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Figure 1: Overview of our model. This work integrates Laplacian analysis to model the motion
flow more efficiently for 4D Gaussian splatting.

ABSTRACT

While 3D Gaussian Splatting (3DGS) excels in static scene modeling, its ex-
tension to dynamic scenes introduces significant challenges. Existing dynamic
3DGS methods suffer from either over-smoothing due to low-rank decomposi-
tion or feature collision from high-dimensional grid sampling. This is because of
the inherent spectral conflicts between preserving motion details and maintaining
deformation consistency at different frequency. To address these challenges, we
propose a novel dynamic 3DGS framework with motion flow extraction. Our ap-
proach contains three key innovations: a spectral-aware Laplacian motion flow ex-
traction module which merges Hash encoding and Laplacian analysis for flexible
frequency motion control, an enhanced Gaussian dynamics attribute that com-
pensates for photometric distortions caused by geometric deformation, and an
adaptive Gaussian split strategy guided by KDTree-based primitive control to ef-
ficiently query and optimize dynamic areas. Through extensive experiments, our
method demonstrates state-of-the-art performance in reconstructing complex dy-
namic scenes, achieving better reconstruction fidelity and real-time rendering.

1 INTRODUCTION

Dynamic scene reconstruction from monocular videos presents a critical challenge in computer vi-
sion, demanding precise modeling of both persistent geometric structures and transient deforma-
tions Cai et al. (2022); Du et al. (2021); Fang et al. (2022); Kratimenos et al. (2024); Li et al.
(2022). Unlike static environments, dynamic scenes exhibit heterogeneous motion patterns - rigid
components maintain temporal consistency while deformable regions require high-frequency tra-
jectory modeling Xu et al. (2024); Duan et al. (2024); Bae et al. (2024). This inherent complexity
creates dual challenges: preserving spatial coherence across time-varying geometries and capturing
transient deformation details without over-smoothing artifacts.
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While Neural Radiance Fields (NeRF) Mildenhall et al. (2021); Chan et al. (2022); Yang et al.
(2022); Park et al. (2021b); Martin-Brualla et al. (2021) revolutionized static scene modeling through
continuous volumetric integration, their dynamic extensions Choe et al. (2023); Gao et al. (2021);
Liang et al. (2023b); Liu et al. (2023); Wang et al. (2023); Barron et al. (2021); Fridovich-Keil et al.
(2023) reveal critical limitations in handling temporal discontinuities, particularly the conflicting re-
quirements for spatial fidelity versus temporal coherence arising from uniform spectrum allocation.
Although explicit representations Barron et al. (2023); Cao & Johnson (2023); Tancik et al. (2022)
improve efficiency through 4D spacetime factorization, their low-rank decomposition induces fea-
ture collision in overlapping regions. Recent 3D Gaussian Splatting (3DGS) Kerbl et al. (2023);
Duisterhof et al. (2023); Yang et al. (2023); Liang et al. (2023a); Lin et al. (2024) has achieved im-
pressive effects for static environments, where discrete volumetric primitives enable both photoreal-
istic rendering and computationally efficient optimization through differentiable rasterization Shao
et al. (2023); Wu et al. (2024); Lu et al. (2024); Luiten et al. (2024); Kratimenos et al. (2024).

However, their direct extension to dynamic scenarios faces three fundamental limitations (detailed
theoretical analysis can be found in Appendix. E): 1) existing deformable methods suffer from ei-
ther over-smoothing due to low-rank decomposition or feature collision from high-dimensional grid
sampling, 2) previous Gaussian-based methods use a fixed threshold during Gaussian split stage
which ignore adaptive split adjustment, and 3) persistent per-gaussian dynamics caused by intricate
deformation are often neglected in current pipelines.

To address the challenges above, our key insight lies in addressing the anisotropic spatio-temporal
sampling nature of dynamic scenes through hybrid explicit-implicit encoding. First, we develop a
hybrid spectral-aware Laplacian motion flow extraction module that decouples spatial and temporal
features into different frequency motion components, overcoming the feature collision of low-rank
assumption while enabling adaptive frequency motion control. Then, we design an enhanced Gaus-
sian dynamics attribute to perform individual Gaussian personalized dynamic optimization and de-
sign an adaptive regularization for identifying highly dynamic areas. Besides, we propose an adap-
tive Gaussian split strategy, which focuses on the optimization trade-off between Gaussian shape and
anisotropy in dynamic scenes and an improved KDTree-based clustering algorithm was proposed to
efficiently query and optimize dynamic Gaussians.

Our solution rethinks dynamic 3DGS through Laplacian spectral analysis, which provides a hybrid
framework for localized frequency analysis. Meanwhile, we focus on the dynamics attribute of
each Gaussian and the optimization problem in the derivation process, and propose a novel hybrid
explicit-implicit algorithm model. In summary, our contributions are as follows:

• We propose a spectral-aware Laplacian Motion Flow Extraction module combining Hash
encoding with Laplacian analysis that decouples different frequency motion trajectories
from complex deformation.

• We design an enhanced Gaussian dynamics attribute that identify highly dynamic areas for
adaptive split and regularization.

• We design an adaptive Gaussian split strategy that automatically adjusts the primitive den-
sity and anisotropy using KDTree-guided spectral analysis.

