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ABSTRACT

When a new release of a foundation model is published, practitioners typically
need to repeat full fine-tuning, even if the same task has already been solved in the
previous version. A promising alternative is to reuse the parameter changes (i.e.,
task vectors) that capture how a model adapts to a specific task. However, they
often fail to transfer across different pre-trained models due to their misaligned
parameter space. In this work, we show that the key to successful transfer lies in
the sign structure of the gradients of the new model. Based on this insight, we pro-
pose GradFix, a novel method that approximates the ideal gradient sign structure
and leverages it to transfer knowledge using only a handful of labeled samples.
Notably, this requires no additional fine-tuning: the adaptation is achieved by
computing a few gradients at the target model and masking the source task vector
accordingly. This yields an update that is locally aligned with the target loss land-
scape, effectively rebasing the task vector onto the new pre-training. We provide a
theoretical guarantee that our method ensures first-order descent. Empirically, we
demonstrate significant performance gains on vision and language benchmarks,
consistently outperforming naive task vector addition and few-shot fine-tuning.

1 INTRODUCTION

Over the past few years, the paradigm in deep learning has shifted from training models from scratch
to fine-tuning large pre-trained models. Adapting these large models to downstream tasks is advan-
tageous, as it leads to stronger performance at a fraction of the cost. Such a shift has been evident in
natural language processing and computer vision, where pre-trained models such as BERT (Devlin
et al., 2019), CLIP (Radford et al., 2021), and their successors (OpenAI et al., 2023; Liu et al., 2023)
have become the standard starting point for developing new applications.

Since companies and researchers often update the checkpoints by using more data or improved
training pipelines, practitioners often face the need to repeat fine-tuning on the same downstream
tasks. This creates redundancy: the work invested in adapting one release is not directly reusable
on the next. To address this issue, several lines of research have investigated how to systematically
relate or transfer knowledge across parameter spaces. The model rebasin literature (Ainsworth et al.,
2023; Rinaldi et al., 2025) investigates how to align and merge independently trained models by
exploiting permutation symmetries in their parameters. In parallel, task arithmetic (Ilharco et al.,
2023; Ortiz-Jiménez et al., 2023; Yadav et al., 2023; Panariello et al., 2025; Marczak et al., 2025) has
shown that task vectors (i.e., the difference τ = θft−θ0 between the base and fine-tuned parameters)
can be added, subtracted, and merged across models to induce new capabilities. On a similar note,
the literature on mode connectivity (Garipov et al., 2018; Frankle et al., 2020) demonstrates that
different fine-tuned solutions can be linked by low-loss paths, highlighting that model parameters
encode highly structured and transferable representations. Together, these advances suggest that
parameters encode rich and transferable structure that can be systematically manipulated to obtain
the desired behavior at reduced cost.

In particular, Rinaldi et al. (2025) formalizes this setting and proposes a technique to transport task
vectors across transformer-based architectures. However, there remains a substantial gap between
the transported fine-tune and an actual fine-tuned model. This gap highlights a key challenge: while
task vectors are informative about adaptation, their direct transfer across different pre-trains is not
guaranteed to align with the loss geometry of the target model. In fact, naive transfer may intro-
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duce harmful directions in parameter space, i.e., components of the task vector that are misaligned
with the descent directions of the target loss, thus increasing the loss and limiting its effectiveness.
Addressing this problem is crucial both for reducing the cost of adapting rapidly evolving foun-
dation models and for enabling their use in low-data regimes, where re-running full fine-tuning is
infeasible.

In this work, we introduce a framework for transporting task-specific knowledge across pre-trained
models using gradient-sign masking. Our key insight is that, although a fine-tuning trajectory
encodes valuable task information, its effectiveness on a new pre-trained model depends on the
local loss geometry of the target. Inspired by findings from the optimization and distributed training
literature (Bernstein et al., 2018; Alistarh et al., 2017), we exploit the observation that the sign of the
gradient provides a robust surrogate for the descent direction. Leveraging this insight, we introduce
a simple yet effective method to transport a task vector from a source model to a target pre-trained
model: we mask the source task vector using the gradient signs of the target, keeping only the
components aligned with the target’s local loss landscape. We further provide a formal guarantee
that, to first order, this transported update reduces the target loss, ensuring a principled safeguard
against harmful or misaligned transfer.

Empirically, we show that this method enables highly effective transfer of fine-tuning knowledge
from an outdated pre-trained model to a newer one, even in the low-data regime where gradients can
only be estimated from a handful of samples, partially closing the gap between naive transfer and
full fine-tuning on the target model. Our contributions are:

• We establish a theoretical connection between the oracle task vector, the ideal fine-tuning
update on the target model, and quantities we can actually compute, namely the source task
vector and the gradient at the zero-shot target model. We show that the sign of the zero-shot
gradient provides a reliable proxy for the descent directions encoded in the target model.

• Building on this insight, we propose GradFix, a simple yet theoretically grounded mech-
anism that filters the source task vector according to the local loss geometry of the target
model. We formally prove that this guarantees, to first order, that the transported update
reduces the target loss.

• We demonstrate empirically that our method enables effective transport of fine-tuning
knowledge across pre-trained models in both vision and text domains, even in the low-data
regime where gradients must be estimated from only a handful of samples. This shows the
practicality of our approach in scenarios where re-finetuning is infeasible.

2 RELATED WORKS

Model merging. A growing literature explores how to merge multiple fine-tuned checkpoints de-
rived from the same pretrained model. Wortsman et al. (2022) introduced model soups, showing
that simple weight averaging of fine-tuned checkpoints often improves generalization. Task arith-
metic formalizes fine-tuning deltas as task vectors, which can be added or negated to edit model
behavior (Ilharco et al., 2023). Building on this view, Yadav et al. (2023) proposed TIES-Merging,
which resolves conflicts among task vectors by enforcing sign consistency before aggregation. For
improved robustness and scalability, ATM interleaves tuning with merging (Zhou et al., 2024), and
task-vector-based cluster vectors into compact representations (Zeng et al., 2024).

