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ABSTRACT

LLM watermarks stand out as a promising way to attribute ownership of LLM-
generated text. One threat to watermark credibility comes from spoofing attacks,
where an unauthorized third party forges the watermark, enabling it to falsely
attribute arbitrary texts to a particular LLM. Despite recent work demonstrating
that state-of-the-art schemes are, in fact, vulnerable to spoofing, no prior work
has focused on post-hoc methods to discover spoofing attempts. In this work,
we for the first time propose a reliable statistical method to distinguish spoofed
from genuinely watermarked text, suggesting that current spoofing attacks are less
effective than previously thought. In particular, we show that regardless of their
underlying approach, all current learning-based spoofing methods consistently
leave observable artifacts in spoofed texts, indicative of watermark forgery. We
build upon these findings to propose rigorous statistical tests that reliably reveal
the presence of such artifacts and thus demonstrate that a watermark has been
spoofed. Our experimental evaluation shows high test power across all learning-
based spoofing methods, providing insights into their fundamental limitations and
suggesting a way to mitigate this threat.

1 INTRODUCTION

The abilities of large language models (LLMs) to generate human-like text at scale (Bubeck et al.,
2023; Dubey et al., 2024) come with a growing risk of potential misuse. This makes reliable
detection of machine-generated text increasingly important. Researchers have proposed the concept
of watermarking: augmenting generated text with an imperceptible signal that can later be detected
to attribute ownership of a text to a specific LLM (Kirchenbauer et al., 2023; Kuditipudi et al., 2024;
Christ et al., 2024b). As such watermarks are deployed on top of consumer LLMs (Dathathri et al.,
2024) and embraced by regulators (Biden, 2023; CEU, 2024), ensuring their reliability is crucial.

LLM watermarks To embed a signal, at each step of generation, using a private key &, the
watermark algorithm scores each token, preferentially sampling higher-scoring ones. While a wide
range of watermarking schemes have been proposed (Christ et al., 2024b; Kuditipudi et al., 2024;
Aaronson, 2023), the most studied and at this time the only ones deployed in prominent consumer
LLMs (Dathathri et al., 2024) are from the Red-Green (Kirchenbauer et al., 2023) family. In Red-
Green watermarks, the algorithm uses £ and a few previous tokens (context) to partition the vocabulary
into green and red tokens. It then increases the probability of sampling green tokens. Given a text,
the watermark detector first computes the color of each token under &, wherein a high proportion of
green tokens in this color sequence indicates watermarked text.

Spoofing attacks Recent works have demonstrated targeted attacks on Red-Green watermarks that
allow for removing the watermark or impersonating (spoofing) it (Sadasivan et al., 2023; Jovanovié
et al., 2024; Gu et al., 2024; Zhang et al., 2024). In spoofing attacks, a malicious actor (spoofer)
generates, without knowing the private key &, a text that is detected as watermarked. State-of-the-art
attacks are learning-based and adhere to a common pipeline (see App. I for a full taxonomy). First,
the malicious actor queries the targeted model to build a dataset D of genuinely watermarked text.
Then, by either applying statistical methods (Jovanovi¢ et al., 2024), integer programming (Zhang
et al., 2024), or fine-tuning on D (Gu et al., 2024), the spoofer learns how to forge the watermark and
can generate watermarked text without additional queries to the original model (Step 1 in Figure ).
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Figure 1: Overview of why spoofed text contains artifacts. First, in (1), the spoofer generates a
dataset D of {-watermarked texts from which they learn the watermark. As (2) illustrates, when
later generating text, the spoofer is better at sampling a green token if the context and the sampled
token were in D. This uncertainty introduces artifacts in the spoofed text. In contrast, the genuine
watermarking algorithm is consistent with respect to the context and hence contains no such artifacts.
Lastly, in (3), we build tests for discovery of these artifacts, distinguishing between spoofed and
&-watermarked texts even if their Z-scores Z¢ computed using the watermark detector are the same.

Being able to generate spoofed text at scale poses a serious threat to the credibility of watermarks.
Spoofed text can be falsely attributed to the model provider, causing reputational damage, or used
as an argument to evade accountability (Zhou et al., 2024). Moreover, in the case of multi-bit
watermarks that embed client IDs in generated text (Wang et al., 2024), spoofing attacks can be used
to impersonate and incriminate a specific user.

Discovering spoofing attempts In this work, we show for the first time that state-of-the-art spoofing
attacks leave artifacts in the generated text that can be used to distinguish between spoofed text and
text generated with knowledge of the private key (Step 2 in Figure 1). This suggests that, unlike
previously thought, simply fooling the watermark detector is not enough to generate text that is
indistinguishable from genuine watermarked text. The high-level intuition behind these artifacts is
that, at each step of generation, a spoofer has a chance to emit a green token only if the context and
that token are present in their training data D, previously obtained by querying the watermarked
model. If the context is not in D, the spoofer is forced to select the next token independently of its
color. Leveraging these artifacts, we construct statistical tests that can effectively distinguish between
spoofed text and genuine watermarked text generated with the private key (Step 3 in Figure 1).

In addition to enabling the discovery of spoofing attempts on widely researched, deployed, and
attacked Red-Green watermarking schemes, we show in App. F that our tests generalize to all
schemes that are vulnerable to learning-based spoofing (Aaronson, 2023; Kuditipudi et al., 2024).

Key contributions Our main contributions are:
* We provide the first in-depth analysis of artifacts in spoofed text, highlighting common
limitations of learning-based watermark spoofing methods (§3).

* We design rigorous statistical tests to practically distinguish spoofed and genuine water-
marked texts (§4).

* We provide extensive validation of our test hypotheses and empirically show that our tests
achieve arbitrarily high power given a long enough text (§5).

2 BACKGROUND AND RELATED WORK
In this section we introduce necessary background on LLM watermarking, and discuss related work.

LLM watermarks Given a sequence of tokens (text) from a vocabulary ¥, an autoregressive
language model (LM) M outputs a logit vector [ of unnormalized next-token probabilities, used to
sample the next token. LM watermarking is a process of embedding a signal within the generated text
w using a private key &, such that this signal is later detectable by any party with access to £ using a
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watermark detector De. We set D¢(w) = 1 when the signal is detected. We call a text w generated
by the watermarking algorithm a {-watermarked text, and a text where D¢ = 1 a watermarked text.

The most prominent approach to LLM watermarking are Red-Green watermarks (Kirchenbauer et al.,
2024; Zhao et al., 2024; Lee et al., 2023; Wu et al., 2024; Yoo et al., 2024; Fernandez et al., 2023; Liu
et al., 2023; Fairoze et al., 2023; Ren et al., 2024; Lu et al., 2024; Guan et al., 2024; Zhou et al., 2024;
Dathathri et al., 2024), which all share a common structure. Let w; € X be the token generated by
the LM at step ¢, h € N the watermark’s context size (we refer to h previous tokens w;_p.;—1 as the
context), ¢ € N the watermark’s private key, H : ¥ — N a hash function, PRF : N x N — P(X)
a pseudorandom function, and v, § € R watermark parameters. At each step ¢, PRF uses the hash
of the context H (w¢—p.+—1) and the private key ¢ to partition the vocabulary X into two colors, v|%|
green tokens (greenlist) and the remaining red tokens (redlist), where +y is the watermark parameter.
To insert the watermark, we modify the logit vector [; by increasing the logit of each green token by
0 > 0. While many hash functions H have been proposed (Kirchenbauer et al., 2024), we focus on
two variants proposed in Kirchenbauer et al. (2023): SumHash and SelfHash. The shift by J increases
the ratio of green tokens in generated text, which is detectable by the detector. Namely, given a text
w € X7, the watermark detector D¢ determines the number of green tokens 7g,cc,, and computes

Ze(w) = (Ngreen — ¥T')/+/Ty(1 — ), which under the null hypothesis follows a standard normal
distribution. Finally, D¢ (w) = 1if Z¢(w) > p. As in Kirchenbauer et al. (2023), we set p = 4.

