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Abstract

Large language models have demonstrated ex-001
ceptional performance across a wide range of002
tasks. However, dense models usually suf-003
fer from sparse activation, where many acti-004
vation values tend towards zero (i.e., being in-005
activated). We argue that this could restrict006
the efficient exploration of model representa-007
tion space. To mitigate this issue, we propose008
Finedeep, a deep-layered fine-grained expert009
architecture for dense models. Our framework010
partitions the feed-forward neural network lay-011
ers of traditional dense models into small ex-012
perts, arranges them across multiple sub-layers.013
A novel routing mechanism is proposed to de-014
termine each expert’s contribution. We conduct015
extensive experiments across various model016
sizes, demonstrating that our approach signifi-017
cantly outperforms traditional dense architec-018
tures in terms of perplexity and benchmark019
performance while maintaining a comparable020
number of parameters. Moreover, we find that021
Finedeep achieves optimal results when balanc-022
ing depth and width, specifically by adjusting023
the number of expert sub-layers and the number024
of experts per sub-layer. Empirical results con-025
firm that Finedeep effectively alleviates sparse026
activation and efficiently utilizes representation027
capacity in dense models.028

1 Introduction029

Large language models (LLMs) have recently030

gained much attention for their exceptional per-031

formance across various tasks (Achiam et al., 2023;032

Touvron et al., 2023b; Dubey et al., 2024; Yang033

et al., 2024a). Scaling laws at the pre-training stage034

of LLMs suggest that increasing model size could035

consistently enhance performance on downstream036

tasks (Kaplan et al., 2020; Hoffmann et al., 2022).037

However, such improvement often comes at an ex-038

orbitant computational cost. As a result, maximiz-039

ing model performance within a fixed parameter040

budget has emerged as an efficient paradigm, aim-041
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Figure 1: Distribution of activation function outputs
across various models (Touvron et al., 2023b; Dubey
et al., 2024; Yang et al., 2024a; Abdin et al., 2024),
where all selected models use the SiLU activation func-
tion. The horizontal axis represents the activation values,
while the vertical axis denotes the distribution of activa-
tion values across different models.

ing to push the upper bound of the model perfor- 042

mance without significantly increasing resource 043

demands (Zhang et al., 2024). 044

Along with model scaling, recent studies dis- 045

close that dense models usually exhibit a sparse 046

activation phenomenon during computation (Zhang 047

et al., 2022), as illustrated in Figure 1. Specifically, 048

sparse activation refers to the fact that most val- 049

ues output from the activation functions tend to be 050

close to zero (Li et al.; Luo et al., 2024). Since 051

these small values contribute marginally when mul- 052

tiplied by model parameters, their impact on the 053

final output remains limited, leading to inefficient 054

activation utilization. We argue that addressing 055

sparse activation could serve as a new channel for 056

further improving the upper limit of model perfor- 057

mance. By improving the effective utilization of 058

activation values, we could enhance the representa- 059

tional capacity of models, enabling them to capture 060

additional complex features. 061

Following this direction, we propose Finedeep, a 062

novel dense architecture with deep-layered fine- 063

grained experts. Our architecture mitigates the 064
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sparse activation issue from two key perspectives:065