Model rebasin. A different family of methods focuses on explicit rebasin, aligning independently
pretrained models into a shared parameterization so that task vectors can be transported across dif-
ferent pretrainings. Git Re-Basin introduced permutation matching to map two networks into a
common basin (Ainsworth et al., 2023). For transformers, Imfeld et al. (2024) applies Optimal
Transport to softly align components, while Rinaldi et al. (2025) proposes permutation- and spectral-
based procedures that enable task vector transfer across distinct pretrained models. Extensions such
as permutation least-squares (Nasery et al., 2025) and supernet formulations (Stoica et al., 2024)
address more heterogeneous or large-scale settings.

Gradient information. A complementary line of work studies the utility of gradient signs and
compressed gradient information. SignSGD (and its majority-vote variant) shows that one-bit sign
information can suffice for convergence in distributed settings (Bernstein et al., 2018), while quan-
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tization and error-feedback analyses formalize guarantees for compressed updates (Alistarh et al.,
2017; Karimireddy et al., 2019). More recent methods leverage gradient magnitudes or sign statis-
tics for efficient adaptation: Gradient-Mask Tuning masks low-importance parameters during LLM
fine-tuning (Li et al., 2025), and sign-based federated variants weight client updates to address het-
erogeneity (Park et al., 2024).

3 PRELIMINARIES

Let θA and θB denote the parameters of the same architecture, pre-trained on different datasets (or
with different hyperparameters). The fine-tune of θA on a downstream dataset D is denoted as θftA .

Model rebasin. The goal of rebasin (Ainsworth et al., 2023) is to align two independently trained
models by mapping the parameters of one into the loss basin of the other, so that they become
functionally compatible. This setting concerns only the pre-trained weights, without involving fine-
tuning updates.

Task Arithmetic. A complementary perspective to model rebasin is offered by task arithmetic (Il-
harco et al., 2023; Yadav et al., 2023), which studies linear operations on task-specific parameter
updates. Given a pre-trained model θ0 and a fine-tuned counterpart θ⋆, the difference vector in pa-
rameter space τ = θ⋆ − θ0 is called a task vector. Task vectors describe how a base model adapts
to the task and can be added, subtracted, or merged to induce new behaviors. This setting usually
assumes that all models share the same initialization θ0, which ensures comparability across tasks.

Our Setting. In contrast, our goal is to apply task-vector style transfer when the same base initial-
ization assumption does not hold: we want to transfer τA = θftA − θA from a source pre-train θA
onto a different pre-train θB . This connects to rebasin in that the bases differ, but unlike traditional
rebasin approaches, we do not seek to explicitly align parameterizations. Instead, we ask:

Which components of τA are truly transferable, and which would instead harm θB?

This question motivates our method, which leverages the local gradients of θB to selectively filter τA
into a compatible and transferable update, effectively performing direct task vector transportation.

4 METHOD

GradFix is a framework for transferring task vectors across different pre-trains by filtering them
with gradient information from the target model. As a conceptual starting point, we consider an
oracle ideal setting where the target task vector, obtained from full fine-tuning, defines the ideal
transferable directions (Sec. 4.1). Then the oracle is approximated with a single gradient step on the
target model, using the signs of the gradients to capture an approximate direction of the full fine-
tuning trajectory. This yields a gradient-sign mask that selectively filters the source task vector into
a compatible update (Sec. 4.2). Finally, we extend the approach to the limited-data regime, where
gradients are estimated from only a handful of labeled samples (Sec. 4.3).

4.1 GRADFIX (GRADIENT-SIGN MASKING)

We begin by considering an ideal scenario where the true fine-tuned task vector τB := θftB − θB
of the model B and the whole target dataset D are available. Such a vector represents the optimal
parameter change to adapt B on the target dataset D. In this ideal setting, it is possible to construct
a mask that perfectly retains only the components of a candidate update (e.g., τA) that are aligned
with τB , ensuring that every retained coordinate contributes to decreasing the loss. In other words,
τB (or its sign structure) defines the “gold standard” for locally beneficial directions. Formally, we
define as m⋆ ∈ {0, 1}d the mask induced by τB , where d is the total number of model parameters
and i ∈ {1, . . . , d} indexes each coordinate:

m⋆
i = 1{sign(τA,i) = sign(τB,i)}. (1)

As shown in Fig. 1, applying this mask to τA produces the oracle-masked update δ⋆, which preserves
only the components consistent with τB :

δ⋆ := m⋆ ⊙ τA, (2)
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Target UpdateSource Task VectorGradient-Sign Mask

Figure 1: Illustration of our masking procedure. The gradient mask m suppresses harmful directions
in the task vector τA while preserving those aligned with the target model.

where ⊙ denotes the element-wise multiplication. This vector δ⋆ represents a reliable transfer of
τA onto θB , since it filters out all components of τA that are misaligned with the true adaptation
directions of B. In practice, however, τB (and thus δ⋆) is unavailable because it requires access to
the fine-tuned target model θftB , which defeats the purpose of transporting the solution from A to B.
To approximate this ideal mask, we consider the gradient of the zero-shot target model as a surrogate
for τB , indicating locally beneficial directions:

g := ∇θL(θB), L(θ) := E(x,y)∼D[ℓ(fθ(x), y)], (3)

where ℓ is the training objective (e.g., cross-entropy) and (x, y) is a labeled example from D. Based
on this gradient, we define the gradient-sign mask m, which retains only the components of τA
whose sign matches that of the corresponding gradient coordinate:

mi := 1{sign(τA,i) = sign(gi)}. (4)

Intuitively, g acts as a signal for local alignment with the loss geometry of B. Notably, in the ideal-
ized setting where B is fine-tuned using full-batch gradient descent for a single epoch, the resulting
task vector τB is exactly proportional to −g, so the gradient-sign mask coincides with the oracle.
This observation provides a clear justification for using the gradient-sign mask as an approxima-
tion of the ideal update, even when only a few labeled examples are available. The gradient-sign
mask selectively retains only the components of τA whose sign matches the gradient of L(θB), ef-
fectively pruning coordinates that would increase the loss for the target model B. In this way, the
gradient-sign mask provides a practical surrogate for the trajectory-informed directions encoded in
the unavailable τB , capturing the locally beneficial update directions without requiring access to the
fully fine-tuned target model.

