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ABSTRACT

Model merging has recently emerged as a lightweight alternative to ensembling,
combining multiple fine-tuned models into a single set of parameters with no ad-
ditional training overhead. Yet, existing merging methods fall short of matching
the full accuracy of separately fine-tuned endpoints. We present MASS (MoErg-
ing through Adaptive Subspace Selection), a new approach that closes this gap by
unifying multiple fine-tuned models while retaining near state-of-the-art perfor-
mance across tasks. Building on the low-rank decomposition of per-task updates,
MASS stores only the most salient singular components for each task and merges
them into a shared model. At inference time, a non-parametric, data-free router
identifies which subspace (or combination thereof) best explains an input’s inter-
mediate features and activates the corresponding task-specific block. This pro-
cedure is fully training-free and introduces only a two-pass inference overhead
plus a ∼2× storage factor compared to a single pretrained model, irrespective of
the number of tasks. We evaluate MASS on open-vocabulary image classification
using ViT-B-16, ViT-B-32 and ViT-L-14 for benchmarks of 8, 14 and 20
tasks respectively, establishing a new state-of-the-art. Most notably, MASS recov-
ers up to ∼ 98% of the average accuracy of individual fine-tuned models, making
it a practical alternative to ensembling at a fraction of the storage cost.

1 INTRODUCTION

In the early days of deep learning, the default practice was to train models entirely from scratch. With
the rise of massive pretrained networks, research pivoted toward fine-tuning these backbones for
specialized tasks (Devlin et al., 2019; Tan et al., 2018; Yosinski et al., 2014; Hu et al., 2022; Radford
et al., 2021). Nowadays, with the abundance of fine-tuned models on platforms like HuggingFace1,
we are witnessing a shift toward no-tuning methods that leverage both pretrained foundations and
diverse fine-tuned endpoints. Among these, model merging (Singh & Jaggi, 2020; Ainsworth et al.,
2023; Ilharco et al., 2023) has gained significant attention by combining multiple fine-tuned models
into a single parameter set, eliminating the need for additional training or data.

An important application of model merging is the combination of models fine-tuned on different
tasks that share the same pretrained backbone. Early approaches such as Task Arithmetic
(Ilharco et al., 2023) and its extensions (Yadav et al., 2023; Yu et al., 2024; Daheim et al.; Wang
et al., 2024; Ortiz-Jiménez et al., 2023; Huang et al., 2024; Akiba et al., 2025) define a task vector
as the difference between pretrained and fine-tuned weights, and build a multitask model by sum-
ming these vectors to the base model. More recent work (Gargiulo et al., 2025; Daniel et al., 2025)
demonstrates that preserving the layer-wise structure of these updates leads to stronger results. In-
stead of flattening the updates into vectors, methods such as Task Singular Vectors (TSV)
(Gargiulo et al., 2025) exploit their matrix form and uncover a clear low-rank structure, where only
a small number of singular vectors per task are needed to recover most of the fine-tuned accuracy.

Despite the progress in performance, most merging methods remain limited by an unrealistic as-
sumption: that the task identity is known at inference time. We challenge this assumption as im-
practical and argue that under such a setting, the optimal strategy would be compression. Indeed, the
low-rank compression method TSV-C (Gargiulo et al., 2025) achieves 99.5% normalized accuracy

1https://huggingface.co/docs/hub/models-the-hub
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Figure 1: (left) Fine-tuning yields three separate models on tasks A, B and C. (middle) Model
merging produces a single model incorporating the task vectors using a constant function of the
input. (right) MASS stores the pretrained model θpre and the task singular vectors V ⊤ across tasks.
At test time, MASS adaptively performs merging using a routing mechanism that chooses appropriate
task vectors for the input x, using a thresholded gating function g(x). The gate is the residual
between the activations of x and their projections onto the span of the right singular vectors V⊥.

across all benchmarks while requiring only 2× storage and no additional inference overhead, effec-
tively solving the problem. Mixture-of-Experts Merging (MoErging) (Yadav et al., 2024) methods
such as SMILE (Tang et al., 2024a), WeMoE (Tang et al., 2024b), and TwinMerging (Lu et al.,
2024) go a step further by incorporating a router into the merging process.