Other alternative approaches to LLM watermarks are proposed by, among else, Christ et al. (2024b);
Kuditipudi et al. (2024); Hu et al. (2024); Aaronson (2023). Among these, prior work demonstrates
learning-based spoofing attacks on Kuditipudi et al. (2024) and Aaronson (2023) (see App. F).

LLM watermark spoofing A threat to watermark credibility are spoofing attacks, as they can
lead to falsely attributing text ownership to a model provider. One type of spoofing attack is
piggyback spoofing (Pang et al., 2024), where an attacker substitutes a few tokens in a genuinely
watermarked text to produce a spoofed text, simply leveraging the robustness of the watermarking
scheme. Another type of spoofing attacks is step-by-step spoofing (Pang et al., 2024; Zhou et al., 2024;
Wu & Chandrasekaran, 2024), where for every spoofed text, the attacker queries the watermarked
model at each step of its generation process. Lastly, state-of-the-art spoofing attacks are learning-
based spoofing attacks (Jovanovic et al., 2024; Gu et al., 2024; Zhang et al., 2024), where an attacker
first queries the watermarked model to build a watermarked dataset D and then learns the watermark
from such a dataset. Unlike the two other spoofing techniques, learning-based spoofers are able
to produce arbitrary watermarked text at a low cost without relying on the attacked model during
generation. We extend the discussion on watermark spoofing in App. I.

Among learning-based spoofers, there are two approaches that generalize across most Red-Green
schemes: Stealing (Jovanovié et al., 2024) and sampling-based Distillation (Gu et al., 2024). Stealing
approximately infers the vocabulary splits by comparing the frequencies of tokens in D (conditioned
on the same context) with human-generated text, and uses this information to generate spoofed text
using an auxiliary LM. In contrast, Distillation directly fine-tunes an auxiliary LM on D, effectively
distilling the watermark into the model’s weights. Both Stealing and Distillation are applicable on
Red-Green schemes, but Distillation also expands to other schemes (see App. F).

Spoofing defenses Some watermarking schemes have been designed to be more resistant to
spoofing (Zhou et al., 2024; Christ et al., 2024b). Also, for the Red-Green scheme, higher values
of the context length h lower the success rate of spoofing. Yet, such defenses, as they modify the
watermarking schemes, trade off with other desirable properties that schemes vulnerable to spoofing
may have (Jovanovié et al., 2024; Kirchenbauer et al., 2024).

Broader work on LLM watermarking Other directions in the realm of LLM watermarking
includes scrubbing attacks (Jovanovic et al., 2024; Wu & Chandrasekaran, 2024; Chang et al., 2024),
detection of the presence of a watermark (Tang et al., 2023; Gloaguen et al., 2025; Liu et al., 2025;
Gao et al., 2025), and attempts to imprint the watermark into the model weights (Li et al., 2024; Creo
& Pudasaini, 2024; Christ et al., 2024a).
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3 CAN SPOOFING ATTEMPTS BE DISCOVERED?

In this section, we discuss the discoverability of spoofing, introduce the problem of distinguishing
&-watermarked and spoofed texts, and formalize it within a hypothesis testing framework (§3.1). We
describe the intuition behind our approach (§3.2), that we later present in detail in §4.

3.1 PROBLEM STATEMENT

Current spoofing methods (spoofers) are typically evaluated based on their success rate in generating
high-quality watermarked text. Yet, due to the limitation of learning from a finite dataset of water-
marked text, we hypothesize that these spoofers, despite adopting fundamentally different approaches,
may all leave similar artifacts in spoofed texts. Showing the existence of such artifacts would give
valuable insight into the shared limitations of current state-of-the-art watermark spoofers. Moreover,
reliably identifying them would enable us to distinguish between &-watermarked and spoofed texts,
lowering the effective accuracy of spoofers, without compromising other desirable properties, as is
often the case when trying to design watermarking schemes more resistant to spoofing (see §2).

Concretely, we assume the perspective of the model provider with a private key £ and a model M.
We receive a text w € X7 that is flagged as watermarked by our detector Dy, and aim to decide
whether it was generated using our private key &, or by a spoofing method. Our threat model also
includes the case where we receive a set of texts from the same source, whose concatenation we
denote as w € X7 for simplicity (see the bottom of §4.2 for details). We assume that our private key
& was not simply leaked; else, spoofed texts are hardly distinguishable from £-watermarked texts.

Formalization Determining whether a text w was spoofed can be seen as a hypothesis test:
Hy : The text w is ¢&-watermarked H; : The text w is spoofed. (€))]

We introduce the random variable Q2 € X7 and the received text w € X7 is a realization of £2. We note
that the distribution of €2 under the null hypothesis and its distribution under the alternative hypothesis
are different. Similarly, let X € {0, l}T be the associated sequence of (non-i.i.d.) Bernoulli random
variables, where X; = 1 represents the event where the token ¢ is green, and let € {0, 1}T be
the observed color of w under D¢ (realization of X'). The challenge is to build a statistic S({2) that
satisfies two key properties. First, the distribution of S(€2) under the null hypothesis should be known
in order to rigorously control the Type 1 error. Second, the distributions of S(£2) under the null and
S(§2) under the alternative should be different, to distinguish spoofed and £-watermarked texts.

3.2 ARTIFACT: DEPENDENCE BETWEEN THE COLOR SEQUENCE AND THE CONTEXT

Next, we explain why spoofed texts contain observable artifacts, as was illustrated in Figure 1.

A simple example To expand on this intuition, we start by considering an example of a perfect
spoofer that produced the text w € X7, and knows the color of a token wy, if and only if w;_j.; € D,
where D is the training data of the spoofer. Otherwise, if w;_j.; € D, we assume that the spoofer
has chosen w; independently of its color. Let Ip : "1 — {0, 1} be the indicator function of the
presence of a (h + 1)-gram in D. Ip can be interpreted as the knowledge the spoofer has over the
vocabulary splits. From above, we can assume that forall ¢t € {h + 1,...,T}:

P(X: = 1Ip(Q-pt) = 1) > P(Xt = 1| Ip(Q—pt) = 0) if the text is spoofed,; (2a)
P(X: = 1Ip(Q-pt) = 1) = P(Xt = 1/Ip(Q4—p.t) = 0) if the text is §-watermarked.  (2b)

Equations (2a) and (2b) reflect that the knowledge of the vocabulary split at token ¢ helps the spoofer
to color w; green, which is its original goal. For a {-watermarked text, the knowledge of a potential
spoofer has no influence on its coloring. Hence, we may be able to use Ip to distinguish whether a
sentence is spoofed or not. We now generalize this intuition to more realistic spoofing scenarios.

Color sequence depends on the context distribution In practice, learning how to spoof may
require observing an (h + 1)-gram multiple times. Moreover, spoofing techniques may, albeit not
necessarily explicitly, have different levels of certainty regarding the color of a token given a context.
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Therefore, we generalize Ip : X"T! — [0, 1] to be the function of the frequencies of (h + 1)-grams
in D. We make a natural assumption that the higher the frequency of w;_j.; in D, the more certain a
spoofer is regarding the color of the token w;. For now, we will also assume that for each token in

&-watermarked text, Ip is independent of its observed color. For V¢t € {h + 1,...,T}, we assume:
X is not independent from I'p(Q;_p.¢) if the text is spoofed; (3a)
X, is independent from Ip(£2;_p,.¢) if the text is £-watermarked. (3b)

This dependence between the color and I'p(€2;_p.¢) results in spoofing artifacts under the alternative.