4.2 TRANSPORTING THE UPDATE

Given the gradient-sign mask m from Eq. (4), we define the updated target parameters by directly
applying the masked task vector with a scaling factor α > 0:

θtrans
B = θB − δA, δA := α (m⊙ τA), (5)

It is important to note that τA points in a descent direction for model A, whereas the gradient g
of the target model points in the ascent direction of its loss. By subtracting the masked vector δA,
we ensure that each retained component moves opposite to the ascent direction of B, producing
a descent-aligned update, whereas δ⋆ already points in the descent direction since it is computed
directly from τB .

Descent guarantee. To understand why such a gradient masking provides effective transfer, we
analyze its effect on the loss of the target model B. Consider the transported update from Eq. (5),
by expanding the target loss L around θB via a first-order Taylor approximation we obtain:

L(θB − αδA) ≈ L(θB)− αg⊤δA, where g = ∇θL(θB). (6)

The sign of the inner product g⊤δA determines whether the update increases or decreases the loss
to first order. By construction, the gradient-sign mask m retains only components of τA that are
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aligned with g. Concretely, for each coordinate i, we have:

gi · (miτA,i) = mi|gi| |τA,i| ≥ 0, (7)

so that the overall inner product satisfies the following:

αg⊤δA = α
∑
i

mi|gi| |τA,i| ≥ 0. (8)

Thus, this implies that, for sufficiently small α, the update δA is guaranteed to be a descent direction
for L. Practically, the mask removes all sign-mismatched components of τA, so that every retained
entry contributes positively to reducing the loss. Without masking, τA could contain harmful direc-
tions that increase the loss for B; with masking, the transported update is locally aligned with the
descent geometry of the target model.

4.3 LIMITED DATA REGIME

In Sec. 4.1, we have assumed access to the full target dataset D to compute the gradient g at the
zero-shot target model θB . In practice, one of the main motivations for task vector transport is the
few-shot or limited data regime. If we had access to the entire dataset, we could directly fine-tune
θB to obtain θftB , making task vector transfer efficient but sub-optimal.

When only a small number of samples is available, we estimate the gradient signs using a subset of
labeled examples. Let Ds ⊂ D denote a small subset of N samples. For each parameter coordinate
i, we compute the sign of the gradient via majority voting across these samples:

ŝi = sign

(∑
(xn,yn)∈Ds

sign (∇θℓ(fθB (xn), yn))

)
. (9)

Lemma (Concentration of Majority Vote Sign Estimator). Let pi = Pr[sign(∇θℓ(fθB (x), y)) =
sign(τB,i)] denote the probability that a single-sample gradient aligns with the oracle task vector
τB . Then, under mild independence assumptions, pi > 1/2, and the majority vote estimator satisfies
the following:

Pr [sign(gi) = sign(τB,i)] ≥ 1− exp
(
−2N(pi − 1/2)2

)
, (10)

which shows that the estimated sign concentrates around the true gradient direction as the number
of samples N grows.

We provide a proof of this lemma in Appendix A, which makes use of Hoeffding’s inequality (Ho-
effding, 1963). In practice, even a few samples provide a robust estimate of the true gradient di-
rection. Each gradient acts as a “vote” for the correct sign, and majority voting filters out noisy
or conflicting directions. This guarantees that, with high probability, the masked task vector δmask

B
points in a descent direction, preserving the first-order loss reduction property of the full-data up-
date. As shown in Sec. 5.2, this approach is robust to small sample sizes, making it particularly
attractive when direct fine-tuning of θB is expensive or prone to overfitting.

Algorithm 1 outlines the gradient-sign masked task vector transport procedure, showing how the
source task vector is selectively applied to the target model using only a small subset of labeled data.

5 EXPERIMENTAL RESULTS

Implementation details. For the Vision Settings, we consider CLIP ViT-B/16 and ViT-L/14 Vision
Transformers (Radford et al., 2021), implemented in Open-CLIP (Cherti et al., 2023). The original
pre-trained weights are denoted θA and the target model weights θB . For ViT-B/16, θA was pre-
trained on Datacomp XL (s13b, b90k) and θB on LAION-2B (s34b, b88k). For ViT-L/14, θA
was pre-trained on Datacomp XL (s13b, b90k) and θB on LAION-2B (s32b, b82k). For the
Language Settings, we investigated different Text-To-Text Transfer Transformer (T5) (Raffel et al.,
2020) models in the base configuration. As θA, we used T5v1.1, pre-trained on the C4 (Raffel
et al., 2020) dataset without any supervised training. For θB , we used FLAN-T5 (Chung et al.,
2024), pre-trained and instruction-tuned on several datasets, including GSM8K (Cobbe et al., 2021),
AQUA-RAT (Ling et al., 2017), and LAMBADA (Paperno et al., 2016). Task vectors were obtained
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Algorithm 1 Gradient-Sign Masked Transport

Require: Source model θA, θ
ft
A , target model θB , target data subset Ds, scaling α.

Ensure: Transported model θtransB

1: Compute source task vector: τA ← θftA − θA
2: for (xn, yn) ∈ Ds do
3: g(n) ← ∇θℓ(fθB (xn), yn)

4: Compute gradient signs ŝi by majority voting ▷ Eq. (9)
5: Build gradient-sign mask: mi ← 1{sign(τA,i) = ŝi}
6: Compute transported update: δA ← α (m⊙ τA)
7: return θtransB ← θB − δA ▷ Updated target model

Table 1: Cross-dataset performance comparison between ViT-B/16 and ViT-L/14 models.

