
Online Clustering of Bandits with Misspecified User
Models

Zhiyong Wang
The Chinese University of Hong Kong

zywang21@cse.cuhk.edu.hk

Jize Xie
Shanghai Jiao Tong University

xjzzjl@sjtu.edu.cn

Xutong Liu
The Chinese University of Hong Kong

liuxt@cse.cuhk.edu.hk

Shuai Li∗
Shanghai Jiao Tong University
shuaili8@sjtu.edu.cn

John C.S. Lui
The Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

Abstract

The contextual linear bandit is an important online learning problem where given
arm features, a learning agent selects an arm at each round to maximize the cu-
mulative rewards in the long run. A line of works, called the clustering of bandits
(CB), utilize the collaborative effect over user preferences and have shown signifi-
cant improvements over classic linear bandit algorithms. However, existing CB
algorithms require well-specified linear user models and can fail when this critical
assumption does not hold. Whether robust CB algorithms can be designed for more
practical scenarios with misspecified user models remains an open problem. In this
paper, we are the first to present the important problem of clustering of bandits with
misspecified user models (CBMUM), where the expected rewards in user models
can be perturbed away from perfect linear models. We devise two robust CB algo-
rithms, RCLUMB and RSCLUMB (representing the learned clustering structure
with dynamic graph and sets, respectively), that can accommodate the inaccurate
user preference estimations and erroneous clustering caused by model misspec-
ifications. We prove regret upper bounds of O(ϵ∗T

√
md log T + d

√
mT log T)

for our algorithms under milder assumptions than previous CB works (notably,
we move past a restrictive technical assumption on the distribution of the arms),
which match the lower bound asymptotically in T up to logarithmic factors, and
also match the state-of-the-art results in several degenerate cases. The techniques
in proving the regret caused by misclustering users are quite general and may be of
independent interest. Experiments on both synthetic and real-world data show our
outperformance over previous algorithms.

1 Introduction

Stochastic multi-armed bandit (MAB) [2, 4, 22] is an online sequential decision-making problem,
where the learning agent selects an action and receives a corresponding reward at each round, so as
to maximize the cumulative reward in the long run. MAB algorithms have been widely applied in

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

recommendation systems and computer networks to handle the exploration and exploitation trade-off
[20, 30, 38, 5].

To deal with large-scale applications, the contextual linear bandits [24, 9, 1, 29, 21] have been studied,
where the expected reward of each arm is assumed to be perfectly linear in their features. Leveraging
the contextual side information about the user and arms, linear bandits can provide more personalized
recommendations [16]. Classical linear bandit approaches, however, ignore the often useful tool of
collaborative filtering. To utilize the relationships among users, the problem of clustering of bandits
(CB) has been proposed [12]. Specifically, CB algorithms adaptively partition users into clusters and
utilize the collaborative effect of users to enhance learning performance.

Although existing CB algorithms have shown great success in improving recommendation qualities,
there exist two major limitations. First, all previous works on CB [12, 25, 27, 39] assume that for
each user, the expected rewards follow a perfectly linear model with respect to the user preference
vector and arms’ feature vectors. In many real-world scenarios, due to feature noises or uncertainty
[15], the reward may not necessarily conform to a perfectly linear function, or even deviates a lot
from linearity [14]. Second, previous CB works assume that for users within the same cluster, their
preferences are exactly the same. Due to the heterogeneity in users’ personalities and interests, similar
users may not have identical preferences, invalidating this strong assumption.

To address these issues, we propose a novel problem of clustering of bandits with misspecified user
models (CBMUM). In CBMUM, the expected reward model of each user does not follow a perfectly
linear function but with possible additive deviations. We assume users in the same underlying cluster
share a common preference vector, meaning they have the same linear part in reward models, but the
deviation parts are allowed to be different, better reflecting the varieties of user personalities.

The relaxation of perfect linearity and the reward homogeneity within the same cluster bring many
challenges to the CBMUM problem. In CBMUM, we not only need to handle the uncertainty
from the unknown user preference vectors, but also have to tackle the additional uncertainty from
model misspecifications. Due to such uncertainties, it becomes highly challenging to design a robust
algorithm that can cluster the users appropriately and utilize the clustered information judiciously.
On the one hand, the algorithm needs to be more tolerant in the face of misspecifications so that more
similar users can be clustered together to utilize the collaborative effect. On the other hand, it has to
be more selective to rule out the possibility of misclustering users with large preference gaps.

1.1 Our Contributions

This paper makes the following four contributions.

New Model Formulation. We are the first to formulate the clustering of bandits with misspecified
user models (CBMUM) problem, which is more practical by removing the perfect linearity assumption
in previous CB works.

Novel Algorithm Designs. We design two novel algorithms, RCLUMB and RSCLUMB, which
robustly learn the clustering structure and utilize this collaborative information for faster user prefer-
ence elicitation. Specifically, RCLUMB keeps updating a dynamic graph over all users, where users
connected directly by edges are supposed to be in the same cluster. RCLUMB adaptively removes
edges and recommends items based on historical interactions. RSCLUMB represents the clustering
structure with sets, which are dynamicly merged and split during the learning process. Due to the
page limit, we only illustrate the RCLUMB algorithm in the main paper. We leave the exposition,
illustration, and regret analysis of the RSCLUMB algorithm in Appendix K.

To overcome the challenges brought by model misspecifications, we do the following key steps
in the RCLUMB algorithm. (i) To ensure that with high probability, similar users will not be
partitioned apart, we design a more tolerant edge deletion rule by taking model misspecifications into
consideration. (ii) Due to inaccurate user preference estimations caused by model misspecifications,
trivially following previous CB works [12, 25, 28] to directly use connected components in the
maintained graph as clusters would miscluster users with big preference gaps, causing a large regret.
To be discriminative in cluster assignments, we filter users directly linked with the current user
in the graph to form the cluster used in this round. With these careful designs of (i) and (ii), we
can guarantee that with high probability, information of all similar users can be leveraged, and
only users with close enough preferences might be misclustered, which will only mildly impair the

2

learning accuracy. Additionally: (iii) we design an enlarged confidence radius to incorporate both the
exploration bonus and the additional uncertainty from misspecifications when recommending arms.
The design of RSCLUMB follows similar ideas, which we leave in the Appendix K due to page limit.

Theoretical Analysis with Milder Assumptions. We prove regret upper bounds for our algorithms
of O(ϵ∗T

√
md log T + d

√
mT log T) in CBMUM under much milder and practical assumptions

(in arm generation distribution) than previous CB works, which match the state-of-the-art results
in degenerate cases. Our proof is quite different from the typical proof flow of previous CB works
(details in Appendix C). One key challenge is to bound the regret caused by misclustering users
with close but not the same preference vectors and use the inaccurate cluster-based information to
recommend arms. To handle the challenge, we prove a key lemma (Lemma 5.7) to bound this part of
regret. We defer its details in Section 5 and Appendix G. The techniques and results for bounding
this part are quite general and may be of independent interest. We also give a regret lower bound of
Ω(ϵ∗T

√
d) for CBMUM, showing that our upper bounds are asymptotically tight with respect to T

up to logarithmic factors. We leave proving a tighter lower bound for CBMUM as an open problem.

Good Experimental Performance. Extensive experiments on both synthetic and real-world data
show the advantages of our proposed algorithms over the existing algorithms.

2 Related Work
Our work is closely related to two lines of research: online clustering of bandits (CB) and misspecified
linear bandits (MLB). More discussions on related works can be found in Appendix A.

The paper [12] first formulates the CB problem and proposes a graph-based algorithm. The work [26]
further considers leveraging the collaborative effects on items to guide the clustering of users. The
work [25] considers the CB problem in the cascading bandits setting with random prefix feedback.
The paper [27] also considers users with different arrival frequencies. A recent work [28] proposes
the setting of clustering of federated bandits, considering both privacy protection and communication
requirements. However, all these works assume that the reward model for each user follows a perfectly
linear model, which is unrealistic in many real-world applications. To the best of our knowledge, this
paper is the first work to consider user model misspecifications in the CB problem.

The work [14] first proposes the misspecified linear bandits (MLB) problem, shows the vulnerability
of linear bandit algorithms under deviations, and designs an algorithm RLB that is only robust to
non-sparse deviations. The work [23] proposes two algorithms to handle general deviations, which
are modifications of the phased elimination algorithm [22] and LinUCB [1]. Some recent works
[31, 11] use model selection methods to deal with unknown exact maximum model misspecification
level. Note that the work [11] has an additional assumption on the access to an online regression
oracle, and the paper [31] still needs to know an upper bound of the unknown exact maximum model
deviation level. None of them consider the CB setting with multiple users, thus differing from ours.

We are the first to initialize the study of the important CBMUM problem, and propose a general
framework for dealing with model misspecifications in CB problems. Our study is based on funda-
mental models on CB [12, 27] and MLB [23], the algorithm design ideas and theoretical analysis are
pretty general. We leave incorporating the model selection methods [31, 11] into our framework to
address the unknown exact maximum model misspecification level as an interesting future work.

3 Problem Setup
This section formulates the problem of “clustering of bandits with misspecified user models" (CB-
MUM). We use boldface lowercase and boldface CAPITALIZED letters for vectors and matrices. We
use |A| to denote the number of elements in A, [m] to denote {1, . . . ,m}, and ∥x∥M =

√
x⊤Mx

to denote the matrix norm of vector x regarding the positive semi-definite (PSD) matrix M .

In CBMUM, there are u users denoted by U = {1, 2, . . . , u}. Each user i ∈ U is associated with an
unknown preference vector θi ∈ Rd, with ∥θi∥2 ≤ 1. We assume there is an unknown underlying
clustering structure over users representing the similarity of their behaviors. Specifically, U can be
partitioned into a small number m (i.e., m ≪ u) clusters, V1, V2, . . . Vm, where ∪j∈[m]Vj = U , and
Vj ∩ Vj′ = ∅, for j ̸= j′. We call these clusters ground-truth clusters and use V = {V1, V2, . . . , Vm}
to denote the set of these clusters. Users in the same ground-truth cluster share the same preference
vector, while users from different ground-truth clusters have different preference vectors. Let θj

3

denote the common preference vector for Vj and j(i) ∈ [m] denote the index of the ground-truth
cluster that user i belongs to. For any ℓ ∈ U , if ℓ ∈ Vj(i), then θℓ = θi = θj(i).

At each round t ∈ [T], a user it ∈ U comes to be served. The learning agent receives a finite
arm set At ⊆ A to choose from (with |At| ≤ C, ∀t), where each arm a ∈ A is associated with a
feature vector xa ∈ Rd, and ∥xa∥2 ≤ 1. The agent assigns an appropriate cluster V t for user it and
recommends an item at ∈ At based on the aggregated historical information gathered from cluster
V t. After receiving the recommended item at, user it gives a random reward rt ∈ [0, 1] to the agent.
To better model real-world scenarios, we assume that the reward rt follows a misspecified linear
function of the item feature vector xat

and the unknown user preference vector θit . Formally,

rt = x⊤
at
θit + ϵit,tat

+ ηt , (1)

where ϵit,t = [ϵit,t1 , ϵit,t2 , . . . , ϵit,t|At|]
⊤ ∈ R|At| denotes the unknown deviation in the expected

rewards of arms in At from linearity for user it at t, and ηt is the 1-sub-Gaussian noise. We allow the
deviation vectors for users in the same ground-truth cluster to be different.

We assume the clusters, users, items, and model misspecifications satisfy the following assumptions.
Assumption 3.1 (Gap between different clusters). The gap between any two preference vectors for
different ground-truth clusters is at least an unknown positive constant γ∥∥∥θj − θj′

∥∥∥
2
≥ γ > 0 ,∀j, j′ ∈ [m] , j ̸= j′ .

Assumption 3.2 (Uniform arrival of users). At each round t, a user it comes uniformly at random
from U with probability 1/u, independent of the past rounds.
Assumption 3.3 (Item regularity). At each time step t, the feature vector xa of each arm a ∈ At

is drawn independently from a fixed but unknown distribution ρ over {x ∈ Rd : ∥x∥2 ≤ 1}, where
Ex∼ρ[xx

⊤] is full rank with minimal eigenvalue λx > 0. Additionally, at any time t, for any fixed
unit vector θ ∈ Rd, (θ⊤x)2 has sub-Gaussian tail with variance upper bounded by σ2.
Assumption 3.4 (Bounded misspecification level). We assume that there is a pre-specified maximum
misspecification level parameter ϵ∗ such that

∥∥ϵi,t∥∥∞ ≤ ϵ∗, ∀i ∈ U , t ∈ [T].
Remark 1. All these assumptions basically follow previous works on CB [12, 13, 25, 3, 28] and MLB
[23]. Note that Assumption 3.3 is less stringent and more practical than previous CB works which also
put restrictions on the variance upper bound σ2. For Assumption 3.2, our results can easily generalize
to the case where the user arrival follows any distributions with minimum arrival probability greater
than pmin. For Assumption 3.4, note that ϵ∗ can be an upper bound on the maximum misspecification
level, not the exact maximum itself. In real-world applications, the deviations are usually small [14],
and we can set a relatively big ϵ∗ as an upper bound. For more discussions please refer to Appendix B

Let a∗t ∈ argmaxa∈At
x⊤
a θit + ϵit,ta denote an optimal arm which gives the highest expected reward

at t. The goal of the agent is to minimize the expected cumulative regret

R(T) = E[
∑T

t=1(x
⊤
a∗
t
θit + ϵit,ta∗

t
− x⊤

at
θit − ϵit,tat

)] . (2)

4 Algorithm

This section introduces our algorithm called “Robust CLUstering of Misspecified Bandits"
(RCLUMB) (Algo.1). RCLUMB is a graph-based algorithm. The ideas and techniques of RCLUMB
can be easily generalized to set-based algorithms. To illustrate this generalizability, we also design a
set-based algorithm RSCLUMB. We leave the exposition and analysis of RSCLUMB in Appendix K.

