n−

2
3 d

5
6

))
Õ
(
n+
√
d+R

√
ℓ
ϵ

(
n

1
3 d

1
3 + n−

2
3 d

5
6

))
Õ
(
n+
√
d+ L√

λµ

(
n

1
3 d

1
3 + n−

2
3 d

5
6

))
Õ
(
n+
√
d+ LR

ϵ

(
n

1
3 d

1
3 + n−

2
3 d

5
6

))
Quantum Lower Bound

(this work)
Ω̃

(
n+ n

3
4

(
ℓ
µ

) 1
4

)
Ω̃
(
n+ n

3
4

(
ℓ
ϵ

) 1
4 R

1
2

)
Ω̃

(
n+ n

3
4

(
1
ϵµ

) 1
4

L
1
2

)
Ω̃
(
n+ n

3
4

(
LR
ϵ

) 1
2

)

of the adversary method in Zhang (2005) that extends to
general non-boolean functions. The proofs for our quantum
query lower bounds consist of the following steps:

1. Adapt the hard instance (Definition 3) corresponding
to the random algorithms introduced by Woodworth &
Srebro (2016). Prove that we need to obtain enough
information from over half of the sub-functions fi to
find the ϵ-optimal point. Notice that in the classical
case, it is proved that we must obtain information about
the vectors later in the sequence of a sub-function to
find the ϵ-optimal point. In our proof, to match with the
adversary method, we establish a stronger conclusion:
we need to acquire information about every vector to
find the ϵ-optimal point of a sub-function (Lemma 5).

2. Construct the hard instance such that each sub-function
fi can only be accessed sequentially to obtain the func-
tion’s construction. Reduce the problem to a quantum
computing problem of determining the values of all el-
ements in a binary matrix with a sequential verification
oracle (Problem 4 in appendices).

3. For the reduced problem, employ quantum adversary
methods (Lemma 9 in appendices) to prove its corre-
sponding quantum complexity lower bound.

Open questions. Our work leaves several natural direc-
tions for future investigation:

• Can we give quantum algorithms for finite-sum opti-
mization with better complexities? On the other hand,
can we prove tighter quantum lower bounds on finite-
sum optimization? Specifically, we prove our quantum
lower bound by reducing to the matrix detection prob-
lem (Problem 4 in appendices), which for an n × k
matrix has quantum query lower bound of Ω(n

√
k).

It is worth investigating whether we can improve the
lower bound for this problem or other hard instances.

• Can quantum algorithms provide speedup for finding
second-order stationary points in finite-sum noncon-

vex optimization? This had been systematically inves-
tigated in the classical setting by NEON (Xu et al.,
2018; Allen-Zhu & Li, 2018) and SPIDER (Fang et al.,
2018). Since our quantum algorithm for finding crit-
ical points (Algorithm 3) was built upon SPIDER, it
is worth investigating whether quantum speedup for
finding second-order stationary points can be given.

• Can we apply our quantum algorithm for solving ma-
chine learning problems with speedup? Several quan-
tum algorithms for relevant machine learning problems
have been proposed, for instance support vector ma-
chine (Rebentrost et al., 2014) and regression (Wang,
2017; Liu & Zhang, 2017; Chen & de Wolf, 2023;
Shao, 2023), but the quantum speedup from variance
reduction in the finite sum is widely open.

2. Preliminaries
Notation. We use bold letters, i.e., x,y to denote vec-
tors and use ∥ · ∥ to denote the Euclidean norm. For a d-
dimensional random variable X , we refer to the trace of the
covariance matrix of X as its variance, denoted by Var[X].
We define [n] := {1, . . . , n}. By default, the logarithms are
in base 2

To model a classical probability distribution p over Rd

in the quantum setting, we can use the quantum state∑
x∈Rd

√
p(x) |x⟩. If we measure this state, the measure-

ment outcome is described by the probability density func-
tion p. When applicable, we use |garbage(·)⟩ to represent
possible garbage states4 that emerge during the implementa-
tion of a quantum oracle.

4The garbage state serves as a quantum counterpart to classical
garbage information that emerges during the preparation of the
classical stochastic gradient oracle that cannot be erased or un-
computed. In this work, we adopt a broad model without making
specific assumptions about the garbage state. For a comparable
discussion on this conventional usage of garbage quantum states,
refer to Gilyén & Li (2020); Sidford & Zhang (2023) for similar
discussions of this standard use of garbage quantum states.
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Quantum variance reduction. Mean estimation a well-
studied problem in quantum computing (Hamoudi, 2021;
Cornelissen et al., 2022; Kothari & O’Donnell, 2023), which
collectively demonstrate a quadratic quantum speedup for
mean estimation. However, the output of these quantum
mean estimation algorithms may exhibit bias, posing a limi-
tation when integrating them with optimization algorithms
that assume unbiased inputs. This concern was addressed in
Sidford & Zhang (2023) where they developed the quantum
variance reduction algorithm that eliminates the bias lever-
aging the multilevel Monte Carlo (MLMC) technique. In
particular, they proved the following result.

Lemma 1 (Theorem 4 of Sidford & Zhang (2023)). For a
d-dimensional random variable X with Var[X] ≤ σ2 and
some σ̂ ≥ 0, suppose we are given access to a quantum
sampling oracle

OX |0⟩ →
∑
x∈Rd

√
Pr(X = x)⊗ |garbage(x)⟩ ,

there exists a quantum algorithm
QuantumVarianceReduction(OX , σ̂) that outputs
an unbiased estimate µ̂ of E[X] satisfying E∥µ̂−E[X]∥2 ≤
σ̂2 using an expected Õ(d1/2σ/σ̂) queries to OX .

3. Quantum Algorithms in Convex Settings
In this section, we present our quantum algorithms for solv-
ing all the four cases of Problem 1.

3.1. Strongly convex setting

In this subsection, we present our quantum algorithm for
Case 1 of Problem 1. Our approach is based on the frame-
work of Katyusha developed in Allen-Zhu (2017), which
is an accelerated stochastic variance reduction algorithm.
At the beginning of the algorithm, Katyusha first com-
putes the exact gradient of x0 by querying ∇fi(x0) for
every i ∈ [n]. Then for further iterations xt that are not
very far away from xref := x0, Katyusha uses∇f(xref)
as a reference to approximate ∇f(xt) by approximating
∇f(xt) − ∇f(xref), which has a small norm when xt is
close to xref given that each fi is ℓ-smooth. Whenever
the current iteration is too far away from the reference,
Katyusha computes the exact gradient of this iteration
and makes it the new reference.

Compared to their algorithm, our algorithm (Algorithm 1)
replaces the variance reduction step of computing∇f(xt)−
∇f(xref) by the quantum variance reduction technique in
Sidford & Zhang (2023), as shown in Algorithm 2.

Theorem 4. Algorithm 1 solves Case 1 of Problem 1 using
the following number of queries in expectation:

Õ
(
n+
√
d+

√
ℓ/µ
(
n1/3d1/3 + n−2/3d5/6

))
.

Algorithm 1: Q-Katyusha

Input: Function F : Rd → R, precision ϵ, smoothness
ℓ, strong convexity µ

Parameters: S = 5(1 + ℓ1/2(bmµ)−1/2) log(∆/ϵ),
b = ⌈n2/3d−1/3⌉,m = ⌈n2/3d−1/3⌉

Output: An ϵ-optimal point of f

1 τ2 ← 1
2b , τ1 ← τ2 ·min

{√
8bmµ
3L , 1

}
2 y0 = z0 = x̃0 ← 0
3 for s = 0, 1, . . . , S − 1 do
4 γs ← ∇f(x̃s)
5 for j = 0, 1, . . . ,m− 1 do
6 k ← (sm) + j
7 xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk

8 ĝk+1 ← QVRG(xk+1, x̃s, ℓ∥xk+1 − x̃s∥/
√
b)

9 ∇̃k+1 ← γs + ĝk+1

10 zk+1 ←
argminz

{
3τ1ℓ
2 ∥z−zk∥

2+⟨∇̃k+1, z⟩+ψ(z)
}

11 yk+1 ←
12 argminy

{
3ℓ
2 ∥y−xk+1∥2+⟨∇̃k+1,y⟩+ψ(y)

}
13 x̃s+1 ←

∑m−1
j=0 ysm+j+1

m

14 return xout ← τ2mx̃S+(1−τ1−τ2)ySm

τ2m+(1−τ1−τ2)

Algorithm 2: Quantum variance-reduced gradient
(QVRG)

Input: Function F : Rd → R, x,xref ∈ Rd, accuracy
σ̂

1 Denote gi := ∇fi(x)−∇fi(xref) for all i ∈ [n].
Implement the oracle Og |0⟩ →
1√
n

∑
i |∇fi(x)−∇fi(xref)⟩ ⊗ |garbage(i)⟩ .

2 ĝ←QuantumVarianceReduction(Og, σ̂)
return ĝ

Prior to proving Theorem 4, we first establish an upper
bound on the query complexity of running the subroutine
QVRG (Algorithm 2) in Line 8.
Lemma 2. If every fi is ℓ-smooth, Algorithm 2 outputs an
unbiased estimate ĝ of ḡ := 1

n

∑n
i=1(∇fi(x)−∇fi(xref))

satisfying E∥ĝ − ḡ∥ ≤ σ̂2 using an expected Õ(d1/2ℓ∥x−
xref∥/σ̂) queries to OF .