However, these methods still assume that the correct classification head is provided at test time,
thereby inheriting the same unrealistic constraint and failing to exploit the full potential of routing-
based approaches.

Key assumptions. In this work we assume that the task is not known at inference time, and that both
the most suitable encoder subspaces and the corresponding classification head must be determined
automatically. This setting is simultaneously more challenging and more realistic, enabling a single
generalist model to handle all tasks encountered during fine-tuning without external supervision.

Contributions. We propose MASS, a novel MoErging method that dynamically selects the most
relevant tasks and corresponding label spaces via an adaptive routing mechanism that conditions the
merging process on the input itself (Fig. 1). MASS sidesteps the data and training required to train a
router by leveraging a novel weight-space router that identifies the most relevant task subspaces as
defined by their task singular vectors. By selectively integrating these subspaces into the pretrained
backbone and extending the routing decisions to the classification heads, MASS enables a training-
free and data-free merging process without relying on oracle knowledge of the task at hand.

We evaluate MASS on ViT-B-32, ViT-B-16, and ViT-L-14 across up to 20 vision tasks and
8 language tasks, demonstrating substantial gains over existing methods. For a modest increase in
computational cost (∼ 2× forward passes) and storage (∼ 2× parameter footprint regardless of the
number of tasks), our method achieves up to 98% of the average accuracy of individual fine-tuned
models while handling the full union of expert label spaces without oracle guidance at test time.

Wrapping up, our contribution is three-fold:

• We introduce MASS, a MoErging method that augments singular-vector-based merging
with adaptive routing, eliminating the need for test-time task knowledge.

• We design a projection-based router that operates without task data or additional tuning,
making it directly applicable to the merging setting.

• We present extensive experiments that establish new state-of-the-art results across bench-
marks and further provide an interpretation of task singular vectors in text space.

We release our code, checkpoints, and all relevant logs for research purposes.
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2 BACKGROUND

Task Vectors Task Arithmetic (TA) (Ilharco et al., 2023) defines task vectors capturing the
specific differences in model weights for individual tasks. Formally, the weights θMT of a multi-task
model for T tasks are computed by aggregating the task-specific weight differences, or task vectors,
as θMT = θpre + α

∑T
i=1 τi , where θpre is the set of pretrained model weights, α is a scaling factor,

and τi = θfti − θpre is the task vector for task i, with θfti being the fine-tuned weights for the task.
Following Gargiulo et al. (2025), however, we consider these operations at the layer level. From
a layer-wise perspective, task arithmetic can be rewritten as θ

(ℓ)
MT = θ

(ℓ)
pre + α

∑T
i=1 ∆

(ℓ)
i , where

θ
(ℓ)
pre encodes the pretrained weights for layer ℓ, and ∆

(ℓ)
i = θ

(ℓ)
fti − θ

(ℓ)
pre is the task-specific weight

difference for task i at layer ℓ. When layer ℓ has a matrix structure, its corresponding ∆
(ℓ)
i is called

the per-layer task matrix for task i. The layer index will be omitted for brevity.

Task Singular Vectors Given a task i, Gargiulo et al. (2025) consider the SVD of the correspond-
ing task matrices ∆i on a generic layer ∆i = UiΣiV

⊤
i . They then perform a low-rank approxima-

tion of the ∆s and orthogonalize their singular vectors to reduce inter-task interference. In practice,
this is equivalent to summing the top-k rank-one matrices for each task, with an added orthogo-
nalization step to prevent singular vectors belonging to different tasks from interfering. The full
procedure is detailed in Algorithm 2 (lines 10–20).

3 APPROACH

Our approach is best understood as a pre-processing step followed by an inference-time step. The
former consists of a one-time merging procedure to obtain an encoder model θMT, as detailed in
Algorithm 2. We refer to this as the ‘fixed’ merging step, as it is performed only once and re-
mains independent of the input. During inference, θMT is used in a dynamic process, outlined in
Algorithm 1, consisting of 4 steps:

(i) First pass: forward the input through θMT and extract its embedding zℓ at a chosen layer ℓ;

(ii) Routing: project zℓ onto the task subspaces, selecting those having lowest projection error;

(iii) Adaptive merge: merge the selected task subspaces into ∆ada;

(iv) Second pass: classify the input using the final merged model θMT = θpre + α∆ada.