For ease of interpretation, we define the coefficient

ζ ≜ 2ϵ∗

√
2

λ̃x

, (3)

where λ̃x ≜
∫ λx

0
(1 − e−

(λx−x)2

2σ2)Cdx. ζ is theoretically the minimum gap between two users’
preference vectors that an algorithm can distinguish with high probability, as supported by Eq.(50) in
the proof of Lemma H.1 in Appendix H. Note that the algorithm does not require knowledge of ζ.
We also make the following definition for illustration.

4

Algorithm 1 Robust Clustering of Misspecified Bandits Algorithm (RCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T) =
√

1+ln(1+T)
1+T , λ, β, ϵ∗ > 0.

2: Initialization: M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ; a complete Graph G0 = (U , E0)
over U .

3: for all t = 1, 2, . . . , T do
4: Receive the index of the current user it ∈ U , and the current feasible arm set At;
5: Filter user it and users i ∈ U that are directly connected with user it via edge (i, it) ∈ Et−1,

to form the cluster V t;
6: Compute the estimated statistics for cluster V t

MV t,t−1 = λI +
∑

i∈V t
M i,t−1 , bV t,t−1 =

∑
i∈V t

bi,t−1 , θ̂V t,t−1 = M
−1

V t,t−1bV t,t−1;

7: Recommend an arm at with the largest UCB index (Eq.(5)), and receive the reward rt ∈ [0, 1];

8: Update the statistics for user it M it,t = M it,t−1 +xat
x⊤
at
, bit,t = bit,t−1 + rtxat

, Tit,t =

Tit,t−1 + 1 , θ̂it,t = (λI +M it,t)
−1bit,t;

9: Keep the statistics of other users unchanged
M ℓ,t = M ℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1, θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it;

10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t)

)
+ α2ϵ∗ ,

and get an updated graph Gt = (U , Et);

Definition 4.1 (ζ-close users and ζ-good clusters). Two users i, i′ ∈ U are ζ-close if ∥θi − θi′∥2 ≤ ζ .
Cluster V is a ζ-good cluster at time t, if ∀ i ∈ V , user i and the coming user it are ζ-close.

We also say that two ground-truth clusters are “ζ-close" if their preference vectors’ gap is less than ζ .

Now we introduce the process and intuitions of RCLUMB (Algo.1). The algorithm maintains an
undirected user graph Gt = (U , Et), where users are connected with edges if they are inferred to be
in the same cluster. We denote the connected component in Gt−1 containing user it at round t as Ṽt.

Cluster Detection. G0 is initialized to be a complete graph, and will be updated adaptively based
on the interactive information. At round t, user it ∈ U comes to be served with a feasible arm
set At (Line 4). Due to model misspecifications, it is impossible to cluster users with exactly the
same preference vector θ, but similar users whose preference vectors are within the distance of ζ.
According to the proof of Lemma H.1, after a sufficient time, with high probability, any pair of users
directly connected by an edge in Et−1 are ζ-close. However, if we trivially follow previous CB works
[12, 25, 28] to directly use the connected component Ṽt as the inferred cluster for user it at round t, it
will cause a large regret. The reason is that in the worst case, the preference vector θ of the user in Ṽt

who is h-hop away from user it could deviate by hζ from θit , where h can be as large as |Ṽt|. Based
on this reasoning, our key point is to select the cluster V t as the users at most 1-hop away from it in
the graph. In other words, after some interactions, V t forms a ζ-good cluster with high probability;
thus, RCLUMB can avoid using misleading information from dissimilar users for recommendations.

Cluster-based Recommendation. After finding the appropriate cluster V t for it, the agent estimates
the common user preference vector based on the historical information associated with cluster V t by

θ̂V t,t−1 = argmin
θ∈Rd

∑
s∈[t−1]

is∈V t

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (4)

where λ > 0 is a regularization coefficient. Its closed-form solution is θ̂V t,t−1 = M
−1

V t,t−1bV t,t−1,
where MV t,t−1 = λI +

∑
s∈[t−1]

is∈V t

xasx
⊤
as

, bV t,t−1 =
∑

s∈[t−1]

is∈V t

rasxas .

Based on this estimation, in Line 7, the agent recommends an arm using the UCB strategy

at = argmaxa∈At
min{1,x⊤

a θ̂V t,t−1︸ ︷︷ ︸
R̂a,t

+β ∥xa∥M−1

V t,t−1

+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣︸ ︷︷ ︸
Ca,t

} ,
(5)

5

where β =
√
λ +

√
2 log(1

δ
) + d log(1 + T

λd
), R̂a,t denotes the estimated reward of arm a at t, Ca,t

denotes the confidence radius of arm a at round t.

Due to deviations from linearity, the estimation R̂a,t computed by a linear function is no longer
accurate. To handle the estimation uncertainty of model misspecifications, we design an enlarged
confidence radius Ca,t. The first term of Ca,t in Eq.(5) captures the uncertainty of online learning for
the linear part, and the second term related to ϵ∗ reflects the additional uncertainty from deviations
from linearity. The design of Ca,t theoretically relies on Lemma 5.6 which will be given in Section 5.

Update User Statistics. Based the feedback rt, in Line 8 and 9, the agent updates the statistics for
user it. Specifically, the agent estimates the preference vector θit by

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (6)

with solution θ̂it,t = (λI +M it,t)
−1bit,t , where M it,t =

∑
s∈[t]
is=it

xasx
⊤
as

, bit,t =
∑

s∈[t]
is=it

rasxas .

Update the Graph Gt. Finally, in Line 10, the agent verifies whether the similarities between user it
and other users are still true based on the updated estimation θ̂it,t. For every user ℓ ∈ U connected
with user it via edge (it, ℓ) ∈ Et−1, if the gap between her estimated preference vector θ̂ℓ,t and
θ̂it,t is larger than a threshold supported by Lemma H.1, the agent will delete the edge (it, ℓ) to split
them apart. The threshold in Line 10 is carefully designed, taking both estimation uncertainty in
a linear model and deviations from linearity into consideration. As shown in the proof of Lemma
H.1 (in Appendix H), using this threshold, with high probability, edges between users in the same
ground-truth clusters will not be deleted, and edges between users that are not ζ-close will always be
deleted. Together with the filtering step in Line 5, with high probability, the algorithm will leverage
all the collaborative information of similar users and avoid misusing the information of dissimilar
users. The updated graph Gt will be used in the next round.

5 Theoretical Analysis

In this section, we theoretically analyze the performance of the RCLUMB algorithm by giving an
upper bound of the expected regret defined in Eq.(2). Due to the space limitation, we only show the
main result (Theorem 5.3), key lemmas, and a sketched proof for Theorem 5.3. Detailed proofs, other
technical lemmas, and the regret analysis of the RSLUMB algorithm can be found in the Appendix.

To state our main result, we first give two definitions as follows. The first definition is about the
minimum separable gap constant γ1 of a CBMUM problem instance.
Definition 5.1 (Minimum separable gap γ1). The minimum separable gap constant γ1 of a CBMUM
problem instance is the minimum gap over the gaps among users that are greater than ζ (Eq. (3))

γ1 = min{∥θi − θℓ∥2 : ∥θi − θℓ∥2 > ζ,∀i, ℓ ∈ U} ,withmin ∅ = ∞.

Remark 2. In CBMUM, the role of γ1 − ζ is similar to that of γ (given in Assumption 3.1) in the
previous CB problem with perfectly linear models, quantifying the hardness of performing clustering
on the problem instance. Intuitively, users are easier to cluster if γ1 is larger, and the deduction
of ζ shows the additional difficulty due to model diviations. If there are no misspecifications, i.e.,
ζ = 2ϵ∗

√
2
λx

= 0, then γ1 = γ, recovering the minimum separable gap between clusters in the
classic CB problem [12, 25] without model misspecifications.

The second definition is about the number of “hard-to-cluster users" ũ.
Definition 5.2 (Number of “hard-to-cluster users" ũ). The number of “hard-to-cluster users" ũ is the
number of users in the ground-truth clusters which are ζ-close to some other ground-truth clusters

ũ =
∑
j∈[m]

|Vj | × I{∃j′ ∈ [m], j′ ̸= j :
∥∥∥θj′ − θj

∥∥∥
2
≤ ζ} ,

where I{·} denotes the indicator function of the argument, |Vj | denotes the number of users in Vj .

Remark 3. ũ captures the number of users who belong to different ground-truth clusters but their
gaps are less than ζ. These users may be merged into one cluster by mistake and cause certain regret.

The following theorem gives an upper bound on the expected regret achieved by RCLUMB.

6

Theorem 5.3 (Main result on regret bound). Suppose that the assumptions in Section 3 are satisfied.
Then the expected regret of the RCLUMB algorithm for T rounds satisfies

R(T) ≤ O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log T +

ũ

u

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√

md log T + d
√
mT log T

)
(7)

≤ O(ϵ∗T
√

md log T + d
√
mT log T) , (8)

where γ1 is defined in Definition 5.1, and ũ is defined in Definition 5.2).

Discussion and Comparison. The bound in Eq.(7) has four terms. The first term is the time needed
to gather enough information to assign appropriate clusters for users. The second term is the regret
caused by misclustering ζ-close but not precisely similar users together, which is unavoidable with
model misspecifications. The third term is from the preference estimation errors caused by model
deviations. The last term is the usual term in CB with perfectly linear models [12, 25, 27].

Let us discuss how the parameters affect this regret bound.
• If γ1 − ζ is large, the gaps between clusters that are not “ζ-close" are much greater than the
minimum gap ζ for the algorithm to distinguish, the first term in Eq.(7) will be small as it is easy to
identify their dissimilarities. The role of γ1 − ζ in CBMUM is similar to that of γ in the previous CB.
• If ũ is small, indicating that few ground-truth clusters are “ζ-close", RCLUMB will hardly
miscluster different ground-truth clusters together thus the second term in Eq.(7) will be small.
• If the deviation level ϵ∗ is small, the user models are close to linearity and the misspecifications
will not affect the estimations much, then both the second and third term in Eq.(7) will be small.
The following theorem gives a regret lower bound of the CBMUM problem.
Theorem 5.4 (Regret lower bound for CBMUM). There exists a problem instance for the CBMUM
problem such that for any algorithm R(T) ≥ Ω(ϵ∗T

√
d) .

The proof can be found in Appendix F. The upper bounds in Theorem 5.3 asymptotically match this
lower bound with respect to T up to logarithmic factors (and a constant factor of

√
m where m is

typically small in real-applications), showing the tightness of our theoretical results. Additionally, we
conjecture the gap for the m factor is due to the strong assumption that cluster structures are known
to prove this lower bound, and whether there exists a tighter lower bound is left for future work.

We then compare our results with two degenerate cases. First, when m = 1 (indicating ũ = 0), our
setting degenerates to the MLB problem where all users share the same preference vector. In this
case, our regret bound is O(ϵ∗T

√
d log T + d

√
T log T), exactly matching the current best bound of

MLB [23]. Second, when ϵ∗ = 0, our setting reduces to the CB problem with perfectly linear user
models and our bounds become O(d

√
mT log T), also perfectly match the existing best bound of

the CB problem [25, 27]. The above discussions and comparisons show the tightness of our regret
bounds. Additionally, we also provide detailed discussions on why trivially combining existing works
on CB and MLB would not get any non-vacuous regret upper bound in Appendix D.

We define the following “good partition" for ease of interpretation.

Definition 5.5 (Good partition). RCLUMB does a “good partition" at t, if the cluster V t assigned to
it is a ζ-good cluster, and it contains all the users in the same ground-truth cluster as it, i.e.,

∥θit − θℓ∥2 ≤ ζ,∀ℓ ∈ V t , andVj(it) ⊆ V t . (9)

Note that when the algorithm does a “good partition" at t, V t will contain all the users in the same
ground-truth cluster as it and may only contain some other ζ-close users with respect to it, which
means the gathered information associated with V t can be used to infer user it’s preference with high
accuracy. Also, it is obvious that under a “good partition", if V t ∈ V , then V t = Vj(it) by definition.

Next, we give a sketched proof for Theorem 5.3.