The proof of Lemma 2 is deferred to Appendix A.

The following result from Allen-Zhu (2017) bounds the
rate at which Algorithm 1 decreases the function error of
F . Note that correctness of this result relies solely on the
fact that, at Line 8, the variance of the unbiased estimate
ĝk+1 of 1

n

∑
i(∇fi(xk+1) − ∇fi(x̃s)) is upper bounded

by ℓ∥xk+1 − x̃s∥/
√
b, regardless of its implementation.

Lemma 3 (Theorem 5.2, Allen-Zhu (2017)). In Case 1 of

5
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Problem 1, for any b,m ∈ [n], the output xout of Algo-
rithm 1 satisfies

E[F (xout)]− F ∗ ≤



O

((
1 +

√
bµ/(6ℓm)

)−Sm

·∆
)
,

if mµb
ℓ ≤ 3

8 and b ≤ m,

O

((
1 +

√
µ/(6ℓ)

)−Sm

·∆
)
,

if m2µ
ℓ ≤ 3

8 and b > m,

O
(
1.25−S ·∆

)
, otherwise.

(4)

Equipped with these results, we can prove Theorem 4 now.

Proof of Theorem 4. Given the parameter choices of Algo-
rithm 1, its output xout satisfies either the first case or the
third case of (4) in Lemma 3. Hence, the output xout of
Algorithm 1 satisfies

E[F (xout)− F ∗] ≤ max{O
((

1 +
√
bµ/(6ℓm)

)−Sm

·∆
)
,

O
(
1.25−S ·∆

)
} = O(ϵ)

The query complexity of Algorithm 1 is a combination
of two components: the complete gradient computation
step in Line 4 and the QVRG step in Line 8. Throughout
Algorithm 1, there are in total S full gradient computation
steps and each step takes O(n) queries by using OF just
as a classical finite sum oracle, i.e., we query OF without
employing quantum superposition. As for the second part,
as per Lemma 2, each call to QVRG takes an expected

Õ
(
d1/2ℓ∥xk+1 − x̃s∥/σ̂

)
= Õ

(√
bd
)

queries to the quantum finite-sum oracle. Consequently, to
find an expected ϵ-optimal point of F , the overall query
complexity equals

S ·O(n) + Sm · Õ
(√
bd
)

= Õ
(
n+
√
d+

√
ℓ/µ
(
n1/3d1/3 + n−2/3d5/6

))
.

3.2. Corollaries for non-smooth or non-strongly convex
settings

The algorithm for Problem 1 in the non-strongly convex
setting can be obtained via applying a black-box reduction
introduced in Allen-Zhu & Hazan (2016a).
Definition 2 (HOOD property, Allen-Zhu & Hazan (2016a)).
We say an algorithm solving Case 1 of Problem 1 satisfies
the homogenous objective decrease (HOOD) property with
query complexity Q(ℓ, µ) if for every starting point x0, it
produces output xout such that

E[F (xout)]− F ∗ ≤ (F (x0)− F ∗)/4

using an expected Q(ℓ, µ) queries.

Setting ϵ = (F (x0)− F ∗)/4 in Theorem 4 gives:

Corollary 1. Algorithm 1 satisfies the HOOD property with
Q(ℓ, µ) = Õ

(
n+
√
d+

√
ℓ/µ
(
n1/3d1/3 + n−2/3d5/6

)
.

Lemma 4 (Theorem 3.4, Allen-Zhu (2017)). Given a quan-
tum algorithm A that satisfies the HOOD property with
query complexity Q(ℓ, µ), there exist three quantum algo-
rithms that separately solves

• Case 2 of Problem 1 using
∑S−1

s=0 Q
(
ℓ, µ̃

2s

)
queries, where

µ̃ = F (0)−F∗

∥x∗∥2 and S = log F (0)−F∗

ϵ ,

• Case 3 of Problem 1 using
∑S−1

s=0 Q
(
2s

λ , µ
)

queries,
where λ = F (0)−F∗

L2 and S = log F (0)−F∗

ϵ , and

• Case 4 of Problem 1 using
∑S−1

s=0 Q
(
2s

λ ,
µ̃
2s

)
queries,

where λ= F (0)−F∗

L2 , µ̃= F (0)−F∗

∥x∗∥2 , and S=log F (0)−F∗

ϵ .

Combining Corollary 1 and Lemma 4, we can have the
following corollary.

Corollary 2. There exists 3 quantum algorithm that solves
Case 2, 3, 4 of Problem 1, respectively, with the following
query complexities:

Case 2: Õ
(
n+
√
d+R

√
ℓ/ϵ
(
n1/3d1/3 + n−2/3d5/6

))
;

Case 3: Õ
(
n+
√
d+ L

(
n1/3d1/3 + n−2/3d5/6

)
/
√
λµ
)
;

Case 4: Õ
(
n+
√
d+ LR

(
n1/3d1/3 + n−2/3d5/6

)
/ϵ
)
.

The proof of Corollary 2 is deferred to Appendix A.

4. Quantum Algorithm in the Nonconvex
Setting

In this section, we present our quantum algorithm that solves
Problem 2. Our approach builds upon the SPIDER algo-
rithm (Fang et al., 2018), which is a variance reduction
technique that can estimate the gradient of an iterate with
lower cost by utilizing the smoothness of each fi and reuse
the gradient estimations of previous iterations. Our algo-
rithm is a specialization of the SPIDER algorithm, where
we replace the classical variance reduction step by QVRG
introduced in Section 3.

Compared to Algorithm 7 of Sidford & Zhang (2023), which
is another quantum algorithm based on SPIDER (Fang et al.,
2018), our Algorithm 3 works in the finite-sum setting which
enables us to compute the full gradient in Line 4. Moreover,
we carefully choose the parameters of the algorithm, taking
into account of the difference in query complexity between
QVRG and the classical variance reduction step, with a cor-
responding convergence analysis showing that the output of
Algorithm 3 still converges to an ϵ-critical point despite the
changes in the parameters. In particular, we prove:

6
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Algorithm 3: Finite-Sum-Q-SPIDER

Input: Function f : Rd → R, precision ϵ, smoothness ℓ
Parameters: q = ⌈n2/3d−1/3⌉, ϵ̂ = ϵ

5 , total iteration
budget T = ⌈ 4ℓ∆ϵ2 ⌉

Output: An ϵ-critical point of f
1 Set x0 ← 0
2 for t = 0, 1, 2, . . . , T do
3 if mod (t, q) = 0 then
4 vt ← ∇f(xt)

5 else
6 gt ← QVRG(xt,xt−1, ϵ̂/

√
2q)

7 vt ← vt−1 + gt

8 if ∥vt∥ ≤ ϵ̂ then return xt;
9 else xt+1 ← xt − ϵ̂

2ℓ ·
vt

∥vt∥

10 Uniformly randomly choose xout from x0, . . . ,xT −1

11 return xout

Theorem 5. Algorithm 3 solves Problem 2 using the follow-
ing number of queries in expectation:

Õ
(
n+ ℓ∆

(
d1/3n1/3 +

√
d
)
/ϵ2
)
.

The proof of Theorem 5 is deferred to Appendix B.

5. Quantum Lower Bounds
In this section, we establish our quantum lower bounds
for Problem 1. Our approach leverages the framework of
Woodworth & Srebro (2016), which gives a “hard instance”
based on randomly selected orthogonal spaces. We show
that for the hard function presented in this paper, a quantum
algorithm cannot find an ϵ-optimal solution until it has made
enough queries to the quantum oracles.

Regarding the transition from the classical hard function to
the quantum complexity lower bound, our approach is based
on the adversary lower bound introduced by Zhang (2005)
that applies to non-boolean functions. Initially, we reduce
the task of finding the ϵ-optimal point for the hard function
to “finding all elements on several chains”. Subsequently,
we apply the adversary method to obtain the corresponding
quantum complexity lower bound.

5.1. Smooth and strongly convex setting

We first consider Case 1 of Problem 1. Without loss of
generality, we assume that ℓ = 1 and n is even. If n is odd,
we can simply take one of the sub-functions to 0, and the
query complexity is reduced by a factor proportional to n−1

n .
Then we define the following hard instance.

Definition 3 (Hard instance for Case 1 of Problem 1). For
constants k,C, and ζ to be decided upon later. Let µ̃ := n·µ.
For i = 1, 2, . . . , ⌊n/2⌋, we define

fi,1(x) :=
1− µ̃
16

(⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩

+

k∑
r even

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩));

fi,2(x) :=
1− µ̃
16

(ζϕc(⟨x, vi,k⟩)

+

k∑
r odd

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)),

where {vi,r} are orthonormal vectors randomly selected
from Rd, and ϕc is a 4-smooth helper function defined as
follows:

ϕc(z) :=


0 |z| ≤ c;
2(|z| − c)2 c < |z| ≤ 2c;

z2 − 2c2 |z| > 2c

. (5)

Then the hard instance is defined as follows.

f(x) =
1

n

n
2∑

i=1

2∑
j=1

fi,j(x), ψ(x) =
µ

2
∥x∥2.

