
Constructing Micro Knowledge Graphs from
Technical Support Documents

Atul Kumar, Nisha Gupta, and Saswati Dana

IBM Research - India
G2 Block, Manyata Embassy, Outer Ring Rd, Nagavara, Bengaluru, India 560045

{kumar.atul, nisgup97, sdana027}@in.ibm.com

Abstract. Short technical support pages such as IBM Technotes are
quite common in technical support domain. These pages can be very
useful as the knowledge sources for technical support applications such
as chatbots, search engines and question-answering (QA) systems. Infor-
mation extracted from documents to drive technical support applications
is often stored in the form of Knowledge Graph (KG). Building KGs from
a large corpus of documents poses a challenge of granularity because a
large number of entities and actions are present in each page. The KG
becomes virtually unusable if all entities and actions from these pages
are stored in the KG. Therefore, only key entities and actions from each
page are extracted and stored in the KG. This approach however leads to
loss of knowledge represented by entities and actions left out of the KG
as they are no longer available to graph search and reasoning functions.
We propose a set of techniques to create micro knowledge graph (micro-
graph) for each of such web pages. The micrograph stores all the entities
and actions in a page and also takes advantage of the structure of the
page to represent exactly in which part of that page these entities and
actions appeared, and also how they relate to each other. These micro-
graphs can be used as additional knowledge sources by technical support
applications. We define schemas for representing semi-structured and
plain text knowledge present in the technical support web pages. Solu-
tions in technical support domain include procedures made of steps. We
also propose a technique to extract procedures from these webpages and
the schemas to represent them in the micrographs. We also discuss how
technical support applications can take advantage of the micrographs.

1 Introduction

Using Knowledge Graphs for storing domain specific knowledge extracted from
unstructured and semi-structured documents is common in several domains in-
cluding technical support [8,12,11,6]. KG stores knowledge in structured form
where entities are linked with each other by certain edges representing relation-
ship among them [1,4,10,7]. Knowledge graphs not only make it easy to lookup
the desired information, the relations represented in form of direct edges and hi-
erarchies also support reasoning and therefore answering complex questions. In
technical support domains - both hardware and software - knowledge graphs are



2 A. Kumar et al.

used extensively [6,11,12]. When data is available in semi-unstructured and/or
plain text forms, developing a knowledge graphs which provides high perfor-
mance on querying is a challenging task [8]. Architectural design of schema
depends on the purpose and has significant impact on query performance [5,9].
We propose to augment knowledge bases that are developed using a popular
category of technical support documents. These documents are relatively short
web pages providing solutions to one or more problems or contain information to
perform some task such as downloading and installing a software extension. Ex-
amples of such documents are IBM Technotes for DB2 and other IBM hardware
and software products (Some example technotes can be browsed at [3]). We have
also worked with similar technical support web pages for other non IBM hard-
ware and software products. These technical documents are intended to be used
by human end-users as self help guides. They are referred to by technical support
human agents to answer customer queries and to resolve or troubleshoot their
problems. Each of these documents contains rich information such as problem
description with symptoms, diagnostic steps, solutions, and also the applicable
constraints such as relevant hardware platforms and operating systems. Com-
plexity of the information and it’s hierarchy depends on the type of technical
document, issue, solution steps and other details present in the page. Other than
the usual challenges such as entity extraction and linking, it is also important
to design a schema that can represent all the entities and their relations in a do-
main in a reasonable manner and can efficiently support knowledge graph tasks
such as population, search, lookup, deletion etc. Every technical support page
contains several dozen entities if not hundreds. Not all entities are equally impor-
tant in the context of the primary topic of that page. Therefore, a typical choice
of schema for building a knowledge graph from such pages is to identify key
entities and actions/symptoms from these pages and store the URLs/identities
of the pages as the solution nodes in the graph. A technical support application
can present the URL(s) of the relevant page(s) containing solution/answer. User
can then read and use the information present in the page without any addi-
tional help as these pages are short. This approach serves reasonably well for
question-answer (QA) and search applications. But if there are multiple similar
looking pages providing the solution for a problem related to similar entities
(but differing on one or more situations) or if the page itself contains different
solutions based on some condition (eg, OS version or hardware platform), then
it is desirable to return most relevant page (or part of the page) to the user for
a query. Understanding the solution presented in these pages at a fine grained
level including various constraints, conditions and steps involved in the solutions
(if any) is necessary for not only presenting the most specific page/part but also
to support applications that require reasoning. For example, a chatbot that can
ask a followup question to user in order to disambiguate between several pos-
sible answers. Or, an application that provides step by step guidance including
conditional steps. Identifying individual steps from a solution procedure present
in a support page is also useful for automating the support function where steps
can be executed on user’s behalf by the system. In the next section, we present