Proof. [Sketch for Theorem 5.3] The proof mainly contains two parts. First, we prove there is a
sufficient time T0 for RCLUMB to get a “good partition" with high probability. Second, we prove the
regret upper bound for RCLUMB after maintaining a “good partition". The most challenging part is
to bound the regret caused by misclustering ζ-close users after getting a “good partition".

1. Sufficient time to maintain a “good partition". With the item regularity (Assumption 3.3),
we can prove after some T0 (defined in Lemma H.1 in Appendix H), RCLUMB will always have a

7

“good partition". Specifically, after t ≥ O
(
u
(

d
λ̃x(γ1−ζ)2

+ 1
λ̃2
x

)
log T

)
, for any user i ∈ U , the gap

between the estimated θ̂i,t and the ground-truth θj(i) is less than γ1

4 with high probability. With this,
we can get: for any two users i and ℓ, if their gap is greater than ζ, it will trigger the deletion of the
edge (i, ℓ) (Line 10 of Algo.1) with high probability; on the other hand, when the deletion condition
of the edge (i, ℓ) is satisfied, then

∥∥∥θj(i) − θj(ℓ)
∥∥∥
2
> 0 , which means user i and ℓ belong to different

ground-truth clusters by Assumption 3.1 with high probability. Therefore, we can get that with high
probability, all those users in the same ground-truth cluster as it will be directly connected with it,
and users directly connected with it must be ζ-close to it. By filtering users directly linked with it as
the cluster V t (Algo.1 Line 5) and the definition of “good partition", we can ensure that RCLUMB
will keep a “good partition" afterward with high probability.

2. Bounding the regret after getting a “good partition". After T0, with the “good partition", we
can prove the following lemma that gives a bound of the difference between θ̂V t,t−1 and ground-truth
θit in direction of action vector xa, and supports the design of the confidence radius Ca,t in Eq.(5).

Lemma 5.6. With probability at least 1− 5δ for some δ ∈ (0, 1
5), ∀t ≥ T0∣∣∣x⊤

a (θit − θ̂V t,t−1)
∣∣∣ ≤ ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+ β ∥xa∥M−1

V t,t−1

.

To prove this lemma, we consider the following two situations.

(i) Assigning a perfect cluster for it. In this case, V t ∈ V , meaning the cluster assigned for user it
is the same as her ground-truth cluster, i.e., V t = Vj(it). Therefore, we have that ∀ℓ ∈ V t,θℓ = θit .
With careful analysis, we can bound

∣∣∣x⊤
a (θit − θ̂V t,t−1)

∣∣∣ by Ca,t (defined in Eq.(5)).

(ii) Bounding the term of misclustering it’s ζ-close users. In this case, V t /∈ V , meaning the
algorithm misclusters user it, i.e., V t ̸= Vj(it). Thus, we do not have ∀ℓ ∈ V t,θℓ = θit anymore, but
we have all the users in V t are ζ-close to it (by “good partition"), i.e., ∥θis − θit∥2 ≤ ζ , ∀ℓ ∈ V t.
Then an additional term can be caused by using the information of it’s ζ-close users in V t lying in
different ground-truth clusters from it to estimate θit . It is highly challenging to bound this part.

We will get an extra term
∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θit)

∣∣∣∣ when bounding the regret in

this case, where ∥θℓ − θit∥2 ≤ ζ , ∀ℓ ∈ V t. It is an easy-to-be-made mistake to directly drag

∥θis − θit∥2 out to bound it by
∥∥∥∥x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as

∥∥∥∥
2

× ζ . With subtle analysis, we

propose the following lemma to bound the above term.

Lemma 5.7 (Bound of error caused by misclustering). ∀t ≥ T0, if the current partition by RCLUMB
is a “good partition", and V t /∈ V , then for all xa ∈ Rd, ∥xa∥2 ≤ 1, with probability at least 1− δ:∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣ ≤ ϵ∗
√
2d

λ̃
3
2
x

.

This lemma is quite general. Please see Appendix G for details about its proof.

The expected occurrences of {V t /∈ V} is bounded by ũ
uT with Assumption 3.2, Definition 5.2 and

5.5. The result follows by bounding the expected sum of the bounds for the instantaneous regret using
Lemma 5.6 with delicate analysis due to the time-varying clustering structure kept by RCLUMB.

6 Experiments

This section compares RCLUMB and RSCLUMB with CLUB [12], SCLUB [27], LinUCB with
a single estimated vector for all users, LinUCB-Ind with separate estimated vectors for each user,
and two modifications of LinUCB in [23] which we name as RLinUCB and RLinUCB-Ind. We use
averaged reward as the evaluation metric, where the average is taken over ten independent trials.

8

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e6

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

A
ve

ra
ge

d
R

ew
ar

d

RSCLUMB
RCLUMB
CLUB
LinUCB
LinUCB-Ind
SCLUB
RLinUCB
RLinUCB-Ind

(a) Synthetic

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e6

0.48

0.50

0.52

0.54

0.56

A
ve

ra
ge

d
R

ew
ar

d

RSCLUMB
RCLUMB
CLUB
LinUCB
LinUCB-Ind
SCLUB
RLinUCB
RLinUCB-Ind

(b) Yelp Case 1

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e6

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
R

ew
ar

d

RSCLUMB
RCLUMB
CLUB
LinUCB
LinUCB-Ind
SCLUB
RLinUCB
RLinUCB-Ind

(c) Yelp Case 2

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e6

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

A
ve

ra
ge

d
R

ew
ar

d

RSCLUMB
RCLUMB
CLUB
LinUCB
LinUCB-Ind
SCLUB
RLinUCB
RLinUCB-Ind

(d) Movielens Case 1

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e6

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

d
R

ew
ar

d

RSCLUMB
RCLUMB
CLUB
LinUCB
LinUCB-Ind
SCLUB
RLinUCB
RLinUCB-Ind

(e) Movielens Case 2

Figure 1: The figures compare RCLUMB and RSCLUMB with the baselines. (a) shows the result on
synthetic data, (b) and (c) show the results on Yelp dataset, (d) and (e) show the results on Movielens
dataset. All experiments are under the setting of u = 1, 000 users, m = 10 clusters, and d = 50. All
results are averaged under 10 random trials. The error bars are standard deviations divided by

√
10.

6.1 Synthetic Experiments

We consider a setting with u = 1, 000 users, m = 10 clusters and T = 106 rounds. The preference
and feature vectors are in d = 50 dimension with each entry drawn from a standard Gaussian
distribution, and are normalized to vectors with ∥.∥2 = 1 [27]. We fix an arm set with |A| = 1000
items, at each round t, 20 items are randomly selected to form a set At for the user to choose from.
We construct a matrix ϵ ∈ R1,000×1,000 in which each element ϵ(i, j) is drawn uniformly from the
range (−0.2, 0.2) to represent the deviation. At t, for user it and the item at, ϵ(it, at) will be added
to the feedback as the deviation, which corresponds to the ϵit,tat

defined in Eq.(1).

The result is provided in Figure 1(a), showing that our algorithms have clear advantages: RCLUMB
improves over CLUB by 21.9%, LinUCB by 194.8%, LinUCB-Ind by 20.1%, SCLUB by 12.0%,
RLinUCB by 185.2% and RLinUCB-Ind by 10.6%. The performance difference between RCLUMB
and RSCLUMB is very small as expected. RLinUCB performs better than LinUCB; RLinUCB-Ind
performs better than LinUCB-Ind and CLUB, showing that the modification of the recommendation
policy is effective. The set-based RSCLUMB and SCLUB can separate clusters quicker and have
advantages in the early period, but eventually RCLUMB catches up with RSCLUMB, and SCLUB
is surpassed by RLinUCB-Ind because it does not consider misspecifications. RCLUMB and
RSCLUMB perform better than RLinUCB-Ind, which shows the advantage of the clustering. So
it can be concluded that both the modification for misspecification and the clustering structure are
critical to improving the algorithm’s performance. We also have done some ablation experiments
on different scales of ϵ∗ in Appendix P , and we can notice that under different ϵ∗ , our algorithms
always outperform the baselines, and some baselines will perform worse as ϵ∗ increases.

6.2 Experiments on Real-world Datasets

We conduct experiments on the Yelp data and the 20m MovieLens data [17]. For both data, we have
two cases due to the different methods for generating feedback. For case 1, we extract 1,000 items
with most ratings and 1,000 users who rate most; then we construct a binary matrix H1,000×1,000

based on the user rating [40, 42]: if the user rating is greater than 3, the feedback is 1; otherwise,
the feedback is 0. Then we use this binary matrix to generate the preference and feature vectors by
singular-value decomposition (SVD) [27, 25, 40]. Similar to the synthetic experiment, we construct
a matrix ϵ ∈ R1,000×1,000 in which each element is drawn uniformly from the range (−0.2, 0.2).
For case 2, we extract 1,100 users who rate most and 1000 items with most ratings. We construct a
binary feedback matrix H1,100×1,000 based on the same rule as case 1. Then we select the first 100
rows H100×1,000

1 to generate the feature vectors by SVD. The remaining 1,000 rows F 1,000×1,000

9

is used as the feedback matrix, meaning user i receives F (i, j) as feedback while choosing item j.
In both cases, at time t, we randomly select 20 items for the algorithms to choose from. In case 1,
the feedback is computed by the preference and feature vector with misspecification, in case 2, the
feedback is from the feedback matrix.

The results on Yelp are shown in Fig 1(b) and Fig 1(c). In case 1, RCLUMB improves CLUB by
45.1%, SCLUB by 53.4%, LinUCB-One by 170.1% , LinUCB-Ind by 46.2%, RLinUCB by 171.0%
and RLinUCB-Ind by 21.5%. In case 2, RCLUMB improves over CLUB by 13.9%, SCLUB by 5.1%,
LinUCB-One by 135.6% , LinUCB-Ind by 10.1%, RLinUCB by 138.6% and RLinUCB by 8.5%. It
is notable that our modeling assumption 3.4 is violated in case 2 since the misspecification range is
unknown. We set ϵ∗ = 0.2 following our synthetic dataset and it can still perform better than other
algorithms. When the misspecification level is known as in case 1, our algorithms’ improvement is
significantly enlarged, e.g., RCLUMB improves over SCLUB from 5.1% to 53.4%.

The results on Movielens are shown in Fig 1(d) and 1(e). In case 1, RCLUMB improves CLUB by
58.8%, SCLUB by 92.1%, LinUCB-One by 107.7%, LinUCB-Ind by 61.5 %, RLinUCB by 109.5%,
and RLinUCB-Ind by 21.3%. In case 2, RCLUMB improves over CLUB by 5.5%, SCLUB by 2.9%,
LinUCB-One by 28.5%, LinUCB-Ind by 6.1%, RLinUCB by 29.3% and RLinUCB-Ind by 5.8%.
The results are consistent with the Yelp data, confirming our superior performance.

7 Conclusion

We present a new problem of clustering of bandits with misspecified user models (CBMUM), where
the agent has to adaptively assign appropriate clusters for users under model misspecifications.
We propose two robust CB algorithms, RCLUMB and RSCLUMB. Under milder assumptions
than previous CB works, we prove the regret bounds of our algorithms, which match the lower
bound asymptotically in T up to logarithmic factors, and match the state-of-the-art results in several
degenerate cases. It is challenging to bound the regret caused by misclustering users with close but not
the same preference vectors and use inaccurate cluster-based information to select arms. Our analysis
to bound this part of the regret is quite general and may be of independent interest. Experiments on
synthetic and real-world data demonstrate the advantage of our algorithms. We would like to state
some interesting future works: (1) Prove a tighter regret lower bound for CBMUM, (2) Incorporate
recent model selection methods into our fundamental framework to design robust algorithms for
CBMUM with unknown exact maximum model misspecification level, and (3) Consider the setting
with misspecifications in the underlying user clustering structure rather than user models.

8 Acknowledgement

The corresponding author Shuai Li is supported by National Key Research and Development Program
of China (2022ZD0114804) and National Natural Science Foundation of China (62376154, 62006151,
62076161). The work of John C.S. Lui was supported in part by the RGC’s GRF 14215722.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[3] Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings
of the Web Conference 2021, pages 2335–2346, 2021.

[4] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,
2012.

[5] Kechao Cai, Xutong Liu, Yu-Zhen Janice Chen, and John CS Lui. An online learning approach
to network application optimization with guarantee. In IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, pages 2006–2014. IEEE, 2018.

[6] Leonardo Cella and Massimiliano Pontil. Multi-task and meta-learning with sparse linear
bandits. In Uncertainty in Artificial Intelligence, pages 1692–1702. PMLR, 2021.

[7] Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic
linear bandits. In International Conference on Machine Learning, pages 1360–1370. PMLR,
2020.

[8] Leonardo Cella, Karim Lounici, Grégoire Pacreau, and Massimiliano Pontil. Multi-task rep-
resentation learning with stochastic linear bandits. In International Conference on Artificial
Intelligence and Statistics, pages 4822–4847. PMLR, 2023.

