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Abstract
Existing reinforcement learning (RL) methods
for large language models (LLMs) rely on static
prompt sets, where prompts are curated a priori,
and sampled in a fixed schedule for training, re-
gardless of their usefulness to the RL process.

We design eva, the first method that allows
LLMs to prioritize and adaptively create use-
ful prompts during RL training by reward signals.

In principle, eva (Evolving via Asymmetric Self-
Play) casts language model training as a game
between: (1) a creator, who samples and gen-
erates training prompts, and (2) a solver, who
generates responses to the prompts.

eva is simple, suits both offline and online RL for
LLMs, and sets a new state-of-the-art on challeng-
ing benchmarks without extra human prompts: it
improves gemma-2-9b-it’s win-rate on Arena-
Hard from 51.6% to 60.1% by DPO and 52.6%
to 62.4% by RLOO, surpassing claude-3-opus
and nearing gemini-1.5-pro, both are orders
of magnitude larger. Further ablation studies show
eva can induce meaningful learning curriculum,
and effectively scale RL for LLMs beyond static
human prompts.

1. Introduction
Long-lived artificial intelligence must deal with an ever-
evolving, open-ended world, however the current training
paradigm is restricted to being fairly short-lived and static.

This paper concerns the post-training paradigm of large
language models (LLMs), which is typically done in two
stages, imitation (i.e., supervised fine-tuning, SFT) and re-
inforcement learning (i.e., RL post-training). In particular,
we focus on the latter, which has led to remarkable success
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The Prioritized Prompt Evolving Principle

LLMs shall adaptively control training prompts by pri-
oritizing and generating useful prompts during RL.
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Figure 1: RL for LLMs as Asymmetric Self-Play. Conven-
tional training methods are restricted to pre-curated prompt
sets with fixed training schedules. We show that it is crucial
to adaptively control the prompt distribution by creating
and prioritizing more useful prompts. This is implemented
through a simple self-play scheme ( Algorithm 1), where the
creator is the newly introduced prompt generation policy
πX and the solver is the response generation policy πY |X ;
both interact with objectives driven by reward signals (§ 3).

in enhancing LLM capabilities (Team et al., 2023; 2024a;
2025). However, there is a fundamental issue in existing
practices: they restrict themselves within a pre-curated,
static prompt distribution during post-training.

This is sub-optimal and bottlenecks scaling properties w.r.t.:
(i) training efficiency: the existing paradigm treats all
prompts equally, despite their utility depending on the chang-
ing states of LLMs in training; as not all prompts contribute
equally, relying on a static set with a fixed training schedule
is inefficient. (ii) model generalizability: once the LLM
saturates on the static prompt set, learning stops, preventing
the model acquiring new skills or knowledge beyond the
predefined distribution.1

We thereby investigate the two questions:

1. (Signal) Which prompts should be prioritized during
RL training?

2. (Algorithm) How can we generate more useful prompts,
and use them to keep LLMs self-improving in RL?

1Literature has considered prompt evolving, but is restricted to
SFT (Xu et al., 2023), and/or evolves uniformly (Yuan et al., 2024).
We claim adaptive training w.r.t. reward signals are crucial.
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Figure 2: (Left) eva generalizes classical RL with open-ended RL for LLMs, by introducing a creator policy in training.
(Right) The creator strategically controls prompt distributions by generating new prompts after each mini-batch gradient
update (for online RL) or a complete dataset iteration (for offline RL), with a simple estimate, sample then evolve procedure,
where the usefulness of each prompt is estimated from reward signals. The solver is then trained on a mixture of the original
and evolved prompts. See the minimax-regret objective driving the game design and practical implementations in § 3.

To address them, we design eva (Evolving via Asymmetric
Self-Play), as in Figure 1, 2. Central to eva is an infinite
game with minimax-regret objectives, achieved by alternat-
ing optimization in creating prompts and solving them. We
detail the novelty of this work w.r.t. prior works in § 5, and
summarize our original contributions as:

1. Signal: We find reward advantage as an effective
signal to identify useful prompts in RL post-training.

2. Algorithm: We design eva, the first method that en-
ables LLMs to prioritize and adaptively create useful
prompts, for continual RL training and self-improving.

The rest of technical details are organized as follows: in
Problem 1, we formalize the problem of RL post-training
as a bilevel optimization over a creator policy and a solver
policy, which corresponds to the Stackelberg game (von
Stackelberg, 1934) in game theory. In § 3.2, we define the
objectives for the two players of the game by regret, for
which the solver minimizes and the creator maximizes, and
use its approximation by reward advantage for creator opti-
mization. In § 3.3, we discuss simple practical algorithms
of eva in both online and offline settings. In § 4, we run
extensive experiments showing eva universally improves
the performance of both online RL (e.g., RLOO, OAIF) and
offline RL (e.g., DPO, SPPO, SimPO, ORPO) for LLMs
and is SOTA on various challenging real-world benchmarks.

As we enter the new epoch where compute is moving from
training to data synthesis, the question on “how to put more
compute in generating better data” (Nishihara, 2025) is
more critical than ever. While existing works (Zelikman
et al., 2022; Gulcehre et al., 2023; Chow et al., 2024) pri-
marily focus on the exploration in Y | X , we perform the
first systematic study in exploration in (X ,Y) in RL for
LLMs, guided by carefully designed reward signals.

2. Preliminaries
Classical RL post-training (Ouyang et al., 2022) solves reg-
ularized optimization for a static prompt dataset D:

max
πθ

Ex∼D,y∼πθ(·|x)

[
r(x,y)

]
− Ex∼D

[
β · DKL

[
πθ(· | x) ∥ πbase(· | x)

]]
.

Here, πbase(·|x) is a base policy, x and y are prompts and
responses, D is a divergence measure. To approximate the
expectation over y, we employ Monte Carlo sampling by
generating k responses per prompt, y(1), . . . ,y(k) ∼ πθ(· |
x) (Sutton et al., 1998; Ahmadian et al., 2024). In this paper,
r(·) is the reward assumed to be from an oracle r⋆(·) and
is fixed during post-training (Team et al., 2024a); we use
the conventional term RLHF (reinforcement learning from
human feedback) interchangeably with RL (post-)training,
and focus on human preference optimization, i.e., AI align-
ment (Leike et al., 2018), in our experiments. Nevertheless,
the pipeline is compatible with any other reward types.

Conventionally, prompts x are scheduled in training either
sequentially or via i.i.d. uniform sampling. Prior works
explored active selection (Kawaguchi & Lu, 2020; Muldrew
et al., 2024) or prioritized sampling (Schaul et al., 2015; Lee
et al., 2022), but focus solely on existing data. In contrast,
eva introduces new prompt creation, enabling training with
improved coverage and complexity beyond the initial static
prompt set. Depending on how y is generated and labeled,
RL post-training methods can be described as: (i) online on-
policy, where y are generated on-policy (Team et al., 2024a);
and (ii) offline, where y are pre-generated by existing model
checkpoints (Xiong et al., 2024; Pang et al., 2024a). In this
paper, for online RLHF, we evolve prompts at each mini-
batch, while for offline RLHF, we construct a new prompt
set after each full iteration over the previous set.
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Problem 1 (Open-Ended RLHF) We define the problem of Open-Ended RLHF as the bilevel optimization on both a
prompt policy (the creator πϕ(x)) and a response policy (the solver πθ(y | x)):

ϕ⋆ ∈ argmax
ϕ

R
(
πϕ(·), πtrue(·);D,θ⋆(ϕ)

)
, (1)

s.t. θ⋆(ϕ) ∈ argmax
θ

Ex∼πϕ(·)

[
Ey∼πθ(·|x)

[
r(x,y)

]
− β · DKL

[
πθ(· | x) ∥ πbase(· | x)

] ]
. (2)

where πtrue is the (potentially unknown) true target prompt distribution, D is an optional artifact parameter (e.g., the
seed prompt distribution), and R(·) is a regularization function on the creator policy πϕ, which we discuss in detail
at § 3. The problem generalizes classical RLHF, and captures the dual objective that (i) response alignment: the
solver should perform well on the training prompt distribution while staying close to πbase, and (ii) prompt generation:
the creator should generate training prompts allowing the solver to perform robustly on target prompt distributions.

3. Method
3.1. The Problem: Open-Ended RLHF

Classical RLHF, as in § 2, samples prompts from a static
set D, which can have limited prompt coverage and com-
plexity (Fig. 11), and may diverge from true scenarios in
the open-ended world (Dennis et al., 2020; Parker-Holder
et al., 2022). In Problem 1, we introduce a prompt genera-
tion policy πϕ(·) to be optimized together with the response
generation policy πθ(·|x). An optimizable πϕ(·) brings a
few benefits: (i) during training, it allows dynamic adjust-
ment of training prompts on-the-fly, making it possible to
prioritize prompts that are more informative to the current
πθ(·|x), improving learning efficiency; (ii) at convergence,
it brings a new prompt distribution beyond the initial static
set, making it possible for πθ(·|x) to learn knowledge be-
yondD and perform more robustly on the target distribution.
The creator objectiveR(·) characterizes the optimization of
πϕ(·), preventing it from collapsing in trivial prompts and
guiding it towards true target prompts, which we discuss a
specific implementation by regret maximization in the next.

3.2. The Game: Minimax Regret Games

Problem 1 can be cast as a sequential game (von Stackelberg,
1934) by two strategic players optimizing each’s utility:

• Solver πθ(y | x), who generates responses that opti-
mize alignment given training prompts.

• Creator πϕ(x), who generates training prompts for
the solver to perform well in the real world, knowing
the solver will optimize over the generated.

A natural objective for the creator is to improve the solver’s
transfer performance (Bengio, 2012) on the true target
prompt distribution πtrue: the closer πϕ is to πtrue, the bet-
ter the solver performance is expected, thereby the higher
the utility the creator may receive. If πtrue is known, R(·)
can be instantiated by a f -divergence measure for distri-
bution matching with πtrue. This work considers the case

when πtrue is unknown a priori; the optimization then falls
into a standard decision under ignorance problem (Savage,
1951; Gustafsson, 2022). Several decision rules can be con-
sidered, e.g., randomization, that chooses training prompt
distribution uniformly (Jiang, 2023); in this paper, we study
Minimax Regret Rule, which finds a training distribution
that minimizes solver’s worst-case regret over all possible
distributions (see also § 4.2.1). We abuse the notation r to
denote the reward with KL penalty, and Regret is defined
as reward differences of πθ and optimal policy π⋆

θ:

Regret(πϕ, πθ) = Ex∼πϕ(·)

[
Ey∼π⋆

θ(·|x)
[
r(x,y)

]
−Ey∼πθ(·|x)

[
r(x,y)

]]
.

Problem 1 is then formulated as:

ϕ⋆ ∈ argmax
ϕ

Regret(πϕ, πθ⋆), (3)

s.t. θ⋆(ϕ) ∈ argmin
θ

Regret(πϕ, πθ). (4)

Note that (i) for solver optimization, Eq. 4 is equivalent to
Eq. 2 by definition, and (ii) for creator optimization, Eq. 3
approximates Eq. 1 with a worst-case optimal guarantee for
the solver’s policy, when πtrue is unknown.

Remark 1 Under mild assumptions, the (local) Nash equi-
librium is a (local) minimax point (Jin et al., 2020) for the
above optimization; here, at the (local) Nash equilibrium,
the solver follows a (local) minimax regret policy (Jiang,
2023), i.e., the solver’s regret is worst-case optimal.

The equilibrium finding of the game can be solved by al-
ternating optimization (Zhang et al., 2022). Intuitively, this
allows for the creation of evolving prompt distributions that
challenge the agent progressively for better generalization;
the regret objective ensures robustness on such evolving cur-
ricula by incentivizing agents to perform well in all cases,
providing a worst-case guarantee. In optimization, this
brings a sweet spot where the creator can create challenging
yet solvable prompts (i.e., neither too hard nor too easy) for
the solver, as illustrated in § H.3.
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Regret Minimization for the Solver. Any preference op-
timization algorithms can be used as a plug-in for the regret
minimization for the solver’s step in Algorithm 1.

Regret Maximization for the Creator. When it is direct
for the solver to minimize the regret by policy optimization,
the true optimal policy remains unknown during optimiza-
tion, and we must approximate it when using it as the utility
to incentivize the creator. Similar to heuristics in prior
works (Jiang et al., 2021b;a; Parker-Holder et al., 2022), we
use the advantage-based estimate for each x:

ˆRegret(x, πθ)← r(x,y+)− r(x,ybaseline), (5)

where
y+ := argmaxyi

r(x,y),

ybaseline := avgyi
r(x,y) or argminyi

r(x,y),

and {yi}i=1 is a set of responses sampled from πθ(· | x)
and r(·, ·) is the reward oracle. We choose arg avgyi

r(x,y)
for online RLHF, and argminyi

r(x,y) for offline RLHF,
based on consistent strong empirical gains observed across
extensive experiments. As the policy optimizes, the proxy
will approximate the true regret better2. We denote the
regret estimate (i.e., negated reward advantage) as the infor-
mativeness value for a prompt x w.r.t. θ,

infoθ(x) := ˆRegret(x, πθ). (6)

Directly doing gradient ascent on regret could lead to train-
ing instability (Zhang, 2023). In this work, we approximate
new prompt distributions that maximize regret by 3 steps:

1. Estimate informativeness for each prompt in the set.

2. Sampling a subset of high-regret prompts.

3. Generating new prompts by making variations on
those high-regret prompts.

The eva way of scalable regret maximization can relate
to curriculum RL (Parker-Holder et al., 2022), which finds
environments with high-regret levels, then edits within some
distance, or evolution strategies (Schwefel, 1977) which find
the most promising species, then mutate and crossover.

3.3. The Practical Algorithm

Algo 1 is an overview of eva where the creator constructs
new training prompts after a full iteration of the solver.

3.3.1. THE SOLVER STEP

This step is the classical preference optimization (Rafailov
et al., 2023). Take DPO as an example, for every prompt,

2This approximates the expectation over π⋆
θ by best observed re-

sponses, which introduces bias quantifiable by DKL[πθ∥π⋆]. Also,
single-sample estimation for πϕ introduces variance. See Liu et al.
(2023a) for discussions on sampling effects.

Algorithm 1 eva.

Input: initial policy πθ0 , initial set of prompt X0

1: for iteration t = 1, 2, . . . do

▽ /⋆ creator step ⋆/

2: estimate: Xt−1 ← {(xi, info(xi)) | xi ∈ Xt−1}
sample: X info

t−1 ← {xi drawn w.p. ∝ info(xi)}
evolve: Xt ← evolve(X info

t−1)

▽ /⋆ solver step ⋆/

3: generate: ∀ xi ∈ X info
t , {y(j)

i } ∼ πθt−1(· | xi)

annotate reward: X ′
t ← X info

t ∪ {(y(j)
i , r

(j)
i )}

optimization: θt ← θt−1 + η∇θJX ′
t
(θ)

4: end for
5: return final solver policy πθT

we sample n responses and annotate rewards, then take
the responses with the maximal and the minimal reward to
construct preference pairs and optimize upon.

3.3.2. THE CREATOR STEP

Plainly, the creator finds most useful prompts and generate
variants of them to approximate regret maximization.

Step 1: info(·) – estimate the informativeness. For each
x in the prompt set Xt, we generate responses, annotate
rewards and estimate the informativeness of x by Eq. 6.

Step 2: sample(·) – weighted sampling for an informative
subset. By using the informativeness metric as the weight,
we sample an informative subset X info

t to be evolved.

Step 3: evolve(·) – evolving for high-regret prompts.
eva is agnostic to and does not rely on any specific evolving
method (see empirical evidence in § H.1). We take Xu et al.
(2023) as a default baseline for offline RLHF, with in-depth
and in-breadth instructions for prompt re-writing.

As a side note, we discuss a useful technique below.

Prioritized Generative Buffer. While eva can operate
on the full D at once and iteratively train LLMs (i.e., offline
eva), the informativeness can become off-policy. Inspired
by Schaul et al. (2015), we design a simple prioritized gen-
erative buffer B that extends Algorithm 1 to be on-policy
and evolves per mini-batch (i.e., online eva), with:

1. Warm-up phase: we start with x fromD and populate
B with evolved prompts until it reaches size B.

2. Mix-up phase: training continues using a balanced
mix of samples from D and B (prioritized by informa-
tiveness) per mini-batch. New prompts are evolved and
added to B, while older ones are removed.

3. Bootstrap phase: Once D is exhausted, training relies
on B, continuing evolving and replacing prompts.

eva is easy to use and flexible to extend. We provide de-
tailed instructions for practitioners in the Appendix.

4



Reward-Guided Prompt Evolving in Reinforcement Learning for Large Language Models

4. Experiments
Datasets and models. We use UltraFeedback (Cui et al.,
2023) as the training dataset, which contains diverse high-
quality prompts that are primarily human-generated. We
use the instruction-finetuned GEMMA-2-9B (Team et al.,
2024b) as the base (θ0)3, which is a strong baseline for
models of its size. Note that we directly apply RL training
without SFT, as the base model is sufficiently capable.

Evaluation settings. We use: (i) AlpacaEval 2.0 (Dubois
et al., 2024), which assesses general instruction following
with 805 questions; (ii) MT-Bench (Zheng et al., 2023),
which evaluates multi-turn instruction following with 80
hard questions in 8 categories; (iii) Arena-Hard (Li et al.,
2024), which is derived from 200K user queries on Chatbot
Arena with 500 challenging prompts across 250 topics.

Optimization algorithms. We evaluate our method across
a wide range of six representative RLHF algorithms:

• Online RLHF: RLOO (Ahmadian et al., 2024), OAIF
(i.e., online DPO) (Guo et al., 2024).

• Offline RLHF: (with reference) DPO (Rafailov et al.,
2023), SPPO (Wu et al., 2024); (without reference)
SimPO (Meng et al., 2024), ORPO (Hong et al., 2024).

Oracle reward models. We take ARMORM-8B (Wang
et al., 2024) to be the default reward model for human-
preference proxy, with the below for ablation studies:

• Pointwise: ARMORM-8B (Wang et al., 2024),
SKYWORKRM-27B (Liu & Zeng, 2024).

• Pairwise: PAIRRM-0.4B (Jiang et al., 2023),
PAIRRM-8B (Dong et al., 2024).

4.1. Main Results

eva consistenly achieves strong self-improvement. As
in in Table 1 and 2, eva yields notable performance improve-
ment across different optimization algorithms, especially on
the more challenging and robust Arena-Hard benchmark (Li
et al., 2024). For example, eva brings 10.6% gain with DPO
in the offline setting, and 9.8% gain with RLOO in the online
setting, surpassing claude-3-opus-240229 as reported
by AH leaderboard and matching gemini-1.5-pro, while
using fully adaptive self-automated joint prompt-response
generation. This demonstrates the superior empirical perfor-
mance of eva.

3Unless stated otherwise, each iteration uses 10K prompts
(the initial prompt set), referred to as 1x. In offline RLHF, we
denote θt→t+1 as the one trained with new human prompts from
the t-th checkpoint. θt→t̃ denotes the one trained with evolved
prompts from the t-th checkpoint without any new human prompts.
In online RLHF, training is a continual iteration and θ0→1̃ (nx)
denotes training with 10nK prompts in total, mixed and evolved
from the initial.
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Figure 3: Illustration of gains with one round eva by DPO.

Table 1: Online eva results. eva has notable gains and is
comparable to default training with even 6x human prompts
(gray). Note eva only uses 1x human prompts and contin-
uously evolves (nx denotes total prompt size).

Optimization Method (→) Online RLHF

Benchmark (→) Arena-Hard MT-Bench AE 2.0

Method (↓) / Metric (→) WR (%) avg. turn 1 turn 2 LC-WR (%)

θ0: Base Model 41.3 8.57 8.81 8.32 47.11

θ0→1: RLOO (1x) 52.6 8.68 9.02 8.34 54.23
θ0→1̃: RLOO-eva (1x) 57.3 8.87 9.03 8.71 55.02
θ0→1̃: RLOO-eva (2x) 60.5 8.96 9.12 8.80 57.10
θ0→1̃: RLOO-eva (3x) 62.4 9.09 9.23 8.94 61.04
θ0→1: RLOO (6x) 62.7 9.07 9.24 8.90 62.91

θ0→1: OAIF (1x) 52.1 8.66 8.97 8.35 55.15
θ0→1̃: OAIF-eva (1x) 55.0 8.85 9.04 8.66 55.43
θ0→1̃: OAIF-eva (2x) 60.4 8.93 9.06 8.79 56.49
θ0→1̃: OAIF-eva (3x) 61.7 9.01 9.19 8.82 59.09

Table 2: Offline eva results. We apply eva after 1 iteration
of offline RLHF. It brings strong gains and can surpass
training with human prompts. See more iterations in § 4.2.4.

Optimization Method (→) Offline RLHF

Benchmark (→) Arena-Hard MT-Bench AE 2.0

Method (↓) / Metric (→) WR (%) avg. turn 1 turn 2 LC-WR (%)

θ0: Base Model 41.3 8.57 8.81 8.32 47.11

θ0→1: DPO 51.6 8.66 9.01 8.32 55.01
θ1→1̃: + eva 60.1 8.90 9.04 8.75 55.35
θ1→2: + newhumanprompts 59.8 8.64 8.88 8.39 55.74

θ0→1: SPPO 55.7 8.62 9.03 8.21 51.58
θ1→1̃: + eva 58.9 8.78 9.11 8.45 51.86
θ1→2: + newhumanprompts 57.7 8.64 8.90 8.39 51.78

θ0→1: SimPO 52.3 8.69 9.03 8.35 54.29
θ1→1̃: + eva 60.7 8.92 9.08 8.77 55.85
θ1→2: + newhumanprompts 54.6 8.76 9.00 8.52 54.40

θ0→1: ORPO 54.8 8.67 9.04 8.30 52.17
θ1→1̃: + eva 60.3 8.89 9.07 8.71 54.39
θ1→2: + newhumanprompts 57.2 8.74 9.01 8.47 54.00

eva curricula can surpass human-crafted prompts. We
further show that eva models can match and even outper-
form those trained on additional new prompts from Ultra-
Feedback (denoted as new human prompts as they are pri-
marily sourced from humans (Cui et al., 2023)), while being
much more efficient. Interestingly, on MT-Bench, training
with new human prompts typically show decreased perfor-
mance in the 1st turn and only modest gains in the 2nd turn,
whereas eva notably enhances 2nd gains. We hypothesize
that eva adaptively evolves novel, learnable prompts that
include features of second-turn questions, reflecting gener-
alized skills like handling follow-up interactions.
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4.2. Ablation Studies

Taking offline DPO as a representative case, we conduct
extensive ablation studies on eva, with key findings:

• § 4.2.1 - informativeness metric: our regret-based
metric outperforms other alternatives.

• § 4.2.2 - adaptive evolving procedure: our method
outperforms active selection without evolving.

• § 4.2.3 - scaling with reward models: the alignment
gain of eva scales with reward models.

• § 4.2.4 - continual training : our method has mono-
tonic gain with incremental training.

• § 4.2.5 - curriculum effect: our method creates mean-
ingful curriculum over iterations.

4.2.1. THE CHOICE OF INFORMATIVENESS METRICS

Metric info(x) Related Approximation

A⋆
min: worst-case optimal advantage |miny r(x,y)−maxy′ r(x,y′)| minimax regret (Savage, 1951)

A⋆
avg: average optimal advantage | 1N

∑
y r(x,y)−maxy′ r(x,y′)| Bayesian regret (Banos, 1968)

A⋆
dts: dueling optimal advantage |maxy ̸=y⋆ r(x,y)−maxy′ r(x,y′)| min-margin regret (Wu & Liu, 2016)

Table 3: The reward-advantage-based metrics that serve as
the informativeness proxies for prompts.

Benchmark (→) Arena-Hard MT-Bench AE 2.0

Method (↓) / Metric (→) WR (%) avg. turn 1 turn 2 LC-WR (%)

θ0→1: DPO 51.6 8.66 9.01 8.32 55.01

θ1→1̃: + eva (uniform) 57.5 8.71 9.02 8.40 53.43

θ1→1̃: + eva (var(r)) 54.8 8.66 9.13 8.20 54.58
θ1→1̃: + eva (avg(r)) 58.5 8.76 9.13 8.40 55.01
θ1→1̃: + eva (1/avg(r)) 56.7 8.79 9.13 8.45 55.04

θ1→1̃: + eva (1/A⋆
min) 52.3 8.64 8.96 8.31 53.84

θ1→1̃: + eva (A⋆
avg) (our variant) 60.0 8.85 9.08 8.61 56.01

θ1→1̃: + eva (A⋆
dts) (our variant) 60.0 8.86 9.18 8.52 55.96

θ1→1̃: + eva (A⋆
min) (our default) 60.1 (+8.5) 8.90 9.04 8.75 (+0.43) 55.35

Table 4: Choice of informativeness metric matters. Our
adaptive metric by reward advantage achieves the best per-
formances. See also § D for visualization.

Reward advantage as the informativeness metric out-
performs baselines. As in Table 4, eva offers an effective
curriculum by the advantage-based proxy as the informa-
tiveness metric (bottom row):

• Comparing with uniform evolving (brown): Existing
baselines generate prompts in a uniform manner (Yuan
et al., 2024) (cf., the principle of insufficient rea-
son (Keynes, 1921; Tobin et al., 2017)). eva concretely
outperforms, corroborating (Das et al., 2024) that uni-
form learners can suffer from sub-optimality gaps.

• Comparing with other heuristics (gray): Prior prac-
tices (Team et al., 2023) tried heuristics like prioritiz-
ing prompts with the most variance in its rewards or
with the lowest/highest average. We find our advantage
based methods (red) outperforms those heuristics.

• Comparing with the inverse advantage (purple): Con-
trary to curriculum learning, a line of works conjec-
ture that examples with higher losses may be priori-
tized (Jiang et al., 2019), which can be done by invert-
ing our metric. We find it significantly hurt the align-
ment gain, corroborating (Mindermann et al., 2022)
that those examples can be unlearnable or irrelevant,
meaning our curriculum is effective and practical.

• Among our advantage variants (green): We designed
variants of our default advantage-based metric, as in
Table 3; the default A⋆

min remains competitive among
its peers. Together, the advantage-based principle pro-
vides a robust guideline for sampling and evolving.

The lesson is that we must be selective about which are the
promising to evolve, otherwise unlearnable, noisy or naı̈ve
prompts may hinder learning. Our regret-inspired metric
represents a solid baseline.

4.2.2. THE EFFECT OF EVOLVING

Benchmark (→) Arena-Hard MT-Bench AlpacaEval 2.0

Method (↓) / Metric (→) WR (%) avg. turn 1 turn 2 LC-WR (%) WR (%)

θ0→1: DPO 51.6 8.66 9.01 8.32 55.01 51.68

θ1→1̃: [no evolve]-greedy 56.1 8.68 8.98 8.38 54.11 53.66
θ1→1̃: [no evolve]-sample 55.3 8.69 9.00 8.38 54.22 54.16

θ1→1̃: + eva-greedy (our variant) 59.5 8.72 9.06 8.36 54.52 55.22

θ1→1̃: + eva-sample (our default) 60.1 8.90 9.04 8.75 55.35 55.53

Table 5: Effect of evolving. The blue are those training with
only the informative subset and without evolving); we de-
note -sample for the default weighted sampling procedure
in Algo 1, while using -greedy for the variant from the clas-
sical active data selection procedure (cf., a recent work (Mul-
drew et al., 2024) and a pre-LLM work (Kawaguchi & Lu,
2020)), which selects data by a high-to-low ranking via
the metric greedily. We show evolving brings a remarkable
alignment gain (green v.s. blue); and as we evolve, sampling
is more robust than being greedy.

The design of evolve(·) is effective. As in Table 5:

• Removing the evolve(·) step: if we only do subset
sampling or ordered selection, we still have gain, but
not as much as with evolving (e.g., eva brings 4.8%
additional wins on Arena Hard).

• Altering the sample(·) step: if we greedily select
prompts by the metric instead of using them as weights
for importance sampling, the performance will be
weaker as we evolve.

The lesson is that simply adaptive training within a fixed
prompt distribution is not enough; our open-ended RLHF
with generative prompt exploration gives a substantial head-
room for self-improvement. In other words, the RL post-
training process should be both adaptive and generative in
terms of prompt distribution.
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4.2.3. SCALING EVA WITH REWARD MODELS
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Figure 4: eva scales with quality of reward models, under
pointwise RMs with DPO (left) and pairwise RMs with
SPPO (right). Note SPPO handles general preferences thus
requires pairwise RMs, and DPO relies on the Bradley-Terry
assumption, for which pointwise RMs are suitable.

Figure 4 presents the length-controlled win rate of eva on
AlpacaEval using pointwise and pairwise reward models of
varying scales. As the quality of reward models improve,
eva brings higher alignment gain. The scaling observation
shows the effectiveness of eva in exploiting more accurate
reward signals to choose informative prompts for better
alignment. One takeaway is interaction with the external
world is essential for intelligence. The more accurate reward
signals observed, the better the agent incentivize themself
to improve (cf., (Silver et al., 2021)).

4.2.4. EVA IMPROVES EFFICIENCY & GENERALIZATION

We run the default incremental training (i.e., trainining from
the last checkpoint with the evolved set in each iteration),
as in Fig 5 and § H.2, eva presents monotonic gains.

The solutions found by eva cannot be recovered by training
longer by a fixed set (the dashed), nor by naı̈vely sourcing
new prompts without examining informativeness (the gray
dotted), thus our generative data schedule is effective.

We conjecture that behaviors of the dashed/dotted lines re-
late to loss of plasticity (Ash & Adams, 2019; Dohare et al.,
2023; Abbas et al., 2023; Xue et al., 2024). Classical works
resolve it by the optimization view (e.g., weight perturbing),
whereas eva offers a new data view, potentially mimicing
an implicit regularizer for better generalization.
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Figure 5: eva stays robust with more iterations.

In Table 6, we ablate eva in scratch training, i.e., training
with the full original and evolved set. eva is competitive
in incremental training, learning more effectively with less
data – a nice bonus by minimax regret (Jiang et al., 2021a).

Table 6: Ablation on incremental v.s. scratch training.

Benchmark (→) Arena-Hard MT-Bench AE 2.0

Method (↓) / Metric (→) WR (%) avg. score LC-WR (%)

θ0: SFT 41.3 8.57 47.11

θ0→1: DPO 51.6 8.66 55.01
θ0→1̃: eva (scratch) 59.8 8.88 54.59
θ1→1̃: eva (incremental) 60.1 8.90 55.35

4.2.5. EVA CREATES MEANINGFUL CURRICULUM

Table 7: eva improves prompt quality and complexity.

Prompt Set (↓) / Metric (→) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73
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Figure 6: Curriculum effect in training distributions. The
prompt distribution of Table 13. eva creates a curriculum
that prioritizes math / coding prompts over iterations.

Figure 7: Curriculum effect in benchmark performance.
The radar figure for ratings on MT-Bench. eva prioritizes
and gradually improves on coding, math and reasoning over
iterations, implicitly reflecting a learned curriculum.

In Table 7, we show that there is a gradual improvement in
prompt complexity and quality4 over iterations with eva. In
Figure 6 and 7, we show that eva brings auto-curricula and
the creator is incentivized to create new prompts that are
informative w.r.t. the current solver policy.

Together, those evidences supports the importance of adap-
tively evolving prompts jointly with responses, which we
believe to be crucial in scaling up next-gen RL post-training.

4We use gemini-1.5 as the generative scorer (§ E).
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5. Related Works
With the history of machine learning, it is not new that self-
play and data exploration brings intelligence (e.g., Schmid-
huber (1991)). We believe, to our knowledge, eva is among
the first empirical works that systematically studied adaptive
prompt evolving in RL post-training on large-scale LLM
benchmarks. Below, viewing from many different angles,
we list eva’s distinct impact and contribution.

Self-improving algorithms and iterative optimization.
This line of work focuses on iteratively generating samples
from the response policy and continuously re-training the
policy by selected self-generated samples. Major works
include ReST (Gulcehre et al., 2023; Singh et al., 2023),
STaR (Zelikman et al., 2022), RFT (Yuan et al., 2023),
RAFT (Dong et al., 2023), self-improving LLMs (Huang
et al., 2022; Yuan et al., 2024); in the context of preference
optimization, iterative DPO (Tran et al., 2023; Xiong et al.,
2024; Pang et al., 2024b) has proven effective. Most works
focus on self-training by improving in Y | X , while we
jointly optimize both responses and prompts via generative
exploration in (X ,Y), allowing for continual RLHF.

Prompt synthesis for language models. Major works
include Self-Instruct (Wang et al., 2022), WizardLM (Xu
et al., 2023; Luo et al., 2023), Self-Align (Sun et al., 2024),
EvoPrompt (Guo et al., 2023), Magpie (Xu et al., 2024), etc.
eva is orthogonal to them since any such method can be
plugged in as the evolve(·) for the creator (note we con-
tribute to a small trick with BoN tree in § 3). We focus on the
RL post-training phase, while those works are primarily
SFT. Importantly, our work proposes an adaptive metric to
sample and evolve prompts – a secret sauce is that prompts
shall be prioritized w.r.t. the informativeness, whereas prior
works mostly evolve uniformly (Yuan et al., 2024). Fur-
thermore, most works evolves in an offline manner, while
eva, to our knowledge, is the first framework that supports
online/on-policy evolving in general RL post-training.

Active and curriculum learning. This line of works re-
order training examples for efficiency (Bengio et al., 2009;
Mindermann et al., 2022; Kawaguchi & Lu, 2020), with
recent LLM-related works (Muldrew et al., 2024; Das et al.,
2024) (note those are done at a much smaller scale com-
pared to eva). In contrast, eva breaks free from the static
paradigm, not only re-orders data but also generatively
creates new data, yielding significant gains (§ 4.2.2).

Self-play and curriculum RL. Agents trained on a fixed
data distribution are often brittle and may struggle to adapt
to the real world (Hughes et al., 2024). Self-play (Samuel,
1959; Goodfellow et al., 2014a; Silver et al., 2016) addresses
this by having the agent learn through self-interaction, thus
creating more diverse experiences and automatic curric-
ula. In asymmetric self-play, the paradigm centers on “Alice

proposing a task, and Bob doing it” (Sukhbaatar et al., 2017;
Samvelyan et al., 2023; Beukman et al., 2024; Dennis et al.,
2020). We revive the classical asymmetric self-play (Sutton
et al., 2011) in optimizing language models. Unlike tradi-
tional curriculum RL (Parker-Holder et al., 2022), which
renders environments by specifying levels (Dennis et al.,
2020), our approach is generative by nature, as we directly
generate states from powerful generative models.

Self-play in RLHF. A growing line of research frames
RLHF as a symmetric self-play game, where both players are
response players (Munos et al., 2023; Wu et al., 2024; Choi
et al., 2024; Rosset et al., 2024). However, these methods
still rely on a fixed prompt distribution thus is sub-optimal.
In contrast, we solve this by asymmetric self-play, enabling
evolving prompt distributions; this step is structurely resem-
bles adversarial training (Goodfellow et al., 2014b; Ho &
Ermon, 2016). (Zheng et al., 2024) is a concurrent work
with similar asymmetric setup, however it applies to safety
tasks instead of general instruction-following tasks and is
incompatible with direct preference optimization.

6. Concluding Remarks
Future directions. eva defines a new paradigm for RL
post-training, opening up many new directions, e.g., (i)
jointly optimizing the reward model (RMs) with eva – we
assume a fixed oracle RM, as is de facto practice in indus-
try (Team et al., 2024a); however, as the policy updates,
eva can generate out-of-distribution prompts, necessitating
the need for continual RM training (Makar-Limanov et al.,
2024); (ii) extending to differentiable creator policies; (iii)
extending to reasoning (Poesia et al., 2024); (iv) extending
the game with more modality (Bruce et al., 2024), and/or
with more players (e.g., rewriters (Kumar et al., 2024)).

Conclusions. This empirical work presents eva, a new,
simple and scalable framework for RL post-training of
LLMs, that adaptively generates prompt distributions dur-
ing training. eva is simple – it can be easily plugged into
any existing pipeline, and highly effective – it reaches new
SOTA on challenging alignment benchmarks. The primary
takeaway may be: (i) self-evolving joint training distribu-
tions (X ,Y) brings significant gain, and (ii) reward advan-
tage acts as an effective metric informing the collection and
creation of prompts in RLHF. Philosophically, eva presents
a new view of post-training as an infinite game (Abel et al.,
2024); eva incentivizes agents to create problems rather
than to simply solve, which is key to intelligence, yet LLM
trainers may neglect.

We believe the community should be aware of the surpris-
ing effectiveness of adaptive evolving prompts in RL post-
training, and scale them together with responses.
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Impact Statement
eva enables scalable training of language agents through
open-ended training, improving AI alignment with hu-
man values, which will ultimately contribute to social wel-
fare (Pigou, 1920; Arrow, 1952; Rosenfeld & Xu, 2025).
This may democratize the development of more generally
capable artificial intelligence agents, impacting a wide range
of domains from scientific discovery to societal governance.

We recognize that eva relies on self-exploration guided by
reward signals. If these signals are inaccurate or misaligned,
the trained agents may exhibit undesirable behaviors such
as reinforcing biases or hallucinations. Mitigating these
risks requires continued research into robust reward models,
transparent evaluation protocols, open collaboration within
the AI research community, and more. As authors, we will
be committed to supporting these efforts by sharing our find-
ings and implementations to promote open and responsible
research and development.
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ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024b.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23–30. IEEE, 2017.

Tran, H., Glaze, C., and Hancock, B. Iterative DPO Align-
ment. Technical report, Snorkel AI, 2023.

von Stackelberg, H. Marktform und Gleichgewicht.
Die Handelsblatt-Bibliothek ”Klassiker der Na-
tionalökonomie”. J. Springer, 1934. URL https://bo
oks.google.com/books?id=wihBAAAAIAAJ.

12

https://arxiv.org/abs/2404.03715
https://arxiv.org/abs/2404.03715
https://arxiv.org/abs/2404.03715
https://arxiv.org/abs/1403.5556
https://arxiv.org/abs/1403.5556
https://people.csail.mit.edu/brooks/idocs/Samuel.pdf
https://people.csail.mit.edu/brooks/idocs/Samuel.pdf
https://arxiv.org/abs/2303.03376
https://arxiv.org/abs/2303.03376
https://www.jstor.org/stable/2280094
https://arxiv.org/pdf/1511.05952
https://www.semanticscholar.org/paper/A-possibility-for-implementing-curiosity-and-in-Schmidhuber/2980dfe5c99658dc3e508d9d6e1d7f26e6fc8934
https://www.semanticscholar.org/paper/A-possibility-for-implementing-curiosity-and-in-Schmidhuber/2980dfe5c99658dc3e508d9d6e1d7f26e6fc8934
https://search.worldcat.org/title/Evolutionsstrategie-und-numerische-Optimierung/oclc/52361662
https://search.worldcat.org/title/Evolutionsstrategie-und-numerische-Optimierung/oclc/52361662
https://arxiv.org/pdf/2409.19605
https://arxiv.org/pdf/2409.19605
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2305.03047
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdfhttps://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdf
https://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdfhttps://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdf
https://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdfhttps://www.cs.swarthmore.edu/~meeden/DevelopmentalRobotics/horde1.pdf
https://arxiv.org/abs/2402.05749
https://arxiv.org/abs/2402.05749
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://books.google.com/books?id=wihBAAAAIAAJ
https://books.google.com/books?id=wihBAAAAIAAJ
https://books.google.com/books?id=wihBAAAAIAAJ


Reward-Guided Prompt Evolving in Reinforcement Learning for Large Language Models

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang,
T. Interpretable Preferences via Multi-Objective Re-
ward Modeling and Mixture-of-Experts. arXiv preprint
arXiv:2406.12845, 2024.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Wu, H. and Liu, X. Double thompson sampling for duel-
ing bandits. Advances in neural information processing
systems, 29, 2016.

Wu, Y., Sun, Z., Yuan, H., Ji, K., Yang, Y., and Gu, Q.
Self-play preference optimization for language model
alignment. arXiv preprint arXiv:2405.00675, 2024.

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. S. Data
selection for language models via importance resampling.
Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,
Jiang, N., and Zhang, T. Iterative preference learning
from human feedback: Bridging theory and practice for
rlhf under kl-constraint. In Forty-first International Con-
ference on Machine Learning, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Xu, Z., Jiang, F., Niu, L., Deng, Y., Poovendran, R., Choi,
Y., and Lin, B. Y. Magpie: Alignment Data Synthesis
from Scratch by Prompting Aligned LLMs with Nothing.
arXiv preprint arXiv:2406.08464, 2024.

Xue, F., Fu, Y., Zhou, W., Zheng, Z., and You, Y. To
repeat or not to repeat: Insights from scaling llm under
token-crisis. Advances in Neural Information Processing
Systems, 36, 2024.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J.,
and Weston, J. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, G. Deep Learning Dynamics: From Minimization
to Games. PhD thesis, University of Toronto (Canada),
2023.

Zhang, G., Wang, Y., Lessard, L., and Grosse, R. B. Near-
optimal local convergence of alternating gradient descent-
ascent for minimax optimization. In International Con-
ference on Artificial Intelligence and Statistics, pp. 7659–
7679. PMLR, 2022.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:
46595–46623, 2023.

Zheng, R., Guo, H., Liu, Z., Zhang, X., Yao, Y., Xu, X.,
Wang, Z., Xi, Z., Gui, T., Zhang, Q., et al. Toward Opti-
mal LLM Alignments Using Two-Player Games. arXiv
preprint arXiv:2406.10977, 2024.

13

https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/1604.07101
https://arxiv.org/abs/1604.07101
https://arxiv.org/abs/2405.00675
https://arxiv.org/abs/2405.00675
https://arxiv.org/pdf/2302.03169
https://arxiv.org/pdf/2302.03169
https://arxiv.org/pdf/2312.11456
https://arxiv.org/pdf/2312.11456
https://arxiv.org/pdf/2312.11456
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2305.13230
https://arxiv.org/abs/2305.13230
https://arxiv.org/abs/2305.13230
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://utoronto.scholaris.ca/items/f4f500d6-5b2f-4a33-b883-a596f578daa7
https://utoronto.scholaris.ca/items/f4f500d6-5b2f-4a33-b883-a596f578daa7
https://proceedings.mlr.press/v151/zhang22e/zhang22e.pdf
https://proceedings.mlr.press/v151/zhang22e/zhang22e.pdf
https://proceedings.mlr.press/v151/zhang22e/zhang22e.pdf
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/pdf/2406.10977
https://arxiv.org/pdf/2406.10977


Reward-Guided Prompt Evolving in Reinforcement Learning for Large Language Models

A. Details on Reproducibility
Software environments. All experiments are conducted on 8xNVIDIA H100 SXM GPUs. Our codebase primarily relies
on transformers==4.40.0. For the response generation of GEMMA models at the training stage, we use vllm==0.5.4
with flashinfer backend for CUDA 12.4 and torch 2.4. For evolving prompts, we use distilabel==1.3.2, and
use LiteLLM to serve Gemini (default to be gemini-1.5-pro) and transformers models (default to be gemma-2-9b-it).
For evaluation on all benchmarks, we use sglang==0.2.10 and openai==1.35.14, with gpt-4-1106-preview

as the judge model and gpt-4-0314-preview as the baseline model. Specifically for AlpacaEval 2.0, we use
alpaca eval gpt4 turbo fn as the annotator config.

Hyperparameter settings. We follow the original hyperparameter settings as in (Hong et al., 2024; Meng et al., 2024; Wu
et al., 2024), default to be:

Hyperparameter (↓) / Loss (→) DPO ORPO SimPO SPPO

learning rate 5e-7 5e-7 8e-7 5e-7
learning rate scheduler cosine cosine cosine linear
β 0.05 / 10 0.001
γ / / 5 /
λ / 0.5 / /
no. epochs per iter 2 1 1 6
warmup ratio per iter 0.1 0.1 0.1 0.1
effective batch size 8 8 32 8
max length 2048 2048 2048 1024
max prompt length 1024 1024 1024 512
optimizer adamw adamw adamw rmsprop

Iterative Training Settings for Offline eva. By default, we train with equal-size prompt subset in each iteration. Unless
otherwise specified, we use 10K prompts from the UltraFeedback dataset (Cui et al., 2023) per iteration. The incremental
training proceeds as follows (note this is also compatible with online solvers):

• θ0 : Base SFT model.

• θ0→1 : initialize with θ0; then train w/ the prompt split X1 by self-generated responses from the initial model θ0.

• θ1→2 : initialize with θ0→1; trained w/ the prompt split X2 by self-generated responses from the model θ0→1.

For evolving prompts (e.g., evolving X1 to X1̃), with the calculated informativeness metric for each prompt, we normalize
them as the weight to do weighted sampling for a 25% informative subset to get X info

1 . We then iterate over in X info
1

and call EvolInstrut (Xu et al., 2023) as the plug-in evolving method (with the number of evolutions as 4) using the
default mutation templates for (i) in-depth evolving (constraints, deepening, concretizing, increased reasoning steps) and
(ii) in-breadth evolving (extrapolation) as implemented in tasks/evol instruct/utils.py of distilabel==1.3.2.
Next we uniformly select 80% prompts from this evolved dataset and 20% from the original dataset (i.e., the buffer) to
form X1̃. We do not seek extensive parameter search (e.g., the number of evolutions, the evolving ratio) in this stage and
encourage future works on exploring this and other plug-in evolving methods. For solver we generate 6 responses per
prompt. We use 42 as the random seed.

Training setting in online eva in Table 1. Plainly put, online eva evolves per mini-batch. In Table 1, we have it eva works
in three phases with the generative buffer. Below we present an easy-to-understand illustration:

1. Warm-up phase: Default training with data fromD until the buffer is full. To create the buffer, after each step (training
on 8 samples in a mini-batch), we select the top 50% (which is 4) most informative prompts in the mini batch, then
evolve nnew versions for each one, and we add only the evolved prompts to the buffer. (Here, we set nnew = 4, thus the
buffer increases by 16 at each step, until we reach the preset buffer size – which is 3200 currently, i.e., 400 iterations).

2. Mix-up phase: From now on, we do a balanced sampling from the buffer and D to form a mini batch for training,
where ratioevol = 50%: at each optimization step, we sample half of the mini batch from the buffer by weighted
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sampling via the informativeness score, and take the rest half i.i.d. from D. We similarly evolve nnew new prompts for
the top 50% informative prompts in this batch. We then add the newly generated prompts, and pop the trained ones and
the oldest ones from the buffer, to keep a fixed buffer size. Then balanced sampling approach resembles the scheme
used in (Ross & Bagnell, 2012; Ball et al., 2023).

3. Bootstrap phase: After we run out of samples from D, we will only sample from the buffer, with the same evolving
procedure, and add evolved prompts to the buffer and pop out those trained. We take the top 50% from each mini batch,
evolve for nbootstrap

new = 2 prompts for each, then pop out with the trained.

The hyper-parameter of the subset set sizes as power of 2 is due to the hardware optimization constraints.

B. Additional Ablation Experiments for Online eva
In the following ablation studies, by keeping other hyper-parameters the same as the above, we show that increasing nnew

improves the performance, while a balanced sampling with ratioevol = 50% is generally the most robust.

Table 8: The default setting for the first column of each table is nnew = 4 and ratioevol = 50%. (Left) Varying the number
of evolved prompts nnew. As we increase nnew, we observe a monotonic gain, probably due to the fact that evolving more
prompts helps improving the coverage and diversity of training prompts. (Right) Varying the sampling ratio of evolved
prompts in each mini-batch. In general, we find the balanced sampling strategy is more robust as the training goes on.

Benchmark (→) Arena Hard (WR (%))

Setting (→) nnew = 4 nnew = 8

θ0: Base Model 41.3 41.3

θ0→1: RLOO (1x) 52.6 52.6
θ0→1̃: RLOO-eva (1x) 57.3 57.6
θ0→1̃: RLOO-eva (2x) 60.5 61.2
θ0→1̃: RLOO-eva (3x) 62.4 63.0
θ0→1: RLOO (6x) 62.7 62.7

Benchmark (→) Arena Hard (WR (%))

Setting (→) ratioevol = 50% ratioevol = 75% ratioevol = 25%

θ0: Base Model 41.3 41.3 41.3

θ0→1: RLOO (1x) 52.6 52.6 52.6
θ0→1̃: RLOO-eva (1x) 57.3 57.0 57.5
θ0→1̃: RLOO-eva (2x) 60.5 59.9 59.2
θ0→1̃: RLOO-eva (3x) 62.4 62.0 61.3
θ0→1: RLOO (6x) 62.7 62.7 62.7

C. Additional References
In addition to § 5, prior works (Jiang et al., 2024; Xie et al., 2023) have explored signals for adaptive data sampling, which
can be integrated into eva’s generative pipeline. For the online solver, an alternative to RLOO (Ahmadian et al., 2024) is
ReMax (Li et al., 2023). An important future work for eva is to have efficient online reinforcement learning of reward
models on top of the creator-solver game, on which Russo & Van Roy (2014); Dwaracherla et al. (2024) shed light.

D. Visualization on Prompt Selection Metric
In eva, we assign each prompt an informativeness value, which the creator will use as the weight to sample from the seed
prompts for prompt synthesis. In § 4.2.1, we have shown that traditional methods like reward mean and reward variance are
less effective as our advantage-based informativeness proxy. The intuition is simple: advantage/regret-based proxy aligns
better with the preference optimization objective. We further illustrate that they are statistically different from other choices:

• Figure 8: The distribution of informativeness values shows that reward variance is heavily concentrated at lower values,
reward mean is more uniformly scattered, and reward advantage achieves a better balance, providing a broader yet also
focused sampling range.

• Figure 9: The weak correlation between reward variance and reward advantage shows that variance cannot serve as a
substitute for advantage as a proxy for informativeness.

We have discussed the contrastive curriculum hypothesis in § H.3 to support using reward advantage in the sense that the
induced samples tend to decrease the loss the most in the contrastive optimization. Furthermore, assuming the optimization
algorithm can converge to the more optimal responses, neither reward mean nor variance directly capture the learning
potential of such responses – one may easily construct cases with identical variance yet differ much in reward range –
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Figure 8: The probability density distributions of infor-
mativeness metrics compared in Table 4 – they show
different patterns.
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Figure 9: The correlation plot for reward advantage (ours)
and reward variance – they are only weakly correlated.

thus variance fails to distinguish such scenarios. By contrast, reward advantage estimate inherently captures the relative
improvement towards better response, and is sensitive to differences in reward range; variants of advantage estimate are
commonly used in literature.

E. Complexity and Quality of Prompts Over Iterations
As in Table 7, there is a gradual improvement of prompt complexity and quality over iterations with eva. We sample 10K
prompts per iteration, and use the below prompts modified from (Liu et al., 2023b) for the complexity and quality evaluation,
with gemini-1.5-flash as the scorer:

Rank the following questions according to their quality. Your evaluation should consider the following factors: Helpfulness,
Relevance, Accuracy, Depth, Creativity, and Level of detail.↪→

Score each response from 1 to 5: 1: Poor quality, 2: Below average, 3: Average, 4: Good, 5: Excellent.

Ranking the following questions according to their difficulty and complexity. Use a fixed scoring system: 1: Very simple, 2: Simple,
3: Moderate, 4: Difficult, 5: Very difficult↪→

F. Evolving Instructions

Figure 10: An illustrative example of tree BoN. Given a seed prompt, we uniformly sample evolving strategies from below
to apply to it, which results in multiple generations; we then proceed with the best one (e.g., by the complexity and quality
scorer) as the seed prompt for the next generation. We use this setting in the online eva setting as a trial.

IN_BREADTH_KEYS = ['persona', 'shift-in', 'shift-out', 'mix', 'abstract']
IN_DEPTH_KEYS = ['constraints', 'deepening', 'concretizing', 'reasoning', 'expansion']
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EVOL_METHODS = {
# in-breadth evolving
"persona": (

"Reframe the #Given Prompt# as if written by a user with a completely different persona, background, or expertise. "
"Adjust the tone, style, phrasing, or anything you feel proper to reflect this change. "
"The changes should make the prompt feel like it was authored by someone entirely new."

),
"shift-in": (

"Shift the high-level idea of the #Given Prompt# to explore a different subdomain or context within the same domain. "
"Ensure the new topic still challenges the model to reason or provide knowledge relevant to the domain."

),
"shift-out": (

"Shift the high-level idea of the #Given Prompt# to a completely different topic in a different setting. "
"The new topic may challenge the model with similar reasoning or contextual understanding but in a novel way."

),
"mix": (

"Combine the high-level concept of the #Given Prompt# with elements from a different domain. "
"Introduce novel scenarios or contexts to create diversity while maintaining relevance to the original idea."

),
"abstract": (

"Turn the #Given Prompt# into a more abstract or generalized version, removing specific details while preserving its intent. "
"Ensure the new prompt encourages broader, principle-driven reasoning."

),

# in-depth evolving
"constraints": (

"Add one or more significant constraints or requirements into the '#Given Prompt#'. "
"The added constraints must meaningfully alter how the model would respond. "
"For example, specify additional rules, contexts, or limitations that demand creative adjustments to the response."

),
"deepening": (

"If the #Given Prompt# contains inquiries about certain issues, increase the depth and breadth of the inquiry. "
"Make the question require a more detailed, multi-layered, or comprehensive response. "
"For instance, break the problem into sub-problems or require connections between unrelated concepts."

),
"concretizing": (

"Replace general concepts in the #Given Prompt# with more specific and detailed concepts. "
"Ensure that the change makes the problem more defined and concrete, leaving less room for ambiguity. "
"For example, replace 'a device' with 'a wearable fitness tracker with GPS'."

),
"reasoning": (

"Add one or more reasoning steps into the '#Given Prompt#'. "
"Explicitly rewrite it to demand multi-step reasoning or justify intermediate steps in the solution. "
"For instance, if the original prompt is a simple query, make the response require a step-by-step breakdown of logic or

calculations."↪→
),
"expansion": (

"Expand the #Given Prompt# by including additional perspectives, domains, or layers of complexity. "
"For example, if the original prompt focuses on a single scenario, add related scenarios or ask the model to compare different

situations."↪→
)

}

INST_IN_DEPTH = (
"Please act as an expert Prompt Rewriter.\n"
"Your objective is to rewrite a given prompt into a more complex version "
"to make those large language models (e.g., gemini) a bit harder to handle.\n"
"But the rewritten prompt must be reasonable and must be understood and responded by humans.\n"
"Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#, if there is any."
"You should try your best not to make the #Rewritten Prompt# become verbose, "
"The #Rewritten Prompt# should be roughly the similar length or a little bit more than that of #Given Prompt#.\n"
"The #Rewritten Prompt# must sound like a real human user's prompt; DON'T make it sound machine-generated."
"Specifically, you SHOULD complicate the given prompt using the following method: "
"\n{method}\n" # to be formatted
"The rewritten prompt should reflect meaningful changes across its structure, "
"ensuring the entire sentence feels sufficiently different from the original. "
"Again, make sure the rewritten prompt presents a more CHALLENGING TASK."
"Respond with your rewritten prompt directly. "
"#Given Prompt#:\n{prompt}\n" # to be formatted
"#Rewritten Prompt#:\n"

).lstrip()

INST_IN_BREADTH = (
"Please act as an expert Prompt Creator.\n"
"Your objective is to generate a brand-new prompt based on the #Given Prompt#. "
"The purpose of this task is to promote diversity and generality of training prompts for language models, "
"helping it practice with varied challenges and perspectives.\n"
"The LENGTH and complexity of the #Created Prompt# should be similar to that of the #Given Prompt#.\n"
"The #Created Prompt# must be reasonable, interpretable, and solvable by humans.\n"
"The #Created Prompt# must sound like a real human user's prompt; DON'T make it sound like machine-generated."
"Follow the method described below to guide your creation:\n"
"{method}\n" # to be formatted
"The created prompt should reflect meaningful changes across its structure, "
"ensuring the entire sentence feels sufficiently different from the original. "
"Respond with your created prompt directly.\n"
"#Given Prompt#:\n{prompt}\n" # to be formatted
"#Created Prompt#:\n"

).lstrip()
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G. Additional Experimental Results
In general, eva maintains the downstream performance and is robust on reasoning-heavy tasks, and the scaling with reward
models is more prominent on AlpacaEval, possibly due to training sources for such reward models.

Method (↓) / Dataset (→) MUSR-TA TruthfulQA-Gen WMDP GSM8K GSM-Plus MMLU-Pro

θ0: SFT 38.80 34.76 58.62 24.64 18.62 52.08

θ0→1: DPO 38.40 34.76 58.45 24.56 18.50 52.63
θ1→1̃: + eva 38.40 34.15 58.40 24.26 17.96 53.03

θ0→1: SPPO 40.80 34.15 58.72 24.79 18.42 52.70
θ1→1̃: + eva 41.20 34.64 58.94 25.40 18.88 52.47

Table 9: Performance on Downstream tasks.

Benchmark (→) MT-Bench Arena-Hard AlpacaEval 2.0

Method (↓) / Metric (→) avg. score 1st turn 2nd turn WR (%) LC (%) WR (%)

θ0→1: DPO 8.66 9.01 8.32 51.6 55.01 51.68
θ1→1̃: + eva-i (ARMO-8B) 8.90 9.04 8.75 60.1 55.35 55.53
θ1→1̃: + eva-i (SKYWORKRM-27B) 8.75 9.07 8.43 60.3 56.12 56.40

Table 10: Effect of (pointwise) reward models.

Benchmark (→) MT-Bench Arena-Hard AlpacaEval 2.0

Method (↓) / Metric (→) avg. score 1st turn 2nd turn WR (%) LC (%) WR (%)

θ0→1: SPPO 8.62 9.03 8.21 55.7 51.58 42.17
θ1→1̃: + eva-i (PAIRRM-0.4B) 8.78 9.11 8.45 58.9 51.86 43.04
θ1→1̃: + eva-i (PAIRRM-8B) 8.89 9.08 8.70 60.2 52.71 44.52

Table 11: Effect of (pairwise) reward models.

H. Additional Experimental Results (as Extensions)
H.1. Experiments on Different evolve(·) Methods

As an addition to Table 2, we have experimented with three different evolve(·) methods, including:

• SelfInstruct (Wang et al., 2022): Given seed prompts, variations are created based on criteria such as verb diversity
and style blending (mixing interrogative and imperative styles). Unlike EvolInstruct (Xu et al., 2023), which generates
prompt variations sequentially, this approach generates independently. We follow the one-shot implementation
in self instruct.py of distilabel==1.4.1 and modified the instruction on conciseness so that those newly
generated prompts have similar lengths compared to the seed prompts.

• EvolQuality and EvolComplexity (Liu et al., 2023b): The two methods use the same evolutionary approach
(i.e., sequentially generating), but with slightly different meta-instructions for prompt generation, where EvolQual-
ity asks to improve the quality (i.e., helpfulness, relevance, etc) of the seed prompt and EvolComplexity asks to
improve the complexity (i.e., increased reasoning steps, etc) of the seed prompt. We follow the implementation in
evol quality/utils.py and evol complexity/utils.py of distilabel==1.4.1.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard

Method (↓) / Metric (→) WR (%) avg. len

θ0: SFT 41.3 544

θ0→1: DPO 51.6 651
θ1→1̃: + eva (evolve(·) = EvolInstruct) 60.1 733
θ1→1̃: + eva (evolve(·) = EvolQuality) 58.7 721
θ1→1̃: + eva (evolve(·) = EvolComplexity) 60.6 749
θ1→1̃: + eva (evolve(·) = SelfInstruct) 57.2 725

Table 12: Results of using different evolving methods.
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eva is effective under different evolving methods. As shown in Table 12, our method brings strong performance gain
without training with additional human prompts. Among the experimented methods, we find EvolComplexity shows better
results.

H.2. Experiments on Number of Iterations

As an addition to § 4.2.4, we have experimented with the following settings:

• 10K prompts per iteration with 3 iterations.

• 20K prompts per iteration with 3 iterations (i.e., all seed prompts are used).

• 60K prompts per iteration with 2 iterations (i.e., all seed prompts are used).

Due to time constraints, we did not perform an extensive hyper-parameter search; however, we believe the results presented
below sufficiently demonstrate the performance gains achieved by eva.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard

Method (↓) / Metric (→) WR (%) avg. len

θ0: SFT 41.3 544

θ0→1: DPO (10k) 51.6 651
θ1→2: DPO (10k) 59.8 718
θ2→3: DPO (10k) 61.2 802
θ1→1̃: + eva (10k) 60.1 733
θ1̃→2̃: + eva (10k) 62.0 787
θ2̃→3̃: + eva (10k) 62.2 774

Table 13: Results of using 10k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard

Method (↓) / Metric (→) WR (%) avg. len

θ0: SFT 41.3 544

θ0→1: DPO (20k) 53.2 625
θ1→2: DPO (20k) 47.0 601
θ2→3: DPO (20k) 46.8 564
θ1→1̃: + eva (20k) 59.5 826
θ1̃→2̃: + eva (20k) 60.0 817
θ2̃→3̃: + eva (20k) 61.4 791

Table 14: Results of using 20k prompts per iteration (DPO + length-penalized NLL loss).

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard

Method (↓) / Metric (→) WR (%) avg. len

θ0: SFT 41.3 544

θ0→1: DPO (60k) 58.9 717
θ1→1̃: + eva (60k) 59.6 725
θ1̃→1̃′ : + eva (60k) 61.9 792

Table 15: Results of using 60k prompts per iteration (DPO + length-penalized NLL loss).

eva can bring robust gains with multiple iterations. As shown in Table 13, 14, and 15 below, our method presents
persistent performance gain over iterations, and concretely surpasses the performance by default DPO training with true
human prompts.
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H.2.1. BONUS EXPERIMENTS ON rewriter(·) IN THE LOOP

We present the basic idea here for practitioners to build upon. The motivation comes from the hypotheses derived from
§ H.2: as the prompts gets harder by evolving, there may be greater demands on the solver’s capabilities compared to earlier
iterations. As such, the solver may not be naively treated the same. One may address this by either scaling up response
sampling or introducing meta-instructions to explicitly enhance the solver’s reasoning.

We design a proof-of-concept experiment w.r.t the latter by adding rewriter in eva’s solver step. Previously, as in Algo. 1
and § 3.3.1, for each prompt x, we generate multiple responses, and choose the best as y+ and the worst as y− for
preference optimization. Now, we add one more rewriting step that attempts to enhance y+ to be y′

+, by applying a rewriting
instruction (Liu et al., 2023b) that asks the solver to alter y+ with imporved helpfulness, relevance, reasoning depths,
creativity and details while keeping the similar length. We then train with (x,y′

+,y−) for preference optimization. Table 16
shows that adding the rewriter yields concrete performance gains over the default training method, while keeping the training
budget and only slightly increasing cost for offline data generation.

Model Family (→) GEMMA-2-9B-IT

Benchmark (→) Arena-Hard

Method (↓) / Metric (→) WR (%) avg. len

θ0: SFT 41.3 544

θ0→1: DPO (10k) 51.6 651
θ1→1̃: + eva (10k) 60.1 733
θ1→1̃: + eva with rewriter (10k) 61.9 741

Table 16: Results of adding rewriter in the solver step.

H.3. Understanding the Informativeness Proxy in Different Intuitive Ways

Learning potential. Our metric intuitively identifies the learning potential of a prompt by measuring the gap between the
best and worst response to it from the solver. We reason, that prompts eliciting both high-reward and low-reward outcomes,
reflect learnable tasks where the model is capable of improving but has not yet mastered, thereby implying learning potential
(cf., (Jiang et al., 2021b)).
Worst-case guarantees. The minimax-regret objective, by design, leads to solvers that perform robustly across the prompt
space, thus gives the worst-case guarantee. While exact equilibrium may not be attainable with approximation, our empirical
results in § 4.2.1 demonstrate robustness.
Auto-curricula for the players. We visualize the curriculum induced by eva in § 4.2.5. With the stochastic policy, the
advantage may be heuristically understood as the reward difference between a base solver and a reference solver. Rather
than optimizing separate solvers (Dennis et al., 2020), we sample multiple times from the same policy to create the pair. In
this way, the creator is incentivized to produce new prompts that are just out of the comfort zone of solvers (Chaiklin et al.,
2003):

• For overly challenging prompts, both solutions perform poorly, leading to a low proxy.

• For overly easy prompts, the base solution already performs well, again giving a low proxy.

• The optimal strategy is to find prompts that are just beyond the solver’s current capability.

Auto-curricula inherent to Contrastive Optimization. Contrastive preference optimization generalizes DPO and a
family of algorithms (c.f., (Hejna et al., 2023; Rafailov et al., 2023; Tang et al., 2024)), many of whose losses monotonically
decrease as the contrastive ratio increases. To be specific, the DPO (Rafailov et al., 2023) objective for RLHF is:

LDPO
β (πθ) =

∑
(y+,y−,x)∈D

− log
[
σ
(
β ·∆x

θ; ref

)]
, (7)

where we use +,− to denote chosen and rejected responses, and denote the contrastive ratio as:

∆x
θ; ref := log

πθ (y+ | x)
πref (y+ | x)

− log
πθ (y− | x)
πref (y− | x)

. (8)
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Here, by Table 3 and Eq. 8, the contrastive ratio can be written via the advantage-based proxy:

A⋆
min(x) = β ·∆x

θ⋆; ref. (9)

By our proxy, we implicitly incentivize the creator to generate prompts that bring the most contrastive responses, which
decrease the loss the most. This matches the curriculum learning literature, which prioritizes (in eva, generatively
prioritizes) examples with smaller losses for better convergence and generalization (Bengio et al., 2009). We hence
suggest the Contrastive Curriculum Hypothesis: In contrastive preference optimization, prioritizing prompts with higher
contrastive ratio improves sample efficiency and generalization.

We show initial empirical results on this in § 4.2.1 and § 4.2.4.
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I. Examples on Prompts and Model Generations

Figure 11: The initial prompt distribution of UltraFeedback by bart-large-mnli with 0-shot classification, which is
imbalanced. For the reward distribution, the category with lowest average reward has the highest reward gap (i.e., the default
informativeness proxy), implying the potential to improve.

Table 17: Baseline examples of evolved prompts from AlpacaEval.

initial prompt→ Write me the code for a distributed transaction manager.\nThink
step by step and use pseudo code first.\nThen, define interfaces

for all involved actors and entities.\nUse Rational Unified

approach for this part.\n\nOnly then move on to the actual

implementation, class-by-class, and method-by-method.\nMake the

code be implemented in C# and follow SOLID principles.

evolved #1 → Craft a suite of syntax for a distributed transaction coordinator.

Start with a sequential breakdown in pseudocode format. Following

that, establish the protocols for communication and interaction

amongst the various participants and components, incorporating

the Rational Unified Process methodology.\n\nProceed thereafter to

the concrete creation, detailing each class and function. Ensure

that the final C# code adheres to the precepts of SOLID and is

annotated for clarification and maintainability purposes.

evolved #2 → Devise a comprehensive set of directives and structures for a

distributed transaction coordinator architecture. Initiate by

formulating a step-by-step algorithmic decomposition in pseudocode.

Subsequently, delineate the frameworks for dialog and cooperation

between the numerous entities and elements, utilizing the tenets

of the Rational Unified Process methodology.\n\nContinue to the

actual generation of the code, meticulously detailing every class

and corresponding method. Guarantee that the culminating C# code

is in strict compliance with SOLID principles and is supplemented

with descriptive commentary to enhance future clarity and upkeep,

while also validating the code against a set of unit tests to

ensure robust functionality.

evolved #3 → Commence by constructing an algorithm in pseudocode that

meticulously breaks down the sequential stages for a distributed

transaction coordinator system. Progress by outlining the

communication protocols and collaborative mechanisms among the

myriad components, adhering to the Rational Unified Process

approach.\n\nAdvance to crafting the code in C#, ensuring each

class and method is elaborated with precision, aligning with SOLID

design principles. Integrate thorough comments for heightened

maintainability and conduct comprehensive unit testing for assured

operational integrity.

evolved #4 → Design a detailed flowchart that represents the intricate

steps of an orchestration engine for managing microservices

in a cloud-native environment. Begin by detailing the service

discovery, load balancing, and fault tolerance strategies, while

incorporating the DevOps philosophy.\n\nProceed by developing the

implementation in Java, focusing on clean, modular code following

object-oriented programming best practices. Accompany your

code with clear documentation for easy understanding and perform

rigorous integration testing to guarantee robustness.
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1st-turn prompt: When a number is divided by 10, the remainder is 4. What is the

remainder when twice the number is divided by 4?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve this problem:

1. Understand the first statement:

* "When a number is divided by 10, the

remainder is 4" means the number can be

represented as 10*k + 4, where k is an

integer.

2. Double the number:

* Twice the number is 2*(10*k + 4) = 20*k + 8

3. Divide by 4:

* (20*k + 8) divided by 4 is (20*k)/4 + 8/4 =

5*k + 2

4. Find the remainder:

* Since 5*k is a multiple of 4, the remainder

when twice the number is divided by 4 is 2.

Let me know if you’d like to try another

example!

Here’s how to solve this problem:

1. Understand the first statement:

- "When a number is divided by 10, the

remainder is 4" means the number can be

represented as 10*k + 4, where k is an

integer.

2. Double the number:

- Twice the number is 2*(10*k + 4) = 20*k + 8

3. Divide by 4:

- When (20*k + 8) is divided by 4, the 20*k

term is perfectly divisible by 4.

- The remainder will be the same as the

remainder when 8 is divided by 4, which is

0.

Therefore, the remainder when twice the

number is divided by 4 is 0.

2nd-turn prompt: What about when twice the number is divided by 5?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva
Here’s how to solve that:

1. We know: Twice the number is 20*k + 8

(from the previous calculation).

2. Divide by 5: (20*k + 8) divided by 5 is

(20*k)/5 + 8/5 = 4*k + 1.6

3. Find the remainder: Since 4*k is a

multiple of 5, the remainder when twice the

number is divided by 5 is 1.

Let me know if you have any more number

theory puzzles!

Here’s how to solve that:

1. Twice the number: We know twice the

number is 20*k + 8 (from the previous steps).

2. Divide by 5:

* 20*k is divisible by 5.

* 8 divided by 5 leaves a remainder of 3.

Therefore, the remainder when twice the

number is divided by 5 is 3.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva
The assistant’s response is incorrect.

The assistant incorrectly calculated the

remainder when twice the number is divided by

5. The assistant calculated the decimal

part of the division operation, not the

remainder. The correct calculation should

be (20n + 8) % 5 = (20n % 5) + (8 % 5) = 0 +

3 = 3. Therefore, the remainder when twice

the number is divided by 5 is 3, not 1 as the

assistant stated.

The corrected response would be:

1. We know: Twice the number is 20*k + 8

(from the previous calculation).

2. Divide by 5: (20*k + 8) divided by 5

gives us a remainder of (20*k % 5) + (8 % 5)

= 0 + 3 = 3.

3. Find the remainder: The remainder when

twice the number is divided by 5 is 3.

Rating: [[3]], "score": 3, "turn": 2,

"tstamp": 1722737011.7768948

The assistant’s answer is correct and

matches the reference answer. The assistant

correctly explains that twice the number

is 20*k + 8 and that when this is divided

by 5, the remainder is 3. The assistant’s

explanation is clear and easy to understand,

making it helpful for the user. There are no

mistakes to correct.

Rating: [[10]], "score": 10, "turn": 2,

"tstamp": 1722846518.5543818

Table 18: Comparison of model generations on examples from MT-Bench.
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1st-turn prompt: Imagine you are writing a blog post comparing two popular smartphone models. Develop an

outline for the blog post, including key points and subheadings to effectively compare and contrast the features,

performance, and user experience of the two models. Please answer in fewer than 200 words.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

## Smartphone Showdown: [Model A] vs. [Model

B]\n\n**I. Introduction**\n* Briefly introduce the

two smartphone models being compared, highlighting

their popularity and target audience.\n* State the

purpose of the comparison: to help readers decide

which phone best suits their needs.\n\n**II. Design

and Display**\n* Physical dimensions, weight, and

build quality comparison.\n* Screen size, resolution,

and display technology (e.g., OLED, LCD).\n* Design

aesthetics and user preferences.\n\n**III. Performance

and Specs**\n* Processor, RAM, and storage comparison.\n*
Benchmark scores and real-world performance analysis.\n*
Battery life and charging capabilities.\n\n**IV.

Camera Capabilities**\n* Rear and front camera specs

(megapixels, aperture, features).\n* Image quality

comparison in various lighting conditions.\n* Video

recording capabilities.\n\n**V. Software and User

Experience**\n* Operating system and user interface

comparison.\n* App ecosystem and availability.\n* Software

features and customization options.\n\n**VI. Price and

Value**\n* Compare the price points of both models.\n*
Analyze the value proposition based on features and

performance.\n\n**VII. Conclusion**\n* Summarize the

key differences and similarities.\n* Recommend the best

phone for specific user profiles (e.g., budget-conscious,

photography enthusiasts, gamers).

## iPhone 14 Pro vs. Samsung Galaxy S23: Which

Flagship Reigns Supreme?\n\n**I. Introduction**\n*
Briefly introduce both smartphones and their position

in the market.\n* State the purpose of the comparison:

to help readers decide which phone best suits their

needs.\n\n**II. Design and Display**\n* Physical

dimensions, weight, and build quality comparison.\n*
Screen size, resolution, refresh rate, and display

technology (OLED vs. Super AMOLED).\n* Design aesthetics

and unique features (e.g., notch vs. punch-hole, color

options).\n\n**III. Performance and Camera**\n* Processor

comparison (Apple A16 Bionic vs. Snapdragon 8 Gen 2).\n*
RAM and storage options.\n* Camera specs: megapixels,

lens types, aperture, and special features (e.g.,

telephoto, macro).\n* Image quality comparison based

on sample photos and user reviews.\n\n**IV. Software

and User Experience**\n* Operating systems: iOS 16 vs.

Android 13.\n* User interface comparison: intuitiveness,

customization options, and app ecosystems.\n* Special

features: Face ID vs. in-display fingerprint

sensor, voice assistants.\n\n**V. Battery Life and

Charging**\n* Battery capacity and real-world usage

comparison.\n* Fast charging speeds and wireless charging

capabilities.\n\n**VI. Price and Value**\n* Compare

starting prices and different storage configurations.\n*
Assess the overall value for money based on features and

performance.\n\n**VII. Conclusion**\n* Summarize the key

differences and strengths of each phone.\n* Recommend

the best phone for specific user types (e.g., photography

enthusiasts, gamers, budget-conscious consumers).

2nd-turn prompt: Take your previous response and rephrase it as a limerick.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Two phones, a showdown so grand,\n[Model A] and [Model B],

hand in hand.\nDesign, specs, and price,\nWe’ll analyze

nice,\nTo help you choose, understand?\n\nLet me know if

you’d like me to try filling in the bracketed parts with

specific model names!

\nTwo phones, a Pro and a Galaxy,\nFor flagships,

they truly are spacy.\nWith cameras and screens,\nAnd

processors keen,\nWhich one wins? Read on, and be savvy!

\nLet me know if you’d like another limerick!

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is creative and relevant to the

user’s request. The user asked the assistant to rephrase

the previous response, which was a detailed outline for a

blog post, into a limerick. The assistant successfully

did so, maintaining the essence of the original response

in a limerick format. The assistant also offered to

further customize the limerick by filling in the bracketed

parts with specific model names, showing a willingness

to provide additional detail if needed. However, the

limerick does not fully capture the depth and detail of

the original response, which is understandable given the

constraints of the limerick format.

Rating: [[8]], "score": 8, "turn": 2, "tstamp":

1722737024.0327556

The assistant’s response is creative and relevant to the

user’s request. The assistant successfully rephrased the

previous response, which was a detailed outline for a blog

post comparing two smartphone models, into a limerick.

The limerick is playful and engaging, and it maintains the

essence of the original response, which is to compare the

two phones and help the reader make an informed decision.

The assistant also offers to create another limerick if

the user wants, showing a willingness to continue the

interaction.

Rating: [[9]], "score": 9, "turn": 2, "tstamp":

1722846542.9437995

Table 19: (Continued) comparison of model generations on examples from MT-Bench.
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1st-turn prompt: Each problem consists of three statements. Based on the first two statements, the third statement

may be true, false, or uncertain.\n1. Oranges cost more than apples.\n2. Oranges cost less than bananas.\n3.

Bananas cost more than apples and bananas cost more than orange.\nIf the first two statements are true, then the

third statement is?

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

Here’s how to break down the logic:\n\n* **Statement

1:** Oranges > Apples (Oranges cost more than apples)\n*

**Statement 2:** Oranges < Bananas (Oranges cost less than

bananas)\n\nThis means the price order is: Bananas >

Oranges > Apples\n\n* **Statement 3:** Bananas > Apples

AND Bananas > Oranges\n\nStatement 3 is **partially

true**.\n\n* The part "Bananas > Apples" is true based

on our price order.\n* The part "Bananas > Oranges" is

also true based on our price order.\n\n\nLet me know if

you’d like to try another one!

Here’s how to break down the logic:\n\n* **Statement

1:** Oranges > Apples (Oranges cost more than apples)\n*

**Statement 2:** Oranges < Bananas (Oranges cost less

than bananas)\n\nThese statements tell us that bananas

are the most expensive, then oranges, and apples are the

least expensive.\n\n* **Statement 3:** Bananas > Apples

AND Bananas > Oranges\n\nSince bananas are indeed more

expensive than both apples and oranges, statement 3 is

**true**.\n\n\nLet me know if you’d like to try another

one!

2nd-turn prompt: If the third statement is true. Is the first statement true, false, or uncertain? Please explain.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

If the third statement is true, the first statement

is **false**.\n\nHere’s why:\n\n* **Statement 3:**

States that bananas cost more than both apples AND

oranges.\n\nThis means the price order is: Bananas >

Oranges > Apples.\n\n* **Statement 1:** States that

oranges cost more than apples.\n\nIf bananas are the most

expensive, and oranges are second, then oranges cannot be

more expensive than apples.\n\n\nLet me know if you have

any other logic puzzles!

If the third statement is true, then the first statement

is **uncertain**.\n\nHere’s why:\n\n* **Statement 3:**

Bananas > Apples AND Bananas > Oranges\n\nThis tells us

bananas are the most expensive, but it doesn’t explicitly

state the relative prices of apples and oranges.\n\n*

**Statement 1:** Oranges > Apples\n\nThis statement claims

oranges are more expensive than apples.\n\nStatement

3 doesn’t contradict statement 1, but it also doesn’t

confirm it. It’s possible that oranges *are* more

expensive than apples, but statement 3 alone doesn’t

give us enough information to be sure.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s response is incorrect. The assistant

states that if the third statement is true, the first

statement is false. However, the third statement only

establishes that bananas cost more than both apples

and oranges. It does not provide information about

the relative costs of apples and oranges. Therefore,

the first statement could be true (if oranges cost

more than apples), false (if oranges cost less than

apples), or uncertain (if oranges and apples cost the

same). The assistant’s explanation is flawed because

it incorrectly assumes that the order of costs must be

Bananas > Oranges > Apples, when in fact the order could

also be Bananas > Apples = Oranges or Bananas > Apples

> Oranges. \n\nCorrected Assistant’s Answer: If the

third statement is true, then bananas cost more than

apples and bananas cost more than oranges. This means

that oranges could still cost more than apples, making the

first statement true. However, it’s also possible that

oranges and apples have the same cost, which would make

the first statement false. Therefore, based on the third

statement alone, the first statement is uncertain.

Rating: [[2]], "score": 2, "turn": 2, "tstamp":

1722737017.2808955

The assistant’s response is correct and helpful.

The assistant explains that the first statement is

uncertain if the third statement is true, which aligns

with the reference answer. The assistant provides a

clear explanation of why this is the case, stating

that the third statement doesn’t contradict the first

statement, but it also doesn’t confirm it. Therefore, the

assistant’s response is accurate and informative.\n\nThe

assistant’s response: "If the third statement is true,

then the first statement is **uncertain**. Here’s why:

Statement 3: Bananas > Apples AND Bananas > Oranges.

This tells us bananas are the most expensive, but it

doesn’t explicitly state the relative prices of apples

and oranges. Statement 1: Oranges > Apples. This

statement claims oranges are more expensive than apples.

Statement 3 doesn’t contradict statement 1, but it also

doesn’t confirm it. It’s possible that oranges *are* more

expensive than apples, but statement 3 alone doesn’t give

us enough information to be sure.

Rating: [[10]], "score": 10, "turn": 2, "tstamp":

1722846527.2339694

Table 20: (Continued) comparison of model generations on examples from MT-Bench.
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1st-turn prompt: Implement a function to find the median of two sorted arrays of different sizes with O(1) space complexity and O(n)

time complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m

> n:\n nums1, nums2, m, n = nums2, nums1, n, m # Ensure m

<= n\n\n imin, imax, half len = 0, m, (m + n + 1) // 2\n\n

while imin <= imax:\n i = (imin + imax) // 2\n j = half len

- i\n if i < m and nums2[j - 1] > nums1[i]:\n imin = i + 1 #

i is too small, increase it\n elif i > 0 and nums1[i - 1] >

nums2[j]:\n imax = i - 1 # i is too big, decrease it\n else:\n

# i is perfect\n\n if i == 0:\n max left = nums2[j - 1]\n

elif j == 0:\n max left = nums1[i - 1]\n else:\n max left

= max(nums1[i - 1], nums2[j - 1])\n\n if (m + n) % 2 == 1:\n

return max left\n\n if i == m:\n min right = nums2[j]\n

elif j == n:\n min right = nums1[i]\n else:\n min right =

min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

**Handle Unequal Lengths:**\n - If ‘nums1‘ is longer than ‘nums2‘,

swap them to ensure ‘nums1‘ is always the shorter array. This

simplifies the logic.\n\n2. **Binary Search:**\n - The core

idea is to use binary search on the shorter array (‘nums1‘).\n

- ‘imin‘ and ‘imax‘ define the search range for the partition

point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates the desired total

number of elements on the left side of the partition (to find

the median).\n\n3. **Partitioning:**\n - In each iteration, ‘i‘

divides ‘nums1‘ into two parts: ‘nums1[0:i]‘ and ‘nums1[i:m]‘.\n

- ‘j‘ is calculated to divide ‘nums2‘ so that the total number

of elements on the left side is ‘half len‘.\n\n4. **Adjusting

the Partition:**\n - We compare elements at the boundaries of

the partitions to see if ‘i‘ is in the correct position:\n - If

‘nums2[j - 1] > nums1[i]‘, ‘i‘ is too small, so we move ‘imin‘

to ‘i + 1‘.\n - If ‘nums1[i - 1] > nums2[j]‘, ‘i‘ is too large,

so we move ‘imax‘ to ‘i - 1‘.\n\n5. **Finding the Median:**\n

- Once ‘i‘ is in the correct position, we find:\n - ‘max left‘:

The maximum element in the left partitions of both arrays.\n

- ‘min right‘: The minimum element in the right partitions of

both arrays.\n - If the total length is odd, ‘max left‘ is the

median.\n - If the total length is even, the median is the

average of ‘max left‘ and ‘min right‘.\n\n**Time Complexity:**

O(log(min(m, n))) because we perform binary search on the shorter

array.\n\n**Space Complexity:** O(1) as we only use a constant

amount of extra space for variables.

python\n\def find median sorted arrays(nums1, nums2):\n """\n

Finds the median of two sorted arrays of different sizes.\n\n

Args:\n nums1: The first sorted array.\n nums2: The second

sorted array.\n\n Returns:\n The median of the two sorted

arrays.\n """\n\n m, n = len(nums1), len(nums2)\n if m > n:\n

nums1, nums2, m, n = nums2, nums1, n, m # Ensure m <= n\n\n imin,

imax, half len = 0, m, (m + n + 1) // 2\n\n while imin <= imax:\n

i = (imin + imax) // 2\n j = half len - i\n if i < m and nums2[j

- 1] > nums1[i]:\n imin = i + 1 # i is too small, increase it\n

elif i > 0 and nums1[i - 1] > nums2[j]:\n imax = i - 1 # i is

too big, decrease it\n else:\n # i is perfect\n\n if i == 0:\n

max left = nums2[j - 1]\n elif j == 0:\n max left = nums1[i -

1]\n else:\n max left = max(nums1[i - 1], nums2[j - 1])\n\n if

(m + n) % 2 == 1:\n return max left\n\n if i == m:\n min right =

nums2[j]\n elif j == n:\n min right = nums1[i]\n else:\n min right

= min(nums1[i], nums2[j])\n\n return (max left + min right) /

2.0\n\n# Example usage\nnums1 = [1, 3]\nnums2 = [2]\nmedian =

find median sorted arrays(nums1, nums2)\nprint(f"The median of

{nums1} and {nums2} is: {median}")\n\n\n**Explanation:**\n\n1.

**Handle Unequal Lengths:**\n - If ‘nums1‘ is longer than ‘nums2‘,

swap them to ensure ‘nums1‘ is always the shorter array. This

simplifies the logic.\n\n2. **Binary Search:**\n - The core

idea is to use binary search on the shorter array (‘nums1‘).\n

- ‘imin‘ and ‘imax‘ define the search range for the partition

point ‘i‘ in ‘nums1‘.\n - ‘half len‘ calculates the desired total

number of elements on the left side of the partition (to find

the median).\n\n3. **Partitioning:**\n - In each iteration,

‘i‘ divides ‘nums1‘, and ‘j‘ divides ‘nums2‘ such that the

total number of elements on the left side is ‘half len‘.\n\n4.

**Adjusting the Search Range:**\n - If ‘nums2[j - 1] > nums1[i]‘,

it means ‘i‘ is too small, so we need to move the partition point

in ‘nums1‘ to the right (‘imin = i + 1‘).\n - If ‘nums1[i -

1] > nums2[j]‘, ‘i‘ is too large, so we move it to the left

(‘imax = i - 1‘).\n\n5. **Finding the Median:**\n - When the

correct partition is found (‘i‘ is in the right position), we

find:\n - ‘max left‘: The maximum element on the left side of

the partition.\n - ‘min right‘: The minimum element on the right

side of the partition.\n - If the total number of elements is

odd, ‘max left‘ is the median.\n - If even, the median is the

average of ‘max left‘ and ‘min right‘.\n\n**Time Complexity:**

O(log(min(m, n))) because we are performing binary search on the

shorter array.\n\n**Space Complexity:** O(1) as we are only using a

constant amount of extra space for variables.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that the

time complexity is O(log(min(m, n))) and the space complexity is

O(1), which aligns with the reference answer. The assistant also

provides an example usage of the function, which is helpful for

understanding how to use it. The assistant’s code is a different

implementation than the reference answer, but it achieves the same

result and meets the same complexity requirements.

However, the assistant’s answer does not address the user’s

original question about achieving O(n) time complexity. The

assistant should have clarified that it’s not possible to find

the median of two sorted arrays of different sizes with O(1) space

complexity and O(n) time complexity, as stated in the answer.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722737514.2011044

The assistant’s answer is correct and provides a detailed

explanation of the code. The assistant correctly states that

the time complexity is O(log(min(m, n))) and the space complexity

is O(1), which aligns with the reference answer. The assistant

also provides a step-by-step explanation of the code, which is

very helpful for understanding the logic behind the solution. The

assistant’s code is also correct and will correctly find the median

of two sorted arrays of different sizes. Therefore, there are no

corrections needed for the assistant’s response.

Rating: [[10]], "score": 10, "turn": 1, "tstamp":

1722846533.772981

Table 21: (Continued) comparison of model generations on examples from MT-Bench.
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1st-turn prompt: You are given two sorted lists of size m and n. Implement a function to find the kth smallest

element in the union of the two lists with linear complexity.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union

of two sorted lists.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n

k: The desired kth smallest element.\n\n Returns:\n

The kth smallest element in the union of the two

lists.\n """\n\n m, n = len(list1), len(list2)\n

i, j = 0, 0\n min heap = [] \n\n # Build a min-heap

with the first elements of both lists\n for x in

range(min(m, n)):\n heapq.heappush(min heap, (list1[x],

x, 0)) # (value, list index, position in list)\n

heapq.heappush(min heap, (list2[x], x, 1))\n\n #

Extract k smallest elements from the heap\n for in

range(k - 1):\n , , = heapq.heappop(min heap)\n\n

# The top element of the heap is the kth smallest\n

return heapq.heappop(min heap)[0]\n\n# Example

usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘m‘ and ‘n‘ store the lengths

of the input lists.\n - ‘i‘ and ‘j‘ are pointers to track

the current position in each list.\n - ‘min heap‘ is

a min-heap used to efficiently store and retrieve the

smallest elements encountered so far.\n\n2. **Building

the Min-Heap:**\n - The code iterates through the

first ‘min(m, n)‘ elements of both lists.\n - For each

element, a tuple ‘(value, list index, position in list)‘

is pushed onto the ‘min heap‘. This tuple helps us

keep track of the element’s value, the list it belongs

to, and its original position.\n\n3. **Extracting

k-1 Smallest Elements:**\n - The ‘for‘ loop runs ‘k

- 1‘ times, effectively extracting the ‘k-1‘ smallest

elements from the ‘min heap‘.\n\n4. **Finding the kth

Smallest:**\n - After the loop, the top element of

the ‘min heap‘ contains the ‘k‘th smallest element.\n

- ‘heapq.heappop(min heap)‘ removes and returns this

element.\n\n**Time Complexity:**\n\n- Building the

min-heap: O(m + n)\n- Extracting k-1 elements: O(k *

log(k))\n- Overall: **O(m + n + k * log(k))**, which

is approximately **O(m + n)** since ‘k‘ is usually much

smaller than ‘m + n‘.\n\n\n\nLet me know if you have any

other questions!

‘‘‘python\n\def find kth smallest(list1, list2, k):\n

"""\n Finds the kth smallest element in the union of

two sorted lists.\n\n Args:\n list1: The first sorted

list.\n list2: The second sorted list.\n k: The

desired rank of the smallest element.\n\n Returns:\n

The kth smallest element in the union of the lists.\n

"""\n\n i = 0 # Index for list1\n j = 0 # Index for

list2\n merged = [] # Store the merged elements\n\n

while i < len(list1) and j < len(list2):\n if list1[i]

<= list2[j]:\n merged.append(list1[i])\n i += 1\n

else:\n merged.append(list2[j])\n j += 1\n\n # Add any

remaining elements from list1\n while i < len(list1):\n

merged.append(list1[i])\n i += 1\n\n # Add any

remaining elements from list2\n while j < len(list2):\n

merged.append(list2[j])\n j += 1\n\n return merged[k

- 1] # Return the kth element (index k-1)\n\n# Example

usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9,

10]\nk = 5\n\nkth smallest = find kth smallest(list1,

list2, k)\nprint(f"The {k}th smallest element

is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘i‘ and ‘j‘ are index pointers

for ‘list1‘ and ‘list2‘ respectively, starting at 0.\n

- ‘merged‘ is an empty list to store the merged sorted

elements.\n\n2. **Merging:**\n - The ‘while‘ loop

continues as long as both ‘i‘ and ‘j‘ are within the

bounds of their respective lists.\n - In each iteration,

it compares the elements at ‘list1[i]‘ and ‘list2[j]‘.\n

- The smaller element is appended to ‘merged‘, and the

corresponding index (‘i‘ or ‘j‘) is incremented.\n\n3.

**Adding Remaining Elements:**\n - After one list is

exhausted, the remaining elements from the other list

are directly appended to ‘merged‘.\n\n4. **Returning the

kth Element:**\n - Finally, ‘merged[k - 1]‘ is returned,

which represents the kth smallest element in the union

(remember that list indices start from 0).\n\n**Linear

Complexity:**\n\n- The algorithm iterates through each

element in both lists at most once during the merging

process.\n- The time complexity is therefore O(m + n),

which is linear in the total number of elements (m + n),

making it efficient for large lists.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s answer is incorrect. The user asked

for a solution with linear complexity, but the assistant

provided a solution with a time complexity of O(m + n

+ k * log(k)), which is not linear. The assistant’s

solution uses a min-heap, which is not necessary and adds

unnecessary complexity to the solution.

Rating: [[2]], "score": 2, "turn": 1, "tstamp":

1722737030.6411152

The assistant’s answer is correct and helpful. It

provides a Python function that implements the two-pointer

approach to find the kth smallest element in the union of

two sorted lists. The assistant’s function is slightly

different from the reference, but it achieves the same

goal. The assistant’s function merges the two lists

into a new list and then returns the kth element from

the merged list. The assistant also provides a detailed

explanation of how the function works and confirms that

the time complexity is linear, which is what the user

asked for. However, the assistant’s function uses extra

space to store the merged list, which is not necessary and

not as efficient as the reference.

Rating: [[8]], "score": 8, "turn": 1, "tstamp":

1722846543.867601

Table 22: (Continued) comparison of model generations on examples from MT-Bench.
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2nd-turn prompt: Does there exist an algorithm with better time complexity? If so, implement it.

Answer from gemma-2-9b-it-dpo Answer from gemma-2-9b-it-dpo-eva

You are absolutely right! There’s a more efficient algorithm with a

time complexity of **O(m + n)** without using a heap.\n\nHere’s the

implementation:\n\npython\n\def find kth smallest optimized(list1, list2,

k):\n """\n Finds the kth smallest element in the union of two sorted lists\n

with O(m + n) time complexity.\n\n Args:\n list1: The first sorted list.\n

list2: The second sorted list.\n k: The desired kth smallest element.\n\n

Returns:\n The kth smallest element in the union of the two lists.\n """\n m, n

= len(list1), len(list2)\n i, j = 0, 0\n result = []\n\n # Merge the lists while

keeping track of the kth smallest\n while len(result) < k:\n if i < m and j <

n:\n if list1[i] <= list2[j]:\n result.append(list1[i])\n i += 1\n else:\n

result.append(list2[j])\n j += 1\n elif i < m:\n result.append(list1[i])\n

i += 1\n else:\n result.append(list2[j])\n j += 1\n\n return result[k -

1]\n\n# Example usage:\nlist1 = [2, 5, 8, 12]\nlist2 = [1, 3, 7, 9, 10]\nk

= 5\nkth smallest = find kth smallest optimized(list1, list2, k)\nprint(f"The

{k}th smallest element is: {kth smallest}")\n\n\n**Explanation:**\n\n1.

**Initialization:**\n - ‘m‘ and ‘n‘ store the lengths of the lists.\n - ‘i‘ and

‘j‘ are pointers for ‘list1‘ and ‘list2‘, respectively.\n - ‘result‘ is a list

to store the merged and sorted elements.\n\n2. **Merging and Tracking:**\n -

The ‘while‘ loop continues until ‘k‘ elements are in the ‘result‘ list.\n - In

each iteration, it compares the current elements from ‘list1‘ and ‘list2‘.\n

- The smaller element is appended to ‘result‘, and the corresponding pointer

(‘i‘ or ‘j‘) is incremented.\n - If one list is exhausted, the remaining

elements from the other list are appended to ‘result‘.\n\n3. **Returning

the kth Smallest:**\n - Finally, ‘result[k - 1]‘ contains the ‘k‘th smallest

element.\n\n**Time Complexity:**\n\n- The algorithm iterates through both lists

once, resulting in a time complexity of **O(m + n)**.\n\n\n\nLet me know if you

have any more questions!

You are right to ask! While the previous algorithm has linear time complexity,

we can achieve an even better solution with **O(log(min(m, n)))** time complexity

using a slightly more sophisticated approach.\n\nThe key idea is to leverage

the sorted nature of the lists and use a **binary search** strategy.\n\nHere’s

the implementation:\n\n\##\npython\n\def find kth smallest optimized(list1,

list2, k):\n """\n Finds the kth smallest element in the union of two sorted

lists with O(log(min(m, n))) time complexity.\n\n Args:\n list1: The first

sorted list.\n list2: The second sorted list.\n k: The desired rank of

the smallest element.\n\n Returns:\n The kth smallest element in the union

of the lists.\n """\n m, n = len(list1), len(list2)\n if m > n:\n list1,

list2, m, n = list2, list1, n, m # Ensure list1 is the shorter one\n\n left,

right = 0, m\n while left <= right:\n partitionX = (left + right) // 2\n

partitionY = k - partitionX\n\n maxLeftX = list1[partitionX - 1] if partitionX

> 0 else float(’-inf’)\n minRightX = list1[partitionX] if partitionX < m

else float(’inf’)\n\n maxLeftY = list2[partitionY - 1] if partitionY > 0

else float(’-inf’)\n minRightY = list2[partitionY] if partitionY < n else

float(’inf’)\n\n if maxLeftX <= minRightY and maxLeftY <= minRightX:\n if

partitionX == 0:\n return list2[partitionY - 1]\n elif partitionY == 0:\n

return list1[partitionX - 1]\n else:\n return max(list1[partitionX - 1],

list2[partitionY - 1])\n elif maxLeftX > minRightY:\n right = partitionX - 1

# Too many elements on the right side of list1\n else:\n left = partitionX +

1 # Too many elements on the right side of list2\n\n\n**Explanation:**\n\n1.

**Shorten Lists:** If ‘list1‘ is longer than ‘list2‘, swap them to ensure

‘list1‘ is always the shorter one. This simplifies the logic.\n\n2. **Binary

Search:**\n - ‘left‘ and ‘right‘ pointers define the search space within

‘list1‘.\n - ‘partitionX‘ is the middle point in ‘list1‘, and ‘partitionY‘ is

calculated to divide the remaining elements in ‘list2‘ such that ‘partitionX

+ partitionY = k‘.\n - ‘maxLeftX‘, ‘minRightX‘, ‘maxLeftY‘, and ‘minRightY‘

represent the largest element to the left and smallest element to the right

of the partitions in both lists.\n\n3. **Comparison and Adjustment:**\n -

If the ‘maxLeftX‘ is less than or equal to ‘minRightY‘ and ‘maxLeftY‘ is less

than or equal to ‘minRightX‘, it means the kth smallest element lies within the

current partitions. We return the larger of ‘maxLeftX‘ and ‘maxLeftY‘.\n - If

‘maxLeftX‘ is greater than ‘minRightY‘, it indicates that we need to search in

the left subarray of ‘list1‘ (i.e., decrease ‘right‘).\n - Otherwise, we search

in the right subarray of ‘list1‘ (i.e., increase ‘left‘).\n\n4. **Termination:**

The binary search continues until ‘left‘ crosses ‘right‘, indicating the correct

partition has been found.\n\n**Time Complexity:**\n\n- The binary search divides

the search space in half at each step.\n- Therefore, the time complexity is

O(log(min(m, n))), which is significantly faster than linear time for large lists

where one list is much smaller than the other.

Judgment (by gpt-4)

Judgment for gemma-2-9b-it-dpo Judgment for gemma-2-9b-it-dpo-eva

The assistant’s first response to the user’s question is incorrect. The user

asked for a function to find the kth smallest element in the union of two sorted

lists with linear complexity. The assistant provided a function that uses a

min-heap, which has a time complexity of O(m + n + k * log(k)). This is not

linear complexity, as the user requested. The assistant’s second response to the

user’s question is also incorrect. The user asked if there exists an algorithm

with better time complexity than linear. The assistant provided a function that

has a time complexity of O(m + n), which is linear, not better than linear. The

assistant should have provided a function that uses a binary search approach,

which has a time complexity of O(log(m) + log(n)), as the reference answer

correctly does.

Rating: [[2]], "score": 2, "turn": 2, "tstamp": 1722737031.5033472

The assistant’s response is correct and helpful. The assistant provided a

Python function that uses a binary search approach to find the kth smallest

element in the union of two sorted lists. The assistant also provided a detailed

explanation of how the function works, including the time complexity of the

function. The assistant’s answer matches the reference answer in terms of

the algorithm used and the explanation provided. The assistant also correctly

identified that the binary search approach has a better time complexity than

the linear approach. However, the assistant’s code has a minor issue. The

assistant’s code does not handle the case when ‘k‘ is greater than the sum of the

lengths of the two lists. In such a case, the code will raise an ‘IndexError‘.

This can be fixed by adding a check at the beginning of the function to return

‘None‘ if ‘k‘ is greater than the sum of the lengths of the two lists.

Rating: [[9]], "score": 9, "turn": 2, "tstamp": 1722846556.6828268

Table 23: (Continued) comparison of model generations on examples from MT-Bench.
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