Influence of the LM  Counterintuitively, the independence assumed in Eq. (3b) may be violated. To
generate wy, the model provider first computes the logit vector /; knowing w.. Then, it computes the
greenlist defined by PRF(H (wi—p:t—1), &), and increases the logits of green tokens by 4. Finally,
it samples from the newly defined probability distribution to generate the token w;. The greenlist
itself is thus indeed independent of I (€2;_p.+). Yet, I, was originally computed using w; due to the
autoregressive property of the model M, and hence may not be independent of I (Q;—p.¢).

To illustrate this point, consider a case where the token wy is the only viable continuation of w;_p.¢—1,
i.e., l; is low-entropy. Then, Bayes’ theorem implies that Ip(w;—_p.+) is likely to be high. On the other
hand, the logit increase of § has less influence on the sampling, as it is less likely to cause a token
other than w, to be sampled—thus, the color of w; is effectively random, i.e., P(X; = 1) = ~, even
for &-watermarked text. Hence, the events P(X; = 1) ~ v and Ip(€_p.+) is high, are correlated, as
they occur simultaneously in case of low entropy. We investigate this dependence pattern in App. C.

4 DESIGNING A TEST STATISTIC

We proceed to introduce our test statistic .S, deriving fundamental results regarding its distribution
under the independence assumption from Eq. (3b), and in the more general case where it may be
violated (§4.1). Then, we present and discuss two concrete instantiations of .S (§4.2).

4.1 CONTROLLING THE DISTRIBUTION

We introduce the main results regarding the distribution of S(€2) under the null hypothesis.

Color-score correlation Let w € X7, sampled from €2, denote the text of length 7" received by the
model provider, z € {0, 1}T, sampled from X, denote its color sequence under D¢, and y € [0, 1]T
denote a sequence of scores for each token sampled from a sequence of 7" random variables Y. We
defer the construction of Y to §4.2, where we will build on the intuition from §3.2. As the test
statistic, we use the sample Pearson correlation coefficient between = and ¥,

T _ _
S(CLJ) _ TZt:l(xt - x)(it - y) ] (4)
VEL (e - 22 50 (e - 9)?

Standard method We first study the distribution of .S(2) under the assumption that X; and Y; are
independent for all 7, as in Eq. (3b) (we refer to this as cross-independence between X and Y'). From
this assumption, we derive:

Lemma 4.1. Under the cross-independence between X and Y, and technical assumptions (detailed
in App. H), we have the convergence in distribution

Zs(Q) == VTS(Q) % N (0,1).

We defer the proof to App. H. Therefore, given a text w, we can compute a p-value using a two-sided
Z-test on the statistic Zg(w), which is sampled from a standard normal distribution.

Reprompting method In practice, however, the assumption of cross-independence between X and
Y does not always hold (see §3.2). We make a modeling assumption motivated by the results from the
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independent case. Let g := E[S(€2)]. Under the null hypothesis (and the practical considerations
outlined below), we assume that

VTS(Q) ~ N(pa,1). ©)
Compared to Lemma 4.1, the difference is that the normal distribution is offset by .. This introduces
a key challenge: finding a way to estimate uq. To this end, we propose to use w<., a prefix of w of
length ¢, to prompt our model M to generate a new sequence w’ of length 7" := T — ¢ (which is a

realization of Q'). In practice, we set ¢ = 25. Given the shared prefix, we expect that Q.. ~ ' and
hence that E[S(Q~.)] = E[S(2)] = pq. Then we introduce the statistic Z(€2, '), defined by

 S(wse) = S(W)
VI/(T =) +1)T"
Under the null hypothesis, we have that Zg(Q,Q') ~ N(0,1), as S(ws.) and S(w’') are two
independent samples from a normal distribution. Therefore, in the general case, at the cost of higher
computational complexity (since we need to use the model to generate the new text), we can, as in

the independent case, compute a p-value using a Z-test on the statistic Zg(w,w’), which is sampled
from a standard normal distribution. For consistency, in §5, we use 7" to implicitly refer to T' — c.

Zp(w,w') 6)

4.2 CONCRETE INSTANTIATIONS

In this section we instantiate the score sequence Y and propose practical modifications to S.

Construction of the token score We propose two instantiations of the score function Y': one that
closely follows the intuition from §3.2, and another that aims to achieve the independence assumption
from Lemma 4.1. Achieving cross-independence allows the construction of a test that does not
require reprompting the model, hence reducing computational complexity.

(h+1)-gram score For the first instantiation, the idea is to directly approximate Ip, the function of
(h 4 1)-grams frequencies in D. As D is not known to the model provider, we approximate it with a
text corpus D. We define

Yt = Iﬁ(wt—h:t)~ @)
In practice, we set D to C4 (Raffel et al., 2020). We study the influence of Din App. D. Finally, to
reduce the required size of D needed to obtain a good estimate of I, we compute the frequency of

unordered (h + 1)-grams. Because the independence assumption from Lemma 4.1 is not met here
(see §5.1), we use Reprompting with this score.

Unigram score For the second instantiation, the intuition is to trade-off between cross-independence
and reflecting Ip. Let f : ¥ — [0, 1] be the unigram frequency in human generated text. We define

Yt := f(win). (8)

We look at the unigram frequency furthest from ¢, to make the dependence between X and Y
negligible. Yet, we remain within the context window so y; partially reflects the information from
Ip(wi—p.t) and hence still allows distinguishing spoofed and -watermarked texts. We will see in §5.1
that cross-independence is satisfied for SumHash /» = 3. Hence, in settings where cross-independence
is verified, we use this score with the Standard method.

Practical considerations In practice, we add modifications to the statistic .S. First, as suggested in
Kirchenbauer et al. (2023), we ignore repeated h-grams in the sequence w. This is required to enforce
the independence assumption within X and the independence within Y. Second, to limit the influence
of outliers on the score, we use the Spearman rank correlation instead of the Pearson correlation and
further apply a Fisher transformation. This means that in Eq. (19), z and y are respectively replaced
by R(z) and R(y), where R is the rank function. Hence, the statistic used in practice is defined as

- (R(z): ~ RE)(RW): - F))

1

©))

S(w) = arctanh !
T

¢ > (R(a): — K@) i (R(y): — R)?
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Figure 2: Histograms of Zg(Q) (top) and Zg(Q, ) (bortom), with y-axes scaled to represent
normalized density. The top row is computed using the unigram score and the Standard method, and
the second row is computed using the (h 4 1)-gram score and the Reprompting method. A green line
indicates that the A/(0, 1) hypothesis is not rejected (top p-value), an orange line that a normality test
is not rejected (bottom p-value), and a red line that both are rejected at 5%.

Combining texts Given a set of texts from a single source, we concatenate all its elements to
create a single text of size 7. In particular, let n € Nand w!,--- ,w™ € 7 x ... x X" such that
T, +---+ T, = T for a given T. For the Standard method, we set w := w' o --- o w™. For the
Reprompting method, we compute w’?, - - -+, w™ independently enforcing 7/ = T; — c and then set
W' :=w} o+ ow/ and define ws. :=wl o---ow? . We verify experimentally in App. B that the
concatenation operation has no influence on the distribution of the statistic. Our experiments with
large T'in §5 are thus conducted on concatenated texts.

Extending to other watermarking schemes The framework can naturally be extended to most
other watermarking schemes. On a high level, a watermarking scheme is a sequence of random
vectors (; and a mapping w : R¥ x R¥ — R¥ such that the next token is sampled according to the
logit vector w(l, (;) instead of /;. In the case of Red-Green watermark, (; is simply the coloring
of the vocabulary, and we set z; = (;[w;] in Eq. (4). Hence, for any other schemes, when setting
x4 = (¢|wy], the results from §4.1 still hold. We show concrete instantiations of z and evaluation of
our method for both AAR (Aaronson, 2023) and KTH (Kuditipudi et al., 2024) in App. F.