EUROSAT SVHN GTSRB RESISC45 DTD
Model |Dc

s| B/16 L/14 B/16 L/14 B/16 L/14 B/16 L/14 B/16 L/14
θB zero-shot - 49.41 62.80 50.58 37.28 48.29 56.12 67.98 73.12 55.96 63.35
θB fine-tune - 98.70 98.95 97.45 97.80 98.65 99.16 95.66 97.06 83.19 83.56
θB + τA - 49.58 62.77 50.84 39.09 49.31 56.03 67.87 73.49 56.27 63.56
θB + δ⋆ - 95.06 96.75 92.04 92.60 82.92 88.65 87.06 90.30 71.44 72.66
TransFusion - 50.12 63.21 53.26 37.38 50.24 56.78 67.99 73.36 56.70 64.10

θoptB 1 56.61 64.65 61.32 62.51 56.08 63.97 69.25 74.54 56.21 63.76
θB − δA 1 61.94 69.67 71.07 70.15 60.88 66.82 70.05 76.45 58.32 65.50

θoptB 2 59.49 70.76 62.01 45.23 61.70 69.91 71.20 76.62 57.00 64.97
θB − δA 2 65.07 74.10 70.19 54.31 64.33 71.55 71.42 76.97 58.51 66.10

θoptB 5 61.99 69.75 67.03 67.11 63.08 73.25 73.01 75.41 59.65 66.72
θB − δA 5 66.05 75.59 73.59 74.41 66.61 73.14 71.57 76.82 60.02 66.95

following the fine-tuning protocol of Ilharco et al. (2023): 2000 iterations, batch size 128, learning
rate 1× 10−5, cosine annealing with 200 warm-up steps, AdamW optimizer (Loshchilov & Hutter,
2019), weight decay 0.1. The text encoder backbone was kept frozen following Cherti et al. (2023).

Baselines. We evaluate our method against several baselines. As a lower bound, we consider the
zero-shot target model (θB zero-shot), i.e., the base model without any fine-tuning. As an upper
bound, we report θB+δ⋆, obtained by adding the source task vector τA masked with the signs of the
true task vector τB to the target model. We also include the performance of the fully fine-tuned target
model (θB fine-tune) and the naive task arithmetic transport (θB + τA). In addition, we compare
against TransFusion (Rinaldi et al., 2025), which transports task vectors across transformer-based
models via permutation alignment. Finally, we report the accuracy of a target model fine-tuned with
the same number of randomly sampled examples per class |Ds| used by our approach.

Supervision Budget Ds. In all experiments, the subset Ds is drawn from the full downstream fine-
tuning dataset D and constitutes only a fraction of its size. Throughout the tables, |Dc

s| indicates
the number of examples per class used to estimate gradient signs for the target model θB . The
corresponding proportions of D used to form Ds are provided in Appendix C.

5.1 TRANSPORT EXPERIMENTS

Transport in the Vision Setting. Tab. 1 summarizes the results of task vector transport across CLIP
ViT-B/16 and CLIP ViT-L/14 architectures, averaged over multiple random seeds that determine the
composition of the sampled Ds (standard deviations are reported in Appendix B.3). Our GradFix ,
denoted by θB−δA, yields a consistent improvement over naive task vector addition (θB+τA) even
when using a single sample per class to approximate true gradient signs. Notably, the naive addition
performs nearly at the level of zero-shot initialization and fails to transfer meaningful task knowl-
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Table 2: Cross-dataset performance of T5 models on different NLP tasks
Model |Dc

s| SNLI MNLI RTE QNLI SCITAIL AVG
θB zero-shot - 34.24 35.21 47.20 50.54 50.38 43.51
θB fine-tune - 88.20 86.30 84.40 92.79 95.32 89.40
θB + τA - 31.61 30.75 47.36 50.52 50.46 42.12
θB + δ∗ - 58.69 69.97 72.93 65.32 62.38 65.86

θoptB 50 35.09 26.05 47.29 51.45 51.78 42.33
θB − δA 50 68.06 49.68 54.25 60.50 59.89 58.48

Table 3: Performance of θB with oracle or estimated gradient signs under different mask strategies:
agreement retains matching signs, force agreement aligns all signs, and random assigns signs
uniformly. Results averaged over seeds with |Dc

s| = 1 on CLIP ViT-B/16.

Model Mask Strategy EUROSAT RESISC45 GTSRB SVHN DTD AVG
θB zero-shot - 49.41 67.98 48.29 50.58 55.96 54.45
θB fine-tune - 98.70 95.66 98.65 97.45 83.19 94.73

θB + δ⋆
force agreement 97.95 93.51 95.94 96.60 80.59 92.92

agreement 95.06 87.06 82.92 92.04 71.44 85.71

θB − δA
force agreement 61.32 70.10 60.91 70.52 58.05 64.18

agreement 61.94 70.05 60.89 71.07 58.32 64.45

θB − δA random 49.49 67.97 48.41 50.54 56.06 54.50

edge. This confirms that GradFix effectively suppresses misaligned components of τA, preventing
negative transfer due to pre-training mismatch.

To further evaluate our approach, we compare it against few-shot fine-tuning of θB , denoted as θoptB ,
using the same limited target samples. GradFix achieves better performance, on both ViT-B/16
and ViT-L/14, while exhibiting smaller variance across seeds with respect to few-shot fine-tuning.
Moreover, as the Ds size increases, our method continues to provide stable gains, whereas θoptB suf-
fers from fluctuations and instability due to the composition of the supervision dataset. These results
demonstrate that our approach ensures consistent and reliable task vector transport, remaining stable
across different subsetsDs. Importantly, this robustness is achieved with a single forward–backward
pass to obtain the mask m, highlighting the efficiency and simplicity of the proposed method.

Transport in the Language Setting. Tab. 2 reports results on task vector transport across T5
models evaluated on closed-vocabulary text classification benchmarks. While direct addition of
τA to θB fails to transfer knowledge effectively, our method substantially closes the gap toward full
fine-tuning, confirming its ability to identify and retain task-relevant directions. Notably, the relative
improvement over naive transfer is even larger than in the vision setting, underscoring the robustness
of our approach in domains where task transfer is especially challenging. This demonstrates that the
benefits of GradFix are not confined to vision, and that a single forward–backward pass suffices to
enable reliable and efficient task vector transport also in the language domain.