This hard function has the following property: for fi,1 and
fi,2, when we only know the values of vi,j for j ≤ t, then
after a new query, we can only find a vector x such that
|⟨x,vi,t+1⟩| > c

2 . However, with large probability, x satis-
fies |⟨x,vi,j⟩| ≤ c

2 for all j ≥ t+1. This property forms the
basis for proving the lower bound, since the ϵ-optimal point
is related to every vector vi,j , as shown in the following
lemma.

Lemma 5. Denote Q = 1
2

(
1
nµ − 1

)
+ 1, q =

√
Q−1√
Q+1

.

For ζ = 1 − q, k = ⌊
√
Q−1
4 log ∆

nϵ(
√
Q−1)2)

⌋ − 1, C =√
∆
µ

4√
Q−1

, c = min
{

1√
N
,
√

8nϵ
(1−µ̃)(k+1) , Cq

k+1
}

. For

any ϵ ≤ 4
3µ∆ and any x ∈ Rd, if there exists a vector vij

(i ∈ {1, 2, . . . , ⌊n/2⌋}, j ∈ {1, 2, . . . , k}) with |⟨x,vij⟩| <
c
2 , then x cannot be an ϵ-optimal point of the hard function
F (x) defined in Definition 3.

Lemma 5 shows that the ϵ-optimal point must have a rel-
atively large inner product with all vectors vij . Conse-
quently, any algorithm seeking an ϵ-optimal point must find
a vector with a significant inner product with all vij . Then,
we can reduce the problem of finding the ϵ-optimal point to
the problem of finding all elements of several sub-functions,
where each oracle query can only reveal the next element of
one sub-function with high probability. We can then use the
adversary method to establish a lower bound on the query
complexity for the quantum query problem described above.
Note that Lemma 5 is stronger than that in Woodworth &
Srebro (2016), where it is only proved that for a specific t,
at least half of the sub-functions fi satisfy that the ϵ-optimal

7
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point must have a significant inner product with viji for
some ji > t.

Remark 1. If we directly use the property proved in Wood-
worth & Srebro (2016), to prove that the output x of an
algorithm is far away from being ϵ-optimal, we must ensure
that x satisfies the following property: for more than half of
the sub-functions with index i, |⟨x, vi,ji⟩| < c

2 holds true
for all ji > t. To violate this property, it is sufficient to find
information about only one vector that has a large inner
product with x for each pair of sub-functions. This case
can at most correspond to an n× 1 quantum query problem
and thus the quantum adversary method would only yield
a trivial lower bound of n. However, under the property
given in Lemma 5, we impose a higher requirement for an
efficient algorithm that finds an ϵ-optimal point: it must find
information about all vectors in each pair of sub-functions.
This naturally reduces to an n× k quantum query problem,
which is evidently more difficult than the former one.

Now we have transformed the lower bound of an hard in-
stance in the optimization problem into the quantum query
lower bound of the following query problem:

Problem 3 (Multi Chain Problem). For input size n and k,
we are given oracle access to n k-bit strings x1, x2, · · ·xn.
Specifically, for a set of strings x = [x1, x2, · · ·xn], a query
is specified by a set (i, j, s), where s is a j-bit string, and
returns 1 if and only if s is exactly a prefix of length j for xi.
The corresponding quantum oracle which allows us to query
different strings at the same time is defined as follows:

Ox |i⟩ ⊗ |t⟩ ⊗ |x′i1x′i2 · · ·x′it⟩ ⊗ |0⟩ →
|i⟩ ⊗ |j⟩ ⊗ |x′i1x′i2 · · ·x′it⟩ ⊗ |0⟩ ,
if xij = x′ij for each j ∈ {1, · · · t};
|i⟩ ⊗ |j⟩ ⊗ |x′i1x′i2 · · ·x′it⟩ ⊗ |1⟩ ,
if there exists j ∈ {1, · · · t} such that xij ̸= x′ij .

The goal is to output the matrix x.

The query lower bound for this problem is proven in Ap-
pendix C.1. The above analysis can be summarized into the
following conclusion:

Corollary 3. For any ℓ, µ > 0 such that ℓ
µ ≥ 100n, for

any ϵ < 4
3
µ∆
ℓ , d = Ω̃( ∆ℓ2

µ2nϵ ), any quantum algorithm that
solves Case 1 of Problem 1 with success probability at least
2/3 must make at least the following number of queries in
the worst case:

Ω

(
n+ n

3
4

(
ℓ

µ

) 1
4

log
1
2

(
∆µ

ϵℓ

))
.

The detailed proof is deferred to Appendix C.3.

5.2. Smooth and non-strongly convex setting

In the non-strongly convex setting, our hard instance is
similar to the strongly convex case, except for a regular-
ization parameter. Without loss of generality, we assume
that ℓ = R = 1 and n is even, and our hard instance is
constructed as follows.
Definition 4 (Hard instance for Case 2 of Problem 1). For
i = 1, . . . , ⌊n/2⌋, take values C and k to be fixed later,
define

fi,1(x) :=
1

16
(⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩

+

k∑
r even

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩));

fi,2(x) :=
1

16
(ϕc(⟨x, vi,k⟩)

+

k∑
r odd

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩))

with orthonormal vectors vij chosen randomly on the unit
sphere in Rd, and ϕc is the same helper function as in
Definition 3. Then the two component of the hard instance
is defined as follows:

f(x) :=
1

n

n
2∑

i=1

2∑
j=1

fi,j(x), ψ(x) = 0.

Lemma 6. Let k = ⌊ 1
16

√
ϵn
⌋ − 1, C =

√
6
nk , and c =

min { 1√
N
, (2−

√
3)C, 8

√
ϵ
k}. For any ϵ < 1

4096n and any

x ∈ Rd, if for at least n
4 i’s that there exists ji which holds

that ji ≤ t := ⌊k/2⌋ and |⟨x,vi,ji⟩| < c
2 , then x cannot

be an ϵ-optimal point of the hard function F defined in
Definition 4.

Equipped with Lemma 6, we prove the following result.

Corollary 4. For any ϵ < ℓR2

4096n , d = Ω̃
(√

n
ϵ + 1

ϵ2

)
, any

quantum algorithm that solves Case 2 of Problem 1 with
success probability at least 2/3 must make at least the fol-
lowing number of queries in the worst case:

Ω

(
n+

n
3
4

log n

(
ℓ

ϵ

) 1
4

R
1
2

)
.

The detailed proof is deferred to Appendix C.4.

5.3. Lipschitz and non-strongly convex setting

In the Lipschitz and non-strongly convex setting, we also
assume for simplicity n is even. For the required Lipschitz
property, we use a new helper function χc(z) based on the
absolute value, which is defined as follows:

χc(z) = max{0, |z| − c}.

8
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Notice that this helper function is 1-Lipschitz and it hides
the information about x if the norm of x is relatively small.
Then, we can define n

2 pairs of sub-functions as our hard
instance:
Definition 5 (Hard instance for Case 4 of Problem 1). For
i = 1, . . . , ⌊n/2⌋, take values b, c and k to be fixed later, let

fi,1(x) :=
1√
2
|b− ⟨x,vi,0⟩|

+
1

2
√
k

k∑
r even

χc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩) ;

fi,2(x) :=
1

2
√
k

k∑
r odd

χc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩) .

with orthonormal vectors vij chosen randomly on the unit
sphere in Rd. The two component of the hard instance is
defined as follows

f(x) =
1

n

n
2∑

i=1

2∑
j=1

fi,j(x), ψ(x) = 0.

Similar to the smooth case, the ϵ-optimal point of the hard in-
stance can only be found after querying a sufficient number
of different vectors vi,j .
Lemma 7. Let k = ⌊ 1

10ϵ
√
n
⌋, c = min { 1√

N
, ϵ√

k
} and

b =
√

2
n(k+1) . For any ϵ < 3

10
√
n

and any x ∈ Rd, if for

at least n
4 i’s that there exists ji such that |⟨x,vi,ji⟩| < c

2 ,
then x cannot be an ϵ-optimal point of the hard function F
defined in Definition 5.

Corollary 5. For any ϵ < 3LR
10

√
n

, d = Ω̃
(

1
ϵ3

√
n

)
, any quan-

tum algorithm that solves Case 4 of Problem 1 with success
probability at least 2/3 must make at least the following
number of queries in the worst case:

Ω

(
n+ n

3
4

(
LR

ϵ

) 1
2 1

log n

)
.

The detailed proof is deferred to Appendix C.5.

5.4. Lipschitz and strongly convex setting

In the Lipschitz and strongly convex setting, we can con-
struct a hard instance with corresponding quantum lower
bound by adding a regularizer to Definition 5. Thus, we can
directly use the result of Corollary 5.Technical details can
be found in the appendix.

Corollary 6. For any ϵ < 9L2

200nµ and d = Ω̃
(

1√
ϵ3n

)
, any

quantum algorithm that solves Case 3 of Problem 1 with
success probability at least 2/3 must make at least the fol-
lowing number of queries in the worst case:

Ω

(
n+ n

3
4

(
1

ϵµ

) 1
4

L
1
2

1

log n

)
.

The detailed proof is deferred to Appendix C.6.
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A. Proofs Details for Quantum Algorithms in Convex Settings
We give proof details for claims in Section 3 here.