1) Fine-grained expert design: Previous studies,066

such as XMoE (Yang et al., 2024b), have demon-067

strated that fine-grained experts can alleviate sparse068

activation in Mixture-of-Experts (MoE) architec-069

tures. To address the same issue in dense mod-070

els, Finedeep adopts a similar fine-grained expert071

design, where each expert focuses on a localized072

feature subspace. This helps reduce the tendency073

toward globally sparse activations in large-scale074

feed-forward networks (FFN). 2) Multi-layer ex-075

pert arrangement: Traditional dense models typi-076

cally use FFNs with a single-layer nonlinear trans-077

formation, which contributes to sparse activation.078

Finedeep instead arranges experts in multiple se-079

quential sub-layers within the FFN, allowing infor-080

mation to be progressively processed by different081

experts. As a result, features that are weakened082

in shallow sub-layers can still be reactivated and083

utilized in deeper ones. By mitigating the issue084

of sparse activation inherent in conventional dense085

models, our architecture enables a richer represen-086

tational capacity.087

To further enhance the effectiveness of Finedeep,088

we propose a novel routing strategy that computes089

routing scores based on expert outputs rather than090

inputs. The final output is obtained via a soft-091

weighted summation of expert outputs. Previous092

soft-weighted summation often suffers from com-093

petition among different experts, as softmax nor-094

malization forces a probability distribution where a095

few experts dominate, leading to imbalanced con-096

tributions. To mitigate this, we build upon the097

insights from Liu et al. (2024) and use the sigmoid098

function to replace the traditional softmax function099

for routing score normalization.100

It is important to note that Finedeep operates101

within a dense architecture and differs fundamen-102

tally from conventional sparse MoE frameworks in103

two key aspects. First, our objective is to maximize104

the activation rate of all parameters, ensuring that105

all expert parameters are fully utilized, in contrast106

to traditional MoE approaches that activate only107

a subset of experts to reduce computational cost.108

Second, Finedeep does not introduce additional pa-109

rameters. Instead, it decomposes the original FFN110

into fine-grained experts, thereby avoiding the pa-111

rameter overhead typically introduced by expert112

expansion in classical MoE architectures.113

To validate the effectiveness of Finedeep, we114

conduct extensive LLM pre-training experiments.115

Through experiments across different model sizes116

and varying numbers of fine-grained experts, we 117

demonstrate that Finedeep consistently outper- 118

forms traditional dense models in both perplexity 119

(PPL) and downstream benchmarks, while main- 120

taining a comparable number of parameters. Fur- 121

thermore, hyper-parameter studies reveal that opti- 122

mal results are achieved when width and depth are 123

balanced. Finally, our empirical analysis confirms 124

that Finedeep effectively mitigates sparse activa- 125

tion, enhancing the overall representation capacity 126

of the model. 127

The main contributions of our work are summa- 128

rized as follows. 129

• To address the issue of sparse activation in 130

dense models, we propose Finedeep, which 131

partitions FFNs in dense models into fine- 132

grained experts. 133

• Our approach introduces novel multi-layer ex- 134

pert arrangement and routing strategy to fur- 135

ther alleviate the sparse activation. 136

• Through extensive experiments in LLM pre- 137

training, we demonstrate the superiority of 138

Finedeep over traditional dense models and 139

empirically validate its ability to alleviate 140

sparse activation in dense models. 141

2 Related Work 142

Current dense model architectures are predom- 143

inantly based on the decoder-only transformer, 144

which effectively leverages the parameter space 145

to encode rich knowledge and deliver strong perfor- 146

mance (Brown et al., 2020; Touvron et al., 2023a,b; 147

Dubey et al., 2024). FFN layers in these models are 148

often regarded as a key component for storing sub- 149

stantial amounts of knowledge (Geva et al., 2021; 150

Dai et al., 2022). However, it has been observed 151

that FFN layers in dense models exhibit sparse acti- 152

vation during the training process (Zhang et al., 153

2022), where the majority of the output values 154

from the activation function are low, contributing 155

marginally to subsequent matrix multiplications. 156

This indicates that the activation values are not fully 157

utilized, leading to a potential waste of resources. 158

Moreover, the phenomenon of sparse activation 159

becomes increasingly pronounced as the training 160

process progresses (Luo et al., 2024). 161

To address the sparse activation issue in dense 162

models, Zhang et al. (2022) transforms the dense 163

model into a MoE architecture. First, the pattern 164
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Figure 2: Illustration of the proposed Finedeep. Subfigure (a) shows the structure of the original dense model.
Subfigure (b) demonstrates the structure of our proposed Finedeep model. Each FFN in the dense model is
partitioned into M × K experts distributed along M sub-layers with K experts per sub-layer. The connection
between subfigures (a) and (b) represents the transformation from the original dense model to the Finedeep model.

of sparse activation in the dense model is identi-165

fied, and then experts are partitioned based on this166

pattern to maximize the activation density within167

each expert. Yang et al. (2024b) also identifies the168

sparse activation problem within individual experts169

in the MoE architecture and mitigates this by di-170

viding the experts into fine-grained experts. Unlike171

the aforementioned methods, our approach works172

entirely within the dense model framework. We do173

not adopt the common MoE strategy of activating174

the top-k experts to avoid sparse activation (Fedus175

et al., 2022; Lepikhin et al., 2021). Instead, we176

reduce sparse activation with all parameters con-177

tributing to the computation.178

3 Methodology179

The proposed method, Finedeep, is illustrated in180

Figure 2. To tackle the sparse activation problem181

commonly observed in dense models, we first de-182

compose the FFNs of traditional dense architec-183

tures into fine-grained experts. We then introduce184

a novel expert arrangement and routing strategy:185

stacking multiple sub-layers of organized experts186

and applying output-guided routing mechanism to187

weight their outputs.188

3.1 FFN Partitioning 189

In a standard FFN layer, the input is first projected 190

onto a higher-dimensional space through a "up" 191

projector, activated by SiLU with an additional 192

gating matrix, and then mapped back to the original 193

dimension using a "down" projector, as shown in 194

Figure 2(a) (Touvron et al., 2023b). This process 195

can be described by the following equation: 196

FFN(ĥl
t) = (σ(ĥl

tWg)⊙ ĥl
tWup)Wdown (1) 197

Here, Wg, Wup, and Wdown denote the gating, 198

up, and down projection matrices in Figure 2(a), 199

respectively. σ is the activation function, and ĥl
t is 200

the output of the Multi-Head Self-Attention (MHA) 201

module at layer l. 202

To mitigate the sparse activation phenomenon 203

observed in dense models, we decompose the FFN 204

into smaller expert units. Specifically, we first de- 205

termine the number of experts to be sliced, which 206

is given by the number of sub-layers containing 207

experts, M , multiplied by the number of experts 208

per sub-layer, K. We then partition the three matri- 209

ces Wg, Wup and Wdown along the intermediate 210
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dimensions. This ensures that the computational211

logic of each expert remains consistent with that212

of the original FFN layer, differing only in the in-213

termediate dimensions. For a given expert i, the214

computation is as follows:215

FFNi(ĥ
l
t) = (σ(ĥl

tW
(i)
g )⊙ ĥl

tW
(i)
up )W

(i)
down

216
where 1 ≤ i ≤ MK (2)217

where W (i)
g , W (i)