5.2 MASKING STRATEGIES

To analyze the effect of different mask sign strategies on the transport of the task vector τA, we
compare our mask construction method, denoted agreement, with two alternatives: force agree-
ment and random masks. Tab. 3 reports results using 1 sample per class on ViT-B/16, averaged
across multiple random seeds. As reference points, we include the zero-shot base model (θB) and
the fully fine-tuned model (θB fine-tune), providing lower and upper bounds on performance.

For both δA and δ⋆, the mask m determines which directions of τA are retained Eq. (5). In agree-
ment, m retains only the coordinates whose signs match those of the reference as in Eq. (4). In
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force agreement, all signs of τA are aligned with the signs of the gradient s, obtaining the mask:

mfa
i = sign(τA,i) · ŝi, (11)

flipping any entries that disagree with the reference. When the oracle τB is used as the reference,
force agreement generally outperforms agreement, as fully leveraging the true task direction max-
imizes transfer. In contrast, using few-shot gradient-based estimates from θB , agreement performs
slightly better than force agreement. This is consistent with the fact that the gradient-based estimate
is noisy. Forcing all directions can propagate errors, while keeping only agreeing entries provides
a more reliable mask. Finally, we evaluate random masks, where the signs are randomly sam-
pled from a uniform distribution U{−1,+1}. The random masks yield performance close to the
zero-shot baseline, confirming that unstructured perturbations provide no meaningful guidance.

5.3 SUBSET DATA SELECTION

In the previous experiments, we randomly selected the subset Ds from D. Here, we evaluate differ-
ent heuristics, including random, herding, k-medoids, and coreset, for constructing Ds to estimate
gradient signs, aiming to understand how subset selection impacts the accuracy and efficiency of
gradient estimation. Each strategy is evaluated at b ∈ {1, 2, 5, 10, 20} examples per class. For
herding (Rebuffi et al., 2016; Harvey, 2014), k-medoids (Kaufman & Rousseeuw, 1987), and core-
set (Sener & Koltun, 2018), images are embedded using the frozen CLIP image encoder of the
source model θA. Let f denote this frozen image encoder, normalized features are computed as
z(x) = f(x)/∥f(x)∥, and let Dc := {(x, y) ∈ D | y = c}.
Random. Sample uniformly from D without replacement.

Herding. Greedily select representatives Dc
s ⊆ Dc of size b to match the class mean feature by

minimizing the discrepancy of the running average:

Dc
s = argmin

|Dc
s|=b

∥∥∥µc −
1

|Dc
s|
∑
x∈Dc

s

z(x)
∥∥∥
2
, µc :=

1

|Dc|
∑
x∈Dc

z(x). (12)

k-Medoids. Select Dc
s ⊆ Dc of size b that minimizes the in-class assignment cost under distance d:

Dc
s = argmin

|Dc
s|=b

∑
x∈Dc

min
s∈Dc

s

d
(
z(x), z(s)

)
. (13)

Coreset (medoid-proximity greedy). Adopt a medoid-proximity greedy selection within Dc:

(i) Seed: s1 = argmin
j∈Dc

∑
k∈Dc

d (z(j), z(k)) ,

(ii) Greedy: st = argmin
j∈Dc\Dc

s,t−1

min
s∈Dc

s,t−1

d (z(j), z(s)) , t = 2, . . . , b,
(14)

where Dc
s,t−1 = {s1, . . . , st−1} denotes the set of already selected samples. This strategy em-

phasizes prototypical samples to reduce variance in small budgets and is closely related to coreset
selection for active learning (Sener & Koltun, 2018).

For each dataset and budget b, Ds =
⋃

cDc
s, gradient signs are estimated as discussed in Sec. 4.3

using majority-vote aggregation, and masked transport is applied to θB . We report in Fig. 2 the
accuracy for each strategy as a function of images per class, with standard deviation across random
seeds for the random baseline. Across datasets and budgets, structured selectors (coreset, herding,
k-medoids) often provide small but consistent gains over random selection in the few-shot regime.
Yet, random selection remains a strong baseline, with performance approaching that of structured
methods as b increases, while incurring no memory or computation overheads from embedding or
distances pre-computation. Importantly, this shows that our approach remains effective even when
the subset Ds is chosen at random, validating its applicability in strict few-shot settings where so-
phisticated selection strategies are infeasible. Trends are stable across seeds, with variance shrinking
as b grows. Finally, structured methods require access to the full target datasetD, which is unrealistic
in scenarios such as privacy-constrained or large-scale settings.
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Figure 2: Accuracy at different numbers of images per class for various Ds construction heuristics.
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Figure 3: Accuracy at different α values for mean and majority voting sign selections.

5.4 SENSITIVITY TO THE SCALING COEFFICIENT

We investigate the sensitivity of masked transport to the scaling factor α ∈ (0, 1], providing a proxy
for how compatible and robust the transported task vector is with the target backbone. In addition to
our proposed majority voting strategy, we consider a baseline where the estimated sign is taken as
the sign of the averaged gradients (mean). Results are reported in Fig. 3.

Across datasets, majority voting consistently outperforms the mean strategy for all values of α,
providing a more reliable approximation of the true gradient sign. Notably, majority voting yields
smooth performance curves without sudden drops, and maintains higher accuracy over a broader
range of α. This difference arises from the aggregation mechanism; averaging gradients before
thresholding is highly sensitive to variance and outliers, so even a small subset of misaligned samples
can flip the estimated sign and destabilize updates as α grows. Majority voting, instead, depends
only on the relative frequency of signs, which concentrates rapidly around the true direction with
increasing samples (as shown in Appendix A). As a result, it is inherently more stable and preserves
transfer accuracy even in few-shot or noisy regimes.

From a practical perspective, this robustness means that masked transport with majority voting does
not require fine-grained tuning of α to achieve good performance. The method remains effective
across a wide range of scaling choices, which is particularly valuable when adapting to new datasets
where validation data or tuning budgets are limited.