5 EXPERIMENTAL EVALUATION

We present the results of our experimental evaluation. In §5.1, we validate the normality assumptions
from §4.1. In §5.2, we validate the control of Type 1 error and evaluate the power of the tests from §4
on both spoofing techniques introduced in §2: Stealing (Jovanovic et al., 2024) and Distillation (Gu
etal., 2024). In App. A, we compare the test results across a wider range of spoofer LMs, and we
show additional results with a different watermarked model M, parameter combinations, and another
prompt dataset. In App. F, we show that the tests generalize to two additional watermarking schemes,
AAR (Aaronson, 2023) and KTH (Kuditipudi et al., 2024), which only Distillation can spoof.

Experimental setup We primarily focus on the KGW SumHash scheme, using a context size
h € {1,2,3} and v = 0.25. For h € {1,2}, we set § = 2. For h = 3, we use § = 4 for Stealing
to ensure high spoofing rates and note that Distillation is unable to reliably spoof in this setting,
and therefore is excluded from our h = 3 experiments. In each experiment, we generate either
spoofed or £-watermarked continuations of prompts sampled from the news-like C4 dataset (Raffel
et al., 2020), following the methodology from prior work of Kirchenbauer et al. (2023). For each
parameter combination, we generate 10,000 continuations, each being between 50 and 400 tokens
long. Then, we concatenate continuations (see §4.2) to reach the targeted token length 7. Finally,
each concatenated continuation is filtered by the watermark detector, and only watermarked sequences
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Figure 3: Experimental rejection rate of £-watermarked text on LLAMA2 7B.
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Figure 4: Experimental True Positive Rate of spoofed text. The dotted lines are the identity and serve
as a reference for the expected rejection rate under the null. Since, in practice, a low false positive
rate () is desirable, the logarithmic scale on « highlights the true positive rate at low « values.

are kept. We use those concatenated continuations to compute the test statistic S. In practice, we
have on average a total of 10°/7" samples per parameter combination.

We match the experimental setup from Jovanovié et al. (2024) and Gu et al. (2024). In particular, we
use LLAMA2-7B as the watermarked model. More specifically, in line with their original setups, we
use the instruction fine-tuned version for Stealing and the completion version for Distillation. For
the spoofer LM, we use MISTRAL-7B as the attacker for Stealing and PYTHIA-1.4B as the attacker
for Distillation. Finally, for the spoofer training data D, we use {-watermarked completions of C4.
For Stealing, D is composed of 30,000 samples, each 800 tokens long, whereas for Distillation, D is
composed of 640,000 samples, each 256 tokens long. We further study the impact of |D| in App. E.

5.1 VALIDATING THE NORMALITY ASSUMPTION

In §4 we discuss two cases, each relying on one fundamental assumption. The Independence case:
we assume independence between the color sequence X and scores Y, from which we derive the
normality of S(§2) with a known mean (Lemma 4.1). For this case, we use the Standard method
with the unigram score (Eq. (8)). The General case: we alternatively assume that S(€2) is normally
distributed with an unknown mean (Eq. (5)). Here, we use the Reprompting method with the (h + 1)-
gram score (Eq. (7)). In Figure 2, we test the Independence case assumption by validating if Zg(2)
with the Standard method and unigram score follows a standard normal distribution (Top), and the
General case assumption by validating the same for Zg (2, Q)’) with the Reprompting method and
(h + 1)-gram score (Bottom). We additionally perform both a Kolmogorov-Smirnov test for standard
normality and a Pearson’s normality test (not necessarily standard normal).

Regarding the Independence case, we see that in the top row, Zg(2) follows a standard normal
distribution only for A = 3. This confirms our intuition behind the unigram score: as h increases,
the dependency between X; and f(€;_j) becomes negligible. Hence, for h = 3, we may use the
Standard method with the unigram score.

For the General case, we see in the bottom row that the histogram approximately matches the standard
normal distribution for h = 2,3 and that the normality assumption always holds. Overall, these
results suggest that the assumptions behind the Reprompting method are sound, allowing it (with the
(h + 1)-gram score) to be used for all tested parameter combinations. Hence, all results in §5.2 are
computed with the Reprompting method and (h + 1)-gram score.

5.2 EVALUATING THE SPOOFING DETECTION TESTS

To ensure the statistical test is sound, we check whether the Type 1 error rate is properly controlled.
This means that, under the null, letting p be the resulting p-value, for all rejection rates « € [0, 1],

P(p<a)<a. (10)
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Table 1: Experimental FPR and TPR for both spoofers at o € {1%,5%}. h = 3 (R) denotes the
Reprompting method with (h + 1)-gram score while h = 3 (S) denotes the Standard method with
unigram score. All other entries are for the Reprompting method with (h + 1)-gram score.

T = 500 T = 1000 T = 2000 T = 3000
FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR
Spoofer @l% @1% @5% @5% @l% @1% @5% @5% @l% @1% @5% @5% @l% @1% @5% @5%
=1 0.00 062 0.04 0381 0.00 093 0.04 099 001 1.00 0.05 1.00 001 1.00 0.07 1.00
STEALING h=2 001 016 0.04 035 0.00 037 0.04 059 001 073 0.05 088 001 091 0.04 097
h=3(R) 001 047 005 073 001 085 005 095 001 099 005 100 001 1.00 0.06 1.00
h=3(S) 001 027 0.05 053 001 055 0.04 080 001 088 0.03 097 0.00 097 0.03 1.00
h=1 001 048 0.04 0.71 001 086 0.05 096 001 1.00 0.06 1.00 001 1.00 0.03 1.00

DISTILLATION

h=2 001 057 0.06 078 001 091 006 097 001 1.00 0.05 1.00 0.00 1.00 0.07 1.00

We further evaluate the test power on Stealing and Distillation, i.e. how effective it is at distinguishing
spoofed text from £-watermarked text. Additionally, we show in App. G that the Type 1 error rate
remains properly controlled in the case of £-watermarked text that has been edited by humans.

Type 1 error To evaluate Type 1 error, we compare the experimental rejection rate under the null
against the set rate «. Per Eq. (10), if the test controls Type 1 error well, we expect the curve to be
below the identity function. In Figure 3, we show the experimental rejection rate of £-watermarked
text on LLAMA2-7B (both instruction fine-tuned and completion models) for different values of i
and T'. We observe that the experimental FPR align closely with the identity function. This shows
that setting a rejection rate of o guarantees that the experimental FPR of the test is indeed a.

Test power To evaluate the power of the test, we compute the empirical true rejection rate (i.e.,
TPR) under the alternative hypothesis for a given threshold a.

In Table 1, we provide the experimental False Positive Rate (FPR, rejection under the null) and True
Positive Rate (TPR, rejection under the alternative) for a fixed value of a. For T' = 3000, under all
tested scenarios, we achieve more than 90% TPR at a rejection rate of 1%. This suggests that, given
a long enough text (or concatenation of text), spoofed text from both state-of-the-art methods can be
distinguished from &-watermarked text with high accuracy and reliable control over the false positive
rate. Moreover, we see that the Reprompting method yields higher power than the Standard method
for all values of T'. Yet, the Standard method, in the cases where it is applicable, does not require
prompting the model M, and thus may still be preferable.

Additionally, in Figure 4, we show the evolution of the TPR with respect to «. We observe that
for any fixed « € [0, 1], the power at « converges to 1 as T grows. This indicates that the test can
achieve arbitrary TPR at o, given sufficiently long text. Also, we see that despite the fundamental
differences between the two spoofing techniques, the texts produced by both Stealing and Distillation
can be distinguished with the same test. This highlights that the intuition behind our approach (§3.2)
is general and that it points to a fundamental limitation of current spoofing techniques.

6 CONCLUSION

In this work, building on the intuition that spoofed text contains artifacts reflecting the spoofer’s
knowledge, we successfully constructed statistical tests to distinguish between spoofed and genuine
watermarked texts. The tests behave similarly on the studied spoofers, and across a wide range of
watermark settings. Our results show that spoofed text can be reliably distinguished from genuine
watermarked text with arbitrary accuracy given long enough text, and highlight shared limitations of
current learning-based spoofers.