Proof of Lemma 2. First observe that one query to Og defined in Line 1 in Algorithm 2 can be implemented by applying
OF twice to the state

1√
n

∑
i

|i⟩ ⊗ |x⟩ ⊗ |xref⟩ ⊗ |0⟩ ⊗ |0⟩

to obtain the state

1√
n

∑
i

|i⟩ ⊗ |x⟩ ⊗ |xref⟩ ⊗ |∇fi(x)⟩ ⊗ |∇fi(xref)⟩ ,

and making the difference between the last two registers while regarding other registers as the garbage state.

Since each fi is ℓ-smooth, we have

∥gi∥ = ∥∇fi(x)−∇fi(xref)∥ ≤ ℓ∥x− xref∥, ∀i ∈ [n].

which leads to

Ei∥gi − ḡ∥2 ≤ Ei∥gi∥2 ≤ ℓ2∥x− xref∥2.

Then by Lemma 1, the subroutine QuantumVarianceReduction outputs an unbiased estimate ĝ of ḡ with E∥ĝ−ḡ∥ ≤
σ̂2 using an expected Õ(d1/2ℓ∥x−xref∥/σ̂) queries to Og, and thus asymptotically the same number of queries to OF .

Proof of Corollary 2. To solve Case 2 of Problem 1, the query complexity equals

S−1∑
s=0

Q
(
ℓ,
µ̃

2s

)
=

S−1∑
s=0

Õ
(
n+
√
d+

√
2sℓ/µ̃

(
n1/3d1/3 + n−2/3d5/6

))
= Õ(S(n+

√
d)) + Õ

(√
ℓ/µ̃
(
n1/3d1/3 + n−2/3d5/6

)) S−1∑
s=0

2s/2

= Õ
(
n+
√
d+R

√
ℓ/ϵ
(
n1/3d1/3 + n−2/3d5/6

))
.

To solve Case 3 of Problem 1, the query complexity equals

S−1∑
s=0

Q
(
ℓ,
µ̃

2s

)
=

S−1∑
s=0

Õ
(
n+

√
2s/(λµ)

(
n1/4d1/4 +

√
d
))

= Õ(S(n+
√
d)) + Õ

((
n1/3d1/3 + n−2/3d5/6

)
/
√
λµ
) S−1∑

s=0

2s/2

= Õ
(
n+
√
d+ L

(
n1/3d1/3 + n−2/3d5/6

)
/
√
λµ
)
.

To solve Case 4 of Problem 1, the query complexity equals

S−1∑
s=0

Q
(
ℓ,
µ̃

2s

)
=

S−1∑
s=0

Õ
(
n+
√
d+

√
22s/(λµ̃)

(
n1/3d1/3 + n−2/3d5/6

))
= Õ(S(n+

√
d)) + Õ

((
n1/3d1/3 + n−2/3d5/6

)
/
√
λµ
) S−1∑

s=0

2s

= Õ
(
n+
√
d+ LR

(
n1/3d1/3 + n−2/3d5/6

)
/ϵ
)
.
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B. Proof Details for Quantum Algorithm in the Nonconvex Setting
In this section, we prove Theorem 5. We first present a useful lemma from Fang et al. (2018).

Lemma 8 (Lemma 2 & Lemma 4, Fang et al. (2018)). In the setting of Problem 2, if we have

E[vt] = ∇f(xt)−∇f(xt−1), Var[vt] ≤
ϵ̂2

2q

for any iteration t ∈ [T ] of Algorithm 3 with mod(t, q) ̸= 0, then the following inequality holds for all t ∈ [T ]:

E[f(xt+1)− f(xt)] ≤ −
ϵ̂

4ℓ
E∥vt∥+

3ϵ̂2

4ℓ
.

Equipped with Lemma 8, we present the proof of Theorem 5 below.

Proof of Theorem 5. By Lemma 2, for any iteration t ∈ [T ] of Algorithm 3 with mod(t, q) ̸= 0 we have

E[gt] = ∇f(xt)−∇f(xt−1), Var[gt] ≤
ϵ̂2

2q
.

Hence, by telescoping the result from Lemma 8, we have

ϵ̂

4ℓ

T −1∑
t=0

E∥vt∥ ≤ f(0)− Ef(xT ) +
3T ϵ̂2

4ℓ
≤ ∆+

3T ϵ̂2

4ℓ

and

1

T

T −1∑
t=0

E∥vt∥ ≤
4ℓ∆

ϵ̂T
+ 3ϵ̂ ≤ 4ϵ̂,

where for each t ∈ [T ] we have

E∥vt∥ = E∥(vt −∇f(xt)) +∇f(xt)∥ ≥ E∥∇f(xt)∥ − E∥vt −∇f(xt)∥ ≥ E∥∇f(xt)∥ − ϵ̂

by Lemma 8, which leads to

E∥xout∥ = 1

T

T −1∑
t=0

E∥∇f(xt)∥+ ϵ̂ ≤ 5ϵ̂ = ϵ,

indicating that the output of Algorithm 3 is an expected ϵ-critical point.

The query complexity of Algorithm 3 is a combination of two components: the complete gradient computation step in
Line 4 and the QVRG step in Line 6, where each full gradient computation steps and each step takes O(n) queries by using
OF just as a classical finite sum oracle, i.e., we query OF without employing quantum superposition. As for the second part,
as per Lemma 2, each call to QVRG takes an expected

Õ

(
d1/2ℓ∥xt − xt−1∥

ϵ̂/
√
2q

)
= Õ

(√
dq/2

)
queries to the quantum finite-sum oracle. Hence, for every q iterations, the query complexity equals

n+ qÕ(
√
dq/2),

and the overall query complexity of Algorithm 3 equals(
1 +
T
q

)
·
(
n+ qÕ(

√
dq/2)

)
= Õ

(
n+

ℓ∆

ϵ2

(
d1/3n1/3 +

√
d
))

.
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C. Proof Details for Quantum Lower Bounds
In this section, we list several lemmas to prove our quantum lower bounds for convex settings of Problem 1.

C.1. The strong weighted adversary method

The last step of our proof is using the non-negative quantum adversary method.
Lemma 9 (Lemma 6, Cleve et al. (2012)). Let f be a function from a finite set S to another finite set T , and let Q be a finite
set of possible query strings. Given an unknown input x ∈ S, the oracle Ox corresponding to x is the unitary transformation
Ox |q⟩ |a⟩ |z⟩ = |q⟩ |a⊕ ξ(x; q)⟩ |z⟩, where q is a query string from Q, a ∈ {0, 1} is the register of binary answer, z is the
auxiliary register, and ξ : S ×Q→ {0, 1} is a function that defines the response to oracle queries. Also, let w, w′ denote a
weight scheme as follows:

• Every pair (x, y) ∈ S × S is assigned a non-negative weight w(x, y) = w(y, x) that satisfies w(x, y) = 0 whenever
f(x) = f(y);

• Every triple (x, y, q) ∈ S × S ×Q is assigned a non-negative weight w′(x, y, q) that satisfies w′(x, y, q) = 0 for all
x, y, q such that ξ(x; q) = ξ(y; q) or f(x) = f(y), and w′(x, y, q) · w′(y, x, q) ≥ w(x, y)2 for all x, y, q such that
ξ(x; q) ̸= ξ(y; q) and f(x) ̸= f(y).

For all x ∈ S and q ∈ Q, let µ(x) =
∑

y w(x, y) and ν(x, q) =
∑

y w
′(x, y, q). Then any quantum algorithm that

computes f(x) with success probability at least 2
3 on an arbitrary input x must make

Ω

 min
x,y,q;w(x,y)>0,
ξ(x,q)̸=ξ(y,q)

√
µ(x) · µ(y)

ν(x, q) · ν(y, q)


queries to the oracle Ox.

Using the strong weighted adversary method, we prove the following quantum lower bound for the multi chain problem:
Lemma 10. Any quantum algorithms that solves Problem 3 on n × k (n strings, k bits for each string) with success
probability at least 2

3 must take Ω(n
√
k) queries.

Proof. Our proof is similar to Ambainis & Montanaro (2014). In our multi-chain problem, the input is a string x ∈ {0, 1}n×k,
and f(x) is defined as f(x) = x. Queries can be formalized as follows: q = (i, t, x′i1, x

′
i2, . . . x

′
it), where i ∈ {1, 2, . . . n},

t ∈ {1, 2, . . . k} and x′ij ∈ {0, 1}. Here ξ(x, q) = 1 if and only if x′ij = xij for every j ∈ 1, 2, . . . t. Let d(x, y) denote the
Hamming distance of two inputs x and y (i.e., the number of differing bits between the two inputs.). Then we define the
following weight schemes:

• w(x, y) = 1 if d(x, y) = 1, and w(x, y) = 0 otherwise;

• w′(x, y, q) = w′(y, x, q) = 1 if d(x, y) = 1 and ξ(x, q) ̸= ξ(y, q), and w′(x, y, q) = w′(y, x, q) = 0 otherwise.

Then for any x ∈ {0, 1}n×k, we have µ(x) = nk and

ν(x, q) =
∑
y

1{y: d(x,y)=1, ξ(x,q)̸=ξ(y,q)}(y) =


t, if ξ(x, q) = 1;

1, if ξ(x, q) = 0 and |j : j ≤ t xij ̸= x′ij | = 1;

0, otherwise.

Therefore,

min
x,y,q;w(x,y)>0,
ξ(x,q) ̸=ξ(y,q)

√
µ(x) · µ(y)

ν(x, q) · ν(y, q)
= min

√
nk · nk
1 · t

=

√
nk · nk
1 · k

= n
√
k.