6 CONCLUSIONS & FUTURE WORKS

In this work, we show that the sign structure of gradients provides a powerful and reliable proxy for
the ideal directions of the loss landscape of a fine-tuned model. The exceptional performance of our
oracle-based approach, which uses the signs of the true task vector, validates this core insight, con-
firming that effective transfer is possible when the transported task vector is aligned with the target
model’s local loss geometry. GradFix successfully approximates this oracle, achieving significant
gains and outperforming naive transfer by using only a handful of labeled samples to estimate gradi-
ent signs. While our approach is highly effective and robust in low-data regimes, the remaining gap
between our method and the oracle highlights clear avenues for future research. Specifically, future
work could focus on developing more advanced strategies for estimating gradient signs to better ap-
proximate the ideal oracle, exploring different data selection heuristics, or applying this framework
to other architectures and transfer learning settings.
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REPRODUCIBILTY STATEMENT

We provide the codebase in supplementary material to replicate of our results. All hyperparameters
used in our experiments are detailed in the appendix. Additionally, we provide complete proofs for
all claims made in the paper, ensuring that our results and statements can be independently verified.
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APPENDIX

A GRADIENT SIGN ESTIMATOR GUARANTEE

We formalize why majority-vote estimation of gradient signs provides a reliable proxy for the true
gradient direction in the limited-data regime.
Lemma (Majority-Vote Gradient Sign). Let gi := ∇θiLB(θB) denote the true gradient of the target
loss with respect to parameter θB , and let g(n)i be i.i.d. per-sample gradients:

g
(n)
i = gi + ε

(n)
i , E[ε(n)i ] = 0, (15)

where ε
(n)
i is symmetric noise around zero. Define

pi := Pr
[
sign(g

(n)
i ) = sign(gi)

]
, (16)

where pi represents the probability that the sign of a single per-sample gradient g(n)i matches the
true gradient gi.

Then, for all i with gi ̸= 0, pi > 1/2.

In particular, the majority-vote estimator:

ŝi := sign

(
N∑

n=1

sign(g
(n)
i )

)
(17)

recovers the correct sign with probability, via Hoeffding’s inequality, of:

Pr[ŝi = sign(gi)] ≥ 1− exp
(
−2N(pi − 1/2)2

)
. (18)

Proof. We divide the proof into two parts.

Step 1: Bias of single sample signs.

Define the indicator random variable Xn := 1{sign(g(n)i ) = sign(gi)} ∈ {0, 1}. The success
probability of a single sample is pi = Pr[Xn = 1] = Pr[sign(g

(n)
i ) = sign(gi)].

Without loss of generality, assume gi > 0. The event of a successful sign match is g(n)i > 0, which
can be rewritten as gi + ε

(n)
i > 0, or ε(n)i > −gi. Since the noise ε(n)i is symmetric around zero, we

know that Pr[ε(n)i > 0] = Pr[ε
(n)
i < 0] = 1/2. Because gi > 0, the interval (−gi, 0) is non-empty.

The probability of the noise falling into this interval, Pr[−gi < ε
(n)
i < 0], is positive; therefore, the

total probability of success is:

pi = Pr[ε
(n)
i > −gi]

= Pr[ε
(n)
i > 0] + Pr[−gi < ε

(n)
i < 0]

= 1/2 + Pr[−gi < ε
(n)
i < 0]

Since Pr[−gi < ε
(n)
i < 0] > 0, it follows that pi > 1/2.

Step 2: Concentration of majority vote.

The majority-vote estimator ŝi succeeds if

N∑
n=1

Xn > N/2. (19)

Now, we bound the probability of failure, which is the event that the sum of correct sign estimates
is less than or equal to N/2. We can express this event as a deviation from the expected value of the
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sum. The expected value of the sum is E
[∑N

n=1 Xn

]
=
∑N

n=1 E[Xn] = Npi. Thus, the deviation
is:

N∑
n=1

Xn − E

[
N∑

n=1

Xn

]
=

N∑
n=1

Xn −Npi (20)

If we rewrite the event of failure,
∑N

n=1 Xn ≤ N/2, in terms of this deviation we obtain:
N∑

n=1

Xn −Npi ≤ N/2−Npi = −N(pi − 1/2) (21)

According to Hoeffding’s inequality (Hoeffding, 1963) for a sum of i.i.d. random variables Xn ∈
[0, 1], we have:

Pr

(
N∑

n=1

Xn −Npi ≤ −N(pi − 1/2)

)
≤ exp

(
−2 (N(pi − 1/2))

2∑N
n=1(1− 0)2

)
(22)

The denominator simplifies to
∑N

n=1 1
2 = N . Substituting this back into the inequality gives:

Pr

[
N∑

n=1

Xn ≤ N/2

]
≤ exp

(
−2N2(pi − 1/2)2

N

)
= exp

(
−2N(pi − 1/2)2

)
(23)

The probability of correct recovery is the complement of this failure probability:

Pr[ŝi = sign(gi)] = Pr

[
N∑

n=1

Xn > N/2

]
= 1− Pr

[
N∑

n=1

Xn ≤ N/2

]
(24)

Therefore, we obtain the final bound:

Pr[ŝi = sign(gi)] ≥ 1− exp
(
−2N(pi − 1/2)2

)
(25)

This result formalizes the intuition that, under mild assumptions on per-sample gradient noise, the
majority-vote sign over a small batch of samples provides a reliable approximation to the true gra-
dient direction. The probability of correct recovery grows exponentially with both the number of
samples N and the signal-to-noise ratio pi − 1/2. In practice, this guarantees that even very few
labeled samples suffice to construct a gradient-sign mask that preserves most of the descent-aligned
components of the source task vector.