2 RELATED WORK

2.1 NERF-BASED DYNAMIC MODELING

The advent of Neural Radiance Fields (NeRF) has significantly transformed the landscape of 3D
scene reconstruction, particularly for static environments. However, extending NeRF to effectively
model dynamic scenes remains a formidable challenge. Early works, such as D-NeRF Pumarola
et al. (2021) and Nerfies Park et al. (2021a), have employed canonical space warping and temporal
latent codes to capture motion. Despite their innovative approaches, these methods often exhibit lim-
itations when dealing with rapid or abrupt movements. Moreover, explicit spacetime factorization
techniques, such as HexPlane Cao & Johnson (2023), have been proposed to enhance computational
efficiency. However, these methods impose restrictive low-rank assumptions that may oversimplify
the intricate dynamics present in real-world scenes, particularly in environments characterized by
rapid changes. Furthermore, while segmenting scenes into components with distinct attributes has
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Figure 2: Framework of our method. We begin with a spectral-aware laplacian motion flow extrac-
tion module for motion trajectory tracking and adaptive frequency analysis. We design a Gaussian
dynamic attribute with the spatio-temporal feature by attention mechanism. The whole pipeline
benefits from the adaptive dynamic Gaussian split strategy for better performance and efficiency.

been explored to enhance modeling accuracy Gao et al. (2021); Tretschk et al. (2021), the implicit
representations based on MLP often suffer from over-smoothing and lengthy training processes.

2.2 3DGS-BASED DYNAMIC MODELING

Recent advances in 3D Gaussian Splatting (3DGS) Kerbl et al. (2023); Yu et al. (2024); Huang et al.
(2024); Li et al. (2024) have demonstrated remarkable success in static scene reconstruction, prompt-
ing extensions to dynamic scenarios. While 4D-GS Wu et al. (2024) employs multi-resolution Hex-
Planes with MLPs for deformation modeling, it inherits the fundamental limitation of plane-based
methods: the low-rank assumption leads to feature collisions and rendering artifacts in complex mo-
tions. Neural deformation fields Yang et al. (2024); Huang et al. (2024) address this through MLPs,
but often produce over-smoothed results and struggle with high-frequency details due to insufficient
inductive biases. Direct optimization of 4D Gaussians Yang et al. (2023); Duan et al. (2024) offers
greater flexibility but introduces optimization challenges including floating artifacts and requires ex-
tensive training with additional regularizers. Grid4D Xu et al. (2024) has achieved impressive per-
formance through combining triplane and Hash-coding while it often lacks smoothness and works
without an explicit method for modeling dynamic processes. While SplineGS Park et al. (2024)
proposes a pipeline that combine 3DGS and spline functions, however, it requires massive priors
such as 2D trajactory and depth estimation to maintain performance. These limitations collectively
highlight the need for a representation that balances expressiveness with efficient optimization for
dynamic 3DGS, particularly in handling complex motions while preserving fine details. Our work
addresses these limitations through a novel Laplacian motion flow extraction method that jointly
optimizes for physical plausibility, computational efficiency, and multi-scale temporal fidelity.

3 METHODOLOGY

In this section, we present our methodology aimed at addressing the challenges of modeling 4D
dynamic scenes with high-fidelity spatial details and complex temporal variations. The key inno-
vation lies in a hybrid explicit-implicit representation that combines Laplacian analysis with spec-
tral decomposition to capture spatial features and adaptive temporal dynamics. This framework is
structured into three main components: spectral-aware Laplacian motion flow extraction module,
enhanced Gaussian dynamic attribute and adaptive Gaussian split strategy. This hybrid approach is
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designed to enhance the representation of motion dynamics while maintaining physical consistency
across spatial and temporal domains, significantly outperforming existing methods in handling com-
plex motion patterns. The overall pipeline is shown in Fig. 2.

3.1 SPECTRAL-AWARE LAPLACIAN MOTION FLOW EXTRACTION MODULE

This section focuses on the challenge of effectively encoding spatial and temporal information to
capture the dynamics of motion. We employ a spectral-aware Laplacian motion flow extraction
module that decomposes the frequency motion trajectories to accommodate the complexities of 4D
spacetime. More theoretical analysis can be found in Appendix. E.

3.1.1 MULTI-SCALE HASH ENCODING

To efficiently encode 4D spacetime information while preserving both spatial and temporal de-
tails, we employ a multi-scale hash encoding strategy that extends traditional methods. Inspired
by Grid4D Xu et al. (2024), we extend InstantNGP’s Hash encoding Müller et al. (2022) to 4D
spacetime (x, y, z, t) through anisotropic multi-resolution decomposition.

Hl = {Hl
xyz,Hl

xyt,Hl
yzt,Hl

xzt}, l ∈ {1, ..., L} (1)

Each level l maintains dimension-specific resolutions computed via geometric progression.