up and W
(i)
down represent the sliced218

weight matrices corresponding to expert i. This219

decomposition allows each expert to independently220

process a subset of the input space. Notably, when221

all experts are combined, the overall parameter222

scale remains comparable to that of the original223

FFN layer.224

3.2 Expert Arrangement and Routing225

In terms of expert arrangement, we adopt a multi-226

layer expert arrangement strategy. Specifically,227

after decomposing the FFN layer into fine-grained228

experts, we arrange these experts in multiple sub-229

layers, placing K experts per sub-layer across a230

total of M sub-layers. We choose a multi-layer231

expert arrangement, as the single-layer setup is232

merely a special case within its function space. The233

proof can be found in Appendix A.1. The choice to234

maintain a fixed number of K experts per sub-layer,235

given a fixed total number of experts, is intended236

to enhance representational diversity. Formally, the237

expert group in sub-layer j is defined as:238

Ej = {FFN(j−1)K+1, ...,FFNjK} (3)239

This structural design of multi-layer expert arrange-240

ment effectively increases the model’s depth, allow-241

ing it to capture more complex features. For clarity,242

we denote the ith expert in the jth sub-layer as:243

Ej,i = FFN(j−1)K+i (4)244

Regarding the routing approach, we propose an245

output-guided sigmoid routing mechanism. Un-246

like the MoE architecture, where the router pro-247

cesses the input to determine expert selection, our248

method operates within a dense framework, mean-249

ing all experts are always activated. Given this,250

we compute weight scores based on expert outputs251

rather than inputs, allowing for more precise rout-252

ing. Since all expert outputs are available, this253

approach ensures a more accurate assessment of254

their contributions. Once the weight scores are 255

obtained, we forgo the standard softmax normaliza- 256

tion. Softmax enforces competition among experts, 257

often amplifying sparse activation by suppressing 258

weaker expert contributions. Instead, inspired by 259

Liu et al. (2024), we apply a sigmoid function to 260

nonlinearly transform the router’s weights into the 261

range [0, 1]. It allows each expert to contribute 262

independently rather than being normalized in a 263

competitive manner. This helps mitigate excessive 264

sparsity while maintaining flexibility in expert acti- 265

vation. 266

It is important to note that since our method 267

increases the model’s depth, direct training may 268

lead to gradient vanishing issues. To mitigate this, 269

we employ a sub-layer residual normalization 270

operation. Specifically, to prevent gradient vanish- 271

ing during training and improve training stability, 272

we add RMSNorm and residual connection opera- 273

tions between sub-layers. We apply the normaliza- 274

tion operation before the expert inputs and perform 275

residual connections after weighting the routing 276

scores. Formally, the computation process in the 277

jth sub-layer can be expressed as follows: 278

h̃l,j
t = RMSNormj(ĥ

l,j−1
t ) (5) 279

rj,i(h̃
l,j
t ) = σ(Ej,i(h̃

l,j
t )Rj,i) (6) 280

ĥl,j
t =

K∑
i=1

rj,i(h̃
l,j
t ) · Ej,i(h̃

l,j
t ) (7) 281

ĥl,j
t := ĥl,j

t + ĥl,j−1
t (8) 282

Here RMSNormj represents the RMSNorm mod- 283

ule in the jth sub-layer. ĥl,j−1
t denotes the output 284

of the (j − 1)th sub-layer at time step t in the lth 285

layer. Similarly, the final output of the jth sub- 286

layer expert group is given by ĥl,j
t , while h̃l,j

t rep- 287

resents the output of the RMSNorm module in the 288

jth sub-layer. The function σ denotes the sigmoid 289

activation function. Rj,i refers to the ith column 290

of the routing matrix in the jth sub-layer. Finally, 291

rj,i(h̃
l,j
t ) represents the routing score assigned by 292

the router in the jth sub-layer to the ith expert. 293

Overall, the first expert group sub-layer takes 294

the output of the current layer’s MHA module as 295

input and processes it according to the intra-layer 296

computation described above. The hidden states 297

produced by each expert group sub-layer are then 298

sequentially passed to the next sub-layer until all 299

expert group sub-layers have been processed. 300
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4 Experiments301