Constructing Micro Knowledge Graphs from Technical Support Documents 3

algorithms and techniques to extract knowledge (including entities, actions and
procedures) from short technical support web pages to construct the individual
micrographs for these pages. We also show an example micrograph for a real
technical support document (an IBM DB2 Technote web page).

2 Micrograph Construction

Technical support web pages use different structures across products and man-
ufacturers/vendors. But a closer examination reveals many similarities among
these pages. For example, they all have a title that contains important entities
and actions. There are fixed number of document types such as troubleshooting,
FAQ, Howto etc. These pages have sections that include symptoms, diagnostic
steps, solution, constraints, links to related information and references. Before us-
ing the automatic micrograph generation system to process a document corpus,
a manual step of examining a representative subset of that corpus is required.
We create some meta-information in a predefined format for the given document
corpus. The meta-information contains items such as the number and names
of different document types present in the corpus, section headings expected in
each type and their mappings to the generic types found in technical support
documents, list of entities that are used to denote constraints (eg, operating
system, hardware platform), and dictionaries of product specific entities and ac-
tion verbs. We have defined a generic set of schema to represent commonly seen
types of documents in the technical support domain. If we come across a new
document type in a document corpus then we create a new schema to represent
that type. The high level architecture of the micrograph construction system is
shown in Fig. 1.

Data 
Identification

HTML document

Extract All Sections

Procedure 
Extraction

Conditional block 
extraction

Solution and 
Diagnostic 
Steps Sections

Micrograph 
Json

Title
Symptom
Summary
Constraints
References
All Others

Procedures
Steps and type
Primary entities
Primary actions/symptoms
conditional block
Tables/Lists/Images/Links/Texts

Extract Structure
and Identify Type

Merge and 
Create Relations

Jason with
Procedures

Json with 
other Sections

Entity-action 
linking

Meta-
information

Schema Set

Domain 
dictionaries

Micrograph Json 
with entity 
action links

Micrograph 
Store

Fig. 1. Architecture of the Micrograph Construction System



4 A. Kumar et al.

We use the meta-information and HTML structure to identify sections in a
page. All plain-text, structured elements and non text elements in a section are
extracted for all sections. Contents of solution and diagnostic step sections, if
any, are passed to the procedure extraction module that is described in details in
subsection 2.1. Output of the procedure extraction modudle is then merged and
linked with the contents of other sections. We use a custom entity extraction and
linking algorithm to extract and link entities and actions from all text elements.
This step is optional. Finally the constructed micrograph json is ingested in a
graph store.

An example micrograph for a DB2 Technote page [2] is shown in Fig. 2

[Main KG] 
Determining and 

changing the 
isolation level

hasMicroGraph
Micrograph_ID1

solution_ID1

lists

problem_ID1 constraints_I
D1hasDescription Title

#type: Problem #type: Solution #type: Constraint#type: Title

Isolation 
level

involves

Determine

Change

#type: 
Entity

#type: 
Action

#type: 
Action

Determini
ng and 
changing…

#type: 
Description

TroubleShoothasDocType

hasDescription

WebSphere 
Application 
Server

involves

IBM DB2 
databases

Connect

#type: 
Entity

#type: Entity

#type: 
Action

…WebSphere 
Application 
Server 
applications 
connecting to 
IBM DB2…

#type: 
Description

Subjec
t_of

Objec
t_of

Procedure
_ID1

Knowledge_C
atalog_ _ID1

Standard 
data source

V4 data 
source

#type: Step#type: Step

hasStep #stepType: Conditional
#stepCase: Union 

#type: Procedure#type: Knowledge 
Catalog

hasTable hasProcedure

…. obtained in a 
session bean….

…. obtained in a 
servlet or JSP….

#type: Step#type: Step

hasStep

#stepType: Conditional
#stepCase: Union 

TRANSACTION_
READ_COMMIT
TED is used by 

default.