3.1.2 LAPLACIAN ANALYSIS FOR MOTION FLOW PREDICTION

For dynamic scene reconstruction, accurately predicting motion dynamics is paramount. Traditional
methods often rely on MLP or linear interpolation, which fails to capture the complex periodic
and aperiodic motions present in real-world dynamic scenes. To overcome these limitations, we
propose a novel hybrid Laplacian motion flow representation that combines spectral analysis and
learnable neural components, allowing for the effective capture of both low and high-frequency
motion dynamics. The foundation lies in the Laplacian decomposition of time series:

L(t) =

K∑
k=−K

ck · e2πikt/T , (2)

where L(t) represents the Laplacian motion field at time t, with ck denoting coefficients. Through
Euler’s formula, we substitute this representation into our motion prediction:

L(t) =
K∑

k=−K

ck · cos
(
2πkt

T

)
+ i

K∑
k=−K

ck · sin
(
2πkt

T

)
. (3)

This transformation naturally handles periodic motions common in dynamic scenes and the fre-
quency components provide interpretable control over motion characteristics. To further enhance
our motion representation, we extend the equation to a simple formulation:

L(t) =

K−1∑
k=0

[αk cos(2πkt) + βk sin(2πkt)] . (4)

Here, coefficients (αk, βk) are learnable parameters. This design aims to automatically adapt to
scene-specific motion frequencies while maintaining end-to-end differentiability. The Laplacian
decoding allows our model to learn appropriate frequency compositions directly from data space,
eliminating the need for manual frequency band selection. The orthogonal basis properties enable
stable gradient computation during optimization. Incorporation of learnable frequencies fk through
gradient enhances the ability to capture different frequency motion components:

∂L
∂fk

=
1

σ2
k

∑
t

(
∂L

∂L(t)
· t · [−αk sin(2πfkt) + βk cos(2πfkt)]

)
, (5)
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where σk denotes temporal variance. This mechanism automatically balances frequency preserva-
tion with motion stability. Then we introduce an attention mechanism which combines Laplacian
features with Hash spatial features Hs:

AL(t) = L(t) · MLP(Hs). (6)

3.1.3 MULTI-SCALE LAPLACIAN PYRAMID SUPERVISION

To enforce consistency across different frequency bands, we introduce a multi-scale supervision
strategy that enforces consistency across frequency bands, enhancing the model’s ability to better
detail preservation. We supervise reconstruction using Laplacian pyramid decomposition:

Llap =

L∑
l=1

λl∥Ll(Irender)− Ll(Igt)∥1, (7)

where λl decreases exponentially to emphasize finer details. This loss function encourages model to
focus on both coarse and fine features, ensuring a comprehensive understanding of motion dynamics.

3.2 ENHANCED GAUSSIAN DYNAMICS ATTRIBUTE WITH ADAPTIVE REGULARIZATION

To effectively model the dynamic variations inherent in complex scenes, we augment the standard
3D Gaussian Splatting representation. Specifically, we associate each 3D Gaussian Gi with a learn-
able dynamics attribute, denoted as di ∈ RDd , where Dd represents the dimensionality of this
attribute space. The dynamics attribute di is introduced to explicitly encapsulate these latent per-
Gaussian conditional variations, providing a dedicated representation of dynamic properties.

To further improve the modeling of dynamic scene changes, we introduce a fusion mechanism that
concatenates the original dynamic attribute vector di with the Hash temporal feature Ht, forming
an augmented feature representation H̃t = Concatenate(di,Ht).

This concatenation provides a straightforward yet effective means of integrating scene-specific tem-
poral information with the Gaussian’s intrinsic dynamic attributes, enabling the model to leverage
both sources for more accurate deformation prediction. To effectively combine spatial and temporal
information, we introduce an attention mechanism to aggregate spatio-temporal features through:

Ah(t) = H̃t · Hs. (8)

3.2.1 ADAPTIVE DYNAMIC REGULARIZATION

To ensure that our method better model dynamic changes, we implement a selective regularization
mechanism that targets only those Gaussians exhibiting ”abnormally large” or ”highly dynamic”
changes. These gaussians are referred to as ”outliers”, which need to be increase their gradients and
thus promote their deformation or dynamic transformations.

Instead of using fixed thresholds or applying a regularization on all gaussians, our method employs
a data-driven, adaptive dynamic selection scheme. Specifically, for each Gaussian, we compute the
Euclidean distance between its dynamic attribute di and a reference mean dynamic attribute d̄, as
well as the associated standard deviation di = ∥di − d̄∥2.

Let µdist and σdist denote the mean and standard deviation of all di across the Gaussian set. We then
generate a mask to identify primitives that are significantly deviating from the normal scale:

maski = di > µdist + σdist. (9)

Only the Gaussians satisfying this outlier criterion—i.e., those with maski = 1—are subjected to
the additional regularization loss:
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Ldy =
1

N

N∑
i=1

maski · d2i . (10)

The purpose of this selective regularization is to intensify the gradients for Gaussians exhibiting
large changes, thereby explicitly promoting their deformation and densification. By employing this
dynamic regularization mechanism, the model adaptively concentrates regularization efforts on the
most informative and dynamically relevant regions, effectively enhancing the capacity to model
complex scene dynamics without imposing uniform constraints across all Gaussians.

In addition, we use Normalized cross-correlation (NCC) Yoo & Han (2009) loss LNCC to evaluate
the similarity between two images while maintaining invariance to brightness variations to enhance
alignment accuracy. The total loss L used for training is made up of four distinct terms, each
weighted by a corresponding hyperparameter λ to control its contribution:

L = Lorig + λNCCLNCC + λlapLlap + λdyLdy, (11)

where Lorig denotes original loss function of 3DGS and consists of L1 and Structural Similarity
Index Measure (SSIM) loss functions Wang et al. (2004) LSSIM.

3.3 ADAPTIVE GAUSSIAN SPLIT STRATEGY

In this section, we address the challenge of optimizing Gaussian representations of motion dynam-
ics. Our approach utilizes the analysis about the structure of each Gaussian to adaptively refine
Gaussian parameters based on local neighborhood information, enhancing the model’s ability to
capture complex motion patterns.