We conducted extensive experiments across vari-302

ous model sizes and configurations, evaluating PPL303

and downstream benchmarks to validate the effec-304

tiveness of our proposed approach Finedeep.305

4.1 Pre-training Dataset306

To maximize model performance, we curated high-307

quality open-source pre-training datasets from vari-308

ous domains. For general-domain data, we utilized309

FineWeb-Edu dataset (Penedo et al., 2024). For310

mathematics and code, we followed OLMoE and311

incorporated OpenWebMath and StarCoder (Muen-312

nighoff et al., 2024). We also included synthetic313

data from Cosmopedia, which has been shown to314

enhance model performance (Abdin et al., 2024;315

Ben Allal et al., 2024). Details of the pre-training316

dataset are provided in Appendix A.7.317

After collecting pre-training data from various318

domains, we mixed them according to the mix ra-319

tios in Appendix A.3. Our mixing strategy was in-320

formed by technical reports from other open-source321

models, as well as the dataset sizes we gathered322

across different domains. Given computational re-323

source constraints, we set the total pre-training data324

size to 100B tokens, following best practices from325

related studies (Dai et al., 2024; Su et al., 2024b;326

Xie et al., 2023).327

Before conducting pre-training experiments, we328

also preprocessed data for tokenization. Specif-329

ically, we utilized LLaMA 3’s tokenizer, which330

has a vocabulary size of 128K, to tokenize the331

mixed dataset while enforcing a maximum se-332

quence length of 1,024 (Dubey et al., 2024).333

4.2 Experimental Setup334

Following the studies by Biderman et al. (2023)335

and Su et al. (2024a), we conducted pre-training ex-336

periments with three model configurations: Small,337

Medium and Large. The Small model setup con-338

sists of 665M parameters, the Medium model setup339

has 1.6B parameters, and the Large model setup340

includes 7.5B parameters. Specific training config-341

urations are detailed in the Appendix A.5. To eval-342

uate the effectiveness of our method, we conducted343

experiments with varying numbers of sub-layers344

and experts per sub-layer.345

For the evaluation, we conducted both PPL and346

benchmark evaluations. For the PPL evaluation, we347

followed the approach outlined by Dai et al. (2024),348

testing the perplexity of the model on the pile test349

Model Config Params Pile PPL (↓)

Small

Standard Dense N/A 665.37 M 14.36
Finedeep (Ours) M=2 / K=4 665.59 M 14.28

M=2 / K=8 665.79 M 14.16
M=2 / K=16 666.18 M 14.18

Medium

Standard Dense N/A 1.5992 B 12.42
Finedeep (Ours) M=2 / K=4 1.5994 B 12.24

M=2 / K=8 1.5997 B 12.23
M=2 / K=16 1.6002 B 12.24
M=4 / K=4 1.6002 B 12.13
M=8 / K=2 1.5999 B 12.17

Large

Standard Dense N/A 7.5269 B 10.15
Finedeep (Ours) M=2 / K=8 7.5292 B 10.08

Table 1: Perplexity results for models with different con-
figurations. The best results are highlighted in bold. M
denotes the number of sub-layers in the expert arrange-
ment, K represents the number of experts per sub-layer.

set. In terms of benchmark evaluations, we used 350

the lm-evaluation-harness (Gao et al., 2024) tool 351

library for our evaluation. We performed discrim- 352

inative and generative tasks, reporting zero-shot 353

results for discriminative tasks and five-shot results 354

for generative tasks. The benchmarks we collected 355

cover a broad range of domains to assess various 356

aspects of the model’s capabilities. A detailed de- 357

scription can be found in Appendix A.4. 358

4.3 Perplexity Results 359

As shown in Table 1, our proposed method signifi- 360

cantly outperforms standard dense models in terms 361

of PPL on the pile test set across various model 362

scales, while maintaining a comparable number of 363

parameters. Specifically, for the optimal choice of 364

the number of experts per sub-layer, we find that 365

in the Small model setup, when the number of ex- 366

pert sub-layers is kept constant, the configuration 367

with 8 experts per sub-layer outperforms the con- 368

figurations with 4 or 16 experts per sub-layer. A 369

similar trend was observed in the Medium model 370

setup. This suggests that appropriately increasing 371

the number of experts per sub-layer can enhance 372

model performance, as a sufficient number of ex- 373

perts allows the sub-layer to capture more complex 374

features. However, excessive increases in the num- 375

ber of experts can reintroduce the sparse activation 376

problem, leading to inefficient activation utilization 377

and diminished performance. 378
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Model SQuAD LAMBADA ARC HellaSwag PIQA SIQA Wino NaturalQs TriviaQA AVG

Small

Standard Dense 6.22 41.14 33.87 49.79 70.78 41.15 54.14 7.04 20.79 36.10
Finedeep M=2/K=4 7.34 42.23 34.13 50.44 70.51 40.23 55.01 6.79 21.79 36.50
Finedeep M=2/K=8 9.53 42.01 36.09 50.58 71.22 40.79 56.27 6.51 21.54 37.17
Finedeep M=2/K=16 6.89 41.76 33.79 50.60 71.87 41.20 55.64 7.04 21.25 36.67

Medium

Standard Dense 7.16 46.52 38.99 56.45 73.67 42.43 56.91 8.56 28.25 39.88
Finedeep M=2/K=4 15.65 46.59 39.68 57.52 72.96 41.50 56.35 9.28 29.43 41.00
Finedeep M=2/K=8 14.95 48.30 39.93 57.49 74.10 43.60 56.83 8.53 28.99 41.41
Finedeep M=2/K=16 14.76 47.99 39.68 57.24 73.45 42.17 56.99 8.81 29.39 41.16
Finedeep M=4/K=4 12.22 47.80 40.19 58.11 73.72 42.48 59.19 8.23 30.20 41.35
Finedeep M=8/K=2 12.64 48.19 38.91 57.29 73.99 41.97 59.27 9.78 29.98 41.34

Large

Standard Dense 19.50 55.00 46.93 66.05 76.28 43.50 62.19 13.74 42.26 47.27
Finedeep M=2/K=8 19.92 56.26 45.90 66.25 76.99 43.86 62.43 14.27 43.33 47.69

Table 2: Benchmark results for models with different configurations. The best results are highlighted in bold, while
the second-best results are underlined. Here, M denotes the number of sub-layers, K represents the number of
experts per sub-layer. The AVG metric represents the average of the different benchmark results.