By Lemma 9, any quantum algorithms must take Ω(n
√
k) queries to solve the multi chain problem with success probability

more than 2
3 .
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C.2. Reduction from optimization to Problem 3

Problem 4 (Matrix Detection Problem). Given a matrix where each element is a vector, and each vector can take one of
two known possible values. Specifically, given a n× k matrix A, each element aij can be one of the vectors vij0 or vij1.
We have the following quantum oracle OA:

OA |i⟩ ⊗ |j⟩ ⊗ |m1m2 · · ·mj⟩ ⊗ |0⟩ |0⟩ →



|i⟩ ⊗ |j⟩ ⊗ |m1m2 · · ·mj⟩ ⊗ |1⟩ |0⟩
if ai,p = vi,p,mp

for each p ∈ {1, 2, , · · · j} and ai,j+1 = vi,j+1,0;

|i⟩ ⊗ |j⟩ ⊗ |m1m2 · · ·mj⟩ ⊗ |1⟩ |1⟩
if ai,p = vi,p,mp

for each p ∈ {1, 2, · · · j} and ai,j+1 = vi,j+1,1;

|i⟩ ⊗ |j⟩ ⊗ |m1m2 · · ·mj⟩ ⊗ |0⟩ |0⟩ ,
if there exists p ∈ {1, 2, · · · j}, ai,p ̸= vi,p,mp .

The goal is to output the matrix A.

This problem is quite similar to finding all vectors in our hard function. Intuitively, for each row, we have to start from the
beginning and detect the specific values of each vector in order.

Lemma 11. For dimension d = Ω
(
n(k + 1) + 8R2

c2 log (2nkN3)
)

, given a quantum algorithm that finds all vij of the

hard instance in Definition 3 with success probability more than 2
3 using s ≤ N queries, we can construct a quantum

algorithm solving Problem 4 with success probability more than 2
3 using O(s) queries.

Proof. First, for the hard instance F , we construct the following quantum oracle:

Ov |x1⟩ |x2⟩ · · · |xk⟩ ⊗ |i⟩ ⊗ |0⟩ |0⟩ · · · |0⟩ → |x1⟩ |x2⟩ · · · |xk⟩ ⊗ |i⟩ ⊗ |x′
1⟩ |x′

2⟩ · · · |x′
k⟩ (6)

where

x′
j =

{
vi,j , if

∣∣⟨x′
j ,vi,j⟩

∣∣ > c
2 or

∣∣⟨x′
j ,vi,j−1⟩

∣∣ > c
2 or

∣∣⟨x′
j ,vi,j+1⟩

∣∣ > c
2 ;

0, otherwise.

We demonstrate that when the task is to find a vector x with a large inner product with each vector vi,j , this oracle is stronger
than the quantum finite-sum oracle (3). Specifically, we can simulate a query to (3) using a query to (6). For example,
consider the hard instance in Definition 3. For a query to oracle (3) with input |x⟩ ⊗ |i⟩, consider a query to Ov with input
|x⟩ |x⟩ · · · |x⟩ ⊗ |i⟩. Observe that for j with max{⟨x,vi,j−1⟩, ⟨x,vi,j⟩, ⟨x,vi,j+1⟩} ≤ c

2 , since the helper function takes
value 0, ∇fi(x) does not contain any information about vi,j . Therefore, ∇fi(x) can be computed by the output of the
oracle Ov.

For a quantum algorithm A with access to Ov that can find the values of all events, suppose A makes at most N queries. We
define “bad event” to be

Bi,j,t :=
[
the input of t-th query x

(t)
j satisfies

∣∣∣⟨x(t)
j ,vi,j⟩

∣∣∣ > c

2
, but vi,j is not the output of any previous query

]
.

Intuitively, when Bi,j,t happens, before A queries x
(t)
j , A knows at most t − 1 vectors that have relatively small inner

products with vi,j .

Since vi,j is randomly chosen as a unit vector orthogonal to other v, we can bound the probability that the inner product of
a fixed unit vector and a uniformly random unit vector in d− n(k+ 1)+ 1 dimensions is larger than c

2 . This probability can

be explained as the ratio of the combined areas of the upper and lower caps with a radius of r :=
√

1−
(
c
2

)2
to the surface

area of the sphere. Thus,

Pr
[
|⟨x,vi,j⟩| >

c

2

]
≤ rd−n(k+1)+1

1d−n(k+1)+1
=

(
1−

( c
2

)2) d−n(k+1)+1
2

≤ e−
c2(d−n(k+1)+1)

8 .

16



Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

Therefore, the probability that the event Bi,j,t occurs is less than the probability of finding x such that |⟨x,vi,j⟩| > c
2 using

less than t queries, for some constant h:

Pr[Bi,j,t] ≤ t2h · e−
c2(d−n(k+1)+1)

8 .

Define “good event” G := ∪n/2i=1 ∪kj=1 ∪Nt=1Bi,j,t. Thus, the probability that all “bad” event do not happen is

Pr[G] ≥ 1−
n/2∑
i=1

k∑
j=1

N∑
t=1

Pr[Bi,j,t] ≤ 1− 1

2
nkhN3e−

c2(d−n(k+1)+1)
8 .

Take d ≥ n(k + 1) + 8
c2 log (2nkhN

3), we have

Pr[G] ≥ 1− 1

16
=

15

16
.

The above proof assumes that all queries are within a sphere of radius 1. For a general radius R, we can replace c with c
R to

adjust the parameters accordingly.

The occurrence of the “good” event implies that with high probability, the algorithm cannot guess the value of the vector but
can only obtain information about the vector through the provided oracle Ov. In such circumstance, we can simulate Ov

using an another oracle O′
v that demands more precise inputs:

Ov |x1⟩ |x2⟩ · · · |xk⟩ ⊗ |i⟩ ⊗ |0⟩ |0⟩ · · · |0⟩ → |x1⟩ |x2⟩ · · · |xk⟩ ⊗ |i⟩ ⊗ |x′
1⟩ |x′

2⟩ · · · |x′
k⟩ (7)

where

x′
j =

{
vi,j , if xj′ = vi,j′ for all j′ < j;

0, otherwise.

Note that when G occurs, when the algorithm queries x(t)
j such that

∣∣∣⟨x(t)
j ,vi,j⟩

∣∣∣ > c
2 , vi,j has been the output of a previous

query, so we can directly substitute the input with vi,j , and the algorithm still works using the oracle O′
v. If event Bi,j,t

occurs, we simply mark it as a failure of the algorithm.

Now, we can consider that a quantum algorithm using oracle OF to find all vi,j’s can be implemented with a quantum
algorithm using O′

v (with a small failure probability less than 1
16 ) with the same number of queries. Adding a constraint

on vi,j , specifically that vi,j is one of the two known vectors vi,j,0 and vi,j,1, implies that the task of using O′
v to find

all vectors is exactly equivalent to Problem 4. Therefore, from a quantum algorithm using oracle OF that finds all vi,j

of the hard instance with success probability more than 2
3 using s queries, we can construct a quantum algorithm solving

Problem 4 using O(s) quantum queries through the aforementioned reduction process. The failure probability could be
controlled by repeating the algorithm a constant number of times.

Next, we present the following lemma, demonstrating that the complexity of a quantum algorithm to find vectors for all
sub-functions is only different from finding vectors for half of the sub-functions by a logarithmic factor. This lemma is
essential in the proof of cases 2-4 of Problem 1, as in these situations, finding an ϵ-optimal point for the total function only
requires acquiring information about half of the sub-functions.

Lemma 12. For dimension d = Ω
(
n(k + 1) + 8

c2 log (2nkN
3)
)
, given a quantum algorithm which finds vectors vi,j for

all j of n
4 different (and uncertain) i’s of a hard instance with success probability more than 2

3 using s queries, we can
construct a quantum algorithm solving Problem 4 with success probability more than 2

3 using O
(
(s+ n

2 ) log n
)

quantum
queries, where N is the maximum number of query times.

Proof. The proof is similar to the proof for Lemma 11. For the task of finding a vector x such that |⟨x,vi,j⟩| > c
2 for all

j of n
4 different (and uncertain) i’s, Ov (6) is stronger than the quantum finite-sum oracle OF (3). Specifically, we can

simulate a query to (3) using a query to (6). Therefore, given a quantum algorithm using oracle OF , we can construct
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another algorithm A using oracle Ov with the same number of queries. Now we directly use A to construct an algorithm B
that finds x′ such that ⟨x,vi,j⟩ < c

2 for all i, j’s of the same hard instance.

The algorithm B works as follows: Repeat the following steps T times, where T will be specified later. In the t-th round,
B randomly permute the n

2 items (fi,1, fi,2) for i = 1, 2, · · · n2 . Then it simulates A and outputs xt. After receiving xt, it
queries Ov with inputs |xt⟩ |xt⟩ · · · |xt⟩ ⊗ |i⟩ for all i. Since xt satisfies that |⟨xt,vi,j⟩| > c

2 for all j of n
4 different i’s, the

above n
2 queries will receive values of vi,j for all j corresponding to at least n

4 different i’s. After the T rounds, B output∑n/2
i=1

∑k
j=1 vi,j if it receives all vi,j , and fails otherwise.

Now we bound the failure probability. In each round, the probability that vectors of i-th sub-function are found is larger
than 1

2 , and due to the independence between each round, Pr[ B fails to find the information of vi,j for all j ≤ k ] ≤
(
1
2

)T
.

Hence

Pr
[
B finds the value of vi,j for all i ≤ n

2
and j ≤ k

]
≥ 1−

n
2∑

i=1

Pr[ B fails to find the value of vi,j for all j ≤ k ]

≥ 1− n

2
·
(
1

2

)T

.

Take T = 4 + ⌈log (n2 )⌉, the success probability of B is larger than 15
16 . The number of queries to the oracle Ov is

Θ(
(
(s+ n

2 ) log n
)
).

The remaining steps are consistent with Lemma 11. We can construct a quantum algorithm to solve Problem 4 with
complexity O(

(
(s+ n

2 ) log n
)
). Here we repeat the algorithm a constant number of times to control the failure probability.

Next, we prove that Problem 4 can be reduced to Problem 3, for which problem we can construct a lower bound using the
adversary method.

Lemma 13. Given an algorithm that solves Problem 4 for input size n× k with success probability larger than 2
3 using s

queries, we can construct a quantum algorithm solving Problem 3 for the same input size with success probability larger
than 2

3 using O(s) queries.

Proof. The proof is based on a reduction between the two quantum oracles. While using existing results on adversary bounds,
it is worth noting that a quantum oracle in Problem 4 can be implemented using two oracles from Problem 3: We can simulate
the results ofOA |i⟩⊗|j⟩⊗|m1m2 · · ·mj⟩⊗|0⟩ |0⟩ by querying oracleOC with inputs |i⟩⊗|j + 1⟩⊗|m1m2 · · ·mj0⟩⊗|0⟩
and |i⟩ |j + 1⟩ ⊗ |m1m2 · · ·mj1⟩ ⊗ |0⟩, adding several quantum unitaries. Specifically, the first qubit of the oracle OA is
|1⟩ if and only if the output of two queries to the oracle OC contains at least one |1⟩, which means that (m1, · · ·mj) =
(ai,1, · · · ai,j). Under the above conditions the second qubit of the oracle OA is |0⟩ when the first query of OC is |1⟩ and |1⟩
otherwise.

Since the output of Problem 4 can be represented as a binary matrix, which is the same as Problem 3, we can build an
instance of Problem 4 out of an instance of Problem 3 by adding several random vectors. Therefore, We can construct an
algorithm with query complexity O(s) to solve Problem 3.

C.3. Proofs for the smooth and strongly convex setting

The proof of Lemma 5 is inspired by Theorem 8 of Woodworth & Srebro (2016). Note that compared to their proof, we
show that to find an ϵ-optimal point we need the information of all vectors rather than just one vector located later in each
sub-function.

Proof of Lemma 5. Intuitively, our proof strategy is roughly as follows: We initially decompose F (x) into the average of
several sub-functions defined on orthogonal subspaces. If the projection of x onto a certain subspace has a small enough
inner product with one of the randomly chosen vectors, we directly prove that the function value corresponding to x on that
subspace has a sufficiently large gap from the minimum value of that sub-function.

18



Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

Firstly, in order to bound the influence of ⟨x,vi,j⟩ on the total function F (x), it is convenient to bundle together all terms
affecting the value of ⟨x,vi,j⟩ from the components of all sub-functions. These terms are contained in fi,1(x), fi,2(x)
and ψ(x). Consider the projection operator Pi which projects the vector x onto the subspace spanned by the vector set
{vi,j}kj=0, and define P⊥ as the operator projecting x onto the subspace orthogonal to vi,j for all i, j. Then we have

ψ(x) =
µ

2
∥x∥2 =

µ

2

n/2∑
i=1

(
∥Pix∥2

)
+
µ

2
∥P⊥x∥2.

Split ψ(x) amongst fi,1 and fi,2, we obtain the modified sub-functions:

f̃i,1(x) = fi,1 +
µ̃

4
∥Pix∥2, f̃i,2(x) = fi,2 +

µ̃

4
∥Pix∥2.

Then, we can represent the total function F (x) as follows:

F (x) =
1

n

n/2∑
i=1

(
f̃i,1(x) + f̃i,2(x)

)
+
µ

2
∥P⊥x∥2.

Notice that there is still a remaining term µ
2 ∥P⊥x∥2 here, but this part is not crucial for our analysis, as when minimizing

the total function F (x), we can always set P⊥x = 0. Next, we consider the summation

1

2

(
f̃i,1(x) + f̃i,2(x)

)
=

1− µ̃
32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+ ζϕc(⟨x, vi,k⟩) +

k∑
j=1

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)
)
+
µ̃

4
∥Pix∥2.

We define

Fi(x) =
1− µ̃
32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+ ζ ⟨x, vi,k⟩2 +

k∑
j=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2
)
+
µ̃

4
∥Pix∥2

and

F t
i (x) =

1− µ̃
32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+ ⟨x, vi,t⟩2 +

t∑
j=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2
)
+
µ̃

4
∥Pix∥2.

Intuitively, Fi(x) is an approximation to 1
2

(
f̃i,1(x) + f̃i,2(x)

)
, and F t

i (x) is a truncation of Fi(x) to vi,t, neglecting the
vectors beyond vi,t+1. Consider the helper function (5), we know that when |z| ≤ c, the function is constant at 0, and for
any z,

z2 − 2c2 ≤ ϕc(z) ≤ z2. (8)

According to the properties of the helper function, we have

Fi(x) ≤
1

2

(
f̃i,1(x) + f̃i,2(x)

)
+

(1− µ̃)(k + ζ)

16
c2

1

2

(
f̃i,1(x) + f̃i,2(x)

)
≤ Fi(x).

for any x. For convenience, let Q := 1
2 (

1
µ̃ − 1) + 1, then

Fi(x) =
1

2

(
µ̃(Q− 1)

8

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+ ζ ⟨x, vi,k⟩2 +

k∑
j=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2
)
+
µ̃

2
∥Pix∥2

)
,

F t
i (x) =

1

2

(
µ̃(Q− 1)

8

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+ ⟨x, vi,t⟩2 +

t∑
j=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2
)
+
µ̃

2
∥Pix∥2

)
.
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Let x̂ := argminx Fi(x), by the first-order condition for the minimum value of Fi(x), x̂ satisfies

2
Q+ 1

Q− 1
⟨x̂,vi,0⟩ − ⟨x̂,vi,1⟩ = C,

⟨x̂,vi,j−1⟩ − 2
Q+ 1

Q− 1
⟨x̂,vi,j⟩+ ⟨x̂,vi,j+1⟩ = 0,(

1 + ζ +
4

Q− 1

)
⟨x̂,vi,k⟩ − ⟨x̂,vi,k−1⟩ = 0

for j = 1, 2, · · · k − 1.

Define q :=
√
Q−1√
Q+1

(q < 1) and set ζ = 1− q. Then x̂ can be expressed as follows:

x̂ = C

k∑
j=0

qj+1vj

and

Fi(x̂) = −
µ̃C2

16
(
√
Q− 1)2.

Therefore, the suboptimality of point 0 is ϵi := Fi(0)− Fi(x̂) =
µC2

16 (
√
Q− 1)2.

Now consider an arbitrary vector x. If there exists an index t that |⟨x,vit⟩| < c
2 , take c ≤ Cqk+1 since Fi is a µ̃

2 -strongly
convex function, Fi(x)− F (x̂) ≥ µ̃

4 ∥x− x̂∥2. Thus

Fi(x)− F (x̂)
Fi(0)− F (x̂)

≥
µ̃
4 ∥x− x̂∥2

µC2

16 (
√
Q− 1)2

≥ 4

C2
·
(
∣∣Cqk+1

∣∣− |c|)2
(
√
Q− 1)2

≥ 1

C2
· C2q2k+2

(
√
Q− 1)2

=
1

(
√
Q− 1)2

· exp
{
−2(k + 1) log

1

q

}
=

1

(
√
Q− 1)2

· exp
{
−2(k + 1) log (1 +

2√
Q− 1

)

}
≥ 1

(
√
Q− 1)2

· exp
{
−4(k + 1)√

Q− 1

}
.

Take k = ⌊
√
Q−1
4 log ϵi

nϵ(
√
Q−1)2)

⌋ − 1, since t ≤ k, we have

Fi(x)− F (x̂)
Fi(0)− F (x̂)

≥ nϵ

ϵi
,

which leads to

nϵ ≤ F t
i (x)− Fi(x̂)

≤ 1

2

(
f̃i,1(x) + f̃i,2(x)

)
+

(1− µ̃)(k + ζ)

16
c2 − 1

2

(
f̃i,1(x̂) + f̃i,2(x̂)

)
≤ 1

2

(
f̃i,1(x) + f̃i,2(x)

)
+

(1− µ̃)(k + 1)

16
c2 − 1

2

(
f̃i,1(x

∗) + f̃i,2(x
∗)
)
.
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Thus, (
f̃i,1(x) + f̃i,2(x)

)
−
(
f̃i,1(x

∗) + f̃i,2(x
∗)
)
≥ 2nϵ− (1− µ̃)(k + 1)

8
c2.

Take

c = min

{
1√
N
,

√
8nϵ

(1− µ̃)(k + 1)
, Cqk+1

}
,

then we have (
f̃i,1(x) + f̃i,2(x)

)
−
(
f̃i,1(x

∗) + f̃i,2(x
∗)
)
≥ nϵ.

Therefore, if there exists a vector vij which holds that |⟨x,vij⟩| < c
2 , then x cannot be an ϵ-optimal point of the hard

function F (x).

Proof of Corollary 3. Our proof relies on some results related to adversary bounds, which are detailed in Appendix C.1.

By Lemma 5, of for a hard function F (x) defined in Definition 3, with parameters set by Lemma 5, we must output a vector
x such that |⟨x, vi,j⟩| > c

2 for any i and j to find an ϵ-optimal point of F (x).

By Lemma 11 and Lemma 13, when d is sufficiently large, for a quantum algorithm that finds x with the above requirements
using s queries, we can easily construct an algorithm solving Problem 3 with input size n× k using O(s) queries. Then, we
can use the adversary method to provide a lower bound on the complexity of Problem 3. Consider Lemma 10, any quantum
algorithms solving Problem 3 must take at least Ω(n

√
k) queries. This gives a lower bound for case 1 of Problem 1:

s = n
√
k = Ω

(
n

3
4

(
1

µ

) 1
4

log
1
2

(
∆µ

ϵ

))
.

Considering the smoothness parameter ℓ, we scale the hard function as follows:

F ′(x) =
1

ℓ
F (x),

then f ′i(x) is 1-lipschitz and ψ′(x) is µ
ℓ -strongly convex, and the ϵ-optimal point of F (x) is equivalent to the ϵ

ℓ -optimal
point of F (x). We can complete the proof using a lower bound with the parameter ℓ:

Ω

(
n

3
4

(
ℓ

µ

) 1
4

log
1
2

(
∆µ

ϵℓ

))
.

Note that this proof also provides a trivial lower bound Ω(n) since k is greater than 1, and hence our lower bound is

Ω

(
n+ n

3
4

(
ℓ

µ

) 1
4

log
1
2

(
∆µ

ϵℓ

))
.

Finally, we calculate the required constraints on the dimension d. By strong-convexity F (0) ≤ F (x∗) + µ
2 ∥x

∗∥2, so

∥x∗∥ ≤
√

2∆
µ

:= R. Since the optimal point lies in the R-ball, we restrict the algorithm to query only at points x such that

∥x∥ ≤ R. We argue that by a slight modification of the hard instance, Querying points beyond the R-ball will not yield
additional information. The statement is based on the construction in Appendix C.4 of Woodworth & Srebro (2016). Define
f ′i,j through its gradient as:

∇f ′i,j(x) =

{
∇fi,j(x) ∥x∥ ≤ R;
∇fi,j

(
R x

∥x∥

)
∥x∥ ≥ R.

∇ψ′(x) =

{
∇ψ(x) ∥x∥ ≤ R;
∇ψ

(
R x

∥x∥

)
− µR x

∥x∥ + µ
2 ∥x∥

2 ∥x∥ ≥ R.

21



Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

Note that for the new construcion, f ′i(x) is continuous and ℓ-smooth, and ψ′(x) is still µ-strongly convex. Furthermore,
it also has the property that querying the function at a point x beyond the R-ball cannot find more information than
querying at R x

∥x∥ . So we can restrict the algorithm not to query points outside the R ball while still maintaining the same

capability. Then, we can use the Lemma 11 to calculate the requirements for dimension d: n(k + 1) + 8R2

c2 log (2nkN3) =

O
(

∆ℓ2

µ2nϵ log
2 ∆µ

ϵℓ log nℓ
µ

)
, so by Lemma 11 we can take d =

(
∆ℓ2

µ2nϵ log
2 ∆µ

ϵℓ log nℓ
µ

)
.

C.4. Proofs for the smooth and non-strongly convex setting

Proof of Lemma 6. The proof is inspired by the results from Appendix C.3 in Woodworth & Srebro (2016).

Without loss of gengerality, we can assume that ℓ = R = 1. As in Definition 4, for the parameters C, k and c given later, we
define n

2 pairs of functions:

fi,1(x) =
1

16

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+

k∑
r even

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)
)
,

fi,2(x) =
1

16

(
ϕc(⟨x, vi,k⟩) +

k∑
r odd

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)
)

where vij are orthonormal vectors chosen randomly on the unit sphere in Rd. For the non-strongly convex case, we directly
set ψ(x) to 0.

For i ∈ {1, 2, · · · n2 }, define

Fi(x) =
1

2

(
fi,1(x) + fi,2(x)

)
=

1

32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+

k∑
r=1

ϕc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩) + ϕc(⟨x, vi,k⟩)
)

then the total function is

F (x) =
1

n

n
2∑

i=1

2∑
j=1

fi,j(x) =
2

n

n
2∑

i=1

(Fi(x)).

To estimate the value of the function Fi(x), we define

F ′
i (x) =

1

32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+

k∑
r=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2 + (⟨x, vi,k⟩)2
)
.

Considering the property (8) of the helper function, we have

F ′
i (x)−

k + 1

16
c2 ≤ Fi(x) ≤ F ′

i (x). (9)

By first order optimality conditions for F ′
i , the optimum point x̃i of F ′

i (x) must satisfy that

2⟨x̃i,vi,0⟩ − ⟨x̃i,vi,1⟩ = C;

⟨x̃i,vi,j−1⟩ − 2⟨x̃i,vi,j⟩+ ⟨x̃i,vi,j+1⟩ = 0 for 1 ≤ j ≤ k − 1;

⟨x̃i,vi,k−1⟩ − 2⟨x̃i,vi,k⟩ = 0.

It can be easily verified that the solution to the above system is

x̃i = C

k∑
j=0

(
1− j + 1

k + 2

)
vi,j
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and the corresponding minimum function value is

F ′
i (x̃i) = −

C2

32

k + 1

k + 2
.

Now, we can calculate the norm of the optimal point x̃i:

∥x̃i∥2 = C2 ·
k∑

j=0

(
1− j + 1

k + 2

)2

= C2 · (k + 1)(k + 2)(2k + 3)

6(k + 2)2

≤ C2k

3
, when k ≥ 1.

Due to the orthogonality of vi,j , the minimization of the total function F ′(x) = 2
n

∑n
2
i=1 F

′
i (x) can be equivalently

represented as the minimization over different orthogonal subspaces Vi = span{vi,0,vi,1, · · ·vi,k}, i.e., the minimization
over n

2 sub-functions. Therefore, x̃′ :=
∑n

2
i=1 x̃i is the optimal point of F ′(x).

Take C =
√

6
nk , we can ensure that

∥∥∥∑n
2
i=1 x̃i

∥∥∥ ≤ 1 = R.

Now, we will bound F ′
i (x) at a point x such that there exists q ∈ {1, 2, · · · ⌊k/2⌋} satisfying |⟨x,vi,q⟩| ≤ c

2 . Define

F t
i (x) :=

1

32

(
⟨x, vi,0⟩2 − 2C ⟨x, vi,0⟩+

t∑
r=1

(⟨x, vi,r−1⟩ − ⟨x, vi,r⟩)2
)
.

Observe that F t
i (x) ≤ F ′

i (x) for all x ∈ Rd. Hence, we can find the minimum value of F t
i under the condition that ⟨x,vi,t⟩

is fixed as bt. Similarly, By first order optimality conditions for F t
i , its optimum point x̃t

i must satisfy that

2⟨x̃t
i,vi,0⟩ − ⟨x̃t

i,vi,1⟩ = C;

⟨x̃t
i,vi,j−1⟩ − 2⟨x̃t

i,vi,j⟩+ ⟨x̃t
i,vi,j+1⟩ = 0 for 1 ≤ j ≤ q − 1.

The solution to the above system is

x̃t
i =

t∑
j=0

(
t− j
t+ 1

C +
j + 1

t+ 1
bt

)
vi,j , where bt = ⟨x,vi,t⟩,

and the corresponding minimal value is

F t
i (x̃

t
i) =

1

32

(
−C2 +

(C − bt)2

t+ 1

)
.

Consider the case that |bq| = |⟨x,vi,q⟩| ≤ c
2 , take c ≤ (2−

√
3)C, we have

F ′
i (x) ≥ F t

i (x) ≥ F t
i (x̃

t
i)

≥ 1

32

(
−C2 +

(C − bq)2

q + 1

)
≥ 1

32

(
−C2 +

(C − c
2 )

2

k
2 + 1

)

≥ −C
2

32

(
1− 1

2
3k +

4
3

)
≥ −C

2

32

(
1− 1

2
3k + 1

)
. (10)

23



Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

Combine (9) and (10), when k ≥ 3 and |⟨x,vi,q⟩| ≤ c
2 ,

Fi(x)− Fi(x
∗) ≥ F ′

i (x)−
(k + 1)c2

16
− Fi(x̃i)

≥ F ′
i (x)−

(k + 1)c2

16
− F ′

i (x̃i)

≥ −C
2

32

(
1− 1

2
3k + 1

)
+
C2

32

k + 1

k + 2
− (k + 1)c2

16

≥ C2

32

(
1

2
3k + 1

− 1

k + 2

)
(k + 1)c2

16

≥ 1

32(k + 1)2n
− (k + 1)c2

16
.

When ϵ < 1
4096n , setting k = ⌊ 1

16
√
ϵn
⌋ − 1 ≥ 3 and c = min { 1√

N
, (2−

√
3)C, 8

√
ϵ
k}, we can ensure that

Fi(x)− Fi(x
∗) ≥ 8ϵ− 4ϵ = 4ϵ.

Therefore, if for at least n
4 of the i’s it holds that |⟨x, vi,ji⟩| < c

2 for some ji ≤ q = ⌊k2 ⌋ , then x cannot be an ϵ-optimal
point of the total function F (x).

Proof of Corollary 4. Lemma 6 tells us that to find an ϵ-optimal point of the hard function defined in Definition 4, with
parameters set by Lemma 6, we must output a vector x such that for at least n

4 of the i’s it holds that |⟨x, vi,j⟩| > c
2 for any

j ≤ q = ⌊k2 ⌋.

By Lemma 12 and Lemma 13, when d is sufficiently large, for a quantum algorithm finding x that satisfies the above
requirements using s queries, we can construct an algorithm solving Problem 3 with input size n× q using O

(
(s+ n

2 ) log n
)

queries. From Lemma 10, any quantum algorithms solving Problem 3 must take at least Ω(n
√
q) = Ω(n

√
k) queries.

Therefore, we obtain a lower bound for case 2 of Problem 1:

s =
1

log n
· n
√
k = Ω

(
n

3
4

1

log n

(
1

ϵ

) 1
4

)
.

Take ℓ and R into account, we can simply scale the hard function as follows:

F ′(x) =
1

lR2
F (

x

R
).

Take ϵ′ = ϵ
ℓR2 , we can finish the proof with a lower bound

Ω

(
n

3
4

1

log n

(
ℓ

ϵ

) 1
4

R
1
2

)
.

Next, we point out that Ω(n) is a trivial lower bound of Problem 1, as the quantum algorithm must take at least Ω(n) queries
to get the values of vector of n

4 sub-function in orthogonal subspace. Taking into account the aforementioned discussion,
our lower bound for the smooth and non-strongly convex is

Ω

(
n+ n

3
4

1

log n

(
ℓ

ϵ

) 1
4

R
1
2

)
.

Finally, we verify the requirements to dimension d: n(k + 1) + 8R2

c2 log (2nkN3) = O
((√

n
ϵ + 1

ϵ2

)
log
(
n
ϵ

))
, so by

Lemma 12 we can take d = Ω
((√

n
ϵ + 1

ϵ2

)
log
(
n
ϵ

))
.
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C.5. Proofs for the Lipschitz and non-strongly convex setting

Proof of Lemma 7. The proof is inspired by the results from Appendix C.1 in Woodworth & Srebro (2016).

Without loss of generality, we can suppose that m is even. Otherwise we can simply set the last sub-function to 0, and the
query complexity is reduced by a factor m−1

m . As in Definition 5, for values b, c and k to be fixed later, we define n
2 pairs of

sub-functions:

fi,1(x) =
1√
2
|b− ⟨x,vi,0⟩|+

1

2
√
k

k∑
r even

χc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩) ,

fi,2(x) =
1

2
√
k

k∑
r odd

χc (⟨x, vi,r−1⟩ − ⟨x, vi,r⟩) .

where vij are random orthonormal vectors on the unit sphere in Rd.

For convenience, for i ∈ {1, 2, · · · n2 }, we define

Fi(x) =
1

2
(fi,1(x) + fi,2(x))

=
1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k

k∑
j=1

χc(⟨x,vi,j−1⟩ − ⟨x,vi,j⟩).

It is straightforward to verify that Fi(x) takes its minimum value 0 when ⟨x,vi,j⟩ = b for all j. Since each sub-function is
defined on orthogonal subspaces, the total function F (x) = 1

n

∑n
2
i=1 (fi,1(x) + fi,2(x)) is minimized at point

x∗ = b ·
n
2∑

i=1

k∑
j=0

vi,j

and x∗ is also an optimal point of Fi(x) for all i. We set b =
√

2
n(k+1) , such that ∥x∗∥ = 1 = R.

Now we bound Fi(x) at a point x when there exists t ≤ k such that ⟨x,vi,t⟩ ≤ c
2 .

Fi(x)− Fi(x
∗) ≥ Fi(x)− 0

≥ 1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k

k∑
j=1

(|⟨x,vi,j−1⟩ − ⟨x,vi,j⟩| − c)

=
1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k

k∑
j=1

(|⟨x,vi,j−1⟩ − ⟨x,vi,j⟩|)−
k

4
√
k
c

≥ 1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k

t∑
j=1

(|⟨x,vi,j−1⟩ − ⟨x, vi,j⟩|)−
k

4
√
k
c

≥ 1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k
|⟨x,vi,0⟩ − ⟨x,vi,t⟩| −

k

4
√
k
c

≥ 1

2
√
2
|b− ⟨x,vi,0⟩|+

1

4
√
k
|⟨x,vi,0⟩| −

1

4
√
k

c

2
− k

4
√
k
c

≥ −2k + 1

8
√
k
c+min

z∈R

(
1

2
√
2
|b− z|+ 1

4
√
k
|z|
)

= −2k + 1

8
√
k
c+

b

4
√
k

≥ −2k + 1

8
√
k
c+

1

4k
√
n
.
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Take c = min { 1√
N
, ϵ√

k
} and set k = ⌊ 1

10ϵ
√
n
⌋, we have

Fi(x)− Fi(x
∗) ≥ − ϵ

2
+

5

2
ϵ = 2ϵ.

Therefore, if for at least n
4 i’s that there exists ij such that ⟨x,vi,ij ⟩ < c

2 , then

F (x)− F (x∗) ≥ 2

n
· n
4
· 2ϵ = ϵ,

i.e., x cannot be an ϵ-optimal point of the hard instance F .

Proof of Corollary 5. Lemma 7 informs us that to find an ϵ-optimal point of the hard function defined in Definition 5, with
parameters set by Lemma 7, we must output a vector x such that for at least n

4 of the i’s it holds that |⟨x, vi,j⟩| > c
2 for any

j.

From Lemma 12 and Lemma 13, when d is sufficiently large, for a quantum algorithm finding x that satisfies the above
requirements using s queries, we can construct an algorithm solving Problem 3 with input size n×k using O

(
(s+ n

2 ) log n
)

queries. Then we consider Lemma 10, any quantum algorithms solving Problem 3 must take at least Ω(n
√
k) queries. This

gives a lower bound for case 4 of Problem 1:

s =
1

log n
· n
√
k = Ω

(
n

3
4

1

log n

(
1

ϵ

) 1
2

)
.

Consider L and R, similarly we can scale the hard function as follows:

F ′(x) =
1

LR
F
( x
R

)
.

Take ϵ′ = ϵ
LR , we can finish the proof with a lower bound

Ω

(
n+ n

3
4

1

log n

(
LR

ϵ

) 1
2

)
.

The part Ω(n) here is similar to Corollary 4.

Finally, we verify the requirements to dimension d: n(k + 1) + 8R2

c2 log (2nkN3) = O
(

1
ϵ3

√
n
log
(
n
ϵ

))
, so by Lemma 12

we take d = Ω
(

1
ϵ3

√
n
log
(
n
ϵ

))
.

C.6. Proofs for the Lipschitz and strongly convex setting

Inspired by Appendix C.2 in Woodworth & Srebro (2016), we now use a reduction from case 4 of Problem 1, i.e., the
Lipschitz and non-strongly convex setting to prove Corollary 6.

Proof of Corollary 6. We use proof by contradiction, assuming that there exists an algorithm A that can find a ϵ-optimal

point of the total function in case 3 with o
(
n+ n

3
4

(
1
ϵµ

) 1
4

L
1
2

1
logn

)
quantum queries.

For a function F (x) that satisfies case 4, suppose F (x) = 1
n

∑n
i=1 fi(x) + ψ(x), where fi(x) is convex and L-lipschitz,

ψ(x) is convex and the optimal point satisfies that ∥x∗∥ ≤ R. We construct an another function which can be minimized by
the algorithm A:

F̃ (x) :=
1

n

n∑
i=1

f̃i(x) + ψ̃(x), where f̃i(x) = fi(x) and ψ̃(x) = ψ(x) +
µ

2
∥x∥2.
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Note that f̃i(x) is still convex and L-lipschitz and ψ̃(x) is µ-strongly convex. Therefore, by assumption, A can find a
ϵ
2 -optimal point x̂ of F̃ (x) with o

(
n+ n

3
4

(
1
ϵµ

) 1
4

L
1
2

1
logn

)
quantum queries. Furthermore, set µ = ϵ

R2 , we have

F (x) ≤ F̃ (x) ≤ F (x) + ϵ

2R2
∥x∥2 ≤ F (x) + ϵ

2
.

So

F (x̂)− F (x∗) ≤ F̃ (x̂)− F̃ (x∗) +
ϵ

2
≤ ϵ

2
+
ϵ

2
= ϵ

which means that x̂ is an ϵ-optimal point of F (x). The total number of queries is

o

(
n+ n

3
4

(
1

ϵµ

) 1
4

L
1
2

1

log n

)
= o

(
n+ n

3
4

(
LR

ϵ

) 1
2 1

log n

)

which contradicts the conclusion of Corollary 5. Here we need ϵ < 9L2

200nµ and d = Ω̃
(

1√
ϵ3n

)
to achieve the contradiction.
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