3.3.1 KDTREE-BASED PRIMITIVE ANALYSIS

To maintain spatial coherence and prevent overfitting, we analyze Gaussian primitives through their
neighborhood relationships based on Euclidean distance. By examining the size and anisotropy of
each Gaussian Xie et al. (2024), we can determine which Gaussians exhibit significant differences
in their motion characteristics. Covariance differences are computed through L2 norm:

∆Σij = ∥Σi − Σj∥2. (12)

This adaptive approach ensures that our models remain responsive to local variations in motion dy-
namics. By focusing on Gaussians with notable differences in size and anisotropy, we can selectively
choose which Gaussian to split, thereby enhancing the model’s ability to represent complex motion
patterns without introducing unnecessary complexity.

3.3.2 KL-DIVERGENCE GUIDED ADAPTATION

In some cases, we observed that the KDTree-based partitioning method can not accurately identify
the dynamic Gaussian, which leads to the instability to capture dynamic motions. This is because the
strategy of splitting Gaussian based on hard threshold will stop deriving when the shape and size of
Gaussian in the neighborhood are similar. To further refine the Gaussian split process, we compute
the KL-divergence between the neighbor Gaussian distribution P and a uniform distribution Q:

DKL(P ∥ Q) =

K∑
k=1

P (k) log
P (k)

Q(k)
(13)

The adaptive splitting threshold τ = ∆Σ + DKL · τbase, where τbase is a hyperparameter. This
mechanism allows for dynamic adjustments to the model complexity based on the observed mo-
tion patterns. Through adaptive dynamic Gaussian optimization strategy, we can determine when a
Gaussian should be split more effectively, ensuring the model captures the nuances of motion dy-
namics while maintaining computational efficiency. This strategy enhances the robustness against
overfitting by focusing on the most relevant Gaussian structures.
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Table 1: Quantitative comparison to previous methods on HyperNeRF Park et al. (2021b)
dataset. The higher PSNR(↑) and higher SSIM(↑) denote better rendering quality. The color of
each cell shows the best and the second best .

Scene broom2 vrig-3dprinter vrig-chicken vrig-peel-banana
Method SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

HyperNeRF Park et al. (2021b) 0.210 19.51 — 0.635 20.04 — 0.828 27.46 — 0.719 22.15 —
D3DGS Yang et al. (2024) 0.269 19.99 0.700 0.656 20.71 0.277 0.640 22.77 0.363 0.853 25.95 0.155
MotionGS Zhu et al. (2024) 0.380 22.30 — 0.710 21.80 — 0.790 26.80 — 0.690 28.20 —
MoDec-GS Kwak et al. (2025) 0.303 21.04 0.666 0.706 22.00 0.265 0.834 28.77 0.197 0.873 28.25 0.173
4DGaussians Wu et al. (2024) 0.366 22.01 0.557 0.705 21.98 0.327 0.806 28.49 0.297 0.847 27.73 0.204
ED3DGS Bae et al. (2024) 0.371 21.84 0.531 0.715 22.34 0.294 0.836 28.75 0.185 0.867 28.80 0.178
Grid4D Xu et al. (2024) 0.414 21.78 0.423 0.723 22.33 0.245 0.848 29.27 0.199 0.875 28.44 0.167

Ours 0.422 22.36 0.413 0.724 22.56 0.264 0.858 29.57 0.166 0.876 28.81 0.169

Table 2: Quantitative comparison to previous methods on D-NeRF Pumarola et al. (2021)
dataset. The color of each cell shows the best and the second best . More detail results can be
found in supplementary material.

Method SSIM↑ PSNR↑ LPIPS↓

3DGS Kerbl et al. (2023) 0.930 23.40 0.077
K-Planes Fridovich-Keil et al. (2023) 0.970 31.41 0.047
HexPlane Cao & Johnson (2023) 0.972 31.92 0.038
4DGaussians Wu et al. (2024) 0.985 35.32 0.021
D3DGS Yang et al. (2024) 0.991 40.08 0.013
SC-GS Huang et al. (2024) 0.993 41.66 0.009
Grid4D Xu et al. (2024) 0.994 41.99 0.008

Ours 0.994 42.17 0.007

4 EXPERIMENT

4.1 EXPERIMENT SETUP

We evaluate our method using three widely recognized datasets, comprising two real-world datasets
and one synthetic dataset. The Neu3D Li et al. (2022) dataset is a real-world collection that features
multiple static cameras and includes between 18 to 21 multi-view videos. We generate 300 frames
for each video and initial point clouds for each scene following 4DGaussians Wu et al. (2024).
HyperNeRF Park et al. (2021b) is a real-world dataset that captures continuous views with intricate
topological variations at each timestamp within a dynamic scene. In our experiment, we utilized
the “vrig” subset, which was captured using stereo cameras, training the model with data from one
camera while validating it with data from the other. The D-NeRF Pumarola et al. (2021) dataset
serves as a synthetic dataset tailored for monocular scenes, with each scene comprising between 50
to 200 frames. Due to discrepancies between the training and testing scenarios in the Lego subset of
the D-NeRF Pumarola et al. (2021) dataset, we excluded it from our experimental analysis.

4.2 COMPARISONS

On the Neu3D dataset, our approach demonstrates exceptional proficiency as shown in Tab. 3. The
primary challenge here lies in accurately modeling intricate, often non-rigid, temporal dynamics
while simultaneously reconstructing high-fidelity static scene geometry from these fixed perspec-
tives. Our method excels in generating temporally coherent motion representations and preserving
sharp geometric details throughout the sequences, effectively disentangling dynamic elements from
the static background. In contrast, competing methods frequently struggle to maintain long-term
temporal consistency across the multiple views, often exhibiting noticeable motion blur, particularly
during complex actions or over extended durations.

The HyperNeRF “vrig” subset introduces a distinct set of demanding conditions. This dataset tests
the model’s ability to handle complex motion while maintaining consistency across stereo view-
points and adapt to evolving scene topology. Our method showcases remarkable resilience and
adaptability in handling these extreme deformations and effectively leverages the stereo informa-
tion, generalizing robustly across the viewpoints even when trained on one and validated on the

7
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GT        4DGaussians    Grid4D D3DGS Ours

Figure 3: Comparison Results. Visual differences are highlighted with red insets for better clarity.
Our approach consistently outperforms on D-NeRF Pumarola et al. (2021) dataset, demonstrating
clear advantages in thin geometries and fine-scale details scenarios. Best viewed in color.

Table 3: Quantitative comparison to previous methods on Neu3D Li et al. (2022) dataset. Color
of each cell shows the best and the second best . We show the average results of all scenes. More
detail results can be found in supplementary material.

Method SSIM↑ PSNR↑ LPIPS↓

4DGaussians Wu et al. (2024) 0.935 30.36 0.152
Grid4D Xu et al. (2024) 0.934 30.50 0.147
Spacetime Li et al. (2024) 0.944 31.46 0.142
ED3DGS Bae et al. (2024) 0.943 31.92 0.139

Ours 0.944 32.12 0.134

other as shown in Tab. 1 and Fig. 5. It consistently reconstructs intricate topological changes with
greater accuracy and fewer visual artifacts or geometric distortions compared to existing approaches.

Furthermore, evaluation on the synthetic D-NeRF dataset underscores our method’s inherent
strength in inferring coherent 3D structure and plausible motion from limited input as shown in
Tab. 2 and Fig. 3. Reconstructing dynamic 3D geometry from a single, potentially moving, camera
viewpoint over time presents profound depth ambiguities and necessitates strong priors and tempo-
ral reasoning. Despite this inherent ill-posedness and the scarcity of explicit geometric cues, our
approach generates remarkably temporally stable and geometrically plausible reconstructions. Con-
sequently, it significantly outperforms baseline methods, which, under these monocular constraints,
often exhibit pronounced depth inaccuracies that betray instabilities in their representation.

Across this diverse range of evaluated datasets, our method consistently achieves a marked supe-
riority in performance. This advantage is evident in both the final reconstruction fidelity and the
accurate, coherent capture of dynamic motion, ranging from subtle deformations to large-scale topo-
logical changes. This consistent success across varied and demanding conditions robustly validates
the effectiveness, versatility, and broad applicability of our method for 4D reconstruction.

4.3 ABLATION STUDY AND ANALYSIS

To validate the effectiveness of each component within our framework, we conduct comprehensive
ablation studies to validate the necessity of each component as shown in Tab. 4 and Fig. 4.

4.3.1 EFFECT OF LAPLACIAN MOTION FLOW EXTRACTION MODULE

Replacing this module with a defrom MLP leads to poorer performance, especially in scenes with
diverse motion patterns or objects of varying sizes evolving over time. Dynamic scenes inherently
possess variations across multiple spatial and temporal scales. This module is designed to capture
these hierarchies effectively. It allows the model to represent fine details of motion trajectories while
enabling the modeling of slow, gradual changes. By processing information hierarchically, it ensures
consistent and accurate representation of scene dynamics across different frequency.

8
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Figure 4: Ablation Results. Replacing Laplacian motion flow extraction module leads to poorer
performance. Besides, the split strategy helps in reducing the number of final Gaussians.

Table 4: Ablation evaluation on Neu3D Li et al. (2022) dataset.

Method SSIM↑ PSNR↑ LPIPS↓

w/o Laplacian module 0.938 31.64 0.149
w/o dynamic attribute 0.938 31.72 0.147
w/o adaptive split strategy 0.943 31.96 0.133
w/o Llap 0.939 31.70 0.148

Ours 0.944 32.12 0.134

4.3.2 EFFECT OF ADAPTIVE GAUSSIAN SPLIT STRATEGY AND LAPLACIAN PYRAMID LOSS

Removing this component and reverting to original 3DGS split strategy results in a drop in re-
construction quality. This component improves render quality by intelligently allocating Gaussian
primitives through densifying regions with high dynamics while pruning redundant primitives. This
leads to a more compact representation of the scene and set of Gaussians compared to non-adaptive
methods while achieving similar quality as shown in Tab. 4.

When this loss is removed on the rendered image, we observe a noticeable degradation in recon-
struction quality. The Laplacian pyramid loss decomposes the reconstruction error across multiple
frequency bands by comparing the Laplacian pyramids of the rendered and ground truth images.
This loss function proves essential because it enforces structural consistency across different scales,
effectively preserving fine details that would otherwise be lost in single-scale supervision.

4.3.3 EFFECT OF GAUSSIAN DYNAMICS ATTRIBUTE

Compared with full model, removing the Gaussian dynamics attribute leads to poorer performance.
This difference underscores the importance of embedding dedicated dynamic attributes within the
Gaussians themselves. By incorporating this, we allow each Gaussian to better adapt its shape and
orientation according to its specific local dynamics, effectively capturing details and mitigating the
feature collision issues inherent in relying solely on lower-rank grids.

5 CONCLUSION

In this paper, we present a novel approach for dynamic 3DGS that addresses the challenges of
anisotropic spatio-temporal sampling through a hybrid explicit-implicit encoding framework. We
introduced three key innovations: Firstly, a hybrid Laplacian motion flow extraction module com-
bining Laplacian analysis with Hash encoding, effectively decoupling different motion frequencies
from complex deformation details. Secondly, an enhanced Gaussian dynamics attribute that com-
pensates for highly dynamic areas induced by geometric deformation. Thirdly, an adaptive Gaussian
split strategy guided by KDTree-based analysis, which automatically adjusts dynamic primitive den-
sity and anisotropy.This work advance the state-of-the-art in dynamic scene modeling by bridging
the gap between explicit representations and spectral analysis, with potential applications in VR/AR
and scene reconstruction.
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A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets will be made publicly available after the paper is accepted to facilitate replication and
verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We believe these measures will enable other researchers
to reproduce our work and further advance the field.

C LLM USAGE STATEMENT

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute
to plagiarism or scientific misconduct.

D EXPERIMENTS SETTING DETAILS

Our framework is implemented on PyTorch and all experiments are conducted on a single RTX
A6000 GPU. The scheduler of the learning rate primarily follows D3DGS Yang et al. (2024) and
Grid4D Xu et al. (2024). Large Language Model (LLM) was employed to polish and refine the
grammatical structure of this paper.

For training, we set the number of iterations to 30k for Neu3D Li et al. (2022), 30-40k for HyperN-
eRF Park et al. (2021b), 50k for D-NeRF Pumarola et al. (2021). The dimension resolution of the
hash grids, the number of Laplacian coefficients, and the dimension of neighboring Gaussians used
in the split strategy are adapted according to the scale of each scene. The Deformed MLP consists of
a single-layer MLP with a width of 256, followed by a ReLU activation function. We implement 20
neighbors for dynamic regularization and configure the dynamic attribute with a dimension varying
from 16 to 64 based on scenes, using a regularization coefficient of λdy = 0.1. The Laplacian-based
loss is introduced starting from the 3k iteration, while the Normalized Cross-Correlation (NCC) loss
Yoo & Han (2009) is applied from the 20k iteration onward. The loss weights are set to λlap = 1
and λNCC = 0.01 for common scene.

For D-NeRF Pumarola et al. (2021) dataset, the background is set to black, consistent with the
settings in D3DGS Yang et al. (2024) and Grid4D Xu et al. (2024). For the scenes in the Neu3D
Li et al. (2022), HyperNeRF Park et al. (2021b) dataset, we utilize the SFM Schonberger & Frahm
(2016) points created from COLMAP Schönberger et al. (2016) to initialize Gaussians.
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E THEORETICAL DERIVATION FOR LAPLACIAN MOTION FLOW
EXTRACTION

We denote the dynamic motion field (per-point displacement) as a function over the 3D spatial
domain and time:

u(x, t) ∈ R3, (14)

Stack per-Gaussian signals into a matrix/time series U(t) = [u1(t), . . . ,uN (t)]⊤ ∈ RN×3. For
clarity, we treat one scalar channel and suppress the color and axis dimension.

E.1 LOW-RANK DECOMPOSITION

Assume we attempt to model the spatio-temporal field by a separable low-rank decomposition:

U(t) = PS(t) ≈
R∑

r=1

prsr(t), (15)

where P ∈ RN×R and S(t) ∈ RR. This is equivalent to approximating each instantaneous spatial
snapshot by an R-rank matrix. Any truncation to rank R eliminates singular vector directions with
small singular values through SVD. Those small singular values often correspond to high spatial-
frequency or localized deviations.

Let the per-time snapshot have spectral decomposition U(t) =
∑N

k=1 σk(t)uk(t)v
⊤
k (t). Truncating

to R keeps only σ1 . . . σR. Because the energy of smooth, large-scale deformations concentrates in
leading singular values, truncation discards small-energy but high-frequency components. There-
fore, if approximating dynamics by low-rank temporal bases, the model cannot reconstruct rapid
localized non-rigid motion that manifests as high-frequency components in either the spatial graph
or temporal spectrum.

E.2 GRID SAMPLING AND HASH ENCODINGS

Consider encoding features on a discrete grid or hashed table over (x, y, z, t). The discrete sampling
operator S maps a continuous field u(x, t) to sampled values us = S[u]. According to Nyquist
sampling theory, if the continuous field has frequency content above the sampling Nyquist limit,
aliasing occurs and multiple different frequency components map to the same discrete samples.

The finite capacity of hash tables can cause different spatially close signals to map to similar indices,
which acts like a low-pass operator in practice or unpredictable mixing of features. If the spacing of
the sampling grid h is such that the maximum representable spatial frequency is ωmax ≈ π/h, any
true signal component with |ω| > ωmax will be observed as an aliased lower frequency ωa satisfying
ωa = ω − m · (2π/h) for some integer m. That collapsed mapping between distinct frequencies
is a collision in spectral domain caused by non-orthogonality between bases. High-dimensional
encoding without spectral priors can produce inconsistent aliasing where different time frames map
features to the same code.

Therefore, the low-rank or strong smoothing regularization enforces deformation consistency but
attenuates the high frequencies. Conversely, high-capacity hash encodings can represent high fre-
quencies, but without spectral regularization they produce inconsistent aliasing and feature colli-
sions. We want to preserve high-frequency local motion details while maintaining smooth temporal
coherence. We achieve this by decomposing the per-Gaussian signal into Laplacian eigenmodes.