Limitations While we can provide an experimental evaluation of power on current state-of-the-art
spoofers, the proposed tests come with no theoretical guarantee of power. We build our tests on
reasonable assumptions regarding the limitations of learning-based spoofing techniques. Yet, we
hypothesize that spoofing techniques that adaptively learn the vocabulary split may avoid leaving
similar artifacts in generated text. Designing such attacks can be an interesting path for future work.
Additionally, to have high power, our tests require that the total length of the input texts is not too
small. Future work could try to improve the efficiency of our method from this perspective.
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Table 2: Experimental FPR and TPR for Stealing and Distillation using Dolly instead of C4 as the
basis for the generation of w. The row h = 3 (R) corresponds to the Reprompting method with
(h 4 1)-gram score whereas h = 3 (S) corresponds to the Standard method with unigram score. Else
only the Reprompting method with (h + 1)-gram score is used.

T =200 T = 500 T = 1000
FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR
Spoofer @1% @1% @5% @5% @l% @1% @5% @5% @1% @1% @5% @5%
h=1 0.00 0.2 000 028 0.00 041 002 067 0.00 080 001 092
STEALING h=2 0.00 003 004 015 000 012 004 028 001 034 008 050
’ h=3(®R) 001 025 003 042 002 051 005 081 001 087 005 097
h=3(S) 0.00 0.16 002 043 0.00 027 0.02 0.51 001 048 004 075
h=1 001 014 005 033 0.00 042 0.02 0.64 0.00 069 002 083

DISTILLATION

h=2 002 012 007 027 001 036 007 059 002 067 007 084

Table 3: Experimental Rejection Rate (RR) for Stealing with SelfHash and h = 3 for both &-
watermarked text and spoofed text.

T = 200 T = 500 T = 1000 T = 2000
RR RR RR RR RR RR RR RR
Experiment ~ Method Spoofer LM @1% @5% @1% @5% @1% @5% @1% @5%
¢-watermarked Reprompting / 0.01  0.04 0.00 0.03 0.00 0.01 0.00 0.03
Standard / 0.00  0.03 0.00  0.02 0.0 0.02 0.00  0.01

LLAMA2-7B 0.12 030 031 059 0.70  0.90 099  1.00
Reprompting ~ GEMMA-2B 0.14  0.30 045 0.73 083 0.93 1.00  1.00

MISTRAL-7B 0.10 029 038  0.63 079 0.93 .00 1.00

STEALING
LLAMA2-7B 0.03 0.13 0.06 0.20 0.11 035 032 0.63
Standard GEMMA-2B 0.03 0.14 0.07 0.26 0.15 0.40 036  0.62

MISTRAL-7B 005 0.22 0.15 0.39 035 0.63 0.74  0.88

A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we conduct several thorough ablation studies. We evaluate the test using a different
dataset as base prompts (App. A.1), with a different variation of the watermark scheme (App. A.2),
using another watermarked model (App. A.3), and using other spoofer models (App. A.4). In
all additional settings tested, the results are similar to those presented in §5, which emphasizes
the validity of the test and shows that the spoofing artifacts studied are a fundamental property of
learning-based spoofers.

Unlike in §5, we generate 1,000 continuations per parameter combination for the ablation study. It
means that on average we have 10° /T samples per parameter combination.

A.1 MITIGATING POTENTIAL METHODOLOGICAL BIASES

Here, we use the same settings as §5 (Stealing and Distillation with SumHash, different values of h,
and for h = 3, both the Reprompting and Standard methods), but use text continuations of prompts
sampled from Dolly (Conover et al., 2023) instead of the C4 dataset. We show that the methodology
used to generate the spoofed and £-watermarked texts has no influence on the results.

In Table 2, we show the experimental FPR and TPR at « of 1% and 5%. The results are similar to
those on C4 from Table 1: the Type 1 error is controlled, and the power is similar. This suggests that
the methodology we use to generate the prompts does not influence the results. Hence, we can expect
that for most texts w, the empirical results presented hold, and that if w is spoofed, the spoofer’s
artifacts remain present and discoverable.

A.2 RESULTS FOR THE SELFHASH SCHEME

Next, we focus on SelfHash with h = 3 and § = 4 for Stealing. We use both the Reprompting and
the Standard method with their respective score functions (§4.2).

In Table 3, we show the experimental FPR at & = 1% and o = 5% for £-watermarked and
spoofed text. Similarly to the SumHash variant, the Type 1 error is properly controlled for both the
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Table 4: Experimental Rejection Rate (RR) for Stealing with MISTRAL7B as M at « of 1% and 5%
on both ¢-watermarked text and spoofed text.

T =200 T = 500 T = 1000 T = 2000
RR RR RR RR RR RR RR RR
Experiment ~ Method Spoofer LM @1% @5% @1% @5% @1% @5% @1% @5%
£-watermarked Reprompting / 0.02  0.05 0.03  0.08 0.00 0.04 0.00 0.02
Standard / 0.01  0.04 0.01  0.02 0.00 0.02 0.00 0.02
LLAMA2-7B 045 0.73 0.89  1.00 0.99  1.00 1.00  1.00
Reprompting ~ GEMMA-2B 048  0.90 097  1.00 1.00  1.00 .00 1.00
MISTRAL-7B 0.59 0.81 097  1.00 1.00  1.00 1.00  1.00
STEALING
LLAMA2-7B 0.19 041 0.25  0.60 045  0.79 083 0.95
Standard GEMMA-2B 021 048 0.40  0.66 0.64 0.81 0.85 0.96

MISTRAL-7B 027 0.55 0.70  0.88 094  0.99 099 1.00

Table 5: Experimental FPR at @ = 1% and o = 5% with SumHash h = 2, across spoofer LMs. Bold
corresponds to the case where both the spoofer and watermarked models are the same.

T =200 T =500 T = 1000 T = 2000

TPR  TPR TPR  TPR TPR TPR TPR TPR
Experiment Spoofer LM @1% @5% @1% @5% @1% @5% @1% @5%

LLAMA2-7B 0.07 0.16 0.14 034 036 0.62 0.68  0.88
STEALING GEMMA-2B 0.02 0.17 0.09 0.32 0.29  0.52 0.61  0.82
MISTRAL-7B 0.05 0.16 0.16 0.35 0.37  0.59 073 0.88
LLAMA2-7B 020 046 0.60 0.80 094  0.99 1.00  1.00

DISTILLATION
PYTHIA-1.4B 027 055 0.57 0.78 091 097 .00 1.00

Standard and the Reprompting methods. Moreover, the empirical power scaling with 7" is similar
to the SumHash scheme from Table 1. This means that the spoofing artifacts are not tied to a
specific scheme, but rather represent a fundamental limitation of learning-based watermark spoofing
techniques such as Stealing and Distillation. Additionally, we also see that the power of the Standard
method at a fixed T is lower than that of the Reprompting method. This confirms the expected
trade-off of the unigram score: enforcing cross-independence is traded for power (§4.2).

A.3 ALTERNATIVE WATERMARKED MODEL

In this experiment, we use MISTRAL-7B as the watermarked model M for SumHash at h = 3 on
Stealing. We do not use a different M for Distillation, as Distillation was only empirically validated
on LLAMA2-7B (Gu et al., 2024).

In Table 4, we show the experimental FPR at a of 1% and 5% for £-watermarked text and spoofed
text on different spoofer LMs. Similar to the results in Table 1, the Type 1 error is controlled in both
the Reprompting and Standard methods. Moreover, the power scaling with 7" is also similar to the
results from Table 1. This suggests that the model M used by the model provider has no influence on
the artifacts left by spoofing attempts on such a model.

A.4 INFLUENCE OF THE SPOOFER MODEL

In this experiment, we run our tests on SumHash with A = 2, using for Stealing LLAMA2-7B,
MISTRAL-7B and GEMMA 2B, and for Distillation LLAMA2-7B and PYTHIA-1.4B.