Regarding the optimal choice of the number of379

expert sub-layers, we find that in the Medium setup,380

increasing the number of expert sub-layers from381

2 to 4, while keeping the total number of experts382

constant, enhances model performance. However,383

further increasing the number of sub-layers from384

4 to 8 results in a performance drop. This indi-385

cates that while increasing the number of expert386

sub-layers can benefit model performance, exces-387

sive depth in the model can be detrimental. The388

underlying reason is analogous to the earlier obser-389

vation, as keeping a fixed total number of experts,390

too many sub-layers will result in fewer experts per391

sub-layer, and too few sub-layers will concentrate392

too many experts in each sub-layer.393

In summary, we aim to strike a balance between394

width and depth in the expert arrangement process.395

Furthermore, Appendix A.6 illustrates the evolu-396

tion of PPL during training across various model397

scales. Our approach consistently outperforms the398

baseline, maintaining a lower PPL throughout the399

training. This demonstrates that our method offers400

not only improved early-stage performance, but401

also strong scalability as model size increases and402

training continues.403

4.4 Benchmark Results404

As shown in Table 2, our method outperforms the405

traditional dense model across a range of bench-406

marks covering multiple domains. We observe that407

the AVG metrics for these benchmarks follow a408

similar trend to the PPL metrics. Specifically, con-409

figurations with 2 expert sub-layers and 8 experts 410

per layer, or 4 expert sub-layers and 4 experts per 411

layer, yield the best performance. This reinforces 412

the conclusion that our method achieves optimal 413

results when there is a balanced trade-off between 414

width and depth. 415

5 Analysis 416

5.1 Ablation Study 417

To further demonstrate the necessity of splitting 418

multiple experts per sub-layer and arranging multi- 419

ple sub-layers, we conducted ablation experiments 420

using the Medium size model. Experimental results 421

are presented in Table 3. 422

First, we validated the necessity of arranging 423

multiple experts within each sub-layer. Specifically, 424

we set the number of sub-layers to 2 and assigned 425

only one expert per sub-layer. Notably, since there 426

was only one expert per layer in this setup, we re- 427

moved the router responsible for assigning weights 428

to each expert. The results show that this configura- 429

tion performs significantly worse than our method 430

in terms of both PPL and benchmark evaluations. 431

In some benchmarks, its performance is even infe- 432

rior to the baseline, highlighting the importance of 433

arranging multiple experts within each sub-layer. 434

Furthermore, we verified the necessity of using 435

multiple expert sub-layers. In this experiment, we 436

set the number of sub-layers to 1 while assigning 437

16 experts within that single sub-layer. The results 438

indicate that this setup also leads to suboptimal 439

performance, further emphasizing the importance 440

6



w/o multi experts
M=2/K=1

w/o multi sub-layers
M=1/K=16

Finedeep
M=2/K=8

PPL (↓) 12.42 12.42 12.23

SQuAD 10.11 12.65 14.95
LAMBADA 46.48 45.06 48.30
ARC 39.08 38.65 39.93
HellaSwag 56.58 56.46 57.49
PIQA 73.50 72.96 74.10
SIQA 41.45 40.74 43.60
Wino 57.30 57.38 56.83
NaturalQs 9.11 8.39 8.53
TriviaQA 28.61 28.61 28.99
AVG 40.25 40.10 41.41

Table 3: Ablation experiment results on the impact of
multiple experts per sub-layer and multiple sub-layers.

of arranging multiple sub-layers.441

From another perspective, the setting with M =442

1 and K = 16 can be viewed as a variant of MoE443

(Muqeeth et al., 2024), where the total number of444

parameters equals the number of activated param-445

eters. Under the same total parameter budget, our446

method outperforms this MoE variant.447

Additionally, these two ablation studies reinforce448

our conclusion that achieving a balance between449

the number of experts per sub-layer and the num-450

ber of sub-layers leads to optimal results. Both451

experimental configurations represent extreme im-452

balances, which result in poor performance.453

5.2 Routing Scores Computation:454

Input-guided vs. Output-guided455

In Finedeep, we adopt an output-guided routing456

strategy, where the routing weights are computed457

based on the experts’ outputs and used to aggre-458

gate their contributions. This approach is inspired459

by traditional MoE architectures, which typically460

compute routing weights based on the inputs of461

each expert (Fedus et al., 2022). However, in MoE462

models, it is not feasible to use expert outputs for463

routing, since each token is only routed to a subset464

of experts and does not access all expert outputs.465

In contrast, Finedeep operates within a dense ar-466

chitecture, allowing every token to pass through467

all experts. This enables the use of output-based468

routing. As shown in Table 4, we compare the per-469

formance of the output-guided and input-guided470

routing strategies. The results demonstrate that471

output-guided routing achieves better performance472

in our framework. This is because the expert out-473

puts directly reflect how well each expert handles474

the input, allowing for more accurate and dynamic475

weighting during aggregation.476

input-guided
M=2/K=8

output-guided
M=2/K=8

PPL (↓) 12.24 12.23

SQuAD 14.27 14.95
LAMBADA 47.97 48.30
ARC 38.82 39.93
HellaSwag 57.21 57.49
PIQA 73.23 74.10
SIQA 41.50 43.60
Wino 57.93 56.83
NaturalQs 9.17 8.53
TriviaQA 29.85 28.99
AVG 41.11 41.41

Table 4: Comparison of experimental results for input-
guided and output-guided routing.

5.3 Routing Scores Normalization: 477

Sigmoid vs. Softmax 478

Our proposed method computes the final routing 479

score by applying a sigmoid function to the router’s 480

output, whereas some other approaches normalize 481

expert outputs using the softmax function (Jiang 482

et al., 2024), as shown in the following equation: 483

rj,i(h̃
l,j
t ) =

exp(Ej,i(h̃
l,j
t )Rj,i)∑N

i=1 exp(Ej,i(h̃
l,j
t )Rj,i)

(9) 484

We compared these two approaches for normal- 485

izing routing scores using the Medium model, and 486

experimental results presented in Table 5 demon- 487

strate that the sigmoid-based routing in Finedeep 488

achieves superior performance in terms of both PPL 489

and benchmark results. This improvement can be 490

attributed to the fact that softmax enforces compe- 491

tition among experts, whereas sigmoid allows each 492

expert to contribute independently. As a result, the 493

sigmoid method reduces unnecessary competition, 494

leading to a more balanced utilization of model ca- 495

pacity. Given that our approach activates all expert 496

parameters, maintaining this balance is particularly 497

crucial for maximizing performance. 498

5.4 Mitigating Sparse Activation with 499

Finedeep 500

We empirically observe that Finedeep effectively 501

mitigates the issue of sparse activation, as illus- 502

trated in Figure 3. Specifically, we adopt a config- 503

uration with 2 expert sub-layers, each containing 504

8 experts, and visualize the distribution of the acti- 505

vation function outputs in the first and second sub- 506

layers. This is compared to the activation function 507

output distributions of the traditional dense model. 508
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softmax
M=2/K=8

sigmoid
M=2/K=8

PPL (↓) 12.27 12.23

SQuAD 14.99 14.95
LAMBADA 47.04 48.30
ARC 39.85 39.93
HellaSwag 56.80 57.49
PIQA 72.63 74.10
SIQA 42.37 43.60
Wino 57.30 56.83
NaturalQs 8.67 8.53
TriviaQA 27.94 28.99
AVG 40.84 41.41

Table 5: Experimental results comparing the Softmax
and Sigmoid methods for normalizing routing scores.

Our findings indicate that the output distribution of509

Finedeep is more homogeneous, with fewer values510

concentrated around 0 and a broader distribution511

of larger values. Notably, this uniformity becomes512

more pronounced as the model depth increases.513

To better illustrate that our approach mitigates514

the sparse activation problem, we introduce a met-515

ric called NSAR (i.e., Non-Sparse Activation Rate),516

defined as follows:517

NSARτ =

∑
i,j I (|Ai,j | > τ)

B ×H

where I (|Ai,j | > τ) =

{
1, if |Ai,j | > τ
0, else

(10)518

Here, A represents the activation matrix of a model519

layer, B is the batch size, H denotes the number of520

neurons, and τ is a predefined threshold. In Figure521

4, we visualize the NSAR0.1 metric across differ-522

ent model layers, clearly demonstrating that our523

method effectively mitigates the sparse activation524

phenomenon in the traditional dense model. No-525

tably, we observe that the NSAR values in each526

sub-layer are consistently higher than those of the527

baseline, indicating that the fine-grained expert de-528

sign helps alleviate sparse activation in dense mod-529

els. Furthermore, the second sub-layer shows a530

higher NSAR score than the first, suggesting that531

the multi-layer expert arrangement also contributes532

to addressing this issue. These empirical results533

validate the effectiveness of both key components534

of our method in mitigating sparse activation. By535

alleviating this problem, our method increases the536

utilization of activation values, thereby expand-537

ing their representation capacity and enhancing the538
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Figure 3: Output distributions of the activation functions
for Finedeep and the baseline model.
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Figure 4: Variation of NSAR0.1 metrics across different
model layers.

model’s ability to represent complex features, as 539

demonstrated in Appendix A.2. 540

6 Conclusion 541

To address the sparse activation phenomenon ob- 542

served in existing dense models, we have presented 543

a novel architecture called Finedeep. It enhances 544

the model’s depth by splitting the FFN layer of tra- 545

ditional dense architectures into multiple experts, 546

arranged across sub-layers. Routers within these 547

sub-layers are employed to control the contribu- 548

tion of each expert. We conduct extensive experi- 549

ments across multiple model sizes, and the PPL and 550

benchmark results demonstrate that our method sig- 551

nificantly outperforms existing dense architectures 552

with identical parameter counts. Additionally, we 553

find that the model performs optimally when the 554

number of expert sub-layers and the number of ex- 555

perts per sub-layer are balanced. Through ablation 556

experiments, we further highlight the importance of 557

both arranging multiple sub-layers and distributing 558

multiple experts within each sub-layer. Our empiri- 559

cal results show that Finedeep effectively mitigates 560

the issue of sparse activation. 561
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Limitations562

Due to computational resource constraints, we563

trained all model configurations on only 100B to-564

kens and did not explore the impact of training on565

a larger token budget. Additionally, our largest566

model size was limited to 7.5B parameters, leaving567

the potential benefits of scaling to larger models568

unexplored. Furthermore, while our approach miti-569

gates sparse activation in dense models, we believe570

there is still room for further improvement. We571

leave this for our future research.572
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A Appendix848

A.1 Relationship between multi-layer and849

single-layer experts arrangements850

Our goal is to demonstrate that single-layer expert851

arrangement is a special case of multi-layer expert852

arrangement. In other words, the function space853

represented by multi-layer expert arrangement en-854

compasses that of the single-layer approach. For855

simplicity, we consider the case where the number856

of sub-layers is 2, though the same reasoning can857

be extended to other configurations.858

We can express the output of the second sub-859

layer ĥl,2
t as follows:860

ĥl,2
t =

K∑
i=1

r2,i(ĥ
l,1
t ) · E2,i(ĥ

l,1
t ) + ĥl,1

t (11)861

Here, for convenience, we directly use the output862

of the first sub-layer, ĥl,1
t , as the input to the expert.863

The last term of the formula ĥl,1
t is added as the864

residual of the second sub-layer.865

In fact, ĥl,1
t can also be further expanded into the866

residuals of the first sub-layer ĥl,0
t and the result of867

the weighted summation of the experts of the first868

sub-layer ĥl,1
t . So Equation 11 can be expressed in869

the following form:870

ĥl,2
t =

K∑
i=1

r2,i·E2,i(ĥ
l,1
t +ĥl,0

t )+ĥl,1
t +ĥl,0

t (12)871

We further expand the expert’s computational872

procedure E2,i, expressed in the following form:873

ĥl,2
t =

K∑
i=1

r2,i · (E2,i(ĥ
l,1
t ) + E2,i(ĥ

l,0
t ) + ∆1)

+ĥl,1
t + ĥl,0

t
(13)874

Since there is an activation function in the forward875

propagation process of the expert, here we use ∆1876

to represent the compensation for the effect of the877

nonlinear function. Equation 13 can also be inter-878

preted in another way as a first-order Taylor expan-879

sion of equation 12.880

We further expand Equation 13 as shown in the881

following equation:882

ĥl,2
t =

K∑
i=1

r2,i · E2,i(ĥ
l,1
t ) +

K∑
i=1

r2,i · E2,i(ĥ
l,0
t )

+

K∑
i=1

r2,i ·∆1 + ĥl,1
t + ĥl,0

t

(14) 883

ĥl,1
t can be expressed as the process of the first 884

sub-layer expert computation, so the above equa- 885

tion can be transformed as: 886

ĥl,2
t = A+

K∑
i=1

r2,i · E2,i(ĥ
l,0
t ) +

K∑
i=1

r1,i · E1,i(ĥ
l,0
t ) + ĥl,0

t

where A =

K∑
i=1

r2,i · E2,i(

K∑
i=1

r1,i · E1,i(ĥ
l,0
t ))

+

K∑
i=1

r2,i ·∆1 + ĥl,1
t

(15) 887

We can regard all the terms in the above equa- 888

tion except term A as the calculation process of 889

single-layer expert arrangement. To summarize, 890

we successfully show that single-layer expert ar- 891

rangement is a special case of multi-layer expert 892

arrangement, so we take the method of multi-layer 893

expert arrangement. 894

A.2 Activation Clustering 895

Our method enhances the utilization of activation 896

values by addressing the sparse activation phe- 897

nomenon, thereby expanding the representation 898

space of these values and boosting the model’s 899

overall representational capacity. This is the key 900

reason why our approach outperforms traditional 901

dense models. To demonstrate how our method 902

expands the activation value representation space, 903

we apply t-SNE dimensionality reduction to the ac- 904

tivation values of both the traditional dense model 905

and the model trained using our method, as shown 906

in Figure 5. 907

We select the activation representations of 500 908

mid-frequency words for dimensionality reduction. 909

Specifically, our method utilizes a setup with two 910

expert sub-layers, each containing eight experts. 911

To ensure a fair comparison, we concatenate the 912

activation values from different experts in the first 913

and second sub-layers before performing dimen- 914

sionality reduction, keeping the number of sam- 915

ple points consistent with the baseline model. As 916

shown in the figure, our method covers a broader 917

representation space across different layers, mak- 918

ing the token representations more discriminative 919
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Figure 5: T-SNE clustering of activation values from different layers in the traditional dense model and the model
trained with the Finedeep method.

and better separated. This enhanced separation in920

the representation space indicates that our model921

can better distinguish between different semantic922

concepts and capture more nuanced relationships923

between tokens, which directly explains its superior924

performance compared to traditional dense models.925

A.3 Mix Ratios of Different Pre-training926

Datasets927

Referring to technical reports from other open-928

source models and the dataset sizes we collected929

from various domains, we finalized the data mixing930

ratios for each domain, as shown in Table 6.931

Domain Ratio

Cosmopedia 3.18%
Fineweb-Edu 86.31%
OpenWebMath 1.38%
StarCoder 9.13%

Table 6: Mixing ratios of pre-training data across differ-
ent domains.