B ADDITIONAL RESULTS

B.1 SIGN AGREEMENT ANALYSIS
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37.9 38.8 41.4 42.0 43.2 43.7 43.8 43.6
37.0 37.8 40.4 41.2 42.6 42.5 42.6 43.1
34.5 36.5 39.5 40.3 40.4 41.3 41.7 41.3

SVHN

1 2 4 8 16 32 64 128
Images per Class

44.6 41.4 44.3 43.7 43.8 46.5 45.8 46.7
44.1 42.1 43.0 43.2 43.5 43.8 43.5 44.0
44.4 42.7 43.3 44.1 44.0 44.4 45.0 45.9
44.4 43.2 43.0 44.2 45.0 45.4 45.7 45.9
45.1 41.5 42.8 44.3 44.7 45.6 45.5 46.1
45.4 42.7 43.8 45.3 46.4 46.8 46.6 47.2
45.0 43.3 44.6 45.6 46.3 46.5 46.5 47.1
45.5 43.3 44.4 45.0 45.5 45.6 46.1 46.0
45.2 43.6 44.8 45.0 46.1 46.4 46.9 46.9
45.0 42.4 43.6 45.1 45.7 46.0 46.2 46.2
45.5 43.9 44.1 45.1 45.4 46.4 46.1 46.6
46.6 44.0 45.4 46.2 46.6 46.6 47.1 47.2

RESISC45

1 2 4 8 16 32 64 128
Images per Class

43.7 40.6 43.1 45.7 44.8 45.4 46.2 46.2
44.2 41.1 43.0 44.8 45.6 46.8 47.0 47.0
44.1 41.9 44.1 45.1 46.1 47.5 47.3 47.3
44.2 42.1 44.3 45.1 45.3 46.5 47.1 47.1
45.0 43.0 45.0 45.2 47.0 47.9 48.1 48.1
44.5 42.8 44.5 45.5 46.6 47.4 47.6 47.6
45.0 42.9 45.1 45.5 47.1 47.4 47.8 47.8
45.5 44.1 45.5 47.2 48.7 48.9 49.9 49.9
45.4 44.6 45.8 46.8 48.0 49.4 49.8 49.8
44.6 44.0 45.5 46.8 47.9 48.4 48.6 48.6
46.2 46.2 47.2 47.7 48.9 49.3 49.4 49.4
46.6 45.6 47.6 48.4 49.4 50.4 50.2 50.2
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Figure 4: Sign agreement per block for ViT-B/16. The heatmaps show the percentage of sign agree-
ments between the m∗ and m constructed by computing the signs of the gradients at different |Ds|
budgets.
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To understand the nature of the misalignment between source and target models, we show in Fig. 4
a heatmap of gradient sign agreement. Specifically, we computed the element-wise agreement be-
tween the signs of the target task vector (τB) and the estimated gradients at different data budgets.

This heatmap reveals that agreement is not uniform across different layers, and there is no simple,
global sign correlation. This observation provides a direct explanation for the failure of naive task
vector transfer. Without a mechanism to correct for this misalignment, simply adding the task vector
introduces harmful directions that degrade performance. Our method, in contrast, actively addresses
this by using the target model’s gradients to construct a mask, ensuring that only the useful com-
ponents of the task vector are transferred and aligned with the target loss landscape. Tabs. 5 and 6
demonstrate that δA consistently matches or outperforms θoptB across both ViT-B/16 and ViT-L/14
models, even at larger |Ds| budgets. Moreover, δA exhibits substantially lower standard deviation
across seeds, confirming its robustness to the random choice of supervision data and its efficiency
compared to direct fine-tuning under identical data constraints.

B.2 HYPEPARAMETERS SELECTION

We evaluated the optimal task vector application coefficient α using the validation set of each
dataset. For δ∗, the optimal α is equal to 1 across all datasets. In Tab. 4, we summarize the coeffi-
cients corresponding to the optimal performance of δA for each dataset. θopt

B are obtained for each
dataset by training with the AdamW optimizer (learning rate 1e−5) on the corresponding dataset
Ds used to compute the gradient mask m, with a single step of gradient descent.

Architecture EUROSAT SVHN GTSRB RESISC45 DTD
ViT-B/16 0.3 0.3 0.6 0.2 0.7
ViT-L/14 0.4 0.5 0.5 0.2 0.5

Architecture SNLI MNLI RTE QNLI SCITAIL
T5v1.1 0.3 0.1 0.2 0.1 0.7

Table 4: Optimal hyperparameters for δA on different CLIP and T5 architectures.

B.3 ADDITIONAL VISION RESULTS

Table 5: Cross-dataset performance of ViT-B/16 (A: datacomp xl s13b b90k, B: laion2b
s32b b82k) models averaged across different seeds initializations

Model |Dc
s| EUROSAT RESISC45 GTSRB SVHN DTD AVG

θB zero-shot 49.41 67.98 48.29 50.58 55.96 54.45±7.30
θB fine-tune 98.70 95.66 98.65 97.45 83.19 94.73±5.94
θB + τA 49.58 67.87 49.31 50.84 56.27 54.78±7.05
θB + δ∗ (oracle) 95.06 87.06 82.92 92.04 71.44 85.71±8.30

θoptB 1 56.61±6.06 69.25±0.96 56.08±2.87 61.32±4.09 56.21±0.88 59.89±6.05
θB − δA 1 61.94±0.43 70.05±0.56 60.88±2.85 71.07±1.82 58.32±0.30 64.45±5.47
θoptB 2 59.49±1.43 71.20±1.13 61.70±0.76 62.01±4.40 57.00±0.54 62.29±5.31
θB − δA 2 65.07±1.10 71.42±0.90 64.33±1.05 70.19±4.55 58.51±0.10 65.96±5.06
θoptB 5 61.99±7.29 73.01±0.48 63.08±1.41 67.03±3.93 59.65±0.80 64.95±5.81
θB − δA 5 66.05±1.21 71.57±0.88 66.61±0.42 73.59±0.82 60.02±0.20 67.57±4.96
θoptB 10 59.98±3.77 72.27±1.65 64.54±1.12 67.85±1.02 60.96±0.33 65.12±4.97
θB − δA 10 66.59±1.83 72.05±0.59 66.02±1.59 74.82±1.22 60.18±0.40 67.93±5.38
θoptB 20 60.59±3.94 74.22±0.66 65.51±0.80 67.19±0.65 62.59±0.08 66.02±5.10
θB − δA 20 67.05±0.41 72.29±0.14 66.42±0.47 74.11±0.59 60.92±0.08 68.15±4.84
θoptB 50 58.80±2.45 75.88±0.83 64.91±0.53 67.58±2.91 64.13±0.11 66.26±5.97
θB − δA 50 66.94±0.46 72.26±0.22 66.13±0.14 74.07±1.52 61.35±0.03 68.15±4.75
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Table 6: Cross-dataset performance of ViT-L/14 (A: datacomp xl s13b b90k, B: laion2b
s32b b82k) models averaged across different seeds initializations

Model |Dc
s| EUROSAT RESISC45 GTSRB SVHN DTD AVG

θB zero-shot 62.80 73.12 56.12 37.28 63.35 58.53±12.35
θB fine-tune 98.95 97.06 99.16 97.80 83.56 95.31±6.13
θB + τA 62.77 73.49 56.03 39.09 63.56 58.99±11.80
θB + δ∗ (oracle) 96.75 90.30 88.65 92.60 72.66 88.19±8.52

θoptB 1 64.65±5.90 74.54±0.57 63.97±4.50 62.51±4.58 63.76±0.27 65.89±5.61
θB − δA 1 69.67±1.44 76.45±1.33 66.82±0.84 70.15±5.18 65.50±0.74 69.72±4.46
θoptB 2 70.76±1.77 76.62±0.26 69.91±1.89 45.23±1.87 64.97±0.21 65.50±11.23
θB − δA 2 74.10±2.00 76.97±0.68 71.55±2.73 54.31±2.54 66.10±0.59 68.61±8.44
θoptB 5 69.75±1.64 75.41±2.94 73.25±0.62 67.11±2.39 66.72±0.13 70.45±3.86
θB − δA 5 75.59±2.24 76.82±0.48 73.14±1.23 74.41±2.22 66.95±0.69 73.31±3.88
θoptB 10 70.36±3.82 78.07±1.76 74.11±0.31 60.43±3.68 69.36±0.27 70.46±6.45
θB − δA 10 73.74±1.58 77.59±0.57 74.94±0.73 75.88±2.80 67.41±0.48 73.77±3.86
θoptB 20 78.74±2.96 80.77±1.17 74.65±0.28 65.99±2.12 71.40±0.35 74.31±5.65
θB − δA 20 74.87±0.71 78.16±0.33 74.90±0.55 75.79±0.90 67.55±0.24 74.15±3.83
θoptB 50 77.07±1.66 82.16±0.31 75.38±0.45 67.83±1.64 73.81±0.08 75.25±4.90
θB − δA 50 74.75±0.89 78.27±0.18 74.61±0.91 76.79±1.26 67.77±0.01 74.27±3.86

C DATASETS AND SUPERVISION PROPORTIONS

In this section, we provide detailed information about the datasets used in our experiments and
compute, for each one, the supervision proportions corresponding to our subset budgets |Ds|. Recall
that |Ds| denotes the number of labeled examples per class used to estimate gradient signs. The
resulting percentages indicate what fraction of the full training set those few-shot budgets represent.

C.1 VISUAL DATASETS

• EuroSAT: A dataset based on Sentinel-2 satellite images covering 13 spectral bands, con-
sisting of 27 000 labeled and geo-referenced samples across 10 classes (Helber et al., 2019).

• SVHN: A real-world image dataset from Google Street View house numbers, containing
73 257 labeled digits across 10 classes (0–9) (Netzer et al., 2011).

• GTSRB: The German Traffic Sign Recognition Benchmark, comprising 39 209 training
images and 12 630 test images across 43 classes (Stallkamp et al., 2011).

• RESISC45: A scene classification dataset with 31 500 RGB images 256×256 from Google
Earth, covering 45 scene classes with 700 images per class (Cheng et al., 2017).

• DTD: The Describable Textures Dataset, consisting of 5640 images organized into 47 cat-
egories inspired by human perception (Cimpoi et al., 2014).

Table 7: Supervision proportions for visual datasets. |Ds| denotes examples per class. Each cell
shows the total dataset percentage.

|Ds|
Dataset # Samples Classes 1 2 5 10 20 50

EUROSAT 27,000 10 0.04% 0.07% 0.19% 0.37% 0.74% 1.85%
SVHN 73,257 10 0.01% 0.03% 0.07% 0.14% 0.27% 0.68%
GTSRB 39,209 43 0.11% 0.22% 0.55% 1.10% 2.19% 5.48%
RESISC45 31,500 45 0.14% 0.29% 0.71% 1.43% 2.86% 7.14%
DTD 5,640 47 0.83% 1.66% 4.15% 8.30% 16.60% 41.49%

C.2 TEXTUAL DATASETS

• SNLI: Stanford Natural Language Inference dataset, containing 570 000 sentence pairs
labeled for entailment, contradiction, or neutral (Group et al., 2022).

• MNLI: Multi-Genre Natural Language Inference dataset, comprising 433 000 sentence
pairs annotated with textual entailment information across various genres (Williams et al.,
2018).
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• RTE: Recognizing Textual Entailment dataset, with 2490 examples for training, 277 for
validation, and 3000 for testing, divided into two classes (Wang et al., 2018).

• QNLI: Question Natural Language Inference dataset, containing 104 743 training exam-
ples divided into two classes (Wang et al., 2018).

• SCITAIL: A science entailment dataset built from science question answering, with 23 596
training examples divided into two classes (Khot et al., 2018).

Table 8: Supervision proportions for textual datasets. |Dc
s| denotes examples per class. Each cell

shows the total dataset percentage.
|Dc

s|
Dataset # Samples Classes 50

SNLI 570,000 3 0.03%
MNLI 433,000 3 0.03%
RTE 2,490 2 4.02%
QNLI 104,743 2 0.10%
SCITAIL 23,596 2 0.42%
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