If the 
database….

servlet or JSP™

#type: Effect#type: 
Condition

hasCondition

hasEffect
servlet

involves#type: 
Entity

TRANSACTI
ON_READ_C
OMMITTED

#type: 
Entity

JSP

involves

HP-UX

#type: 
Entity

Linux
Solaris

Windows

AIX

involves

TRANSACTION_
SERIALIZABLE

Repeatable 
Read (RR)

hasKnowledge

followedBy

Fig. 2. An example micrograph constructed from a DB2 technote page

2.1 Procedure Extraction

This module takes as input the contents of Solution and Diagnostic Step sections
in HTML format. Output of this module is the array of all procedures as a json.
A procedure consists of a sequence of steps where each step is described by: (i)
Type of step (i.e. Sequential or conditional), (ii)Conditional block if any, (iii)
Nested steps/procedures, and (iv) Step’s content.

At a high level, procedure extraction algorithm is described as follows:

– Find the different sets of steps within the solution section using information
such as HTML Tags, patterns across the contents of the tags, relationship
between the tags and documents and document meta-information along with
predefined set of word vectors.

– Find the first set of steps among all sets such that the steps from this set
covers the entire solution section as the parent stepsets. This is done based
on the position of the steps in the document.



Constructing Micro Knowledge Graphs from Technical Support Documents 5

– Extract each step of the parent stepsets from the document along with its
title and content using HTML navigation.

– Process the title of the steps using entity extraction and linking to find the
type of the steps. Steps could be sequential or conditional.

– Repeat the above methods to similarly find the nested steps and step type
within each step content. This recursive approach extracts every possible
nested steps to the finest granular level of the solution section.

– Identify the type of the textual/pictorial content of the steps.
– Extract the conditional block from the textual content of the steps. Every

conditional block has a conditional statement along with the effect statement
of the condition. Identify such blocks using PoS tag and DEP tag from the
parse tree of the textual content.

References

1. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collab-
oratively created graph database for structuring human knowledge. In: Proc. of
ACM SIGMOD. pp. 1247–1250 (2008)

2. IBM: Determining and changing the isolation level. https://www.ibm.com/

support/pages/determining-and-changing-isolation-level
3. IBM: Technotes (faqs and troubleshooting tips) for ibm db2

data management console. https://www.ibm.com/support/pages/

technotes-faqs-and-troubleshooting-tips-ibm-db2-data-management-console
4. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,

Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia – a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web 6, 167–195
(2015)

5. Lei, C., Alotaibi, R., Quamar, A., Efthymiou, V., Özcan, F.: Property graph
schema optimization for domain-specific knowledge graphs (2020)

6. Lin, Z.Q., Xie, B., Zou, Y.Z., Zhao, J.F., Li, X.D., Wei, J., Sun, H.L., Yin, G.:
Intelligent development environment and software knowledge graph. Journal of
Computer Science and Technology 32(2), 242–249 (2017)

7. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A.,
Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mo-
hamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang,
R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-
ending learning. In: Proc. of AAAI (2015)

8. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: lessons and challenges. Queue 17(2), 48–75 (2019)

9. Oliveira, D., Sahay, R., d’Aquin, M.: Leveraging ontologies for knowledge graph
schemas (2019)

10. Pellissier Tanon, T., Weikum, G., Suchanek, F.: Yago 4: A reason-able knowledge
base. In: Proc. of ESWC. pp. 583–596 (2020)

11. Sabou, M., Ekaputra, F.J., Ionescu, T., Musil, J., Schall, D., Haller, K., Friedl, A.,
Biffl, S.: Exploring enterprise knowledge graphs: A use case in software engineering.
In: European Semantic Web Conference. pp. 560–575. Springer (2018)

12. Wang, M., Zou, Y., Cao, Y., Xie, B.: Searching software knowledge graph with
question. In: International Conference on Software and Systems Reuse. pp. 115–
131. Springer (2019)

https://www.ibm.com/support/pages/determining-and-changing-isolation-level
https://www.ibm.com/support/pages/determining-and-changing-isolation-level
https://www.ibm.com/support/pages/technotes-faqs-and-troubleshooting-tips-ibm-db2-data-management-console
https://www.ibm.com/support/pages/technotes-faqs-and-troubleshooting-tips-ibm-db2-data-management-console

	Constructing Micro Knowledge Graphs from Technical Support Documents