A.4 Evaluation Benchmarks 932

To comprehensively assess the performance of our 933

method, we evaluate across a diverse set of bench- 934

marks covering various aspects. These benchmarks 935

include tasks related to reading comprehension, lan- 936

guage understanding, commonsense reasoning, and 937

13



closed-book question answering.938

• Reading comprehension: We evaluate our939

method on SQuAD V2 (Rajpurkar et al.,940

2018), which tests the ability to answer ques-941

tions based on given passages.942

• Language understanding: We use LAMBADA943

(Paperno et al., 2016), a benchmark that re-944

quires models to predict the final word of a945

sentence, assessing long-range context under-946

standing.947

• Commonsense reasoning: We include ARC-948

Challenge (Clark et al., 2018), HellaSwag949

(Zellers et al., 2019), PIQA (Bisk et al.,950

2020), SIQA (Sap et al., 2019), and Wino-951

grande (Sakaguchi et al., 2020), which test the952

model’s ability to infer commonsense knowl-953

edge across various scenarios.954

• Closed-book question answering: We assess955

factual knowledge recall using Natural Ques-956

tions (Kwiatkowski et al., 2019) and Trivi-957

aQA (Joshi et al., 2017), where models must958

generate correct answers without relying on959

external documents.960

A.5 Training Configuration961

Small Medium Large

Hidden Size 1024 2048 4096
Intermediate Size 4096 8192 11008
Attention Heads 16 8 32
Layers 24 16 32
Learning Rate 3e-4 3e-4 3e-4
Weight Decay 0.1 0.1 0.1
RMSNorm Epsilon 1e-05 1e-05 1e-05

Table 7: Experimental training configuration.

A.6 Training Dynamics: Validation Perplexity962

Curve963

Figures 6, 7, and 8 illustrate that across all model964

sizes, our method maintains consistently lower vali-965

dation perplexity than the baseline throughout train-966

ing, highlighting its robustness and scalability. No-967

tably, the advantage becomes more pronounced in968

later training stages, indicating that Finedeep not969

only performs well in the early phases but also970

demonstrates strong scalability and convergence as971

training progresses.972
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Figure 6: Validation perplexity trends of Finedeep and
baseline during training in Small size model.

20 40 60 80 100
Training Tokens (B)

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

Pe
rp

le
xi

ty

Baseline
Finedeep (M=2/N=8)
Finedeep (M=4/N=4)

Figure 7: Validation perplexity trends of Finedeep and
baseline during training in Medium size model.
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Figure 8: Validation perplexity trends of Finedeep and
baseline during training in Large size model.
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GFLOPs Training Throughput

Standard Dense 1801.00 3903
Finedeep M=2/K=8 1801.46 3237

Table 8: Comparison of GFLOPs and training through-
put between the standard dense architecture and
Finedeep under the 7.5B Large model setting. Through-
put is measured in tokens processed per GPU per second.
GFLOPs (Giga floating-point operations) are calculated
by processing input samples with a batch size of 1 and
a sequence length of 128.

A.7 Pre-training Dataset Collection Details973

We curated training data from a variety of domains974

to improve the generalization and reasoning capa-975

bilities of our model.976

• FineWeb-Edu: This is a filtered subset of the977

FineWeb dataset, selected using an educa-978

tional quality classifier to retain high-value979

educational web content (Penedo et al., 2024).980

• OpenWebMath: Adopted from the OLMoE981

pipeline (Muennighoff et al., 2024), this982

dataset contains mathematical texts filtered983

from Common Crawl with heuristics designed984

to preserve high-quality mathematical reason-985

ing and content (Paster et al., 2024).986

• StarCoder: A diverse dataset of programming987

languages, GitHub issues, and Jupyter Note-988

books, cleaned through a rigorous data filter-989

ing process to ensure relevance and quality990

(Li et al., 2023).991

• Cosmopedia: A synthetic dataset composed992

of textbooks, stories, blog posts, and instruc-993

tional content (e.g., WikiHow-style articles),994

covering a wide range of topics (Ben Allal995

et al., 2024).996

A.8 Training Throughput997

Table 8 presents a comparison of training through-998

put between the standard dense architecture and999

Finedeep on the scale of the 7.5B model. To ensure1000

a fair comparison, both models were trained using1001

the same configuration: 8 H100 nodes with ZeRO1002

parallelism. Specifically, we employed DeepSpeed1003

ZeRO Stage 3 with offloading, setting the batch1004

size per GPU to 8, the gradient accumulation steps1005

to 4, and the global batch size to 2048.1006

As shown in the table, the training throughput1007

of Finedeep is slightly lower than that of the stan-1008

dard dense model, but remains within an acceptable1009

range. This is mainly due to the introduction of 1010

additional expert sub-layers in Finedeep, which in- 1011

creases model depth and results in more sequential 1012

computation. However, it is important to note that 1013

our implementation is built upon DeepSpeed and 1014

the Transformers library, without operator-level 1015

optimizations or advanced parallel strategies. We 1016

believe that the gap in throughput can be further 1017

reduced with future improvements in operator ef- 1018

ficiency and parallelism techniques. Meanwhile, 1019

this paper focuses on the algorithmic feasibility of 1020

our method, and leaves system-level optimization 1021

of training efficiency to future work. 1022

A.9 FLOPs Comparison Between Finedeep 1023

and Baseline 1024

We compute the floating point operations (FLOPs) 1025

of our proposed method and compare them with 1026

those of the traditional dense architecture, as shown 1027

in Table 8. Although our method includes addi- 1028

tional components such as the router module and 1029

RMSNorm, their contribution to the overall com- 1030

putation is minimal because they account for only 1031

a small portion of the total model parameters. Our 1032

calculations indicate that across different model 1033

scales, our approach increases FLOPs by 0.03% 1034

compared to the traditional dense model, which 1035

is an almost negligible difference. Despite main- 1036

taining nearly the same FLOPs as the dense base- 1037

line, our method achieves significantly better per- 1038

formance, further demonstrating its effectiveness. 1039

From another perspective, this also suggests that 1040

there is potential for further optimization in training 1041

throughput. 1042
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