Algorithm 1 Adaptive Merging Step

Require: Pretrained model weights θpre, task-specific updates {∆i}Ti=1, fixed merged model θMT,
top-k parameter k, threshold η, task-specific classification heads {hi}Ti=1, sample x

Ensure: Predicted class c∗
1: zℓ ← ForwardPass(θMT,x) # first pass
2: for i = 1, . . . , T do
3: ri ← ∥zℓ − Vi V

⊤
i zℓ∥2 # residual as per Section 3.2.1

4: end for
5: w ← softmax(−r)
6: Ω← {i : wi ≥ η} # Select tasks above threshold
7: Ω← TopK(Ω, w, k) # Keep only top-k weighted tasks
8: Merge selected subspaces: ∆ada ←

∑
i∈Ω Ui Σi V

⊤
i

9: Compute adaptive model: θMASS ← θpre + α∆ada
10: Classification procedure
11: zL−1 ← ForwardPass(θMASS,x) # Compute shared representation
12: zi ← hi(zL−1) # Evaluate each head
13: (i⋆, c⋆)← argmax

(i,c)∈Ω×{1,...,Ci}
zi[c] # Highest logit across heads

14: return c⋆

3
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3.1 FIXED MERGING

We begin with a one-time merging step to produce a model capable of task discrimination. This
model provides the intermediate activations used by the router in the first pass. For this, we use
TSV-M (Gargiulo et al., 2025) due to its subspace-aware aggregation. Although one could alterna-
tively rely on the pretrained base, Table 3 shows that it leads to lower task classification accuracy.

3.2 INTEGRATING ROUTING

We extend the aggregation step in Section 2 to include a routing mechanism. Given an input x, the
merged model can be adaptively determined by:

θMT = θpre + α

T∑
i=1

1[gi(x)=1](x)τi = θpre + α

T∑
i=1

1[gi(x)=1](x)

k∑
j=1

σi
ju

i
jv

i⊤
j , (1)

where gi(x) is a per-task gating function that adaptively selects which task subspaces to activate,
and subsequently merge, depending on the input at hand.

Traditionally, however, routers require either task-specific data for non-parametric procedures such
as nearest-neighbor-based routing, or both data and training for parametric routers. This contrasts
with the typical merging scenario, which does not assume access to the data used to train the endpoint
models, as these could, in principle, be downloaded from any public model repository. We therefore
introduce a completely data- and tuning-free approach.

3.2.1 PROJECTION-BASED ROUTING

v1

v2 zℓ

zℓproj
xy

z

Figure 2: Projection of the activations
zℓ onto the span of TSVs v1,v2.

Given an input intermediate representation zℓ for a prede-
termined layer ℓ, we want to identify which task subspace
(or set of subspaces) is the most relevant. Concretely, one
way to do this is to compute the Euclidean residual of zℓ
after projecting onto span(V

(ℓ)
i ):

ri =
∥∥ zℓ − Proj

V
(ℓ)
i

(zℓ)
∥∥
2

,

where Proj
V

(ℓ)
i

(zℓ) = V
(ℓ)
i

(
V

(ℓ)
i

)⊤
zℓ is the optimal L2

projector (see Proposition D.1). At this point, the additive inverse of the residuals is normalized
through a softmax to obtain the coefficients. The router then picks those exceeding a predetermined
threshold η, limiting the selection to the top-k when more tasks surpass it. For details regarding the
choice of the layer used to compute the residual, see Section 4.2.

3.2.2 ACCOUNTING FOR REDUNDANT DIRECTIONS

For projection-based routing to be effective, no task should overshadow the others. Consider, for
example, three tasks: MNIST , EMNIST , and KMNIST . Being trained on very similar
datasets covering the same classes, ∆MN and ∆EMN share a large portion of their right-singular
directions: span

(
V

(ℓ)
MN

)
≈ span

(
V

(ℓ)
EMN

)
, while KMNIST has some distinct directions V (ℓ)

KM captur-
ing more Japanese kana-like shapes. However, all three tasks may agree on certain generic “black
background, white glyph” features. