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ABSTRACT

Frontier language models appear strong at solving reasoning problems, but their
performance is often inflated by shortcuts such as memorisation and knowledge.
We introduce LINGOLY-TOO, a challenging reasoning benchmark of 6,995 ques-
tions that counters these shortcuts by applying expert-designed obfuscations to
Linguistics Olympiad problems. These obfuscations preserve the underlying so-
lution logic while removing orthographic clues that could trigger patterns from
memorisation or knowledge. Our experiments show that models exploit shortcuts
on the original questions as performance markedly drop upon obfuscation. Even the
best reasoning models remain highly sensitive, with scores dropping from around
0.60 on original problems to 0.48 after obfuscation. LINGOLY-TOO disentangles
reasoning from knowledge, offering a clear measure of true reasoning capabilities. 1

1 INTRODUCTION

Figure 1: Reasoning performance on LINGOLY-TOO. Results without controlling for knowledge
and memorisation abilities overestimate reasoning abilities (light blue). Obfuscation mitigates this
effect and offers improved estimates (dark blue). There are two scores per model: Mog is based on
the original problems and Mobf is based on obfuscated problems.

Experts often define reasoning as the ability to apply abstract rules to derive novel judgments (Koralus,
2022; Huang & Chang, 2023; Lampinen et al., 2024). This ability includes inductive, spatial, causal,
and commonsense reasoning skills (Kazemi et al., 2025). Benchmarks aim to measure reasoning
by testing models on unseen tasks. For such measurements to be valid, reasoning must be both a
necessary and sufficient condition for success. However, as training sets grow in size, distinctions
between train and test sets, and in- and out-of-domain tasks are blurred (Raji et al., 2021), leading
benchmark performance to become contaminated.

We distinguish two phenomena where information from training data is used to complete a bench-
marking task. We refer to knowledge as information stored in model parameters after training, which
captures linguistic, factual, and commonsense patterns useful for downstream tasks. Leveraging

1
§ Code available at: https://anonymous.4open.science/r/L2-7F12
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stored knowledge is useful in general, but it can confound the measurement of symbolic reasoning
capabilities. For example, GPT-5 can already translate from Welsh to English, hence a linguistic
reasoning task based on deriving rules from paired Welsh-English translations would be trivial. We
refer to memorisation as when models exploit contaminated datasets, reporting answers previously
seen in training (Li & Flanigan, 2024; Zhou et al., 2023).

Consequently, and amidst the rapid saturation in reasoning benchmarks (Kazemi et al., 2025; Phan
et al., 2025), novel methods for generating challenging, unbiased benchmarks are paramount for
measuring true reasoning abilities. To prevent models from bypassing reasoning, test cases should
minimise the chance that problems are answerable using either knowledge or memorisation. Consider
the following scenario: a user asks a large language model (LLM) to solve a language task, but the task
is written in an unfamiliar script or orthography.2 In this situation, the model’s knowledge is rendered
useless. The model must deduce grammatical rules and patterns from context, then apply them to
solve the given task. Similar interventions have been explored in logic puzzles and mathematics,
e.g. using symbolic templates to permute variable values (Mirzadeh et al., 2024); however, these
small-scale perturbations are less effective because questions remain similar to examples the model
may have previously seen. By contrast, after permuting the orthography of a language, the words no
longer appear in any training corpus (removing the ability of an LLM to use shortcuts), while the
underlying solution logic remains unchanged.

Our benchmark LINGOLY-TOO operationalises this idea. Original problems are taken from the UK
Linguistics Olympiad (UKLO (United Kingdom Linguistics Olympiad, 2023)), which can be solved
by high-school students without specific linguistic or domain knowledge. The problems undergo
obfuscation: linguistically-informed grapheme-level permutations that preserve the underlying solu-
tion logic, remove clues a model could match to prior knowledge, and provide thousands of distinct,
solvable variants. Our benchmark targets exactly the scenario outlined above: testing whether a
model can use symbolic inductive reasoning to infer the abstract rules and patterns needed to answer
the questions from context.

Our evaluation results show that models often rely on language knowledge rather than reasoning,
inflating apparent ability, especially in high-resource languages. Although reasoning models, trained
to leverage inference-time compute, outperform general-purpose LLMs, they remain sensitive to
permutations and exhibit failures such as inconsistent reasoning loops. LINGOLY-TOO addresses
key issues in benchmarking LLMs: saturation, contamination, and weak construct validity (Reuel-
Lamparth et al., 2024). Our primary contributions are as follows:

• An unsaturated benchmark for frontier reasoning models. The top language model on
our benchmark, GPT-5, scores 48% overall and only 31% on the highest difficulty questions
(Section 4.1).

• A method to quantify knowledge effects. The difference between performance on the
unperturbed and perturbed problems highlights reasoning shortcuts. We show score inflation
from knowledge is correlated with language resourcedness (Section 4.2), and that providing
the correct reasoning logic mitigates it (Section 4.3).

• A method for generating new uncontaminated reasoning problems. Experiments with
then-unpublished UKLO 2025 problems show that perturbation-related performance drops
persists, indicating effects are not due solely to training-set overlap (Section 4.4).

2 RELATED WORK

2.1 REASONING IN LLMS

LLMs show rapid progress on task-reasoning across domains, such as maths word problems (Cobbe
et al., 2021; Hendrycks et al., 2021; Chen et al., 2023; Shao et al., 2024), visual pattern-matching
(Chollet, 2019), multi-step planning (Valmeekam et al., 2022; Kambhampati, 2024), and common-
sense question-answering (Zelikman et al., 2022; Lin et al., 2020; Rajani et al., 2019; Talmor et al.,
2019). It remains unclear to what degree these abilities generalise to novel domains and tasks. Models
fail in systematic ways, showing distractability (Shi et al., 2023), content effects (Lampinen et al.,

2A glossary of linguistic terms used in this article is included in Appendix A.
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Preamble: In language X, the ....  

Context: Here are several example 
translations of Language X:
 

Agzighq.                       They flew.

Attn .                            I ran.

Qagiz.                            She flew.


 agz  .                  I did not fly.

Wattin micfuf.              A boy ran.


 wagiz .                He did not fly.

 ighq .           They did not observe.


Qiracin qicfufq.            A girl observed.



Question: Translate: I did not observe

iy

iyAl ele

Al ele
Al eleracn

Permutation k

Preamble: Kabyle is a language spoken ....  

Context: Here are several example 
translations of Kabyle:
 

Ufgent.                          They flew.

Uzzl .                        I ran.

Tufeg.                            She flew.


 ufg  .              I did not fly.

Yuzzel weqcic.            A boy ran.


 yufeg .                He did not fly.

 ent .           They did not observe.


Temuqel teqcict.         A girl observed.



Question: Translate: I did not observe

egh

eghUr ara

Ur ara
Ur aramuql
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negation →   .... 
observe →

I → 

Al ele 
 racn 

iy

negation →  .... 
observe →

I → 

Ur ara 
 muql 

egh

Simplified reasoning

steps needed to answer

Problem permutation

Correct answer

Figure 2: Obfuscation example. An example problem before (left) and after (right) obfuscation with
the simplified inductive reasoning steps needed for answering. For each obfuscation, we sample a
character mapping (permutation) based on the ruleset, then apply it to obfuscate the problem and the
answer. Only the original problem can be solved with the aid of model’s internalised knowledge.

2024), and sharp drops under minor perturbations (Mirzadeh et al., 2024). They also rely on superfi-
cial patterns (token bias) (Jiang et al., 2024), which persists despite inference-time scaling (McCoy
et al., 2024). This is further complicated by dataset contamination, where benchmark questions
appear in training data (Zhou et al., 2023; Jacovi et al., 2023; Yang et al., 2023). The evidence
suggests that LLMs achieve high benchmark scores partly through shortcuts (Bean et al., 2024).

2.2 LINGUISTIC REASONING WITH LLMS

Linguistic reasoning problems test the in-context learning and reasoning ability of LLMs by providing
examples of a language and tasks to accomplish based on linguistic analysis (Bean et al., 2024; Tanzer
et al., 2024). These problems require a mix of deductive, abductive, and analogical reasoning,
allowing broad relevance beyond linguistics (Bean et al., 2024). Linguistics Olympiads are a common
source of these problems, where puzzles have been curated for student competitions, ensuring the
quality of the puzzles as well as their solvability by someone with no prior knowledge of the languages
in question (Şahin et al., 2020; Chi et al., 2024). Morphological complexity has been shown to be
particularly challenging for LLMs, as well as languages with lower similarity to English (Choudhary
et al., 2025). Advanced problems from these competitions typically draw on low-resource languages
where LLMs have minimal pre-training exposure, and remain difficult for top models (Sánchez et al.,
2024; Lian et al., 2025). However, models show signs of partial contamination even in low resource
languages (Bean et al., 2024), indicating a need for further methods to improve benchmark validity.

3 LINGOLY-TOO BENCHMARK

LINGOLY-TOO is a reasoning benchmark extending the LINGOLY benchmark (Bean et al., 2024). It
consists of 6, 995 question and answer pairs, which are generated through an obfuscation process
designed by experts to preserve the intrinsic reasoning steps needed to solve each question, and to
generate novel test data that measure the generalisable reasoning abilities of models.

3.1 LINGUISTICS TASKS

The benchmark is adapted from 82 problems from the UKLO. Linguistics Olympiad problems have
several desirable features. All problems are grounded in natural languages, but require no preliminary
knowledge in linguistics or any other domain beyond what is expected from middle and high school
students. Each problem is self-contained and can be solved from the provided context using general
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reasoning and pattern matching skills. Answers vary in format, including free response and multiple
choice, and can be evaluated with simple rule-based matching. Problems span five difficulty levels
(Breakthrough, Foundation, Intermediate, Advanced, Round 2) sourced from UKLO.3

A typical problem sheet (referred to hereafter as a problem) consists of multiple (question, answer)
pairs. Each problem presents words or phrases in a language of focus (termed Problemese) alongside
their translations into the language in which the problem is written (termed Solverese) (Bozhanov &
Derzhanski, 2013). The solver should deduce the underlying patterns and structures and use them to
produce a best answer for each question in a manner that resembles few-shot learning (Figure 2).

3.2 REASONING-EQUIVARIANT PERMUTATION

Although the original 82 problems include low-resource languages, these languages are increasingly
represented in pre-training datasets, allowing models to rely on memorisation or knowledge rather
than reasoning. We address this challenge by generating reasoning-equivariant permutations that
obfuscate the original languages while preserving the underlying language mechanisms and solution
steps. In Linguistics Olympiads, obfuscation describes the process that prevents cheating by removing
metadata such as language names, language families, and geographic information that could identify
the Problemese language (Asia Pacific Linguistics Olympiad, 2024; United Kingdom Linguistics
Olympiad, 2021). We extend this approach by obfuscating the Problemese text itself, making it
unlikely that models can solve problems using knowledge or memorisation.

Because the problems require symbolic reasoning over subwords (both morphemes such as suffixes,
and phonemes), common permutation techniques that operate on complete words such as synonym
replacement, paraphrasing, or word swapping are not suitable. These would corrupt the symbolic
units and invalidate the problems. Instead, we manually created a ruleset for each problem to generate
valid permutations of the targeted tokens (Problemese text). Valid permutations treat graphemes (both
single letters and letter-combinations like English th and sh) as single units, and preserve relevant
relationships between them. They also preserve any loanwords or English cognates that might aid in
solving the problem. Names of people, deities, and sacred places were also kept unchanged.

Last vowel Suffix
e or i -siz
o or u -suz
ö or ü -süz
a or ı -sız

Table 1: Problem 5 (Turkish)
suffix form. Suffix form of
-sVz changes depending on the
last vowel.

It is important to note that naive permutation of graphemes can
easily render the problem unsolvable if it does not preserve the
properties used in the underlying linguistic mechanism. We illus-
trate this with the example of minor vowel harmony highlighted
in Problem 5 (Turkish, by Bozhidar Bozhanov). The suffix -sVz
(meaning ‘lacking’, similar to the English ‘-less’) can take four dif-
ferent forms depending on the previous vowel (Table 1). From a
linguistic perspective, each of the four vowel pairs (e,i), (o,u), (ö,ü),
(a,ı) differ in the shape of the lips (roundedness) and position of
the tongue (backness) when that sound is produced. For example,
(e,i) are [−ROUND] and [−BACK], while (o,u) are [+ROUND] and
[+BACK]. Distorting these pairs by permutations would render the
problem unsolvable, since the solver would not be able to figure out
which vowels would correspond to each pair. As such, all possible permutations must preserve the
pairings, although the pairs may be permuted amongst themselves.

Our expert list of valid permutations takes into account the interactions between different segments to
maintain two principles: (i) ensuring the permutations are reasoning-equivariant, and (ii) obtaining
the maximum number of possible permutations. Further details can be found in Appendix B.

3.3 DATA GENERATION

We manually annotated 1,005 (question, answer) pairs from 82 problems with special tags for later
processing. Metadata such as language names, language families, and geographic information, which
had no impact on problem solvability but may provide clues for LLMs to use shortcuts were removed.
A detailed description of the annotation process, including examples, is provided in Appendix C.

3For problems marked with multiple levels, we take the lower one. The distribution statistics of these
difficulty levels can be found in Appendix D.
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Figure 3: Breakdown of Mobf scores by difficulty level. For the stronger models, we see a clear
decreasing trend in scores with increasing problem difficulty.

We randomly sampled up to 6 valid permutations per problem, and generated obfuscated versions
of the problem by altering the Problemese text according to the selected permutations. These valid
permutations were always chosen from those with a minimal number of fixed points. Finally, we
removed any special characters used for annotations. The original questions and the 6 permutations
resulted in 6,995 (question, answer) pairs across all problems.4

3.4 EVALUATION

Metrics We define a correct prediction as an exact match to the answer, with no credit given to
partially correct answers. The correct answer often involves making small changes to words already
present in the problem, so scores that offer partial credit may reward incorrect answers resulting from
wrong reasoning.

Let L(i, j, k) be the exact match score for problem i ∈ {1, ..., 82} on question j ∈ {1, . . . , ni},
where ni is the total number of questions in problem i, after applying permutation k ∈ {0, . . . , 6}.
To simplify notation, permutation k = 0 is the identity, i.e. the unpermuted case. We define M i

obf to
be the average exact match score across all questions in all (non-identity) permutations of problem
i, that is, M i

obf = (1/6ni)
∑ni

j=1

∑6
k=1 L(i, j, k). In analyses where we compare results to those

on the original (unpermuted) problems, we define M i
og = (1/ni)

∑ni

j=1 L(i, j, 0) to be the average
exact match across all questions in the unpermuted problem i. To evaluate a single model on the
entire benchmark, we report the mean across all problems, that is

Mobf =
1

82

82∑
i=1

M i
obf and Mog =

1

82

82∑
i=1

M i
og. (1)

Evaluation pipeline We broke down problems into individual questions and prompted models on
each problem with all of its (question, answer) pairs. Each prompt consisted of a preamble (detailing
background information about the language), context (key information the models need to reason over
and infer the correct rules), all questions in the problem (some questions depend on previous ones)
and the specific question to be answered. The prompt also specified the expected json structure
response. The exact template used is provided in Appendix E. Since our aim is reasoning rather
than instruction-following, we applied rule-based post-processing to recover improperly formatted
responses. Remaining unparsed responses were counted as incorrect and detailed in Appendix G.

Models We evaluated fifteen reasoning and general-purpose models including open-source and
closed-source models on the benchmark. See Appendix F for further details about the models.

3.5 BENCHMARK VALIDATION

Several measures were taken to ensure the quality and correctness of the benchmark. All problem
annotations were performed manually and subsequently validated by two team members with expertise
in Linguistics Olympiads. In addition, automated checks were incorporated to detect issues. Any

4This is less than 7× 1, 005 = 7, 035 as the total possible permutations for some problems are less than 6.
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Answer (% of total) GPT 4o Mog (SE) Mobf (SE) Llama-3.3-70B Mog (SE) Mobf (SE)

All 0.08 (0.00) 0.02 (0.00) 0.05 (0.00) 0.03 (0.00)
Digit (13.9%) 0.16 (0.01) 0.08 (0.00) 0.19 (0.01) 0.11 (0.01)
Single Char (14%) 0.03 (0.00) 0.03 (0.00) 0.05 (0.00) 0.04 (0.00)
Y/N (0.6%) 0.62 (0.04) 0.31 (0.04) 0.19 (0.04) 0.49 (0.04)
Other (71.6%) 0.07 (0.00) 0.01 (0.00) 0.02 (0.00) 0.01 (0.00)

Table 2: Performance in the no context setting. In the no context setting, prompts contain insufficient
information to answer questions. Scores are categorised by answer type.

identified errors triggered re-annotation and validation. A second round of both manual expert review
and automated validation was conducted on the final data.

Obfuscation was designed to preserve reasoning steps and verified by team members with Linguistics
Olympiads expertise. Additionally, two International Linguistics Olympiad (IOL) medallists, familiar
with the original UKLO problems, audited a sample of obfuscations and independently confirmed
that all problems remained solvable via the same reasoning steps.

Because obfuscated text no longer adhered to the original languages, it could impose a cognitive
penalty in humans who may be more familiar with the original language orthographies. To estimate
this effect, we ran a randomised controlled trial on a sample of six problems (chosen to be relatively
easy to ensure novices had a realistic chance of solving them) with 172 human subjects. Participants
were randomly assigned to either an original or obfuscated problem. Performance decreased 5.70%
on obfuscated problems, likely due to their unfamiliarity, as noted by one auditor. Details of the study
and analysis are provided in Appendix L.

4 EXPERIMENTS AND ANALYSIS

4.1 OVERALL PERFORMANCE

Figure 1 shows all models’ results on LINGOLY-TOO. The Mog metric (no obfuscation), is reported
for comparison, which we posit is an over-estimation of reasoning abilities. We see that frontier
models achieve ∼ 0.60 on Mog. However, using Mobf metric (with obfuscation) , this drops to a
maximum of 0.48. Mobf scores also reflect improved reasoning capabilities of reasoning models over
general-purpose models. For example, GPT-5 scores higher than GPT 4.5, and Claude 3.7 (thinking)
outperforms Claude 3.7 (no thinking) (0.43 vs. 0.30). In addition, o3-mini (high) outperforms
o3-mini (low) by a larger margin (0.31 vs 0.12), indicating that increasing inference-time reasoning
budget is useful for the benchmark tasks. Performance also seems related to the difficulty level in the
best performing models but the pattern is not consistent in the weaker models (Figure 3). GPT-5 and
Claude 3.7 Sonnet score highly (0.81 and 0.75, respectively) on Breakthrough problems but score
below 0.31 at the Round 2 level, demonstrating that the benchmark is far from saturated and offers a
range of difficulties valuable for tracking progress. Overall, no model scores over 0.5, suggesting that
despite recent breakthroughs, multi-hop inductive reasoning remain an open challenge.

4.2 KNOWLEDGE VS. REASONING ABILITIES

Ability to score without reasoning A key goal of the benchmark is to minimise the effects of
models’ knowledge on reasoning estimates. We evaluate LLMs’ ability to score without reasoning on
obfuscated data by adopting the no context setting from Bean et al. (2024), where critical information
is removed from context, rendering the problems unsolvable by reasoning alone. We conduct a small
experiment using 30 permutations per problem with two models (Llama 3.3 70B and GPT 4o).

Table 2 shows the results in the no context setting. Mobf for Llama 3.3 70B and GPT 4o is 0.02 and
0.03 respectively. When only considering questions with lower chance of random guessing (Other),
Mobf further drops to ∼ 0.01 in both models demonstrating the effectiveness of obfuscation. This
is not the case in the unobfuscated questions where GPT 4o is more successful in circumventing
reasoning, scoring Mog ∼ 0.07. Inspecting a few examples where GPT 4o was successful without

6
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0.46 0.61
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y

GPT-5

Original
Bootsrapped

0.44 0.59

Claude Opus 4.1

0.45 0.60

Claude 3.7 Sonnet (thinking)

0.29 0.44 0.59

Gemini 2.5 Pro

0.42 0.55
Exact Match

Fr
eq

ue
nc

y

DeepSeek-V3.1-Terminus

Original
Bootsrapped

0.24 0.36 0.48
Exact Match

o1-preview

0.33 0.44
Exact Match

o3-mini (high)

0.25 0.38 0.50
Exact Match

Claude 3.7 Sonnet (no thinking)

Figure 4: Score distribution across bootstrapped samples. Distribution of scores across 500
bootstrapped samples of our data by model. Each consists of 82 problems. Open source models are
shown in orange while proprietary models are in blue (for full results, see Appendix I).

Score Standard Dash Character

Original 0.087 0.051 0.053
Permuted 0.050 0.045 0.035

Table 3: Exact match score with varying tokenisation. ‘Dash’ tokenisation inserts a dash between
each character in the Problemese data. ‘Character’ tokenisation forces the model to tokenise each
character individually.

context reveals cases where GPT 4o correctly answers through direct translation, such as generating
the correct Welsh translation: Aeth meddyg i Gymru to the English sentence A doctor went to Wales.

Reasoning gap To compare benchmark estimates with those from only the unobfuscated questions,
we construct a bootstrap-style distribution over permutations. Specifically, we create 500 bootstrap
sets, each containing all 82 problems. For each problem, we independently and uniformly select
one of its seven versions (original plus six permutations) and compute the score. Figure 4 shows
the distribution of scores on bootstrapped sets. When using unobfuscated problems, the score (Mog)
consistently appears at the right tail of the distribution, reflecting a significant decrease in models’
performance with obfuscation. A similar gap is observed in the subset of problems used in the human
study, where average model performance falls from 0.45 to 0.37 (8.6%) on obfuscated problems.
However, reasoning models incur a smaller performance drop, on par with humans (5.8%), suggesting
that reasoning models have reduced the gap in solving problems in their original orthography versus
obfuscated versions compared with general-purpose models.

Tokenisation effect A possible explanation of the performance drop is that uncommon character
sequences would affect LLMs through tokenisation by producing unuseful token representations. As
tokenisers of LLMs are trained using frequency statistics on languages in their original orthography,
sub-optimal tokenisation could explain the fall in model performance. We conduct a small experi-
ment on a multilingual model (Aya-23-35B) to compare three variations of tokenisation: standard
tokenisation, introducing a dash between each character in the Problemese and tokenising each
character separately. Table 3 shows that enforcing separation of the tokens does not improve model
performance. For both the original and obfuscated versions, exact match score does not improve if
the tokenisation is altered, pointing towards explanations of failed reasoning other than the standard
tokenisation. Additional tokenisation results are detailed in Appendix K.
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Variance across permutations Models score higher on unobfuscated problems, possibly by
utilising their knowledge from exposure to the original languages. Since obfuscation preserves
solution logic, we quantify the performance difference due to obfuscation. For a fixed permutation k

of problem i, we define ∆i,k
obf as the difference between the average score across all questions and

Mog . That is

∆i,k
obf =

1

ni

ni∑
j=1

L(i, j, k)−M i
og.

Then ∆i,k
obf is negative when the model performs worse on a problem permutation, zero when

there is no difference, and positive otherwise. Careful inspection reveals that although on average
these differences are negative, models’ performance gaps vary across problems as well as across
permutations within each individual problem. In cases such as Problem 24 (Tadaksahak) and Problem
67 (Navajo), some permutations even led to improved performance. We also see problems that had
similar effects upon permutation across several models, indicating similarities in model failure modes.
Appendix H includes full analysis of ∆i,k

obf across all generated permutations of the 82 problems.

Language resourcedness effect Problems from higher resource languages generally show large
negative 1/6

∑
k ∆

i,k
obf values across all models such as Problem 74 (Japanese): −0.59, Problem 76

(Finnish): −0.59 and Problem 178 (Italian): −0.57. We approximate language resourcedness using
the number of speakers of the language (in logarithmic scale). To quantify the effect of language
resourcedness on the gap in reasoning estimates, we apply linear regression with resourcedness
as a predictor of ∆obf (our previous difference averaged over permutations and problems in each
difficulty) for the models grouped into reasoning and general-purpose. We apply the Bonferroni
correction to account for multiple-testing when reporting significance.

Results (Figure 5) show that language resourcedness is negatively correlated with reasoning perfor-
mance gaps at the higher difficulty levels. In reasoning and general-purpose models, coefficients are
negative (β < 0, p < 0.01 for Advanced and Round 2 problems). One possible explanation is that
when models are unable to reason at higher difficulty levels, models are better at guessing the answer
in languages with larger amount of data available for training.

4.3 EVIDENCE OF NASCENT REASONING

Let us define

M i
rob =

1

ni

ni∑
j=1

min
k

L(i, j, k)

as a more robust metric since it measures the minimum score achieved on any generated permutation.
Under this metric, performance drops in all models (see Figure 6 for more details). The best model,
GPT-5, only achieves 0.28 (a decrease of 0.19). Reasoning models, which score highest, are more
consistent than general purpose models. We manually inspected the reasoning traces of Claude 3.7
(thinking) on two randomly selected problems where the model correctly answered questions in all
permutations. We found examples where the model can identify subwords and suffixes across all
permutations, infer their meaning, and deduce the correct answers (e.g. excerpt from one trace: The
verb prefixes seem to agree with the subject: "si-" for "they”). However, these positive examples
of a generalisable reasoning ability were among many more failed cases. Among them are traces
with repeated analysis, sometimes drawing the same conclusions, others drawing different ones, even
within the same permutation. More generally, M i

rob shows that all models perform noticeably poorly,
underscoring that reasoning is brittle and remains an open challenge to frontier models.

Reasoning with expert guidance By prompting with guidance steps written by team members
based on the original problems, we evaluated whether models’ performance on the permuted problems
improve. Using two problems chosen to have concise solutions (Problems 69 and 164) and four
models from several providers (Claude 3.7 (thinking), Claude 3.5, Gemini 1.5 Pro, o3-mini high),
we find that all models improve with the mean score on permuted questions (M i

obf ) increasing (0.66
to 0.76). This experiment suggests that similar to domains such as maths, multi-hop reasoning on
language problems benefits from improving models’ test-time inductive reasoning.
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Figure 5: The effect of permutation is larger for high-resource languages. Each point represents all
problems associated with a language of specific numbers of speaker. Solid lines are fitted regressions
and shaded areas are the 95% confidence intervals.

4.4 KNOWLEDGE VS MEMORISATION

While we assume a possibility that models are exposed to some of the unpermuted problems during
training, we do not think that this accounts for total performance gaps. To illustrate, we were able
to access and evaluate a subset of models on 5 problems from the UKLO 2025 that had not yet
been published online at the time of the experiment and are of a higher difficulty level. Results in
Table 9 and show a comparable performance drop to results in the benchmark. The difference in
scores illustrates that the performance decrease is not simply due to memorising answers since these
problems have not been included in models training. The gap also highlights the effectiveness of our
permutation to control for knowledge even on unseen problems.

5 LIMITATIONS

Exact Match uniformly penalises all incorrect answers, including partially correct ones, and limits
insights into failure modes. Yet, metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) are unsuitable for the very short answers common in our benchmark and chrF (Popović,
2015) is sensitive to repeating related words from the context. Future work could explore alternative
evaluation metrics that capture partial solutions or help discern partially correct answers. Novel
evaluation scores could credit correct intermediate reasoning steps alongside the final answers.

While problems in LINGOLY-TOO do not depend on any specific domain knowledge, we limit this
work to inductive and deductive reasoning in the natural language modality. The benchmark is not
a comprehensive evaluation of all reasoning abilities across all modalities but results suggest that
improvements in certain reasoning abilities would translate to improvements in others.

6 CONCLUSION

We introduced LINGOLY-TOO, a benchmark for evaluating reasoning in language tasks. By applying
expert-designed obfuscations to Linguistics Olympiad problems, we generated permutations that
preserved solution logic while remaining novel to models. Our results showed that the benchmark
effectively controlled for models’ knowledge and memorisation, revealing that LLMs (including
reasoning models) often relied on shortcuts rather than reasoning. We also quantified how language
resourcedness amplified these shortcuts. Finally, we observed that reasoning models were better able
to apply symbolic and inductive reasoning and that progress reported in domains such as mathematics
and coding appears to partially translate to language problems.

Yet our benchmark remains unsaturated, especially at the highest problem difficulty, leaving ample
headroom. Our results support existing claims of model reliance on shortcuts, which biases reasoning
ability estimates. Compared to the unobfuscated problems, deriving estimates from obfuscated
problems paints a more conservative picture of the reasoning faculty of frontier models. We find that
reasoning consistency and robustness remain lacking in frontier models and warrant further attention.
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using low-resource languages to create a benchmark may lead to concerns about the exploitation of
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A GLOSSARY

Word Meaning

cognate Word or word-part with the same historical origin as another. E.g. English father,
German Vater, Swedish far.

diacritic Symbol added to a letter or other basic glyph; often called ‘accent’.
(language) family Group of languages all derived from a common ancestor. E.g. the Romance

language family is derived from Latin.
grapheme Letter or group of letters that typically represent a single sound or suprasegmental

feature. See Kohrt (1986) for a discussion of other definitions in common usage.
lexeme Basic unit of the lexicon (vocabulary) of a language. E.g. sit, sits, sitting, sat are

all inflected forms of the same lexeme.
loanword Word borrowed from another language. E.g. Nepali pēnsil ‘pencil’.
morpheme Basic grammatical unit of meaning within a word. E.g. help-less-ness consists of

three morphemes.
morphology Branch of linguistics dealing with the internal structure and formation of words.
orthography System for writing a language, including the choice letters or other glyphs and

spelling conventions.
phonetics Branch of linguistics dealing with the production and perception of speech sounds

or signs.
phonology Branch of linguistics dealing with the systematisation and organisation of sounds

or signs within a language.
phonological dis-
tinction

Distinction between two speech sounds that is treated as meaningful within a
language.

Problemese Unknown language that is the focus of a Linguistics Olympiad problem.
semantics Branch of linguistics dealing with the study of meaning.
Solverese Language that a Linguistics Olympiad problem is written in; assumed to be the

working language of the solver.
suprasegmental Phonetic or phonological feature that extends beyond a single speech sound. E.g.

stress, intonation, pitch.
syllabification Procedure for forming valid syllables out of a string of speech sounds.
syntax Branch of linguistics dealing with the organisation of words into phrases, clauses

and sentences.

Table 4: Glossary of linguistic terms.
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B PERMUTATION RULESETS

The core of the obfuscation procedure is the altering of the Problemese data. This was done by
creating a new orthography for the Problemese5, which is a permutation of the graphemes present in
the original data, represented as a mapping dictionary from original grapheme to the new grapheme.
We created problem-specific rulesets governing valid permutations, which ensure that the solvability
of the problem is preserved, and allow for the dynamic generation of new obfuscated variations of
the problems in the benchmark.

B.1 METHODOLOGY

To determine the permutation ruleset for a given problem, the following procedure was applied.

Firstly, the set of graphemes present in the Problemese data was determined. This involved using
the authors’ expert judgement on which strings should be analysed as single graphemes, and which
could be split into multiple units. A common example was deciding when a combination of a letter
with a diacritic should be treated as a single grapheme (as in Spanish ñ) or as multiple graphemes
(as in Spanish á). This sometimes involved consulting literature on the language, but usually it was
sufficient to consult the commentary on the problem provided by UKLO, as well as the authors’
own solutions to the problems. Note that a grapheme could be a substring of another grapheme –
consider English h as a substring of sh. In this situation, the permutation algorithm would scan the
annotated text left-to-right, and exchange the longest matching grapheme with its replacement under
the obfuscation in a greedy manner.

We then determined what phonetic and phonological data needed to be preserved in the orthography.
In many cases, more phonological data was preserved than strictly necessary, such as always keeping
vowels and consonants separate. This was both to preserve alternative solving paths than the authors’,
which may have involved a different set of phonological observations, and to allow for consistent
syllabification across permutations. This data was then encoded in the permutation ruleset for the
problem.

Whenever valid permutations were sampled to generated obfuscated versions of problems, the
permutation was chosen to have no fixed points outside of the fixed set. This was achieved by
selecting a random cycle whenever a random permutation of a set of graphemes had to be chosen.

B.2 VALID PERMUTATIONS

The list of valid permutations used for each problem took into account two main principles: (i)
ensuring the permutations were reasoning equivariant, and (ii) obtaining the maximum number of
possible permutations. While for some problems the list of valid permutations represented all possible
permutations without fixed points within the vowel set and consonant set, that was not always the
case. In order to preserve the solvability of the problem, this process needed to take into account
the interactions that might exist between different sounds or classes of sounds, for which certain
permutations could not be allowed without rendering the problem unsolvable. One example of this
was given with Problem 5 (Turkish, by Bozhidar Bozhanov) in Section 3.2.

Even when talking about simple permutations, it was sometimes needed to divide the vowels and/or
the consonant into multiple sets, in order to preserve the solvability of the problem. For example, in
Problem 24 (Tadaksahak, by Bozhidar Bozhanov), one suffix (a causative) usually takes the form -s.
However, if any of the graphemes z, š, or Z are present in the word, it changes to that grapheme (e.g.
zelme→ zelmez). Linguistically, all these sounds are sibilants, so from a solver’s perspective, it is
reasonable they be grouped together. Hence these four sounds needed to form a separate set, but can
be permuted amongst themselves.

While it might have sometimes been easier to just fix these problematic sounds (i.e., fix all the vowels
in Turkish or all the sibilants in Tadaksahak), this would drastically reduce the number of possible
permutations (in both of these cases, by a factor of 24). However, in some cases it was necessary to
fix certain phonemes. For example, in Problem 45 (Bulgarian, by Bozhidar Bozhanov) there is a rule
dictating that any k becomes c if followed by the vowel i. In this case, we chose to fix these three

5System for writing a language, including the choice letters or other glyphs and spelling conventions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

graphemes in order to preserve the linguistic reasoning (a palatalisation of k triggered by a front high
vowel, which is very common across the world’s languages).

B.3 STRUCTURE OF A PERMUTATION RULESET

A permutation ruleset for a particular problem partitions the graphemes in the Problemese data into
four types of structured collection: sets, tables, free-tables and a fixed set. A permutation a choice of
structure-preserving bijection of each of these collections, which combine to give a bijection of all of
the graphemes in the data.

Sets A set is simply a collection of graphemes, with no extra structure that needs to be preserved.
A permutation can therefore be any bijection of the graphemes in a set.

Tables The graphemes in a table are partitioned into tuples each of the same length, thought of
as columns of a table. The permutation then freely permutes these ‘columns’, while preserving the
‘rows’ (index in the tuple) where the graphemes appear. For example, a table

{(p, b), (t, d), (k, g)} = p t k
b d g

will have 3! = 6 ways to rearrange the 3 columns, hence 6 possible permutations:

p t k
b d g

obfuscations−−−−−−→ p t k
b d g , t p k

d b g , k t p
g d b , p k t

b g d , t k p
d g b ,

k p t
g b d

Linguistically, this example represents a situation where plosives appear in voiceless/voiced pairs,
and this data must be preserved, but the place of articulation of the plosives is not relevant, so
may be permuted. Compare this to a situation where only the voicedness was relevant, but not the
voiceless/voiced pairs, which could be obfuscated by a pair of sets {p, t, k}, {b, d, g}, allowing for
3!× 3! = 36 possible obfuscations.

Free-Tables These are a generalisation of tables where some of the ‘rows’ consist of collections of
more than one element, together forming a set. A choice of permutation is first a choice of bijection
of the columns, then a choice of bijection from each original ‘cell’ to the obfuscated ‘cell’. For
example, a free-table

{(m, {p, b, f }), (n, {t, d, s})} =
m n

p, b, f t, d, s

has 2! × (3!)2 = 72 possible permutations. An example is shown below, where the non-identity
bijection of the columns was chosen.

m n
p, b, f t, d, s

obfuscation−−−−−−→ n m
t, s, d b, p, f

∼=←→
m 7→ n n 7→ m
p 7→ t t 7→ b
b 7→ s d 7→ p
f 7→ d s 7→ f

Linguistically, this represents a situation where homorganic nasals are relevant, but otherwise place
and manner of articulation are not relevant.

Fixed Set Any grapheme not in any set, table or free-table was fixed by any permutation. Addi-
tionally, other strings that should not be changed during obfuscation could be specified as a single
grapheme within the fixed set. Such strings primarily fell into two categories: transparent loanwords
or cognates, and names. Where words in the Problemese data had noticeable resemblances to En-
glish or another well-known language, such as Nepali pēnsil ‘pencil’ or Yawalapiti amiku ‘friend’
(cf. Portuguese amigo), and where these resemblances may have decreased the difficulty of a the
problem by providing a starting point for reasoning, they were always preserved. The only times
that transparent cognates were not preserved was when the problem did not involve the meanings
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of words, so recognition of the cognate would provide no advantage. Names of people (both real
and fictional), deities, and sacred places were also always preserved. The names of other places and
languages were preserved where possible, but not if it would consequently indicate the what the
Problemese language was.

B.4 COMPARISON TO OBFUSCATION IN LINGUISTICS OLYMPIADS

This method of obfuscation is more severe than what is typically used by Linguistics Olympiads.
Most Linguistics Olympiads do not perform any intentional obfuscation, but where it is done common
notations are exchanged for other common notations as far as possible. For example, in UKLO 2021
A4 (Sauk by Ryan Chi), long vowels were changed from being written with a circumflex (e.g. â) to
being doubled (e.g. aa). This is typically sufficient to prevent search engines from returning relevant
results, but has little effect on any advantage gained by having prior familiarity with the language.

B.5 EXAMPLES OF PERMUTATION RULESETS

Problem 91, Somali (by Harold Somers). This problem involves determining the formation of 1sg
and 3sg forms of Somali6 verbs. The solution is as follows:

(i) The 1sg form adds -ay to the root, while the 3sg form adds -tay.

(ii) After the consonants q, c, x, ’, the so-called guttural consonants, we have the change t→ d.

(iii) Everywhere, we have the following changes: yt→ d; lt→ sh; dt→ d; dht→ dh.

There are no names or loanwords in the Somali data that need to be preserved by the obfuscation, so
the permutation ruleset will only depend on the phonology of the problem. All permutations should
fix t, d, dh, sh, since they have phonological relationships which are relevant to the solution of the
problem, and cannot be found in a different family of consonants. The guttural consonants can be
permuted amongst themselves but not with the other consonants, so form a set {q, c, x, ’}. l and y
are treated specially within the solution, but any liquids could fill those roles without substantially
changing the difficulty of the problem, so we define a set {l, r, w, y}. All other consonants featured in
the Somali data form a set {b, f, g, j, h, k, n, s}. The vowels form another set {a, e, i, o, u}.

Problem 218, Stodsde (by Simi Hellsten). This problem involves understanding the formation of
causative verbs in Stodsde.7 The solution involves understanding the structure of a Stodsde syllable,
and the changes that occur in each part of the syllable. No changes occur in the vowel, or consonants
after the vowel. The part of a syllable before the vowel has the following structure, divided into Slots
1-5. Each slot can only have consonants of a certain type, and undergoes specific changes to form the
causative.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5
Nasal Non-sib. fricatives Liquid (l or r) plosive/sibilant Any non-plosive + non-sib.
m→ v → Ð if Slot 4 is sibilant fricative→ affricate,
n→ ∅ → z otherwise unless Slot 5 is a nasal

Finally, everywhere in the verb, v, Ð, z→ f, ì, s if the following sound is voiceless. Several alternative
and equivalent analyses are also possible.

Again, the dataset contains no loanwords or names, so the permutation ruleset is fully determined by
the relevant phonology. Since voicedness is relevant throughout, but not all voiced/voiceless pairs
are given in the data, any permutation must preserve voicedness. We also fix Ð, hence ì. Since we
cannot permute ∅, we must fix all of Slot 1. Thus m, n, and v are fixed, hence also f. For Slot 2, the
remaining non-sibilant fricatives are the voiceless X, which cannot be permuted with anything, and
voiced K, G, which can be permuted. In Slot 3, we can freely permute l, r. Slot 4 needs to distinguish
between sibilants and sibilant affricates (which are paired), and simple plosives. Considering only

6Somali is a Cushitic language spoken by approximately 24 million people, primarily ethnic Somalis in East
Africa and in diaspora.

7Stodsde is a Gyalrongic language, spoken by approximately 4,000 people in Sichuan, China.
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Problem Original Annotated
67 This problem is about the way in

which Navajo speakers build sen-
tences out of a verb V.

This problem is about the way in which
$$$Language X$$$ speakers build sentences
out of a verb V.

16 Ulwa is a language spoken in
Nicaragua. It contains quite a few
loanwords from English, which is
spoken in the Bluefields area of the
country.

$$$Language X$$$ &&& &&& contains
quite a few loanwords from English &&&
&&&.

61 dinaldalusanda they were cleaning it @@@dinaldalusanda@@@ they were clean-
ing it

61 t(in)ak+takaw+da ida tinaktakawda ida

Table 5: Annotation examples. Each row is an extract from a problem in LINGOLY-TOO. On the
left, the extract appears in the original UKLO problem sheet or solution file. On the right is the
extract after annotation. Problem 67 (Navajo by Babette Verhoeven) is an example of the language
name annotation. Problem 16 (Ulwa by Richard Sproat) is example of the cultural context annotation.
Problem 61 (Ilokano by Bozhidar Bozhanov) illustrates the annotation of Problemese in preparation
for further obfuscation, and is an example of removing grading guidelines from the dataset to prepare
it for checking exact matching.

those that appear in the Stodsde data, this means we must fix tùh; we can permute p, k, q, and b, d,
g, while fixing the aspiration h; and we can permute the pairs (z, dz), (Z, dZ), and the pairs (s, ts),
(sh, tsh). Finally, we can permute the vowels, and the remaining nasals N, ñ; j has nothing it could
permute with, so must also be fixed.

The final permutation ruleset thus has fixed set {m, n, ì, Ð, X, v, f, tùh, h, j}; sets {K, G}, {l, r}, {p, k,
q}, {b, d, g}, {N, ñ}, {u, @, 2, o, a, æ, i}; and tables {(z, dz),(Z, dZ)}, {(s, ts), (sh, tsh)}.

C ANNOTATIONS

C.1 ANNOTATION PROCESS

Annotation was the first step of obfuscation process in LINGOLY-TOO. The primary task was
removing metadata included in the problem text such as language names, language families, and
geographic information that was not relevant for solving the problem via reasoning, but could have
allowed models to ascertain facts about the language, even when obfuscated. Problemese data that
would be altered in later stages of obfuscation were also highlighted during annotation.

All problem annotations were performed by a single annotator to minimise the inconsistency between
different problems. Two other members of the team had expertise in Linguistics Olympiads. They
validated each of the annotated problems, identifying and documenting any errors or inconsistencies
that needed correcting. In addition, all annotations were parsed through automatic checks imple-
mented as part of the data generation pipeline. Despite our best efforts to ensure all problems are all
correct, mistakes may remain as the result of undetected human error.

C.2 ANNOTATION CATEGORIES

Four categories of annotations were performed: language and place names, cultural context, Prob-
lemese data, and grading guidelines. Each involved bracketing strings in the problem files with
triplets of a symbol not present or used elsewhere in the problems.

Language and Place Names The English name of the Problemese language was replaced with
‘Language X’ wherever it appeared in the problem, and was annotated using $$$ tag (see row one in
Table 5). If multiple non-English languages were mentioned in the problem, the second was replaced
with ‘Language Y’ and the third with ‘Language Z’. A maximum of three languages appeared in any
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given problem. Where related terms such as geographic regions or people groups associated with
those languages were relevant to the problem, they were replaced with e.g. ‘Region X’, and also
annotated using the $$$ tag. Where two historical varieties of the same language were featured in
the same problem, their names were replaced with ‘Language X’ and ‘Language Y’, and a sentence
clarifying their relationship was added.

Cultural Context Any other metadata or cultural references that could indicate the origin of a
language but were not relevant to solving the problem were replaced with a space, and annotated with
&&& tag (see row two in Table 5). If it was not clear whether some part of the metadata might be
useful in solving the problem, it was annotated with the $$$ tag, and edited in accordance with the
principals in the previous paragraph.

Problemese Data All Problemese data were annotated using an @@@ tag (see row three in
Table 5). Where problems involved multiple languages, these were not distinguished in annotation.
Instead, the permutations of graphemes used to alter the Problemese data were designed to preserve
the distinctions between the languages. Many of the problems included pronunciation guides, since
students sitting UKLO exams are not expected to have any prior linguistic knowledge. These
pronunciation guides were not annotated, since the permutations of the graphemes used to alter the
Problemese always preserved any relevant phonetic and phonological distinctions.

Grading Guidelines Most UKLO answer sheets include marking guidelines for awarding partial
credit, which are often accompanied by symbols such as ‘+’, ‘|’ and brackets written inside the correct
answers. These were simply removed from the answer files (see row four in Table 5).

D PROBLEM DIFFICULTY BREAKDOWN

Difficulty Level Unobfuscated Obfuscated
Breakthrough 60 (6.0%) 320 (5.3%)
Foundation 84 (8.4%) 504 (8.4%)
Intermediate 136 (13.5%) 816 (13.6%)
Advanced 374 (37.2%) 2244 (37.5%)
Round2 351 (34.9%) 2106 (35.2%)

Table 6: Counts (percentages) by difficulty level for the 1, 005 unobfuscated (question, answer) pairs
and the 6, 995 obfuscated (question, answer) pairs. Note that the obfuscated percentages are slightly
different compared to the unobfuscated as some problems allow for less than 6 permutations.

E PROMPT TEMPLATE

Below is the prompt used across models. In the no context setting, {context} is removed.

Below is a problem sheet from a linguistics exam. You will first see the
entire sheet, then be asked to respond to specific questions from
the sheet. Your answers to the questions should rely only on
reasoning about the information provided in the sheet.

{question_body}

Now respond to the following questions:
{preamble}
{context}
{all_subquestions}

{instructions}
{formatted_output}
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{formatted_output} tag is populated with an empty dictionary containing the keys of the expected
answer for each part of the question. The {instructions} tag is populated based on the setting. For
default prompt:

Only respond with json output. Do not include anything other than the
json in your response. Format your response as a json file with the
keys as provided below:

in closed models when applicable, we preceded the prompt with the following generic system
message:

You are a helpful assistant.

F EVALUATION MODELS

In our experiments, we fixed prompts and system messages across models whenever possible. For
closed models, we followed the recommendations of model providers and set the temperature to 0
whenever possible. For open models, we loaded them in full precision when possible or in 8-bit for
larger models. All evaluation experiments were conducted using nodes with either 4 A100 GPUs or 4
H100 GPUs for open source models except for Deepseek R1 8. Model details are listed listed below.

Model Version Type Quantised
Claude 3.5 Sonnet claude-3-5-sonnet-20241022 Proprietary
Claude 3.7 Sonnet (thinking) claude-3-7-sonnet-20250219 Proprietary
Claude 3.7 Sonnet (no thinking) claude-3-7-sonnet-20250219-nothinking Proprietary
Claude Opus 4.1 claude-opus-4-1-20250805 Proprietary
DeepSeek-V3.1-Terminus deepseek/deepseek-reasoner Open-source
Gemini 1.5 Pro gemini-1.5-pro Proprietary
Gemini 2.5 Pro gemini-2.5-pro-exp-03-25 Proprietary
GPT-4o gpt-4o-2024-05-13 Proprietary
GPT-4.5 gpt-4.5-preview-2025-02-27 Proprietary
GPT-5 gpt-5-2025-08-07 Proprietary
Llama 3.3 70B meta-llama/Llama-3.3-70B-Instruct Open-source 8-bit
o1-preview o1-preview Proprietary
o3-mini o3-mini-2025-01-31 Proprietary
Phi4 microsoft/phi-4 Open-source 8-bit

Table 7: Details of models evaluated.

G SUMMARY OF RESPONSE ERRORS

Table 8 contains the summary of responses for all prompts by model. A higher number of responses
by o3-mini (low) were empty due to generated reasoning tokens exceeding the maximum token
budget but excluding empty responses by o3-mini (low) did not affect its ranking.

8For Deepseek R1, we used https://www.together.ai/models/deepseek-r1
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Model Total Empty Response Bad Parsing
Claude 3.5 Sonnet 6,995 8 0
Claude 3.7 Sonnet (no thinking) 6,995 1 0
Claude 3.7 Sonnet (thinking) 6,995 22 0
Claude Opus 4.1 6,995 7 0
DeepSeek-V3.1-Terminus 6,995 115 0
GPT-4.5 6,995 0 6
GPT-4o 6,995 176 0
GPT-5 6,995 225 0
Gemini 1.5 Pro 6,995 16 0
Gemini 2.5 Pro 6,995 19 0
Llama 3.3 70B-Instruct 6,995 316 0
Phi4 6,995 287 0
o1-preview 6,995 148 0
o3-mini (high) 6,995 38 11
o3-mini (low) 6,995 1,208 10

Table 8: Summary of model responses for benchmark prompts.

H FULL RESULTS

(b)

(a)

(Robust)

Standard Error

Figure 6: Main results on LINGOLY-TOO. (a) Scores by model. Mog is based on the original
problems and Mobf is based on the obfuscated problems. Mobf (Robust) is calculated after taking the
worst score across all permutations of the question. (b) Breakdown of Mobf scores by difficulty level.
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I SCORE DISTRIBUTION DETAILS

Below is the distributions of scores for all models.

0.25 0.37 0.49

Fr
eq

ue
nc

y

Claude 3.5 Sonnet

Original
Bootsrapped

0.25 0.38 0.50

Claude 3.7 Sonnet (no thinking)

0.45 0.60

Claude 3.7 Sonnet (thinking)

0.45 0.60
Exact Match

Fr
eq

ue
nc

y

Claude Opus 4.1

Original
Bootsrapped

0.42 0.55
Exact Match

DeepSeek-V3.1-Terminus

0.22 0.32 0.43
Exact Match

GPT-4.5

0.08 0.17 0.25 0.33
Exact Match

Fr
eq

ue
nc

y

GPT-4o

Original
Bootsrapped

0.46 0.61
Exact Match

GPT-5

0.20 0.29 0.39
Exact Match

Gemini 1.5 Pro

0.44 0.59
Exact Match

Fr
eq

ue
nc

y

Gemini 2.5 Pro

Original
Bootsrapped

0.06 0.09 0.12
Exact Match

Llama 3.3 70B-Instruct

0.09 0.14 0.18
Exact Match

Phi4

0.24 0.36 0.48
Exact Match

Fr
eq

ue
nc

y

o1-preview

Original
Bootsrapped

0.23 0.34 0.45
Exact Match

o3-mini (high)

0.06 0.12 0.19 0.25
Exact Match

o3-mini (low)
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J UKLO 2025 QUESTIONS

Model name Unobfuscated Obfuscated

Claude 3.7 Sonnet (thinking) 0.25 0.20
Claude 3.5 Sonnet 0.25 0.15
GPT 4o 0.16 0.09
o3-mini (high) 0.10 0.08

Table 9: Performance by model on unobfuscated vs obfuscated questions from the UKLO 2025 paper.
Note that this paper was released after these models have been trained therefore the performance gap
cannot be attributed to training set contamination.

We were able to access, annotate, and evaluate a subset of models on 5 problems from the UKLO
2025 papers that have not yet been published online by the time of the experiment and are of a higher
difficulty level. Results in Table 9 are comparable to results on the benchmark. The difference in
scores illustrates that performance gap is not only due to memorising answers since these problems
have not been included in models training. The gap also highlights the effectiveness of our permutation
to control for prior knowledge even on unseen problems – which is the main aim of the benchmark.

K TOKENISATION EXPERIMENT

We conduct an experiment to explore if impact on tokenisation due permuting the graphemes of a
language explains the gap in models performance.

K.1 SET-UP

We choose the Aya 23 35B model by Cohere (Aryabumi et al., 2024), which was designed for
multilingual applications (23 languages). The tokeniser of Aya 23 is based on the popular byte-pair
encoding algorithm (BPE) (Gage, 1994). Since we report off-the-shelf model performance, we
investigate changes in the performance if we alter the tokenisation of the Problemese portion of the
prompt.

When prompting this model, the Problemese sections are treated separately. In the first experiment, we
break down the Problemese into unicode characters (with the NFD standardisation) and obtain separate
tokenization for each character that we then concatenate together. In the second experiment, we add
dashes in-between the characters of the Problemese to force some separation in the interpretation of
multiple characters. The rest of the question is tokenised in the standard way, and the problem context
and the Problemese are then concatenated together (in the order that they appear in the question)
before being fed into the model.

For this experiment we used 10 obfuscations of all problems except Problem 34 (which had long
prompts taking up too much memory).

We limited the model outputs to four times the length of the correct response length. After cleaning,
the number of incorrectly processed responses is 32 questions for the standard tokenisation, 289
questions for the input with dashes, and 292 questions for the single character tokenisation (out of a
total of 10, 765 questions). This may partially account for the additional drop in the performance of
the alternative tokenisations.

K.2 ADDITIONAL RESULTS

In Table 10 we see how the average model performance changes under alternative tokenisation for
the unobfuscatedproblems. For the unobfuscated case (Table 10), the performance decreased for a
greater number of the problems than for the obfuscated case (Table 11). This aligns with the greater
drop in performance that we observe in Table 3.

Finally, we show how the exact match scores vary under alternative tokenisations in Figure 7 by
plotting (standard tokenisation score, alternative tokenisation score) for each problem. When the
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Figure 7: Problem-level comparison of exact match scores between standard and alternative
tokenisation. The dashed line represents the threshold where the score remains unchanged after
altering the tokenisation. Point above the dashed line indicate better performance with alternative
tokenisation, while points below the line indicate worse performance. (a) The problems are unobfus-
cated and we compare scores of standard tokenisation against dash tokenisation. (b) The problems
are obfuscated and we compare scores of standard tokenisation against dash tokenisation. (c) The
problems are unobfuscated and we compare scores of standard tokenisation against character-level
tokenisation. (d) The problems are obfuscated and we compare scores of standard tokenisation
against character-level tokenisation.
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Prompt type Decreased Unchanged Increased

Dash 57 19 5
Character 58 19 4

Table 10: Performance change under alternative tokenisation for the unobfuscated problems.
Score for each problem was averaged over all questions within the problem for the two alternative
tokenisation methods (Dash and Character) then compared to the score obtained using standard
tokenisation and categorised into Increased, Decreased or Unchanged.

Prompt type Decreased Unchanged Increased

Dash 43 25 13
Character 37 30 14

Table 11: Performance change under alternative tokenisation for obfuscated problems. For
each alternative tokenisation, the score for each problem was averaged over all obfuscations then
compared to the score obtained using standard tokenisation and categorised into Increased, Decreased
or Unchanged.

problems are not obfuscated (Figure 7(a) and (c)), the alternative tokenisation more frequently
reduced the score to zero, indicating that the tokenisation of the original order may be capturing
useful information. For the obfuscated cases (Figure 7(b) and (d)), there appeared to be more spread
in the scores differences, and no instances of the catastrophic effect of changing from a high exact
match score under the standard tokenisation to a score of zero.

K.3 SUMMARY

We asked whether the drop in performance could be explained by tokenisation of rare character
sequences rather than reduced access to prior knowledge. Using a multilingual model (Aya-23-35B)
with BPE tokenisation, we compared standard tokenisation to (i) inserting a dash between every
character in Problemese and (ii) forcing single-character tokens. The exact-match score did not
improve under either alternative: on unobfuscated problems 0.087 against 0.051/0.053, and on
obfuscated questions 0.050 compared with 0.045/0.035. This argues against tokenisation alone as the
driver of the performance gap: for each type of tokenisation, there was a marked drop in the score
after obfuscation.

Problem-level analyses show many more decreases than increases, especially on unobfuscated
problems, consistent with the view that original orthographies benefit from familiar segmentations
while obfuscated orthographies remove these knowledge shortcuts. Taken together with "no-context"
results, these findings support our interpretation that obfuscation of these linguistic problems mitigates
predicting the answers from prior knowledge.

While it is true that the tokenisation effect may not be the same across problem domains, tokenisation
has also been shown to make a difference in other domains like arithmetic problems (Singh & Strouse,
2024). We expect that the direction of our finding to hold more generally: we introduce logically
equivalent permutations and show that LLMs are not equivariant under these permutations in a way
that is not explained by only tokenisation effects.

L HUMAN EVALUATION

Obfuscation does not change the reasoning steps required to solve the problem, and therefore it serves
as a method to robustly test reasoning capabilities whilst mitigating memorisation bias. However,
obfuscation may have an affect on how humans solve the problems through means other than changing
the reasoning process. To measure the effect of obfuscation on human performance, we carried out
a randomised controlled trial (RCT) with 172 human participants across 6 problems (all relatively
easy). After controlling for random differences in problem frequency, obfuscation was found to be
associated with 5.80 percentage points lower performance (p-value of 0.059). We speculate that
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this may be because the resulting character combinations are more unusual in naturally occurring
languages, thus the problems are perceived as being harder.

L.1 METHODOLOGY

Experiment Design We used an RCT with 172 participants. Each participant was assigned to one
of two groups: one group solving unobfuscated problems (86 people) and another solving obfuscated
problems (86 people). Participants were then assigned one of six problems and given up to 45 minutes
to complete the problem. They were required to spend a minimum of 30 minutes on the problem
before submitting their answers. Responses were scored using exact match with the answers. All
data collection was carried out through a Qualtrics survey.

Problem Inclusion Criteria and Design We used two criteria to select problems. First, we only
considered Breakthrough and Foundation-level problems, designed to be taken by 10–14 year olds.
Our intention was to ensure participants had a realistic chance of solving the problem, and thus
the responses would provide better signal of the effect of obfuscation. Second, we only considered
problems where the language was not available through Google Translate, since this would have
enabled participants to easily solve the problems. Two exceptions to this rule were Karelian, which
is not available on Google Translate but was removed due to a high similarity with Finnish, and
Ligurian, which is available on Google Translate without stress being indicated, which formed the
basis of the problem. The selected six problems are below.

Language Difficulty level Problem Original author(s)
Warlpiri Breakthrough 207 Mary Laughren
Umbrian Breakthrough 191 Michael Salter
Kabyle Breakthrough 160 Kazune Sato, Simi Hellsten
Tariana Foundation 210 Babette Verhoeven, Simi Hellsten
Ligurian Foundation 147 Kevin Liang
Amele Foundation 88 Babette Verhoeven

Table 12: Problems selected for the randomised controlled trial. All problems are Breakthrough
and Foundation-level, designed to be taken by 10–14 year olds. None of these languages are available
on Google translate in a manner that would aid the solvability of the problem. Problem is the listing
of the problem in the UKLO past problems database United Kingdom Linguistics Olympiad (2023).

Since all six problems and their solutions are easily accessible on the UKLO website, we rewrote
elements of each problem. First, we rephrased the problem instructions so that a quick internet
search did not return the solutions. Second, we changed some of the lexemes in the Problemese such
that the linguistic rules required to answer the questions were identical, but the specific words to
translate were different. For example, in Kabyle we substituted the verb azzel ‘to run’ with aker ‘to
steal’, which follows the same conjugation pattern. All problems were minimally rewritten except
from Umbrian, where the known vocabulary originates exclusively from inscriptions on the Iguvine
Tablets, and thus is extremely small. Additionally, as in the LLM experiments, all background and
cultural information was removed, and the language name was replaced by ‘Language X’.

For each problem, we randomly sampled two permutations. Participants who were assigned to the
obfuscated group were randomly assigned one of the two obfuscated versions.

Participant Inclusion Criteria Participants were recruited online using Prolific, a crowdworker
platform. First, all participants had to be English speaking and monolingual, reducing the risk that
they may have had prior exposure to the Problemese language. Second, all participants were required
to have a minimum education level of an undergraduate degree. This served as a proxy for ability and
was chosen to ensure participants could reasonably complete the problems.

Participants were compensated in line with the UK aged-21 and over minimum wage of £11.44 per
hour (experiments conducted January 2025). Additionally, participants received performance bonuses
of £2.00 if they scored above 50% but less than 100%, and £6.00 if they scored 100%. The incentive
structure was explained to participants before they started the problem.
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Figure 8: Distributions of participant scores and self-reported difficulty. Left: Distribution of
scores (%) across all six problems and problem types. Scores are highly skewed towards 0. The
original group had a higher mean score compared to the permutated group. Right: Participant
self-reported difficulty. Participants were asked the question ‘On a scale from 0 (very easy) to 10
(impossible), how challenging did you find this problem?’. Responses are highly skewed towards
10 (impossible). The permutated and original means are near identical. Despite the symmetric
distributions, correlation between score and self-reported difficulty is 0.006.

All ICML Publication Ethics protocols were followed and the experiment had prior approval by the
research ethics committee at our institution. Further details about ethical approval have been removed
from this paper for the peer review process but are available upon request. All participants were
required to provide informed consent by signing the form shown in Section L.5.

Controlling for Internet and LLM Use To control for the possibility that participants search
for the solutions, each question was presented in image form, making it harder to directly copy and
paste questions into an internet browser. Additionally, we added a post-response trap question asking

‘What do you think the language in the problem (Language X) was?’. Given the obscurity of the
chosen languages, we assumed a correct answer to this question implied that participants had either
found the solutions or were using a language model, both of which were explicitly prohibited in the
instructions.

To mark responses to the trap question, we first automatically identified all entries which identified
the correct language. Next, two authors with significant language model experience independently
identified all responses which qualitatively appeared AI generated. Evidence suggests that people who
frequently use state-of-the-art LLMs are good detectors of AI generated text, often outperforming
commercial detection software Russell et al. (2025). These included responses containing common
language model phrases, excessively long responses and those demonstrating an unusually impressive
knowledge of academic linguistics, such as claiming the Problemese was likely an agglutinative
language. Each author independently marked responses, then discussed cases where they disagreed.
Since suspected cheating in the trap question does not necessarily imply that the participant cheated
in the main problem, these participants were left in the data for the main analysis. Results excluding
these participants are reported as a robustness check.

L.2 RESULTS AND ANALYSIS

Overall Performance Participants found these problems hard, with mean performance across
all problems at 18.85% (mean random guessing is 9.19%). Responses to the question ‘On a scale
from 0 (very easy) to 10 (impossible), how challenging did you find this problem?’ reveal that many
participants found the problems near impossible, with 39.5% reporting a difficulty of 9 or 10 out
of 10. There is no significant difference in the distributions of self-reported difficulty across the
participants taking obfuscated and unobfuscated problems (Figure 8).

Table 13 shows the mean score by problem and obfuscation type for both human participants and the
LLMs. The mean score for human participants solving the unobfuscated and obfuscated problems
were 21.70% and 16.00%, respectively. To assess the statistical significance of this change, we used
a one-sided Mann-Whitney U test. This was chosen due to the skew in the participant scores (Figure
8 Left). The data rejects the null hypothesis that the distribution of scores under each problem type
are equal with a p-value of 0.041.
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Human LLM

Problem Original Obfuscated Delta Original Obfuscated Delta Random

Warlpiri 39.88 (n=14) 44.64 (n=14) +4.76 46.67 27.66 -19.01 20.83
Umbrian 18.67 (n=15) 11.54 (n=13) -7.13 30.00 18.67 -11.33 0.00
Kabyle 27.69 (n=13) 12.00 (n=15) -15.69 24.00 19.62 -4.38 5.00
Tariana 7.14 (n=14) 0.00 (n=14) -7.14 14.07 4.13 -9.95 0.00
Ligurian 22.86 (n=15) 24.76 (n=15) +1.90 44.76 16.94 -27.82 28.57
Amele 15.00 (n=15) 3.33 (n=15) -11.67 7.50 2.98 -4.52 0.00

All 21.70 16.00 -5.70 27.83 15.00 -12.84 9.19

Table 13: Human and LLM performance. Scores represent the mean score. Sample size is shown
in brackets for human performance. LLM scores are calculated as the mean score over all LLMs in
the study and all permutations. Random represents the expected score from random answers, given
the basic formatting instructions in each question are followed.

Model 1 (SE) Model 2 (SE) Model 3 (SE)

Intercept 12.065∗∗∗ (3.59) 12.765∗∗∗ (3.81) 22.723∗∗∗ (5.63)
Obfuscation −5.796∗ (3.07) −5.805∗ (3.27) −5.100 (3.94)
Kabyle 10.326∗ (5.50) 12.395∗∗ (6.09) 12.939 (8.17)
Ligurian 14.643∗∗∗ (5.22) 17.276∗∗∗ (5.85) 25.745∗∗∗ (6.40)
Tariana −5.595 (3.46) −5.938 (3.88) 10.610 (7.85)
Umbrian 5.983 (4.46) 8.018 (5.38) 4.971 (6.56)
Warlpiri 33.095∗∗∗ (5.27) 35.553∗∗∗ (5.15) 29.213∗∗∗ (6.35)

Observations 172 146 86
R2 0.292 0.326 0.275
Residual Std. Error 20.010 (df=165) 20.249 (df=139) 19.017 (df=79)
F Statistic 14.126∗∗∗ (df=6; 165) 16.926∗∗∗ (df=6; 139) 7.239∗∗∗ (df=6; 79)

Table 14: Linear regressions for participant score under different inclusion criteria. The
dependent variable is participant score in all models. The participant inclusion criteria are as
follows. Model 1: All participants (n=172). Model 2: Excluding participants who we suspect may
have cheated, those who returned more than 50% missing data, and those with mean ChrF score
below 10 (n=146). Model 3. Excluding participants who scored below random guessing (n=86).
SE: Heteroskedasticity-consistent standard errors. df: Degrees of freedom. ∗p < .1; ∗∗p < .05;
∗∗∗p < .01

In addition to the one-sided Mann-Whitney U test, we employed a linear regression with
heteroskedasticity-consistent standard errors. This accounted for the fluctuations in problem fre-
quency in the human data. This analysis provides consistent results, suggesting obfuscation is
associated with a 5.80 drop in performance (p-value of 0.059) (Table 14).

We also examine the performance of LLMs on the same problems, averaging their scores over
all permutations. Models average 27.83% and 15.00% on unobfuscated and obfuscated problems,
respectively, yielding a mean drop of 12.84 percentage points. This is approximately double the
decline found in the human group, supporting the claim that models benefit from prior language
exposure when completing the unobfuscated problems.

Accounting for Suspected Cheating Since participants took our survey remotely, they had
the possibility of cheating. To account for this, our survey contained a trap question designed to
establish whether participants had discovered the solutions online or used an LLM. Responses to
the trap questions were first automatically scored based on whether they correctly identified the
Problemese language, then were evaluated qualitatively and independently by two of this paper’s
authors. The authors identified 15 and 17 responses, 14 of which were common, and, after discussion,
it was decided that all 18 responses should be removed to carry out robustness checks. In addition,
participants who had more than 50% missing data, and those with a mean chrF score below 10
(visibly irrelevant answers, e.g. inputting random letters) were also removed. Table 14, Model 2
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Model 4 (SE)

Intercept 0.068 (0.40)
Obfuscation −0.689∗∗ (0.34)
Kabyle 0.597 (0.52)
Ligurian 0.139 (0.53)
Tariana −1.890∗∗∗ (0.70)
Umbrian 0.699 (0.54)
Warlpiri 1.840∗∗∗ (0.63)

Observations 172
Pseudo R2 0.163

Table 15: A logistic regression predicting above random guessing score. The dependent variable
is a binary variable indicating whether a participant’s score was above random. Obfuscated problems
are more likely to lead to below random guessing performance with a coefficient significant at the 5%
level. SE: Heteroskedasticity-consistent standard errors. df: Degrees of freedom. ∗p < .1; ∗∗p < .05;
∗∗∗p < .01

shows the results excluding these participant groups. The effect on the point estimate and standard
error of obfuscation is negligible.

Effect when Only Considering those Scoring Above Random We also consider whether the
effect of obfuscation remains consistent when we only include participants who scored above random,
i.e. who likely understood some of the problem.

First, the likelihood of scoring above random depends on the problem type. In the group taking
the unobfuscated problems, 57.0% of participants scored above random. In the group taking the
obfuscated problems, only 43% scored above random. Furthermore, a logistic regression predicting
above random performance, suggests obfuscation is a significant factor with a p-value of 0.045 (Table
15).

Second, after excluding individuals who scored below random guessing, the data can no longer be
treated as the outcomes of an RCT, thus non-stratified tests such as the Mann-Whitney U test are no
longer appropriate. A linear regression controlling for differences in problem frequency suggests that
the coefficient on obfuscation is no longer significant in this subset (p-value of 0.196), though the
point estimate (−5.100) remains similar and this result could be an artifact of the small sample size.

Data Availability An anonymised version of the dataset and a notebook to generate results are
available in the GitHub repository.

L.3 EXTERNAL AUDIT OF PROBLEMS

To verify that the problems selected for the RCT remained solvable when rewritten and obfuscated,
we asked two International Linguistics Olympiad (IOL) medallists to audit one set of obfuscations
each. Both auditors were external to this research project and acted independently. Both had prior
familiarity with the original UKLO problems.

The auditors confirmed that all problems remained solvable via the same reasoning steps and were
not significantly harder under the new orthographies. One auditor commented that problems appeared
to be marginally harder since the languages appeared more ‘unfamiliar’ and the other commented
that they did not believe it made any difference. Both also mentioned that they personally found
the problems harder since they knew the original orthographies and thus found the new versions
‘disorienting’, however this is not an issue that we would expect novice test takers to experience.

L.4 DISCUSSION

The results suggest that obfuscation causes a small but statistically significant drop in performance
when taken by inexperienced test takers. This is despite the required reasoning steps and problem
solvability remaining unchanged. The point estimate of the effect is −5.80 percentage points:
approximately equivalent to half a question per problem. If LLMs behave similarly to participants in
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this study, then we may expect some performance decrease even in cases where the model did not
have prior exposure to the original Problemese language. Therefore, performance drops between
unobfuscated and obfuscated problems should not be solely attributed to language exposure. However,
our estimates for the impact of obfuscation are small; thus we would not expect large changes in
performance given robust reasoning skills.

We do not have strong evidence for why obfuscation appears to make problems harder. The external
audit confirmed that the problems remained solvable via the same reasoning steps, thus any changes to
the problem difficulty are superficial only. We speculate that obfuscation may cause the orthography
to appear less familiar or naturalistic relative to English, giving the perception that the problems
are harder to solve, thus causing participants to exert less effort Scasserra (2008). Whilst the mean
self-reported difficulty level is marginally higher in the obfuscated group (7.39 versus 7.48, Figure 8),
the distributions are not significantly different under a Mann-Whitney U test. However, we do find
that participants solving obfuscated problems spent less time on the problem before submitting their
answers (p = 0.071 under a one-sided Mann Whitey U test), which would support this hypothesis.

Alternatively, knowledge of English alone may have been sufficient to score marginally higher in the
unobfuscated versions of some problems. In particular, Ligurian and Umbrian are both European
languages descending from Latin. In Ligurian, this would have increased the familiarity of the
language, e.g. vió:vet:a, ‘violet’ or pásta, ‘pasta’, but would have offered no assistance when solving
the reasoning problem. In Umbrian, knowledge of English may have directly helped, especially as the
Latin translation were also provided (under the label of ‘Language Y’). For example, one question
asked for a translation of the Language Y (Latin) words populum and urbs into both Language X
(Umbrian) and English. Knowledge of the English words population and urban may have helped
the participants locate the correct translations, community and town, from the text provided. While
this may have offered marginal assistance in unobfuscated problems, the overall results are largely
unchanged when Umbrian is excluded.

Limitations These results are subject to several limitations. First, participants generally found
these problems extremely challenging with only 50% of participants scoring above random. The
significance of the results is partially driven by differences in scoring below random and it is unclear
whether they would hold under different distributions of scores. As with all human evaluations, the
results are highly specific to our demographic of participants (inexperienced test takers) and may not
generalise outside of this.

Second, we specifically chose relatively easy problems so that participants had a realistic chance of
solving them. As a result, these results may not be indicative of the effect of obfuscation across the
full distribution of problems.

Third, despite our best efforts to prevent and identify cheating, there is a risk these results are driven
by the availability of online materials. This is a problem with any form of online and unproctored
assessment, which future studies might wish to address through in-person test taking.

L.5 INFORMED CONSENT

All participants were required to consent to participation in the study by signing the form below. Parts
of the informed consent form have been redacted for the peer review process.

Informed consent

You are being invited to take part in a research project led by the University of Oxford. Before
you decide whether to participate, it is important for you to understand why the research is being
done and what it will involve. The University of Oxford supports the practice of protecting
human participants in research. Please take time to read the following information carefully and
discuss it with others if you wish. We appreciate your interest in participating in this online task.

What is this study?

This research aims to measure how well people can solve linguistic reasoning problems. A
linguistic reasoning problem is a set of questions that requires problem-takers to study a new
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language that they have likely never seen before. The aim of the problem is to use example
translations between English and the second language to decipher how this language works. You
will then have to apply your deciphered knowledge to translate new words and phrases. In this
research study, the second language may be written in a non-standard way.

At the start of the survey, you will be provided with further details about the specific problem.
These details contain all information required to solve the task and no background knowledge of
languages other than English is required.

When you start the survey, you will be given some basic instructions, then will click through to
the main problem. You will have up to 45:00 minutes to solve the question and write down your
answers. There is a countdown on the page which shows time remaining. After completing the
problem, there is a series of follow-up questions about your experience that will take around 3
minutes to complete. We will collect your responses to the reasoning problem and follow-up
questions.

How will I be compensated?

Compensation for this task is £7.63. In addition to the base compensation, this study has a
bonus system based on performance. Scoring 50% or higher will result in a £2.00 bonus (£9.63
total wage). Scoring 100% will result in a £6.00 bonus (£13.63 total wage). Please note that
bonus payments will not be made automatically and may take up to a week to reach your Prolific
account.

Further information and FAQs.

You have been invited to participate as you are over the age of 18. Please read through this
information before agreeing to participate (if you wish to).

You may ask any questions before deciding to take part by contacting the researcher (details
below). The research contact is Harry Mayne (harry.mayne@oii.ox.ac.uk), who is a DPhil student
at the Oxford Internet Institute at the University of Oxford. This project is being completed
under the supervision of Dr Adam Mahdi.

Do I have to take part?

No. Please note that participation is voluntary. If you do decide to take part, you may withdraw
at any point for any reason before submitting your answers by pressing the ‘Exit’ button or
closing the browser.

How will my data be used?

We will not collect any data that could directly identify you. Your IP address will not be stored.
We will take all reasonable measures to ensure that data remains confidential.

The responses you provide will be stored in a password-protected electronic file on the University
of Oxford’s secure servers and may be used in academic publications, conference presentations,
reports or websites. Research data with Prolific IDs will be stored internally for three years after
publication or public release of the work of the research. De-identified research data, without
Prolific IDs, may be publicly released and therefore in the public domain.

The data that we collect from you may be transferred to, stored and/ or processed at a destination
outside the UK and the European Economic Area. By submitting your personal data, you agree
to this transfer, storing or processing. The results may be written up in partial fulfilment of the
requirements for a DPhil degree.

Who will have access to my data?
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The University of Oxford is the data controller with respect to your personal data and, as such,
will determine how your personal data is used in the study. The University will process your
personal data for the purpose of the research outlined above. Research is a task that we perform
in the public interest. Further information about your rights with respect to your personal data is
available from https://compliance.admin.ox.ac.uk/individual-rights.

The data you provide may be shared with the researchers on this project, Harry Mayne, Dr Adam
Mahdi and any other author involved in the publication of the research.

We would also like your permission to use the data in future studies and to share data with other
researchers (e.g. in online databases). Data will be de-identified (Prolific IDs removed) before it
is shared with other researchers or results are made public.

Can I withdraw my data?

Yes, your data can be withdrawn up until 11:59 PM, 1st May 2025. To withdraw your data please
contact Harry Mayne (harry.mayne@oii.ox.ac.uk) or Prolific. Your participation in this study is
entirely voluntary, and you have the right to withdraw at any time before the deadline without
penalty or negative consequences. If you choose to withdraw, any data collected from you will
be deleted and not included in the final analysis.

Who has reviewed this study?

This project has been reviewed by, and received ethics clearance through a subcommittee of the
University of Oxford Central University Research Ethics Committee [Application 1037300].

Who do I contact if I have a concern or wish to complain?

If you have a concern about any aspect of this study, please speak to Harry Mayne
(harry.mayne@oii.ox.ac.uk) or his supervisor, Dr Adam Mahdi (adam.mahdi@oii.ox.ac.uk)
and we will do our best to answer your query. We will acknowledge your concern within 10
working days and give you an indication of how it will be dealt with. If you remain unhappy or
wish to make a formal complaint, please contact the Chair of the Research Ethics Committee at
the University of Oxford who will seek to resolve the matter as soon as possible:

Social Sciences & Humanities Interdivisional Research Ethics Committee; Email:
ethics@socsci.ox.ac.uk; Address: Research Services, University of Oxford, Boundary Brook
House, Churchill Drive, Headington, Oxford OX3 7GB

Please note that you may only participate in this survey if you are 18 years of age or older.

I confirm that:

• I have had the opportunity to ask questions and receive satisfactory answers.
• I understand participation in this study is voluntary.
• I understand that I can withdraw my data from the study before 11:59 PM, 1st May

2025 without giving a reason or negative consequences.
• I understand who will have access to personal data provided, how the data will be stored

and what will happen to the data at the end of the project.
• I understand how to raise a concern or make a complaint.
• I have read and understood the information on this sheet.

□ I consent
□ I do not consent
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Figure 9: Participant general instructions. All participants who consented to the experiment were
provided with these instructions.

L.6 PARTICIPANT INSTRUCTIONS AND COMPENSATION

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 10: Participant compensation. Compensation was based on a bonus structure to incentive
effort. Participants were guaranteed at least the UK minimum wage.
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M DATASET METADATA

Below are details about the benchmark dataset following the HuggingFace template.

license: cc-by-nc-nd-4.0
task_categories:
- question-answering

tags:
- reasoning
- linguistics
- benchmark

pretty_name: L2
size_categories:
- 1K<n<10K

source_datasets:
- https://huggingface.co/datasets/ambean/lingOly

configs:
- config_name: default
data_files:
- split: test
path: test_small.zip

extra_gated_prompt: >-
### LingOly-TOO LICENSE AGREEMENT

The LingOly-TOO dataset is distributed under a CC-BY-NC-ND 4.0 license.

All questions in the LingOly-TOO dataset have been used with the
permission of

the original authors. The original authors and the United Kingdom
Linguistics

Olympiad may retain rights to control the use, and users of this
dataset will

assume liability if they use the dataset beyond the terms of use as
indicated

by the benchmark.

The authors do not take responsibility for any licenses that change
with time.

In addition to this license, we ask that uses of the dataset are in
line with

the Acceptable Use policy described below.

### Acceptable Use Policy

This dataset is exclusively intended as a benchmark for evaluating
language

models subject to the terms of the license. For the integrity of the
benchmark, users should not:

* Re-distribute the questions or answers of the benchmark in formats
(such as plain text) which leak the benchmark to web-scraping.
* Train language models directly using the content of this benchmark.

extra_gated_fields:
By clicking Submit below I accept the terms of the license and

Acceptable Use policy: checkbox
extra_gated_button_content: Submit
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