In Figure 5, we show the evolution of the expected value of Zr(€2, Q') for spoofed texts with respect
to 7', across different spoofer LMs. We see that the evolution of the average Z-score is similar across
all models and both spoofing techniques. This suggests that the choice of the spoofer LM has almost
no influence on the test power.

Additionally, in Table 5, we show the FPR and TPR for the 5 spoofer LMs tested. For T" = 2000, we
obtain similar results across all models, with a TPR at 1% of at least 60% for Stealing and 100% for
Distillation, similar to the results from §5.2. Moreover, counterintuitively, a spoofer using the same
model as the model owner does not significantly lower the test power. This suggests that the artifacts
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Figure 5: Evolution of E[Zg (£, Q)] for different spoofer LMs with 7.
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Figure 6: Histogram of Z-scores for both £é-watermarked and spoofed corpora, as well as their shuffled
counterparts.

we are detecting in spoofed text indeed reflect the lack of knowledge of the spoofer (§3.2), and not
the difference between the LM used by the spoofer and the LM used by the model provider.

B VALIDATING THE CONCATENATION PROCEDURE

In this section, we experimentally validate the claim that concatenating texts w according to the
procedure from §4.2 has no influence on the resulting distribution of the statistic.

Experimental setup Let W = (w1, ...,w;,) be a corpus of n texts of the same length, and W’ the
corresponding corpus of Reprompting texts of the same length 7. Let X, X’ € {0,1}"*7 be the
color matrices of the corpora, and Y, Y’ € [0, 1]"*7 be the associated (h + 1)-gram score matrices
of the corpora. For permutations o € &,,x 7, we define 0(X); j = X, (i) and o(Y); j = Yo (i 5))-
We define o (W) as the shuffled corpus with the corresponding o (X) color and o(Y") score. Given
o € &,,x1, we test the hypothesis that shuffling has no influence on the distribution of Zg(W, W'),

ZR(oc(W),o(W")) ~ Zr(W, W), (11)

where Zr(W,W') := (Zr(w1,w}), - .., Zr(wn,w),)). The shuffling operation can be interpreted as
a concatenation of texts of length 1. Hence, if the shuffling has no influence, this implies that the
concatenation of texts of longer length has no influence either. To test for the equality of distribution,
we use a Mann-Whitney U rank test.

Results In practice, we generate n = 1000 {-watermarked and spoofed texts of length 175 and their
corresponding 7' = 150-length Reprompting text corpora. We sample ¢ € &,, 7 uniformly in G,, 7.
In Figure 6, we show the resulting histogram of Zr (W, W) and Zr (o (W), c(W")). The histograms
between the non-shuffled and shuffled versions perfectly overlap for both the {-watermarked texts
and the spoofed texts. Moreover, the resulting p-values from the Mann-Whitney U rank test are 0.86
and 0.44, respectively. Hence, we can conclude that Eq. (11) is verified and that the concatenation
procedure has no influence on the distribution of the statistic.
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Figure 7: Histogram of Zg (W) for £&-watermarked text with (h+ 1)-gram score and Standard method.
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Figure 8: Left: Evolution of the p-value distribution with the Total Variation distance between D
and D. Note that the x-scale is not linear. Right: Evolution of the p-value distribution for different
choices of D. Each p-value is computed with 1000-token long completions. The whiskers are set at
0.5 of the IQR for visibility.

C DEPENDENCE BETWEEN THE CONTEXT DISTRIBUTION AND THE COLOR

In this section, we study in detail the dependence between the color of token w; and Ip(w;—p.¢) in
&-watermarked text from §3.2.

Problem statement We recall that D is the training data of the spoofer, and Ip is the function of
frequencies of h + 1-grams in D. In §3.2, we hypothesize that low entropy is a common factor that
implies I'p(2¢—p.¢) is high and P(X; = 1) & ~. Under such an assumption, we therefore expect the
correlation between the observed color sequence = and the (Ip(wi—n:t))vteh,..., 7} to be negative.
In other words, we expect Zg(w) with the (h + 1)-gram score to be negative for £-watermarked text.

Results We verify this claim by computing Zg(w) with the (h + 1)-gram score for a corpus W of
1000 &-watermarked texts, each of length 7' = 500. In Figure 7, we see the histograms of Zg (W)

for different values of h. We see that for all h, E[ZS(W)] is indeed negative. Furthermore, we
notice that the histograms appear normally distributed, agreeing with the assumption underlying the
Reprompting method (Eq. (5)). Therefore, these results show that the proposed intuitive explanation
of the dependence due to M is coherent, and further highlight the need for the Reprompting method
in order to build a statistic with a known distribution when using the (h + 1)-gram score.
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Figure 9: Experimental True Positive Rate of spoofed text with different sizes of D. The size of D is
measured in training steps, where each step comprises 16, 284 tokens.

D INFLUENCE OF THE TRAINING DATASET

In this section, we study the influence of D on our ability to detect spoofed texts. As we do not know
the true distribution of D, we hope that using a different dataset does not significantly affect our
results. We study the influence of D on both Stealing and Distillation methods with SumHash h = 1.

Evolution with the TV distance First, we analyze the influence of the choice of D in a controlled
setting. We let Dy be the counts of the different (h + 1)-grams in D. We then build a perturbed
dataset D, by adding centered normal noise with standard deviation € to Dy. Finally, we compute the
total variation distance between 756 and D. In Figure 8 (left), we observe that the p-values increase
on average with the total variation distance between D, and D. This confirms the intuition that the
better the estimate of D, the more powerful our tests are. Furthermore, it appears that the p-values

increase slowly with the total variation distance, which suggests that the choice of D is not crucial for
obtaining a powerful test.

Comparing different training datasets We run the test for different choices of D (C4 (Raffel
et al., 2020), Dolly (Conover et al., 2023), Wikipedia (WikimediaFoundation), Repliqa (Monteiro
et al., 2024), and Math (Fourrier et al., 2023)) as well as D := D for comparison. In Figure 8 (right),
we see that even the Math dataset has reasonable p-values for Stealing despite our experimental
evaluations using significantly different prompt completions from news articles. This confirms that
our test is robust to the choice of D.

Lastly, given a received watermarked text w, a model provider could adjust the choice of D based

on the topic of w. Such a heuristic could ensure that the choice of Dis always relevant, and further
mitigate its impact on the test power.

E INFLUENCE OF THE SIZE OF THE SPOOFER TRAINING DATA

In this section, we study how the power of the test is impacted by the size of the training dataset D.
We show that increasing the spoofer training dataset reduces the presence of artifacts at a slow rate,
and hence is not an effective way to remove the spoofing artifacts.

‘We run the test for Distillation with LeftHash, h = 1, LLAMA2-7B as the watermarked model, and
PYTHIA-1.4B as the spoofer model. We train the spoofer with different sizes of D. We note that, for
practicality, the smaller instances of D are subsets of the larger ones. Otherwise, we run the same
experimental procedure as in §5.2, but using only n = 1000 completions.

We see in Figure 9 that the influence of increasing the spoofer training dataset D is very mild. This
suggests that, even though increasing the spoofer training data indeed lowers the power of the test,
the rate at which it does so is so slow that it is not an effective way to hide spoofing artifacts. Indeed,
a 9-time increase in the size of D only reduced the TPR at 0.1 percent from 94 percent to 87 percent
with 7" = 1000.
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Figure 10: Rejection rates for the Reprompting method on the AAR watermark with h = 3 and
h = 4. The solid lines correspond to £-watermarked text and the dashed lines to Distillation-spoofed
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Figure 11: Rejection rates for the Reprompting method on the KTH watermark with s € {1, 4, 256}.
The solid lines correspond to £-watermarked text and the dashed lines to Distillation-spoofed text.

F EXTENDING THE METHOD TO OTHER SCHEMES

While we design our method to detect spoofing attempts on Red-Green schemes (Kirchenbauer et al.,
2023), as these are the primary target of several spoofing works, we show that the method can be
generalized to other watermarking schemes. Excluding the unigram scheme by Zhao et al. (2024),
which Zhang et al. (2024) shows can be perfectly spoofed, we can study the AAR scheme from
Aaronson (2023), as well as one of the KTH schemes from Kuditipudi et al. (2024), as both schemes
were shown to be spoofable via Distillation (Gu et al., 2024).

AAR watermark In the AAR watermark, / previous tokens are hashed using a private key £ to
obtain a score r; uniformly distributed in [0, 1] for each token index ¢ in the vocabulary X.. Given p;,
the original model probability for token index 7, the next token is then deterministically chosen as the
token ¢* that maximizes ril /i

Given a text w € %7, we naturally generalize Eq. (4) by defining z € RT as x; = — logr,,,, whereas
previously x; was the color of the ¢-th token. The rest of the method remains identical.

We evaluate both the FPR and TPR of our test using & € {3,4}, LLAMA2-7B as both the watermarked
model and the attacker model, the Reprompting method, and the same experimental procedure as
in §5, except that we generate only n = 500 completions. We discarded h = 2 as the watermarked
model output was too low-quality and repetitive (Gu et al., 2024). In Figure 10, we see that the
generalized method can successfully detect spoofed text with a 90% TPR at a rejection rate of 1% for
500 tokens. In fact, it is even more powerful than the detection in the Red-Green scheme, where we
achieved a similar TPR at 1% with 3000 tokens (§5.2). However, the test hypothesis appears slightly
violated, as the empirical FPR at 1% is around 2% for both h = 3 and h = 4.
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Figure 12: Experimental rejection rate of mixed £-watermarked text and human text on LLAMA2-7B
for both the Reprompting method (left) and the Standard method (right) at different percentages of
human text. Each mixed text is in total 500 tokens long.
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Figure 13: Experimental rejection rate of paraphrased £-watermarked text on LLAMA2-7B for both
the Reprompting method (left) and the Standard method (right).

KTH watermark In the KTH watermark (EXP variant), a single watermark key sequence of length
Nkeys € = &1, ..., &™ ey is uniformly distributed, where each ¢' € [0,1]/*]. To generate the j-th

N 1/pi
token (modulo 1y ), the watermark samples the token 4* that maximizes <§f ) . Additionally, to

allow more diversity in the generated text, the key is randomly shifted by a constant at each query.
As in Gu et al. (2024), we denote by s the number of allowed shifts.

Given a text w € X7, we naturally generalize Eq. (4) by defining 2 € RT as ; = log(1 — Lt),
whereas previously x; was the color of token ¢. To account for the permutation of the key, we further
replace log(1 — §it) with the Levenshtein cost introduced in Kuditipudi et al. (2024). Moreover, the
scheme, being based on a fixed key, lacks any context & that can be used to compute the N-gram score
v (Eq. (7)). Following the intuition from Gu et al. (2024) that, in the limit, their spoofing ability
comes from learning contiguous watermarked sequences of length ny.,, we suspect that setting
h = nyey would enable greater test power. In practice, due to practical constraints, we set h = 5.
The rest of the method remains unchanged.

We evaluate both the FPR and TPR of our test, using s = 4, and s = 256, along with a key of
length ngey = 256, on LLAMA2-7B as both the watermarked model and the attacker model, the
Reprompting method, and the same experimental procedure as in §5, except that we generate only
n = 500 completions. In Figure 11, we see that this generalized method can successfully detect
spoofed text for both s = 4 and s = 256, albeit with a TPR of 65% at a confidence of 99% for s = 4
and TPR of 30% for s = 256. In all three cases however, the Type 1 error is controlled, i.e., empirical
FPR corresponds to the theoretical FPR.
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G INFLUENCE OF HUMAN MODIFICATIONS ON FPR

Here, we study the behavior of £-watermarked text that has subsequently been edited by humans. We
consider two different use cases. The first is the case of cropping. Given a £-watermarked text, we
assume a human inserts non-watermarked text in the middle. This corresponds to a plausible use case
of LLMs, where humans merge generated text with their own. Second, we consider paraphrasing.
Given a £-watermarked text, we paraphrase it using DIPPER (Krishna et al., 2023).

We evaluate the FPR of human-modified text using & = 3 on both the Standard and Reprompting
methods and follow a similar experimental procedure as in §5, except that we generate only n = 500
samples. Given a percentage p, for each generated C4 prompt completion of length 7', we randomly
insert another random human text sampled from C4 such that p percent of the resulting text is
human-generated. We used this procedure for p € {0.01,0.05,0.1,0.2}. As in §5, we apply the test
only on text that appears watermarked according to the original watermark detector. In Figure 12, we
see that even for the highest percentage of human text (20%), the test properly controls Type 1 error.

We evaluate the FPR of the paraphrased text using h = 3 on both the Standard and Reprompting
methods and follow a similar experimental procedure as in §5, except that we generate only n = 1000
samples. We note that we apply the test only on text that is considered watermarked by the original
watermark detector. In Figure 13, we see that the test still properly controls Type I error for both
methods and for different text lengths.

Both results show that a rejection rate of « still guarantees an experimental FPR of «, even if the
&-watermarked texts have been altered by humans.

H PROOF OF LEMMA 4.1

In this section, we detail the proof of Lemma 4.1.

First, let’s recall some statistical results that we need.

Theorem H.1 (Lindeberg CLT). Let X, 1, ..., X, , be independent random variables in R4 with
mean zero. If for alle > 0

n
Z:E[HX”,;€ I*1{||X,.x|| > €}] — 0, (Lindeberg Condition) (12)
k=1
and .
Zcov(Xn,k) -V, (13)
k=1
then .
3" Xos B NO,V). (14)
k=1

Theorem H.2 (Delta method). Let X1, ..., X,, be a sequence of random variables in R?, if

VA(Xy = p) % N0, V), (1)
and u : R — R is differentiable at i, with Vu(u) # 0, then

Vi(u(Xy) = u(p) 5 N0, V() TV Vu(p)). (16)

Now we proceed to prove Lemma 4.1. We first state the result formally.

Lemma 4.1. Let X := X;,..., X7 be a sequence of independent (non i.i.d) Bernoulli random
variables, and g; = P(X; = 1). Let Y := Y1,...,Yr be a sequence of i.i.d. random variables.
Let Q = (X,Y). Assuming that, for alli € {0, ..., T}, X; and Y; are independent, that there exist
g, g €[0,1] such that

T T
1 1 1
im = _ oy = il i *E 2 _ 4,2
Thm E (9:—g'")=0 ( ) and Thm 2 g; =g', (17)
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and assuming that Y admits at least 4 moments vy, liy2, lLys, by+. Then, we have that
Z5(Q) == VTS(Q) % N (0,1).
Proof. Letw; := (X;,Y;, X2,Y2, X;Y;). Let X, , = “”;}E[w” We recall the definition of S,
S(Q Et 1(Xt )(}/t YT)
\/E:t V(X = Xr)2 3, (Vh - V)2
T
T thl XYy — <T Zt:1 Xt) (% Zt:l Yf)
B T T 2 T T 2
\/71“ Zt:l Xt2 - (% Zt:l Xt) % Zt:l Yt2 - (% Zt:l Y;f)

where X1 denotes the mean of X71.7.

(18)

) 19)

The proof goes as follows:

* First, we show that the sum of the covariance matrix of X, ;, converges (Eq. (13)).

* Then, we show that X, j, satisfies the Lindeberg condition (Eq. (12)). We can then apply
the Lindeberg theorem to show that w; converges to a normal distribution.

* Finally, we apply the Delta method (Theorem H.2) to show that S(€2) is normally distributed.

We have that for all ¢ # j, w; is independent of w;. For each 7, we have

gi(1—gi) 0 9i(1—g:) 0 1y gi(1—g:)
0 —u3 iy 0 —Wy ty2Fiy 3 9i(—p3 +uy2)
Cov(w;) = | 9i(1—gi) 0 9i(1—gi) 0 ny gi(1—g:) )
0 —Hy fy2+Hy3 0 7(uyz)2+uy4 gi(fuyuyz +uy3)

1y 9i(1=g:) gi (=3 +py2) pyei(1=g:) gi(—pypyetuys) gi(—n3gituye)
where we denote yy-» as the k-th moment of Y.

Then, using Eq. (17), we have that 1/T ZiTzl Cov(w;) = ZiTzl Cov(X,, ;) converges towards
V € R5%5, defined as

gD _g@ o gD —g® o iy (90 —g®)
2 (1) 2
0 —u3+uy2 0 —py tiy2 iy 9P (—u3 +uy2)
Vel o 0 g g® o iy (90 —g™)
2 (1)
0 —py py2+iiy3 0 —(y2) +uya gD (—pypyatuys)

py (90 =9®) ¢V (=p3+uy2) py (90 =9) gV (—pvuyztuys) -39 +uy 29"
We have completed the first step of the proof.
Now we want to show that X, ; satisfies the Lindeberg condition (Eq. (12)). Let ¢ > 0. Because
X, Y; € [0,1], we have that for all i < n, || X,,;] < \/g. There exists ng > 0 such that

Vn > ng, /22 < e. Therefore, Vn > ng, Vk < n, 1{|| X, x|| > €} = 0. So, for all n > ny,

n
> EllXn,
k=1

Hence, we have shown that for all € > 0,

> EllIXnklP2{|I1X,,

k=1

nkl| > €} =0. (20)

| >e}] = 0. 1)

Therefore, using the Lindeberg CLT (Theorem H.1), we have that

Z )4 N0, V). (22)
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We have completed the second step of the proof. Now, we want to apply the Delta method (Theo-
rem H.2) to show that S(w) is normally distributed.

Let iy :=limp 0o 1/T 2321 Elw;] = (g, py» g, vz, guy ). We introduce

E; = % iE[wi] — Huw (23)
VT (z{ > Bl - uw> 24)
—0 (1T> (Using Eq. (17)). 25)
Therefore, we have
1 < 1 & d
ﬁ;(wi—ﬂw)z 7;(wi—E[wi})+Ei = N(0,V). (26)

Let u : R® — R be defined as

Iy — T1T2
V(wy — ) (xs — a3)

We have that S(Q2) = u (1/T ZiTzl wi) (using Eq. (19)) and () = 0, and therefore using the
Delta method (Theorem H.2) we have that

u(zr) = . 27

VTS(Q) L N (0, Va(pr) TV V(i) - (28)

Because V() TV Vu(py) = 1, we have shown that
VTS(Q) 4 N0, 1). (29)
O

I EXTENDED DISCUSSION OF THE STATE OF WATERMARK SPOOFING

In this section, we overview of the state of the field of watermark spoofing to further motivate our
work and highlight its practical implications. In App. 1.1, we identify three categories of spoofing
techniques and highlight learning-based spoofing techniques as the most practically relevant. We put
our findings in this context, discussing the potential for adaptive spoofing that does not leave artifacts
in the spoofed text. In App. [.2 we discuss how latest schemes attempt to tackle the issue of spoofing.

1.1 APPROACHES TO SPOOFING

Learning-based spoofing As explained in §1, learning-based spoofing operates in two phases.
In the first phase, the spoofer queries the model to generate a dataset D of {-watermarked text.
From this dataset D, the spoofer learns the watermark, which allows them to generate spoofed text.
In the second phase, using their knowledge and a private LM, the spoofer can generate arbitrary
watermarked text at scale, without having to query the original model again. In particular, spoofed
texts can be created as answer to any prompt, even the one that would be refused by the original
LLM, which gives learning-based spoofers great flexibility, and illustrates the potential threat they
pose. Additionally, as long as the cost of the first phase is reasonable, learning-based spoofing is
cost-effective, as the subsequent per-spoofed-text cost is zero. Learning-based spoofing includes the
works of Jovanovi¢ et al. (2024); Gu et al. (2024); Zhang et al. (2024).

Piggyback spoofing As discussed in §2, the second family of spoofing techniques is piggyback
spoofing, introduced by (Pang et al., 2024), which directly exploits the desirable robustness property
of the watermarks. Given a -watermarked sentence, the attacker modifies a few tokens to alter
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the meaning of the original sentence while maintaining the watermark, interpreting the result as an
instance of spoofing. While illustrating the potential drawbacks of high robustness, this comes with
several caveats. First, abusing the robustness of the watermark naturally raises the question of the
boundary between spoofed text and edited £-watermarked text. Indeed, mixing human and LM text is
a realistic use of LMs, and it is agreed that watermarks should account for this use (Kirchenbauer
et al., 2023; Kuditipudi et al., 2024). Second, piggyback spoofing is limited in the scope of text it can
generate, as it relies on the original model to generate the majority of the text. This greatly reduces
the flexibility of the attack, i.e., does not allow the attacker to generate texts on harmful topics that
would be refused by the watermarked model. Finally, the same property makes the cost of spoofing
scale with the number of spoofed texts, as the attacker needs to query the original model each time.

Step-by-step spoofing Finally, as also briefly mentioned in §2, a third category of spoofing
techniques is step-by-step spoofing. This line of works considers spoofing techniques that require
queries at each step of the generation process of every spoofed text (Pang et al., 2024; Zhou et al.,
2024; Wu & Chandrasekaran, 2024), using the feedback obtained this way to choose the next
token. While they have higher flexibility compared to piggyback spoofing, a key limitation of these
techniques is the high cost, even compared to piggyback spoofing. Further, some of these methods
assume access to the watermark detector itself (sometimes also its confidence score) to obtain the
desired feedback, which is not always realistic. For instance, in the case of the first public large-scale
deployment of a watermark, SynthID-Text, Google does not provide public access to the watermark
detector.

Summary Insummary, learning-based spoofing is the most practically relevant category of spoofing
techniques, as it is cost-effective, flexible, and does not require querying the original model for each
spoofed text. Another advantage from the perspective of our research question is the fact that current
learning-based methods are based on fundamentally different principles, making the question of their
common limitations relevant and interesting. In this work, we study that question, showing that all
learning-based spoofers leave visible artifacts in spoofed text, which can be leveraged to distinguish
between spoofed and £-watermarked text.

1.2 SPOOFING-AWARE WATERMARKING SCHEMES

The field of watermarking is evolving rapidly, as explained in §2, with different schemes proposed in
the literature. We distinguish two approaches to watermarks in LMs. The first one is the statistical
approach, notably including schemes from Kirchenbauer et al. (2023); Kuditipudi et al. (2024);
Aaronson (2023), which place great emphasis on watermark robustness and practicality. The second
is the cryptographic approach, with schemes stemming from Christ et al. (2024b), which focus
primarily on watermark security and rigorous guarantees.

In particular, schemes with cryptographic features have not been shown to be vulnerable to spoofing
attacks. Yet, they enhance security by trading off other key watermark properties, such as robustness
to watermark removal. Moreover, recent work (Zhou et al., 2024) suggests merging both fields
to create a watermarking scheme that is not only more robust to watermark removal but also to
watermark spoofing. However, they show that their approach trades off with generation quality.
This highlights that, from the perspective of a model provider, there is no single scheme that is the
most desirable. Hence, choosing a particular scheme is a complex task that involves navigating the
tradeoffs between different properties. From this perspective, our work provides new evidence that
schemes derived from (Kirchenbauer et al., 2023) are harder to spoof than previously thought (as
these attempts can be detected by observing the artifacts), and can help model providers adjust their
expectations.
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