[9] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 208–214. JMLR Workshop and Conference Proceedings, 2011.

[10] Aniket Anand Deshmukh, Urun Dogan, and Clay Scott. Multi-task learning for contextual
bandits. Advances in neural information processing systems, 30, 2017.

[11] Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to mis-
specification in contextual bandits. Advances in Neural Information Processing Systems, 33:
11478–11489, 2020.

[12] Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In International
Conference on Machine Learning, pages 757–765. PMLR, 2014.

[13] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, and
Evans Etrue. On context-dependent clustering of bandits. In International Conference on
machine learning, pages 1253–1262. PMLR, 2017.

[14] Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Misspecified linear bandits. In
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[15] Jens Hainmueller and Chad Hazlett. Kernel regularized least squares: Reducing misspecification
bias with a flexible and interpretable machine learning approach. Political Analysis, 22(2):
143–168, 2014.

[16] Negar Hariri, Bamshad Mobasher, and Robin Burke. Context adaptation in interactive recom-
mender systems. In Proceedings of the 8th ACM Conference on Recommender Systems, pages
41–48, 2014.

[17] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[18] Joey Hong, Branislav Kveton, Manzil Zaheer, and Mohammad Ghavamzadeh. Hierarchical
bayesian bandits. In International Conference on Artificial Intelligence and Statistics, pages
7724–7741. PMLR, 2022.

11

[19] Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in neural information processing systems, 34:27057–27068, 2021.

[20] Pushmeet Kohli, Mahyar Salek, and Greg Stoddard. A fast bandit algorithm for recommenda-
tion to users with heterogenous tastes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 27, pages 1135–1141, 2013.

[21] Fang Kong, Canzhe Zhao, and Shuai Li. Best-of-three-worlds analysis for linear bandits with
follow-the-regularized-leader algorithm. arXiv preprint arXiv:2303.06825, 2023.

[22] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[23] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

[24] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[25] Shuai Li and Shengyu Zhang. Online clustering of contextual cascading bandits. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[26] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In
Proceedings of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 539–548, 2016.

[27] Shuai Li, Wei Chen, Shuai Li, and Kwong-Sak Leung. Improved algorithm on online clustering
of bandits. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
IJCAI’19, page 2923–2929. AAAI Press, 2019. ISBN 9780999241141.

[28] Xutong Liu, Haoru Zhao, Tong Yu, Shuai Li, and John Lui. Federated online clustering of
bandits. In The 38th Conference on Uncertainty in Artificial Intelligence, 2022.

[29] Xutong Liu, Jinhang Zuo, Siwei Wang, John CS Lui, Mohammad Hajiesmaili, Adam Wierman,
and Wei Chen. Contextual combinatorial bandits with probabilistically triggered arms. In
International Conference on Machine Learning, pages 22559–22593. PMLR, 2023.

[30] Xutong Liu, Jinhang Zuo, Hong Xie, Carlee Joe-Wong, and John CS Lui. Variance-adaptive al-
gorithm for probabilistic maximum coverage bandits with general feedback. In IEEE INFOCOM
2023-IEEE Conference on Computer Communications, pages 1–10. IEEE, 2023.

[31] Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore,
and Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in
Neural Information Processing Systems, 33:10328–10337, 2020.

[32] Chengshuai Shi and Cong Shen. Federated multi-armed bandits. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 9603–9611, 2021.

[33] Marta Soare, Ouais Alsharif, Alessandro Lazaric, and Joelle Pineau. Multi-task linear bandits.
In NIPS2014 workshop on transfer and multi-task learning: theory meets practice, 2014.

[34] Runzhe Wan, Lin Ge, and Rui Song. Metadata-based multi-task bandits with bayesian hi-
erarchical models. Advances in Neural Information Processing Systems, 34:29655–29668,
2021.

[35] Runzhe Wan, Lin Ge, and Rui Song. Towards scalable and robust structured bandits: A meta-
learning framework. In International Conference on Artificial Intelligence and Statistics, pages
1144–1173. PMLR, 2023.

[36] Zhi Wang, Chicheng Zhang, Manish Kumar Singh, Laurel Riek, and Kamalika Chaudhuri. Mul-
titask bandit learning through heterogeneous feedback aggregation. In International Conference
on Artificial Intelligence and Statistics, pages 1531–1539. PMLR, 2021.

12

[37] Zhi Wang, Chicheng Zhang, and Kamalika Chaudhuri. Thompson sampling for robust transfer
in multi-task bandits. arXiv preprint arXiv:2206.08556, 2022.

[38] Zhiyong Wang, Xutong Liu, Shuai Li, and John CS Lui. Efficient explorative key-term selection
strategies for conversational contextual bandits. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 10288–10295, 2023.

[39] Zhiyong Wang, Jize Xie, Tong Yu, Shuai Li, and John Lui. Online corrupted user detection and
regret minimization. arXiv preprint arXiv:2310.04768, 2023.

[40] Junda Wu, Canzhe Zhao, Tong Yu, Jingyang Li, and Shuai Li. Clustering of conversational ban-
dits for user preference learning and elicitation. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 2129–2139, 2021.

[41] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a
collaborative environment. In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pages 529–538, 2016.

[42] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cas-
cading bandits for large-scale recommendation problems. arXiv preprint arXiv:1603.05359,
2016.

13

Appendix

A More Discussions on Related Work

In this section, we will give more comparisions and discussions on some previous works that are
related to our work to some extent.

There are some other works on bandits leveraging user (or task) relations, which have some relations
with the clustering of bandits (CB) works to some extent, but are in different lines of research from
CB, and are quite different from our work. First, besides CB, the work [41] also leverages user
relations. Specifically, it utilizes a known user adjacency graph to share context and payoffs among
neighbors, whereas in CB, the user relations are unknown and need to be learnt, thus the setting
differs a lot from CB. Second, there are lines of works on multi-task learning [6, 10, 33, 8, 37, 36],
meta-learning [35, 18, 7] and federated learning [32, 19], where multiple different tasks are solved
jointly and share information. Note that all of these works do not assume an underlying unknown
user clustering structure which needs to be inferred by the agent to speed up learning. For works
on multi-task learning [6, 10, 33, 8, 37, 36], they assume the tasks are related but no user clustering
structures, and to the best of our knowledge, none of them consider model misspefications, thus
differing a lot from ours. For some recent works on meta-learning [35, 18, 34], they propose general
Bayesian hierarchical models to share knowledge across tasks, and design Thompson-Sampling-
based algorithms to optimize the Bayes regret, which are quite different from the line of CB works,
and differ a lot from ours. And additionally, as supported by the discussions in the works [7, 36],
multi-task learning and meta-learning are different lines of research from CB. For the works on
federated learning [32, 19], they consider the privacy and communication costs among multiple
servers, whose setting is also very different from the previous CB works and our work.

Remark. Again, we emphasize that the goal of this work is to initialize the study of the important
CBMUM problem, and propose general design ideas for dealing with model misspecifications in
CB problems. Therefore, our study is based on fundamental models on CB [12, 27] and MLB [23],
and the algorithm design ideas and theoretical analysis are pretty general. We leave incorporating
the more recent model selection methods [31, 11] into our framework to address the unknown exact
maximum model misspecification level as an interesting future work. It would also be interesting to
consider incorporating our methods and ideas of tackling model misspecifications into the studies of
multi-task learning, meta learning and federated learning.

B More Discussions on Assumptions

All the assumptions (Assumptions 3.1,3.2,3.3,3.4)in this work are natural and basically follow (or
less strigent than) previous works on CB and MLB [12, 25, 27, 28, 23].

B.1 Less Strigent Assumption on on the Generating Distribution of Arm Vectors

We also make some contributions to relax a widely-used but stringent assumption on the generating
distribution of arm vectors. Specifically, our Assumption 3.3 on item regularity relaxes the previous
one used in previous CB works [12, 25, 27, 28] by removing the condition that the variance should
be upper bounded by λ2

8 log(4|At|) . For technical details on this, please refer to the theoretical analysis
and discussions in Appendix J.

B.2 Discussions on Assumption 3.4 about Bounded Misspecification Level

This assumption follows [23]. Note that this ϵ∗ can be an upper bound on the maximum misspeci-
fication level, not the exact maximum itself. In real-world applications, the deviations are usually
small [14], and we can set a relatively big ϵ∗ (e.g., 0.2) to be the upper bound. Our experimental
results support this claim. As shown in our experimental results on real-data case 2, even when ϵ∗ is
unknown, our algorithms still perform well by setting ϵ∗ = 0.2. Some recent studies [31, 11] use
model selection methods to theoretically deal with unknown exact maximum misspecification level in
the single-user case, which is not the emphasis of this work. Additionally, the work [11] assumes that
the learning agent has access to a regression oracle. And for the work [31], though their regret bound

14

is dependent on the exact maximum misspecification level that needs not to be known by the agent,
an upper bound of the exact maximum misspecification level is still needed. We leave incorporating
their methods to deal with unknown exact maximum misspecification level as an interesting future
work.

B.3 Discussions on Assumption 3.2 about the Theoretical Results under General User Arrival
Distributions

The uniform arrival in Assumption 3.2 follows previous CB works [12, 25, 28], it only affects the T0

term, which is the time after which the algorithm maintains a “good partition” and is of O(u log T).
For an arbitrary arrival distribution, T0 becomes O(1/pmin log T), where pmin is the minimal arrival
probability of a user. And since it is a lower-order term (of O(log T)), it will not affect the main order
of our regret upper bound which is of O(ϵ∗T

√
md log T + d

√
mT log T). The work [27] studies

arbitrary arrivals and aims to remove the 1/pmin factor in this term, but their setting is different.
They make an additional assumption that users in the same cluster not only have the same preference
vector, but also the same arrival probability, which is different from our setting and other classic CB
works [12, 25, 28] where we only assume users in the same cluster share the same preference vector.

C Highlight of the Theoretical Analysis

Our proof flow and methodologies are novel in clustering of bandits (CB), which are expected to
inspire future works on model misspecifications and CB. The main challenge of the regret analysis
in CBMUM is that due to the estimation inaccuracy caused by misspecifications, it is impossible
to cluster all users exactly correctly, and it is highly non-trivial to bound the regret caused by
“misclustering" ζ-close users.

To the best of our knowledge, the common proof flow of previous CB works (e.g., [12, 25, 28]) can
be summarized in two steps: The first is to prove a sufficient time T ′

0 after which the algorithms can
cluster all users exactly correctly with high probability. Note that the inferred clustering structure
remains static after T ′

0, making the analysis easy. Second, after the correct static clustering, the
regret can be trivially bounded by bounding m (number of underlying clusters) independent linear
bandit algorithms, resulting in a O(d

√
mT log T) regret.

The above common proof flow is straightforward in CB with perfectly linear models, but it would
fail to get a non-vacuous regret bound for CBMUM. In CBMUM, it is impossible to learn an exactly
correct static clustering structure with model misspecifications. In particular, we prove that we
can only expect the algorithm to cluster ζ-close users together rather than cluster all users exactly
correctly. Therefore, the previous flow can not be applied to the more challenging CBMUM problem.

We do the following to address the challenges in obtaining a tight regret bound for CBMUM. With
the carefully-designed novel key components of RCLUMB, we can prove a sufficient time T0 after
which RCLUMB can get a “good partition" (Definition 5.5) with high probability, which means
the cluster Vt assigned to it contains all users in the same ground-truth cluster as it, and possibly
some other it’s ζ-close users. Intuitively, after T0, the algorithm can leverage all the information
from the users’ ground-truth clusters but may misuse some information from other ζ-close users with
preference gaps up to ζ, causing a regret of “misclustering" ζ-close users. It is highly non-trivial
to bound this part of regret, and the proof methods would be beneficial for future studies in CB in
challenging cases when it is impossible to cluster all users exactly correctly. For details, please refer
to the discussions “(ii) Bounding the term of misclustering it’s ζ-close users" in Section 5, the key
Lemma 5.7 (Bound of error caused by misclustering), its proof and tightness discussion in Appendix
G. Also, a more subtle analysis is needed to handle the time-varying inferred clustering structure
since the “good partition" may change over time, whereas in the previous CB works, the clustering
structure remains static after T ′

0. For theoretical details on this, please refer to Appendix E.

D Discussions on why Trivially Combining Existing CB and MLB Works
Could Not Achieve a Non-vacuous Regret Upper Bound

We consider discussing regret upper bounds for CB without considering misspecifications for three
cases: (1) neither the clustering process nor the decision process considers misspecifications (previous

15

CB algorithms); (2) the decision process does not consider misspecifications; (3) the clustering process
does not consider misspecifications.

For cases (1) and (2), the decision process could contribute to the leading regret. We consider the case
where there are m underlying clusters, with each cluster’s arrival being T/m, and the agent knows the
underlying clustering structure. For this case, there exist some instances where the regret upper bound
R(T) is strictly larger than ϵ∗T

√
m log T asymptotically in T . Formally, in the discussion of “Failure

of unmodified algorithm" in Appendix E in [23], they give an example to show that in the single-user
case, the regret R1(T) of the classic linear bandit algorithms without considering misspecifications

will have: lim
T→+∞

R1(T)

ϵ∗T
√
m log T

= +∞. In our problem with multiple users and m underlying

clusters, even if we know the underlying clustering structure and keep m independent linear bandit
algorithms with Ti for the cluster i ∈ [m] to leverage the common information of clusters, the best we
can get is R2(T) =

∑
i∈[m] R1(Ti). By the above results, if the decision process does not consider

misspecifications, we have lim
T→+∞

R2(T)

ϵ∗T
√
m log T

= lim
T→+∞

mR1(T/m)

ϵ∗T
√
m log T

= +∞. Recall that the

regret upper bound R(T) of our proposed algorithms is of O(ϵ∗T
√
md log T + d

√
mT log T) (thus,

we have lim
T→+∞

R(T)

ϵ∗T
√
m log T

< +∞), which gives a proof that that the regret upper bound of our

proposed algorithms is asymptotically much better than CB algorithms in cases (1)(2).

For case (3), if the clustering process does not use the more tolerant deletion rule in Line 10 of Algo.1,
the gap between users linked by edges would possibly exceed ζ (ζ = 2ϵ∗

√
2
λ̃x

) even after T0, which

will result in a regret upper bound no better than O(ϵ∗u
√
dT). As the number of users u is usually

huge in practice, this result is vacuous. The reasons for getting the above claim are as follows. Even
if the clustering process further uses our deletion rule considering misspecifications, and the users
linked by edges are within ζ distance, failing to extract 1-hop users (Line 5 in Algo.1) would cause
the leading O(ϵ∗u

√
dT) regret term, as in the worst case, the preference vector θ of the user in Ṽt

who is h-hop away from user it could deviate by hζ from θit , where h can be as large as u, and it
would make the second term in Eq.(8) a O(ϵ∗u

√
dT) term. If we completely do not consider the

misspecifications in the clustering process, the above user gap between users linked by edges would
possibly exceed ζ, which will cause a regret upper bound worse than O(ϵ∗u

√
dT).

E Proof of Theorem 5.3

We first prove the result in the case when γ1 defined in Definition 5.1 is not infinity, i.e., 4ϵ∗
√

2
λ̃x

<

γ1 < ∞. The proof of the special case when γ1 = ∞ will directly follow the proof of this case.

For the instantaneous regret Rt at round t, with probability at least 1 − 5δ for some δ ∈ (0, 1
5), at

∀t ≥ T0:

Rt = (x⊤
a∗
t
θit + ϵit,ta∗

t
)− (x⊤

at
θit + ϵit,tat

)

= x⊤
a∗
t
(θit − θ̂V t,t−1) + (x⊤

a∗
t
θ̂V t,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂V t,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t
+ (ϵit,ta∗

t
− ϵit,tat

)

≤ 2Cat,t +
2ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗ ,

(10)

where the last inequality holds by the UCB arm selection strategy in Eq.(5), the concentration bound
given in Lemma 5.6, and the fact that

∥∥ϵi,t∥∥∞ ≤ ϵ∗,∀i ∈ U ,∀t.
We define the following events. Let

E0 = {Rt ≤ 2Cat,t +
2ϵ∗

√
2d

λ̃
3
2
x

I{V t /∈ V}+ 2ϵ∗, for all {t : t ≥ T0, and the algorithm maintains a “good partition" at t}} ,

E1 = {the algorithm maintains a “good partition" for all t ≥ T0} ,
E = E0 ∩ E1 .

16

P(E0) ≥ 1 − 2δ. According to Lemma H.1, P(E1) ≥ 1 − 3δ. Thus, P(E) ≥ 1 − 5δ for some
δ ∈ (0, 1

5). Take δ = 1
T , we can get that

E[R(T)] = P(E)I{E}R(T) + P(E)I{E}R(T)

≤ I{E}R(T) + 5× 1

T
× T

= I{E}R(T) + 5 ,

(11)

where E denotes the complementary event of E , I{E}R(T) denotes R(T) under event E , I{E}R(T)
denotes R(T) under event E , and we use R(T) ≤ T to bound R(T) under event E .

Then it remains to bound I{E}R(T):

I{E}R(T) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

T∑
t=T0+1

E[I{E , V t /∈ V}] + 2ϵ∗T (12)

= T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

T∑
t=T0+1

P(I{E , V t /∈ V}) + 2ϵ∗T

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] +
2ϵ∗

√
2d

λ̃
3
2
x

× ũ

u
T + 2ϵ∗T , (13)

where Eq.(12) follows from Eq.(10). Eq.(13) holds since under Assumption 3.2 about user arrival
uniformness and by Definition 5.5 of “good partition", P(I{E , V t /∈ V}) ≤ ũ

u ,∀t ≥ T0, where ũ is
defined in Definition 5.2.

Then we need to bound E[I{E}
∑T

t=T0+1 Cat,t]:

I{E}
T∑

t=T0+1

Cat,t =
(√

λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)
)
I{E}

T∑
t=T0+1

∥xat∥M−1

V t,t−1

+ I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
at
M

−1

V t,t−1xas

∣∣∣ . (14)

Next, we bound the I{E}
∑T

t=T0+1 ∥xat∥M−1

V t,t−1

term in Eq.(14):

I{E}
T∑

t=T0+1

∥xat
∥
M

−1

V t,t−1

= I{E}
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥
M

−1

V ′
t,k,t−1

≤ I{E}
T∑

t=T0+1

m∑
j=1

I{it ∈ Vj} ∥xat
∥
M

−1
Vj,t−1

(15)

≤ I{E}
m∑
j=1

√√√√ T∑
t=T0+1

I{it ∈ Vj}
T∑

t=T0+1

I{it ∈ Vj} ∥xat∥
2

M
−1
Vj,t−1

(16)

≤ I{E}
m∑
j=1

√
2TVj ,T d log(1 +

T

λd
) (17)

≤ I{E}

√√√√2

m∑
j=1

1

m∑
j=1

TVj ,T d log(1 +
T

λd
) = I{E}

√
2mdT log(1 +

T

λd
) ,

(18)

17

where we use mt to denote the number of connected components partitioned by the algorithm at t,
Ṽ ′
t,k, k ∈ [mt] to denote the connected components partitioned by the algorithm at t, V

′
t,k ⊆ Ṽ ′

t,k to
denote the subset extracted to be the cluster V t for it from Ṽ ′

t,k conditioned on it ∈ Ṽ ′
t,k, and TVj ,T

to denote the number of times that the served users lie in the ground-truth cluster Vj up to time T ,
i.e., TVj ,T =

∑
t∈[T] I{it ∈ Vj}.

The reasons for having Eq.(15) are as follows. Under event E , the algorithm will always have
a “good partition" after T0. By Definition 5.5 and the proof process of Lemma H.1 about the
edge deletion conditions, we can get mt ≤ m and if it ∈ Ṽ ′

t,k, it ∈ Vj , then Vj ⊆ V
′
t,k

since V
′
t,k contains Vj and possibly other ground-truth clusters Vn, n ∈ [m], whose prefer-

ence vectors are ζ-close to θj . Therefore, by the definition of the regularized Gramian matrix,
we can get MV

′
t,k,t−1 ⪰ MVj ,t−1,∀t ≥ T0 + 1. Thus by the above reasoning,

∑mt

k=1 I{it ∈
Ṽ ′
t,k} ∥xat

∥
M

−1

V ′
t,k,t−1

≤
∑m

j=1 I{it ∈ Vj} ∥xat
∥
M

−1
Vj,t−1

,∀t ≥ T0 + 1. Eq.(16) holds by the

Cauchy–Schwarz inequality; Eq.(17) follows by the following technical Lemma J.2. Eq.(18) is
from the Cauchy–Schwarz inequality and the fact that

∑m
j=1 TVj ,T = T .

We then bound the last term in Eq.(14):

I{E}ϵ∗
T∑

t=T0+1

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
at
M

−1

V t,t−1xas

∣∣∣ = I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}

∑
s∈[t−1]

is∈V ′
t,k

∣∣∣x⊤
at
M

−1

V
′
t,k,t−1xas

∣∣∣
≤ I{E}ϵ∗

T∑
t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}

√√√√√ ∑
s∈[t−1]

is∈V ′
t,k

1
∑

s∈[t−1]

is∈V ′
t,k

∣∣∣x⊤
at
M

−1

V
′
t,k,t−1xas

∣∣∣2
(19)

≤ I{E}ϵ∗
T∑

t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k}
√
TV

′
t,k,t−1 ∥xat

∥2
M

−1

V ′
t,k,t−1

(20)

≤ I{E}ϵ∗
T∑

t=T0+1

√√√√mt∑
k=1

I{it ∈ Ṽ ′
t,k}

mt∑
k=1

I{it ∈ Ṽ ′
t,k}TV

′
t,k,t−1 ∥xat

∥2
M

−1

V ′
t,k,t−1

(21)

≤ I{E}ϵ∗
√
T

T∑
t=T0+1

√√√√mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥2
M

−1

V ′
t,k,t−1

(22)

≤ I{E}ϵ∗
√
T

√√√√ T∑
t=T0+1

1

T∑
t=T0+1

mt∑
k=1

I{it ∈ Ṽ ′
t,k} ∥xat

∥2
M

−1

V ′
t,k,t−1

(23)

≤ I{E}ϵ∗
√
T

√√√√T

T∑
t=T0+1

m∑
j=1

I{it ∈ Vj} ∥xat∥
2

M
−1
Vj,t−1

(24)

= I{E}ϵ∗T

√√√√ m∑
j=1

T∑
t=T0+1

I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

≤ I{E}ϵ∗T
√

2md log(1 +
T

λd
) , (25)

18

where Eq.(19), Eq.(21) and Eq.(23) hold because of the Cauchy–Schwarz inequality, Eq.(20) holds
since MV

′
t,k,t−1 ⪰

∑
s∈[t−1]

is∈V ′
t,k

xasx
⊤
as

, Eq.(22) is because TV
′
t,k,t−1 ≤ T , Eq. (24) follows from the

same reasoning as Eq.(15), and Eq.(25) comes from the following technical Lemma J.2.

Finally, plugging Eq.(18) and Eq.(25) into Eq.(14), take expectation and plug it into Eq.(13), we can
get:

R(T) ≤5 + T0 +
ũ

u
× 2ϵ∗

√
2dT

λ̃
3
2
x

+ 2ϵ∗T

(
1 +

√
2md log(1 +

T

λd
)

)
+ 2

(√
λ+

√
2 log(T) + d log(1 +

T

λd
)

)
×
√
2mdT log(1 +

T

λd
) , (26)

where

T0 = 16u log(
u

δ
) + 4umaxmax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)}

is given in the following Lemma H.1 in Appendix H.

F Proof and Discussions of Theorem 5.4

In the work [23], they give a lower bound for misspecified linear bandits with a single user. The
lower bound of R(T) is given by: R3(T) ≥ ϵ∗T

√
d. Therefore, suppose our problem with

multiple users and m underlying clusters where the arrival times are Ti for each cluster, then
for any algorithms, even if they know the underlying clustering structure and keep m indepen-
dent linear bandit algorithms to leverage the common information of clusters, the best they can
get is R(T) =

∑
i∈[m] R3(Ti) ≥ ϵ∗

∑
i∈[m] Ti

√
d = ϵ∗T

√
d, which gives a lower bound of

O(ϵ∗T
√
d) for the CBMUM problem. Recall that the regret upper bound of our algorithms is of

O(ϵ∗T
√
md log T + d

√
mT log T), asymptotically matching this lower bound with respect to T

up to logarithmic factors and with respect to m up to O(
√
m) factors, showing the tightness of our

theoretical results (where m are typically very small for real applications).

We conjecture that the gap for the m factor is due to the strong assumption that cluster structures
are known to prove our lower bound, and whether there exists a tighter lower bound will be left for
future work.

G Proof of the key Lemma 5.7

In Lemma 5.7, we want to bound the term
∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣. By the

definition of “good partition", we have ∥θis − θit∥2 ≤ ζ , ∀is ∈ V t. It is an easy-to-be-made mistake

to directly drag ∥θis − θit∥2 out to upper bound it by
∥∥∥∥x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as

∥∥∥∥
2

× ζ and

then proceed. We need more careful analysis.

We first prove the following general lemma.
Lemma G.1. For vectors x1,x2, . . . ,xk ∈ Rd,∥xi∥2 ≤ 1,∀i ∈ [k], and vectors θ1,θ2, . . . ,θk ∈
Rd, ∥θi∥2 ≤ C, ∀i ∈ [k], where C > 0 is a constant, we have:∥∥∥∥∥

k∑
i=1

xix
⊤
i θi

∥∥∥∥∥
2

≤ C
√
d

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

.

19

Proof. Let X ∈ Rd×k be a matrix such that it has xi s as its columns, i.e., X = [x1, . . . ,xk] =
x11 x21 · · · xk1

x12 x22 · · · xk2

...
...

. . .
...

x1d x2d · · · xkd

 .

Let y ∈ Rk×1 be a vector that has x⊤
i θi s as its elements, i.e., y = [x⊤

1 θ1, . . . ,x
⊤
k θk]

⊤. Then we
have:

∥∥∥∥∥
k∑

i=1

xix
⊤
i θi

∥∥∥∥∥
2

2

= ∥Xy∥22 ≤ ∥X∥22 ∥y∥
2
2 (27)

= ∥X∥22
k∑

i=1

(x⊤
i θi)

2

≤ ∥X∥22
k∑

i=1

∥xi∥22 ∥θi∥22 (28)

≤ C2 ∥X∥22
k∑

i=1

∥xi∥22

= C2 ∥X∥22 ∥X∥2F
≤ C2d ∥X∥42 (29)

= C2d
∥∥∥XX⊤

∥∥∥2
2

(30)

= C2d

∥∥∥∥∥
k∑

i=1

xix
⊤
i

∥∥∥∥∥
2

2

, (31)

where Eq. (27) follows by the matrix operator norm inequality, Eq. (28) follows by the
Cauchy–Schwarz inequality, Eq. (29) follows by ∥X∥F ≤

√
d ∥X∥2, Eq. (30) follows from

∥X∥22 =
∥∥∥XX⊤

∥∥∥
2
.

The above result is tight. We can show that the lower bound of
∥∥∥∑k

i=1 xix
⊤
i θi

∥∥∥
2

under the conditions

in the lemma is exactly C
√
d
∥∥∥∑k

i=1 xix
⊤
i

∥∥∥
2
. Specifically, let k = 2, C = 1, d = 2, x1 = [0, 1]⊤,

x2 = [1, 0]⊤, θ1 = [1, 0]⊤, θ2 = [0, 1]⊤, then we have
∥∥∥∑2

i=1 xix
⊤
i θi

∥∥∥
2
=
∥∥[1, 1]⊤∥∥

2
=

√
2, and

C
√
d
∥∥∥∑2

i=1 xix
⊤
i

∥∥∥
2
= 1 ×

√
2 ×

∥∥∥∥[1 0
0 1

]∥∥∥∥
2

=
√
2. Therefore, we have that the upper bound

given in Lemma G.1 matches the lower bound.

We are now ready to prove the key Lemma 5.7 with the above Lemma G.1.

20

At any t ≥ T0, if the current partition is a “good partition", and V t /∈ V , then for all xa ∈
Rd, ∥xa∥2 ≤ 1, with probability at least 1− δ:∣∣∣∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣∣∣∣ ≤ ∥xa∥2

∥∥∥∥∥∥∥M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∥∥∥∥∥∥∥
2

(32)

≤
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∥∥∥∥∥∥∥
2

(33)

≤ 2ϵ∗

√
2d

λ̃x

×
∥∥∥M−1

V t,t−1

∥∥∥
2

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
x⊤
as

∥∥∥∥∥∥∥
2

(34)

≤ 2ϵ∗

√
2d

λ̃x

×
λmax(

∑
s∈[t−1]

is∈V t

xasx
⊤
as
)

λmin(MV t,t−1)

≤ 2ϵ∗

√
2d

λ̃x

×
TV t,t−1

2TV t,t−1λ̃x + λ
(35)

≤ ϵ∗
√
2d

λ̃
3
2
x

,

where Eq.(32) follows by the Cauchy–Schwarz inequality, Eq.(33) follows from the inequality of
matrix’s operator norm, Eq.(34) follows from the fact that in a “good partition", ∥θit − θl∥2 ≤
2ϵ∗
√

2
λ̃x

,∀l ∈ V t and Lemma G.1, Eq.(35) follows by Eq.(47) with probability ≥ 1− δ.

H Lemma H.1 of the sufficient time T0 and its proof

The following lemma gives a sufficient time T0 for the algorithm to get a “good partition".

Lemma H.1. With the carefully designed edge deletion rule, after

T0 ≜ 16u log(
u

δ
) + 4umaxmax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)}

= O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log

1

δ

)

rounds, with probability at least 1 − 3δ for some δ ∈ (0, 1
3), RCLUMB can always get a “good

partition".

Below is the detailed proof of Lemma H.1.

Proof. We first prove the following result:
With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T]:

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
,∀i ∈ U , (36)

21

where β(Ti,t,
δ
u) ≜

√
λ+

√
2 log(uδ) + d log(1 +

Ti,t

λd).

θ̂i,t − θj(i) = (
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)−1

(∑
s∈[t]
is=i

xas
(x⊤

as
θj(i) + ϵis,sas

+ ηs)

)
− θj(i) (37)

= (
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)−1[(
∑
s∈[t]
is=i

xas
x⊤
as

+ λI)θj(i) − λθj(i) +
∑
s∈[t]
is=i

xas
ϵis,sas

+
∑
s∈[t]
is=i

xas
ηs]− θj(i)

= −λM̃
−1

i,t θ
j(i) + M̃

−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

+ M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs ,

where we denote M̃ i,t = M i,t + λI , and Eq.(37) holds by definition.

Therefore,

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ λ

∥∥∥M̃−1

i,t θ
j(i)
∥∥∥
2
+

∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

. (38)

We then bound the three terms in Eq.(38) one by one. For the first term:

λ
∥∥∥M̃−1

i,t θ
j(i)
∥∥∥
2
≤ λ

∥∥∥∥M̃− 1
2

i,t

∥∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M̃ i,t)
, (39)

where we use the Cauchy–Schwarz inequality, the inequality for the operator norm of matrices, and
the fact that λmin(M̃ i,t) ≥ λ.

For the second term in Eq.(38):∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ϵis,sas

∥∥∥∥∥∥∥
2

= max
x∈Sd−1

∑
s∈[t]
is=i

x⊤M̃
−1

i,t xas
ϵis,sas

≤ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xasϵ
is,s
as

∣∣∣
≤ max

x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣ ∥∥ϵis,sas

∥∥
∞ (40)

≤ ϵ∗ max
x∈Sd−1

∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣
≤ ϵ∗ max

x∈Sd−1

√√√√∑
s∈[t]
is=i

1
∑
s∈[t]
is=i

∣∣∣x⊤M̃
−1

i,t xas

∣∣∣2 (41)

≤ ϵ∗
√
Ti,t

√
max

x∈Sd−1
x⊤M̃

−1

i,t x (42)

=
ϵ∗
√
Ti,t√

λmin(M̃ i,t)
, (43)

where we denote Sd−1 = {x ∈ Rd : ∥x∥2 = 1}, Eq.(40) follows from Holder’s inequality, Eq.(41)
follows by the Cauchy–Schwarz inequality, Eq.(42) holds because M̃ i,t ⪰

∑
s∈[t]
is=i

xas
x⊤
as

, Eq.(43)
follows from the Courant-Fischer theorem.

22

For the last term in Eq.(38)∥∥∥∥∥∥∥M̃
−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M̃
− 1

2

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

∥∥∥∥M̃− 1
2

i,t

∥∥∥∥
2

(44)

=

∥∥∥∑ s∈[t]
is=i

xas
ηs

∥∥∥
M̃

−1
i,t√

λmin(M̃ i,t)
, (45)

where Eq.(44) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm of
matrices, and Eq.(45) follows by the Courant-Fischer theorem.

Following Theorem 1 in [1], with probability at least 1− δ for some δ ∈ (0, 1), for any i ∈ U , we
have: ∥∥∥∥∥∥∥

∑
s∈[t]
is=i

xasηs

∥∥∥∥∥∥∥
M̃

−1
i,t

≤

√
2 log(

u

δ
) + log(

det(M̃ i,t)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

Ti,t

λd
) , (46)

where det(M) denotes the determinant of matrix M , Eq.(46) is because det(M̃ i,t) ≤(
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) = λd.

Plugging Eq.(46) into Eq. (45), then plugging Eq. (39), Eq.(43) and Eq.(45) into Eq.(38), we can get
that Eq.(73) holds with probability ≥ 1− δ.

Then, with the item regularity assumption stated in Assumption 3.3, the technical Lemma J.1,
together with Lemma 7 in [25], with probability at least 1− δ, for a particular user i, at any t such
that Ti,t ≥ 16

λ̃2
x

log(8d
λ̃2
xδ
), we have:

λmin(M̃ i,t) ≥ 2λ̃xTi,t + λ . (47)

Based on the above reasoning, we have: if Ti,t ≥ 16
λ̃2
x

log(8d
λ̃2
xδ
), then with probability ≥ 1− 2δ, we

have: ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λmin(M̃ i,t)

≤
β(Ti,t,

δ
u) + ϵ∗

√
Ti,t√

2λ̃xTi,t + λ

≤

√
λ+

√
2 log(uδ) + d log(1 +

Ti,t

λd)√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

, (48)

for any i ∈ U .

Let √
λ+

√
2 log(uδ) + d log(1 +

Ti,t

λd)√
2λ̃xTi,t + λ

+ ϵ∗

√
1

2λ̃x

<
γ1
4

, (49)

which is equivalent to
√
λ+

√
2 log(uδ) + d log(1 +

Ti,t

λd)√
2λ̃xTi,t + λ

<
γ1
4

− ϵ∗

√
1

2λ̃x

, (50)

23

where γ1 is given in Definition 5.1.

Assume λ ≤ 2 log(uδ) + d log(1 +
Ti,t

λd), which is typically held, then a sufficient condition for Eq.
(50) is:

2 log(uδ) + d log(1 +
Ti,t

λd)

2λ̃xTi,t

<
1

4
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 . (51)

To satisfy the condition in Eq.(51), it is sufficient to show

2 log(uδ)

2λ̃xTi,t

<
1

8
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 (52)

and
d log(1 +

Ti,t

λd)

2λ̃xTi,t

<
1

8
(
γ1
4

− ϵ∗

√
1

2λ̃x

)2 . (53)

From Eq.(52), we can get:

Ti,t ≥
8 log(uδ)

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
. (54)

Following Lemma 9 in [25], we can get the following sufficient condition for Eq.(53):

Ti,t ≥
8d log(4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2
)

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
. (55)

Assume u
δ ≥ 4

λλ̃x(
γ1
4 −ϵ∗

√
1

2λ̃x
)2

, which is typically held, we can get that

Ti,t ≥
8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
) (56)

is a sufficient condition for Eq.(49). Together with the condition that Ti,t ≥ 16
λ̃2
x

log(8d
λ̃2
xδ
), we can get

that if
Ti,t ≥ max{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)},∀i ∈ U , (57)

then with probability ≥ 1− 2δ: ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ1
4

,∀i ∈ U .

By Lemma 8 in [25], and Assumption 3.2 of user arrival uniformness, we have that for all

t ≥ T0 ≜ 16u log(
u

δ
) + 4umax{ 8d

λ̃x(
γ1

4 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

)} , (58)

with probability at least 1− δ, condition in Eq.(57) is satisfied.

Therefore we have that for all t ≥ T0, with probability ≥ 1− 3δ:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ1
4

,∀i ∈ U . (59)

Next, we show that with Eq.(59), we can get that the RCLUMB keeps a “good partition". First,
if we delete the edge (i, l), then user i and user j belong to different ground-truth clusters, i.e.,
∥θi − θl∥2 > 0. This is because by the deletion rule of the algorithm, the concentration bound,

and triangle inequality, ∥θi − θl∥2 =
∥∥∥θj(i) − θj(l)

∥∥∥
2

≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θl,t

∥∥∥
2
−

24

∥∥∥θj(i) − θi,t

∥∥∥
2

> 0. Second, we show that if ∥θi − θl∥ ≥ γ1 > 2ϵ∗
√

2
λ̃x

, the RCLUMB

algorithm will delete the edge (i, l). This is because if ∥θi − θl∥ ≥ γ1, then by the trian-
gle inequality, and

∥∥∥θ̂i,t − θj(i)
∥∥∥
2

< γ1

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2

< γ1

4 , θi = θj(i), θl = θj(l), we

have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ∥θi − θl∥ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
> γ1 − γ1

4 − γ1

4 = γ1

2 >
√
λ+

√
2 log(u

δ)+d log(1+
Ti,t
λd)√

λ+2λ̃xTi,t

+ ϵ∗
√

1
2λ̃x

+
√
λ+

√
2 log(u

δ)+d log(1+
Tl,t
λd)√

λ+2λ̃xTl,t

+ ϵ∗
√

1
2λ̃x

, which will trigger

the deletion condition Line 10 in Algo.1.

From the above reasoning, we can get that at round t, any user within V t is ζ-close to it, and all the
users belonging to Vj(i) are contained in V t, which means the algorithm has done a “good partition"
at t by Definition 5.5.

I Proof of Lemma 5.6

We prove the result in two situations: when V t ∈ V and when V t /∈ V .

(1) Situation 1: for any t ≥ T0 and V t ∈ V , which means that the current user it is clustered
completely correctly, i.e., V t = Vj(it), therefore θl = θit ,∀l ∈ V t, then we have:

θ̂V t,t−1 − θit = (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1(
∑

s∈[t−1]

is∈V t

xasrs)− θit

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

(∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θis + ϵis,sas

+ ηs)

)
− θit

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

(∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θit + ϵis,sas

+ ηs)

)
− θit

= (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1[(
∑

s∈[t−1]

is∈V t

xasx
⊤
as

+ λI)θit − λθit +
∑

s∈[t−1]

is∈V t

xasϵ
is,s
as

+
∑

s∈[t−1]

is∈V t

xasηs]− θit

= −λM
−1

V t,t−1θit +
∑

s∈[t−1]

is∈V t

M
−1

V t,t−1xas
ϵis,sas

+
∑

s∈[t−1]

is∈V t

M
−1

V t,t−1xas
ηs .

Therefore we have

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣+
∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣ .
(60)

Next, we bound the three terms in Eq.(60). For the first term:

λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣ ≤ λ ∥xa∥M−1

V t,t−1

√
λmax(M

−1

V t,t−1) ∥θit∥2 ≤
√
λ ∥xa∥M−1

V t,t−1

, (61)

where we use the inequality of matrix norm, the Cauchy–Schwarz inequality, ∥θit∥2 ≤ 1, and the
fact that λmax(M

−1

V t,t−1) =
1

λmin(MV t,t−1)
≤ 1

λ .

25

For the second term in Eq.(60):

∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣ ≤
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣
≤

∑
s∈[t−1]

is∈V t

∥∥ϵis,sas

∥∥
∞

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣ , (62)

where in the second inequality we use the Holder’s inequality.

For the last term, with probability at least 1− δ:

∣∣∣∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣ ≤ ∥xa∥M−1

V t,t−1

∥∥∥∥∥∥∥
∑

s∈[t−1]

is∈V t

xas
ηs

∥∥∥∥∥∥∥
M

−1

V t,t−1

(63)

≤ ∥xa∥M−1

V t,t−1

√
2 log(

1

δ
) + log(

det(MV t,t−1)

det(λI)
)

≤ ∥xa∥M−1

V t,t−1

√
2 log(

1

δ
) + d log(1 +

T

λd
) , (64)

where the second inequality follows by Theorem 1 in [1], Eq.(64) is because det(MV t,t−1) ≤(
trace(λI+

∑
s∈[t]

is∈V t

xasx
⊤
as

)

d

)d

≤
(λd+TV t,t

d

)d ≤
(
λd+T

d

)d
, and det(λI) = λd.

Plugging Eq.(61), Eq.(62) and Eq.(64) into Eq.(60), we can prove Lemma 5.6 in situation 1, i.e., for
any t ≥ T0 and V t ∈ V , with probability at least 1− δ:

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+∥xa∥M−1

V t,t−1

(√
λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)

)
.

(65)

(2) Situation 2: for any t ≥ T0 and V t /∈ V , which means that the current user is misclustered by
the algorithm, i.e., V t ̸= Vj(it), but with Lemma H.1, with probability at least 1 − 3δ, the current

26

partition is a “good partition", i.e., ∥θl − θit∥2 ≤ 2ϵ∗
√

2
λ̃x

,∀l ∈ V t, we have:

θ̂V t,t−1 − θit = (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1(
∑

s∈[t−1]

is∈V t

xas
rs)− θit

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

(∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θis + ϵis,sas

+ ηs)

)
− θit

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ϵis,sas

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs +M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
θis − θit

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ϵis,sas

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs +M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

+M
−1

V t,t−1(
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)θit − λM
−1

V t,t−1θit − θit

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θit)

− λM
−1

V t,t−1θit .

Thus, with Lemma 5.7 and with the previous reasoning, with probability at least 1− 5δ, we have:

∣∣∣x⊤
a (θ̂V t,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
−1

V t,t−1θit

∣∣∣+
∣∣∣∣∣∣∣
∑

s∈[t−1]

is∈V t

x⊤
a M

−1

V t,t−1xas
ϵis,sas

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣x⊤
a M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θit)

∣∣∣∣∣∣∣
≤ ϵ∗

∑
s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣+ ∥xa∥M−1

V t,t−1

(√
λ+

√
2 log(

1

δ
) + d log(1 +

T

λd
)

)

+
ϵ∗
√
2d

λ̃
3
2
x

.

Therefore, combining situation 1 and situation 2, the result of Lemma 5.6 then follows.

J Technical Lemmas and Their Proofs

We first prove the following technical lemma which is used to prove Lemma H.1.

Lemma J.1. Under Assumption 3.3, at any time t, for any fixed unit vector θ ∈ Rd

Et[(θ
⊤xat

)2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2)Cdx . (66)

Proof. The proof of this lemma mainly follows the proof of Claim 1 in [12], but with more careful
analysis, since their assumption is more stringent than ours.

Denote the feasible arms at round t by At = {xt,1,xt,2, . . . ,xt,|At|}. Consider the corresponding
i.i.d. random variables θi = (θ⊤xt,i)

2 − Et[(θ
⊤xt,i)

2| |At|], i = 1, 2, . . . , |At|. By Assumption
3.3, θi s are sub-Gaussian random variables with variance bounded by σ2. Therefore, we have that

27

for any α > 0 and any i ∈ [|At|]:

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where Pt(·) is the shorthand for the conditional probability
P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).

We also have that Et[(θ
⊤xt,i)

2| |At| = Et[θ
⊤xt,ix

⊤
t,iθ| |At|] ≥ λmin(Ex∼ρ[xx

⊤]) ≥ λx by As-
sumption 3.3. With the above inequalities, we can get

Pt(min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2)C ,

where C is the upper bound of |At|.
Therefore, we have

Et[(θ
⊤xat

)2| |At|] ≥ Et[min
i=1,...,|At|

(θ⊤xt,i)
2| |At|]

≥
∫ ∞

0

Pt(min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2)Cdx ≜ λ̃x

Finally, we prove the following lemma which is used in the proof of Theorem 5.3.
Lemma J.2.

T∑
t=T0+1

min{I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

, 1} ≤ 2d log(1 +
T

λd
),∀j ∈ [m] . (67)

Proof.

det(MVj ,T) = det
(
MVj ,T−1 + I{iT ∈ Vj}xaT

x⊤
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2

Vj ,T−1xaT
x⊤
aT

M
− 1

2

Vj ,T−1

)
= det(MVj ,T−1)

(
1 + I{iT ∈ Vj} ∥xaT

∥2
M

−1
Vj,T−1

)
= det(MVj ,T0)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2

M
−1
Vj,t−1

)

≥ det(λI)
T∏

t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2

M
−1
Vj,t−1

)
. (68)

∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore
T∑

t=T0+1

min{I{it ∈ Vj} ∥xat
∥2
M

−1
Vj,t−1

, 1} ≤ 2

T∑
t=T0+1

log

(
1 + I{it ∈ Vj} ∥xat

∥2
M

−1
Vj,t−1

)

= 2 log

(T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat

∥2
M

−1
Vj,t−1

))
≤ 2[log(det(MVj ,T))− log(det(λI))]

≤ 2 log

(
trace(λI +

∑T
t=1 I{it ∈ Vj}xat

x⊤
at
)

λd

)d

≤ 2d log(1 +
T

λd
) . (69)

28

K Algorithms of RSCLUMB

This section introduces the Robust Set-based Clustering of Misspecified Bandits Algorithm
(RSCLUMB). Unlike RCLUMB, which maintains a graph-based clustering structure, RSCLUMB
maintains a set-based clustering structure. Besides, RCLUMB only splits clusters during the learning
process, while RSCLUMB allows both split and merge operations. A brief illustration is that the
agent will split a user out of its current set(cluster) if it finds an inconsistency between the user and its
set, and if there are two clusters whose estimated preferences are close enough, the agent will merge
them. A detailed discussion of the connection between the graph structure and the set structure can
be found in [27].

Now we introduce the details of RSCLUMB. The algorithm first initializes a single set S1 containing
all users and updates it during the learning process. The whole learning process consists of phases
(Algo. 2 Line 3), where the s − th phase contains 2s rounds. At the beginning of each phase, the
agent marks all users as "unchecked", and if a user comes later, it will be marked as "checked". If all
users in a cluster are checked, then this cluster will be marked as "checked" meaning it is an accurate
cluster in the current phase. With this mechanism, every phase can maintain an accuracy level, and
the agent can put the accurate clusters aside and focus on exploring the inaccurate ones. For each
cluster Vj , the algorithm maintains two estimated vectors θ̂Vj

and θ̃Vj
, where the θ̂Vj

is similar to
the θ̂V j

in RCLUMB and is used for the recommendation, while the θ̃Vj is the average of all the
estimated user preference vectors in this cluster and is used for the split and merge operations.

At time t in phase s, the user iτ comes with the item set Dτ , where τ represents the index of total
time steps. Then the algorithm determines the cluster and makes a cluster-based recommendation.
This process is similar to RCLUMB. After updating the information (Algo. 2 Line12), the agent
checks if a split or a merge is possible (Algo. 2 Line13-17).

By our assumption, users in the same cluster have the same vectors. So a cluster can be regarded
as a good cluster only when all the estimated user vectors are close to the estimated cluster vector.
We call a user is consistent with the cluster if their estimated vectors are close enough. If a user is
inconsistent with its current cluster, the agent will split it out. Two clusters are consistent when their
estimated vectors are close, and the agent will merge them.

RSCLUMB maintains two sets of estimated cluster vectors: (i) cluster-level estimation with integrated
user information, which is for recommendations (Line 12 and Line 10 in Algo.2); (ii) the average of
estimated user vectors, which is used for robust clustering (Line 3 in Algo.3 and Line 2 in Algo.4).
The previous set-based CB work [27] only uses (i) for both recommendations and clustering, which
would lead to erroneous clustering under misspecifications, and cannot get any non-vacuous regret
bound in CBMUM.

L Main Theorem and Lemmas of RSCLUMB

Theorem L.1 (main result on regret bound for RSCLUMB). With the same assumptions in Theorem
5.3, the expected regret of the RSCLUMB algorithm for T rounds satisfies:

R(T) ≤ O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
log T +

ϵ∗
√
dT

λ̃1.5
x

+ ϵ∗T
√

md log T + d
√
mT log T + ϵ∗

√
1

λ̃x

T

)
≤ O(ϵ∗T

√
md log T + d

√
mT log T) (70)

Lemma L.2. For RSCLUMB, we use T1 to represent the corresponding T0 of RCLUMB. Then :

T1 ≜ 16u log(
u

δ
) + 4umax{ 16

λ̃2
x

log(
8d

λ̃2
xδ

),
8d

λ̃x(
γ1

6 − ϵ∗
√

1
2λ̃x

)2
log(

u

δ
)}

= O

(
u

(
d

λ̃x(γ1 − ζ1)2
+

1

λ̃2
x

)
log

1

δ

)

29

Algorithm 2 Robust Set-based Clustering of Misspecified Bandits Algorithm (RSCLUMB)

1: Input: Deletion parameter α1, α2 > 0, f(T) =
√

1+ln(1+T)
1+T , λ, β, ϵ∗ > 0.

2: Initialization:
• M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ;
• Initialize the set of cluster indexes by J = {1} and the single cluster S1 by M1 = 0d×d,
b1 = 0d×1, T1 = 0, C1 = U , j(i) = 1, ∀i.

3: for all s = 1, 2, . . . do
4: Mark every user unchecked for each cluster.

5: For each cluster Vj , compute T̃Vj = TVj , θ̂Vj = (λI +MVj)
−1bVj , θ̃Vj =

∑
i∈Vj

θ̂i

[Vj]

6: for all t = 1, 2, . . . , T do
7: Compute τ = 2s − 2 + t
8: Receive the user iτ and the decision set Dτ

9: Determine the cluster index j = j(iτ)
10: Recommend item aτ with the largest UCB index as shown in Eq. (5)
11: Received the feedback rτ .
12: Update the information:

M iτ ,τ = M iτ ,τ−1 + xaτx
T
aτ
, biτ ,τ = biτ ,τ−1 + rτxaτ ,

Tiτ,τ = Tiτ ,τ−1 + 1, θ̂iτ ,τ = (λI +M iτ ,τ)
−1biτ ,τ

MVj ,τ = MVj ,τ−1 + xaτ
xT
aτ
, bVj ,τ = bVj ,τ−1 + rτxτ ,

TVj ,τ = TVj ,τ−1 + 1, θ̂Vj ,τ = (λI +MVj ,τ)
−1bVj ,τ ,

θ̃Vj ,τ =

∑
i∈Vj

θ̂i, τ

[Vj]

13: if iτ is unchecked then
14: Run Split
15: Mark user iτ has been checked
16: Run Merge

Algorithm 3 Split

1: Define F (T) =
√

1+ln(1+T)
1+T

2: if
∥∥∥θ̂iτ ,τ − θ̃Vj ,τ

∥∥∥ > α1(F (Tiτ ,τ) + F (TVj ,τ)) + α2ϵ∗ then

3: Split user iτ from cluster Vj and form a new cluster V
′

j of user iτ

MVj ,τ = MVj ,τ −M iτ ,τ , bVj = bVj − biτ ,τ ,

TVj ,τ = TVj ,τ − Tiτ ,τ , Cj,τ = Cj,τ − {iτ},
MV ′

j ,τ
= M iτ ,τ , bV ′

j ,τ
= biτ ,τ ,

TV ′
j ,τ

= Tiτ ,τ , Cj′,τ = {iτ}

Lemma L.3. For RSCLUMB, after 2T1 + 1 rounds: in each phase, after the first u rounds, with
probability at least 1− 5δ:

∣∣∣x⊤
a (θit − θ̂V t,t−1)

∣∣∣ ≤ (
3ϵ∗

√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ β ∥xa∥M−1

V t,t−1

+ ϵ∗
∑

s∈[t−1]

is∈V t

∣∣∣x⊤
a M

−1

V t,t−1xas

∣∣∣
≜ (

3ϵ∗
√
2d

2λ̃
3
2
x

+ 6ϵ∗

√
1

2λ̃x

)I{V t /∈ V }+ Ca,t

30

Algorithm 4 Merge
1: for any two checked clustersVj1 , Vj2 satisfying∥∥∥θ̃j1 − θ̃j2

∥∥∥ <
α1

2
(F (TVj1

) + F (TVj2
)) +

α2

2
ϵ∗

do
2: Merge them:

MVj1
= M j1 +M j2 , bVj1

= bVj1
+ bVj2

,

TVj1
= TVj1

+ TVj2
, CVj1

= CVj1
∪ CVj2

3: Set j(i) = j1,∀i ∈ j2, delete Vj2

M Proof of Lemma L.3

|xT
a (θi − θ̂V t,t

)| = |xT
a (θi − θVt

)|+ |xT
a (θ̂V t,t

− θVt
)|

≤
∥∥xT

a

∥∥ ∥θi − θVt
∥+ |xT

a (θ̂V t,t
− θVt

)|

≤ 6ϵ∗

√
1

2λ̃x

+ |xT
a (θ̂V t,t

− θVt)|

(71)

where the last inequality holds due to the fact ∥xa∥ ≤ 1 and the condition of "split" and "merge".
For |xT

a (θ̂V t,t
− θVt

)|:

θ̂V t,t−1 − θVt = (
∑

s∈[t−1]

is∈V t

xas x
⊤
as

+ λI)−1(
∑

s∈[t−1]

is∈V t

xasrs)− θVt

= (
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)−1

(∑
s∈[t−1]

is∈V t

xas
(x⊤

as
θis + ϵis,sas

+ ηs)

)
− θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
θis − θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ϵis,sas

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
ηs +M

−1

V t,t−1

∑
s∈[t−1]

is∈V t

xas
x⊤
as
(θis − θVt

)

+M
−1

V t,t−1(
∑

s∈[t−1]

is∈V t

xas
x⊤
as

+ λI)θVt
− λM

−1

V t,t−1θVt
− θVt

= M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasϵ
is,s
as

+M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasηs +M
−1

V t,t−1

∑
s∈[t−1]

is∈V t

xasx
⊤
as
(θis − θVt)

− λM
−1

V t,t−1θVt
.

Thus, with the same method in Lemma 5.7 but replace ζ = 4ϵ∗
√

1
2λ̃x

with ζ1 = 6ϵ∗
√

1
2λ̃x

, and with

the previous reasoning, with probability at least 1− 5δ, we have:

|xT
a (θ̂V t,t

− θVt
)| ≤ Cat

+
3ϵ∗

√
2d

2λ̃
3
2
x

(72)

The lemma can be concluded.

31

N Proof of Lemma L.2

With the analysis in the proof of Lemma H.1, with probability at least 1− δ:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
,∀i ∈ U , (73)

and the estimated error of the current cluster
∥∥∥θ̃j(i)

− θj(i)
∥∥∥ also satisfies this inequality. For

set-based clustering structure, to ensure for each user there is only one ζ-close cluster, we let:

β(Ti,t,
δ
u) + ϵ∗

√
Ti,t√

λ+ λmin(M i,t)
≤ γ1

6
(74)

By assuming λ < 2 log(uδ) + d log(1 +
Ti,t

λd), we can simplify it to

2 log(uδ) + d log(1 +
Ti,t

λd)

2λ̃xTi,t

<
1

4
(
γ1
6

− ϵ∗

√
1

2λ̃x

)2 (75)

which can be proved by
2 log(u

δ)

2λ̃xTi,t
≤ 1

8 (
γ1

6 − ϵ∗
√

1
2λ̃x

)2 and d log(1+
Ti,t
λd)

2λ̃xTi,t
≤ 1

8 (
γ1

6 − ϵ∗
√

1
2λ̃x

)2. It’s

obvious that the former one can be satisfied by Ti,t ≥ 8 log(u/δ)

λ̃x(
γ1
6 −ϵ∗

√
1/2λ̃x)2

. As for the latter one, by

[25] Lemma 9, we can get Ti,t ≥
8d log(16

λ̃xλ(
γ1
6

−ϵ∗
√

1/2λ̃x)2

4λ̃x(
γ1
6 −ϵ∗

√
1/2λ̃x)2

. By assuming u
δ ≥ 16

4λ̃xλ(
γ1
6 −ϵ∗

√
2/4λ̃x)2

,

the lemma is proved.

O Proof of Theorem L.1

After 2T1 rounds,in each phase, at most u times split operations will happen, we use u log(T) to
bound the regret generated in these rounds. Then in the remained rounds the cluster num will be no
more than m.
For the instantaneous regret Rt at round t, with probability at least 1− 2δ for some δ ∈ (0, 1

2):

Rt = (xT
a∗
t
θit + ϵit,ta∗

t
)− (xT

at
θit + ϵit,tat

)

= x⊤
a∗
t
(θit − θ̂V t,t−1) + (x⊤

a∗
t
θ̂V t,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂V t,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t
+ (ϵit,ta∗

t
− ϵit,tat

)

≤ 2Cat
+ 2ϵ∗ + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

)I(V t /∈ V)

(76)

where the last inequality holds due to the UCB arm selection strategy, the concentration bound given
in LemmaL.3 and the fact that

∥∥ϵi,t∥∥∞ ≤ ϵ∗.

Define such events. Let:

E2 = {All clusters V t only contain users who satisfy
∥∥∥θ̃i − θ̃V t

∥∥∥ ≤ α1(

√
1 + log(1 + Ti,t)

1 + Ti,t
+

√
1 + log(1 + TV t,t

)

1 + TV t,t

)+α2ϵ∗}

E3 = {rt ≤ 2Cat
+ 2ϵ∗ + 12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

}

E
′
= E2 ∩ E3

From previous analysis, we can know that P(E2) ≥ 1− 3δ and P(E3) ≥ 1− 2δ, thus P(E ′ ≥ 1− 5δ).
By taking δ = 1

T , we can get:

E(Rt) = P (E)I{E}Rt + P (Ē)I{Ē}Rt

≤ I{E}Rt + 5

≤ 2T1 + 2ϵ∗T + (12ϵ∗

√
1

2λ̃x

+
3ϵ∗

√
2d

λ̃
3
2
x

)T + 2

T∑
2T1

Cat
+ 5

(77)

32

Now we need to bound 2
∑T

2T1
Cat . We already know that after 2T1 rounds, in each phase k after

the first u rounds,there will be at most m clusters
Consider phase k, for simplicity, ignore the fist u rounds. For the first term in Cat :

Tk∑
t=Tk−1

∥xat∥
−1

MV t,t−1
=

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j} ∥xat
∥
M

−1

V t,j

≤
mt∑
j=1

√√√√ Tk∑
t=Tk−1

I{i ∈ Vt,j}
Tk∑

t=Tk−1

I{i ∈ Vt,j} ∥xat∥
2
M−1

V t,j

≤
mt∑
j=1

√
2Tk,jd log(1 +

T

λd
)

≤
√
2m(Tk − Tk−1)d log(1 +

T

λd
)

(78)

For all phases:

s∑
k=1

√
2m(Tk+1 − Tk)d log(1 +

T

λd
) ≤

√√√√2
s∑

k=1

1

s∑
k=1

(Tk+1 − Tk)md log(1 +
T

λd
)

≤
√
2mdT log(T) log(1 +

T

λd
)

(79)

Similarly, for the second term in Cat
:

Tk∑
t=Tk−1

∑
s∈[t−1]

is∈V t

ϵ∗|xT
at
M

−1

V t,t−1
xas

| =
Tk∑

t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
∑

s∈[t−1]

is∈V t,j

ϵ∗|xT
at
M

V
−1
t,j
xas

|

≤ ϵ∗

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
√√√√ ∑

s∈[t−1]

is∈V t,j

1
∑

s∈[t−1]

is∈V t,j

|xT
at
M

V
−1
t,j
xas

|2

≤ ϵ∗

Tk∑
t=Tk−1

mt∑
j=1

I{i ∈ V t,j}
√

Tk,j ∥xat∥
2

M
−1

V t,j

≤ ϵ∗

Tk∑
t=Tk−1

√√√√mt∑
j=1

I{i ∈ V t,j}
mt∑
j=1

I{i ∈ V t,j}Tk,j ∥xat
∥2
M

−1

V t,j

≤ ϵ∗
√
(Tk − Tk−1)

Tk∑
t=Tk−1

√√√√mt∑
j=1

I{i ∈ V t,j} ∥xat
∥2
M

−1

V t,j

≤ ϵ∗(Tk − Tk−1)

√
2md log(1 +

T

λd
)

(80)

Then for all phases this term can be bounded by ϵ∗T
√
2md log(1 + T

λd).
Thus the total regret can be bounded by:

Rt ≤ 2

√
2mTd log(T) log(1 +

T

λd
)(

√
2 log(T) + d log(1 +

T

λd
) + 2

√
λ)

+ 2ϵ∗T

√
2md log(1 +

T

λd
) + 2ϵ∗T + 12ϵ∗

√
1

2λ̃x

T +
3ϵ∗

√
2d

λ̃
3
2
x

T + 2T1 + u log(T) + 5

where T1 = 16u log(uδ) + 4umax{ 16
λ̃2
x

log(8d
λ̃2
xδ
), 8d

λ̃x(
γ1
6 −ϵ∗

√
1

2λ̃x
)2
log(uδ)}

33

0.05 0.1 0.2 0.3 0.4
Misspecification Level

0

50000

100000

150000

200000

250000

C
um

ul
at

iv
e

R
eg

re
t

RSCLUMB
RCLUMB
RLinUCB-Ind
SCLUB
CLUB

(a) Known Misspecification Level

0.05 0.1 0.2 0.3 0.4
Misspecification Level

0

50000

100000

150000

200000

250000

C
um

ul
at

iv
e

R
eg

re
t

RSCLUMB
RCLUMB
RLinUCB-Ind

(b) Unknown Misspecification Level

Figure 2: The cumulative regret of the algorithms under different scales of misspecification level.

P More Experiments

For ablation study, we test our algorithms’ performance under different scales of deviation. We
test RCLUMB and RSCLUMB when ϵ∗ = 0.05, 0.1, 0.2, 0.3 and 0.4 in both misspecification level
known and unknown cases. In the known case, we set ϵ∗ according to the real misspecification
level, and we compare our algorithms’ performance to the baselines except LinUCB and CW-OFUL
which perform worst; in the unknown case, we keep ϵ∗ = 0.2, and we compare our algorithms to
RLinUCB-Ind as only it has the pre-spicified parameter ϵ∗ among the baselines. The results are shown
in Fig.2. We plot each algorithm’s final cumulative regret under different misspecification levels. All
the algorithms’ performance get worse when the deviation gets larger, and our two algorithms always
perform better than the baselines. Besides, the regrets in the unknown case are only slightly larger
than the known case. These results can match our theoretical results and again show our algorithms’
effectiveness, as well as verify that our algorithm can handle the unknown misspecification level.

34

	Introduction
	Our Contributions

	Related Work
	Problem Setup
	Algorithm
	Theoretical Analysis
	Experiments
	Synthetic Experiments
	Experiments on Real-world Datasets

	Conclusion
	Acknowledgement
	More Discussions on Related Work
	More Discussions on Assumptions
	Less Strigent Assumption on on the Generating Distribution of Arm Vectors
	Discussions on Assumption 3.4 about Bounded Misspecification Level
	Discussions on Assumption 3.2 about the Theoretical Results under General User Arrival Distributions

	Highlight of the Theoretical Analysis
	Discussions on why Trivially Combining Existing CB and MLB Works Could Not Achieve a Non-vacuous Regret Upper Bound
	Proof of Theorem 5.3
	Proof and Discussions of Theorem 5.4
	Proof of the key Lemma 5.7
	Lemma H.1 of the sufficient time T0 and its proof
	Proof of Lemma 5.6
	Technical Lemmas and Their Proofs
	Algorithms of RSCLUMB
	Main Theorem and Lemmas of RSCLUMB
	Proof of Lemma L.3
	Proof of Lemma L.2
	Proof of Theorem L.1
	More Experiments