E.3 LAPLACIAN EIGENBASIS

For Laplacian operator for graph structure or continuous field, we have:

∆f(x) = ∇2f(x). (16)
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Eigenvectors uk are orthonormal spatial modes ordered by increasing spatial frequency. Therefore,
we can decompose the motion field into:

U(x, t) =
∑
k

αk(t)ϕk(x), (17)

where αk is obtained by Laplacian expansion αk(t) =
∑M

m=−M ck,mei2πmt/T and the spatial basis
ϕk(x) is orthogonal in L2 space.

Laplacian gives an explicit spectral weighting, enabling us to optimize crucial frequency bands.
Instead of hard low-rank truncation, spectral methods can preserve high-frequency coefficients at
current time windows and penalize incoherent high frequencies across neighbors by shaping the
penalty rather than an all-or-nothing rank truncation.

We use Laplacian spectrum expansion to model per-Gaussian dynamics. In this way, each dynamic
attribute is decoupled into orthogonal components of different frequencies to ensure that it can ex-
press high-frequency details without interfering with each other in optimization.

F ADAPTIVE GAUSSIAN SPLIT STRATEGY DETAILS

We apply KL-divergence in split strategy by computing the KL-divergence between the neighbor
Gaussian distribution P and a uniform distribution Q:

DKL(P ∥ Q) =

K∑
k=1

P (k) log
P (k)

Q(k)
. (18)

While the original notation used P and Q to suggest probability distributions, in our implementation
they are instantiated as zero-mean multivariate Gaussian distributions with covariances Σi (for the
candidate Gaussian) and Σ̄ (mean of neighboring Gaussians), respectively. Specifically:

DKL(N(0,Σi)∥N(0, Σ̄)) =
1

2

[
tr(Σ̄−1Σi)− k + log

det Σ̄

detΣi

]
. (19)

To enhance stability and avoid directional bias, we adopt the symmetric KL divergence:

DKL = DKL(Σi∥Σ̄) +DKL(Σ̄∥Σi). (20)

The adaptive splitting threshold τ becomes:

τ = ∆Σ+DKL · τbase. (21)

We set hyperparameter τbase = 1e− 4. It serves as a scene-dependent parameter to determine when
a candidate Gaussian significantly deviates from its local neighbors. A lower value allows more
aggressive splitting in scenes with fine or deformable structures. To validate its effectiveness, we
include an ablation in Tab. 5 to comparing results with different τbase.

Table 5: The comparison results of different hyperparameter τbase on D-NeRF datasets.

τbase 0 1e-2 1e-4

SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS
Ours 0.994 42.07 0.008 0.994 42.01 0.008 0.994 42.17 0.007

G MORE EXPERIMENT RESULTS

In this section, more detail experiment results will be reported. Tab. 7, Tab. 8, Tab. 9 and Tab. 10
show the PSNR, SSIM and LPIPS results on dataset. Tab. 7 and Tab. 8 presents the detail results

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

on Neu3D Li et al. (2022) dataset. Tab. 9 and Tab. 10 show the experiment results on the synthetic
scenes of D-NeRF Pumarola et al. (2021) dataset. In addition, we add more rendering in Fig. 6 for
HyperNeRF Park et al. (2021b) and Fig. 2 for Neu3D Li et al. (2022) .

Our method demonstrates consistent superiority across all benchmarks, excelling where others strug-
gle. On Neu3D (Tab. 7 and Fig. 2), our method adeptly handles complex temporal dynamics and
reconstructs high-fidelity static geometry. It delivers temporally coherent motion, sharp details, and
effective separation of dynamic and static elements, contrasting with competing approaches that
often show motion blur, ghosting artifacts, or geometric distortions.

The HyperNeRF “vrig” subset (Fig. 6) show our strong adaptability to leverage stereo information
for consistent reconstructions and generalization across views, with fewer visual artifacts and dis-
tortions than alternatives. For synthetic scene reconstruction on D-NeRF (Tab. 9 and Tab. 10),
our method excels in inferring coherent 3D structures and motion from limited monocular inputs,
overcoming depth ambiguities through robust temporal reasoning. This cross-dataset validation
demonstrates that our framework uniquely combines geometric accuracy, temporal stability, and
view consistency, validating its effectiveness and establishing state-of-the-art performance in dy-
namic scene reconstruction.

In addition, we provide detailed comparison with Grid4D Xu et al. (2024) on the D-NeRF dataset
in Tab. 6, including model size, training time, and inference speed. As we can see, on the D-NeRF
dataset, our model has 51MB, slightly larger than Grid4D (50MB). This size increase is due to our
incorporation of Laplacian-based frequency modeling and dynamic appearance embedding, which
offer improved flexibility and fidelity for dynamic scenes.

Moreover, our method requires about 2 hours per scene, which is a little longer than Grid4D (1h).
Furthermore, our approach achieves 169 FPS at 800×800 resolution on D-NeRF scenes, enabling
real-time rendering. While Grid4D reaches 180 FPS, it does not model dynamic attributes or
frequency-aware motion. In contrast, our method achieves higher PSNR and better visual quality,
offering a better quality-efficiency trade-off.

Table 6: Detailed comparison on D-NeRF datasets about model size, training time and the
rendering FPS of our method.

SSIM PSNR PSNR Szie Time FPS

Grid4D 0.994 41.99 0.008 50MB 1h5min 180
Ours 0.994 42.17 0.007 51MB 2h6min 169

Table 7: Quantitative comparison to previous methods on Neu3D Li et al. (2022) dataset. The
higher PSNR(↑) and higher SSIM(↑) denote better rendering quality. The color of each cell shows
the best .

coffee martini cook spinach cut roasted beefScene SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

4DGaussians Wu et al. (2024) 0.910 28.52 0.162 0.946 32.46 0.153 0.938 31.01 0.153
Grid4D Xu et al. (2024) 0.896 27.77 0.177 0.948 32.03 0.144 0.943 31.41 0.142
Spacetime Li et al. (2024) 0.914 28.55 0.158 0.954 32.39 0.141 0.952 32.70 0.143
ED3DGS Bae et al. (2024) 0.917 29.26 0.147 0.948 32.61 0.146 0.951 33.64 0.144

Ours 0.918 29.60 0.147 0.952 32.74 0.133 0.954 33.37 0.132
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Figure 5: Comparison Results. Our approach consistently outperforms on HyperNeRF Park et al.
(2021b) dataset, demonstrating advantages in challenging scenarios. Best viewed in color.

Table 8: Quantitative comparison to previous methods on Neu3D Li et al. (2022) dataset. The
higher PSNR(↑) and higher SSIM(↑) denote better rendering quality. The color of each cell shows
the best .

flame salmon 1 flame steak sear steakScene SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

4DGaussians Wu et al. (2024) 0.913 29.33 0.159 0.946 29.40 0.146 0.954 31.42 0.136
Grid4D Xu et al. (2024) 0.911 29.24 0.159 0.952 30.10 0.132 0.957 32.47 0.131
Spacetime Li et al. (2024) 0.921 28.59 0.147 0.961 32.79 0.132 0.964 33.76 0.130
ED3DGS Bae et al. (2024) 0.926 29.96 0.134 0.957 32.53 0.128 0.958 33.47 0.131

Ours 0.921 30.00 0.137 0.958 33.12 0.124 0.958 33.89 0.132

Table 9: Quantitative comparison to previous methods on D-NeRF Pumarola et al. (2021)
dataset. The higher PSNR(↑) and higher SSIM(↑) denote better rendering quality. The color of
each cell shows the best and the second best .

bouncingballs hellwarrior hook jumpingjacksScene SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS Kerbl et al. (2023) 0.959 23.20 0.060 0.916 29.89 0.106 0.888 21.71 0.103 0.930 20.64 0.083
K-Planes Fridovich-Keil et al. (2023) 0.993 40.05 0.032 0.952 24.58 0.082 0.949 28.12 0.066 0.971 31.11 0.047
HexPlane Cao & Johnson (2023) 0.992 40.36 0.031 0.944 24.30 0.073 0.955 28.26 0.052 0.974 31.74 0.036
4DGaussians Wu et al. (2024) 0.994 40.78 0.014 0.974 28.86 0.037 0.976 32.82 0.027 0.986 35.41 0.020
D3DGS Yang et al. (2024) 0.996 41.36 0.009 0.987 41.34 0.025 0.985 36.86 0.017 0.989 37.43 0.013
SC-GS Huang et al. (2024) 0.995 41.59 0.009 0.989 42.19 0.019 0.990 38.79 0.011 0.992 39.34 0.008
Grid4D Xu et al. (2024) 0.996 42.62 0.008 0.991 42.85 0.015 0.990 38.89 0.009 0.993 39.37 0.008

Ours 0.996 42.72 0.008 0.991 43.02 0.014 0.991 39.20 0.009 0.993 39.45 0.008

Table 10: Quantitative comparison to previous methods on D-NeRF Pumarola et al. (2021)
dataset. The higher PSNR(↑) and higher SSIM(↑) denote better rendering quality. The color of
each cell shows the best and the second best .

mutant standup trex AverageScene SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS Kerbl et al. (2023) 0.934 24.53 0.058 0.930 21.91 0.079 0.954 21.93 0.049 0.930 23.40 0.077
K-Planes Fridovich-Keil et al. (2023) 0.971 32.50 0.036 0.979 33.10 0.031 0.974 30.43 0.034 0.970 31.41 0.047
HexPlane Cao & Johnson (2023) 0.982 33.66 0.028 0.983 34.12 0.019 0.976 31.01 0.028 0.972 31.92 0.038
4DGaussians Wu et al. (2024) 0.988 37.68 0.016 0.990 37.97 0.014 0.984 33.75 0.022 0.985 35.32 0.021
D3DGS Yang et al. (2024) 0.994 42.09 0.007 0.994 43.79 0.008 0.993 37.67 0.010 0.991 40.08 0.013
SC-GS Huang et al. (2024) 0.996 43.43 0.005 0.997 46.72 0.004 0.994 39.53 0.009 0.993 41.66 0.009
Grid4D Xu et al. (2024) 0.996 43.94 0.004 0.997 46.28 0.004 0.995 40.01 0.008 0.994 41.99 0.008

Ours 0.997 44.13 0.003 0.997 46.59 0.003 0.995 40.08 0.007 0.994 42.17 0.007
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Figure 6: More Comparison Results on HyperNeRF Park et al. (2021b) dataset. Best viewed in
color.

GT        4DGaussians    Grid4D ED3DGS Ours

Figure 7: More Comparison Results on Neu3D Li et al. (2022) dataset. Best viewed in color.
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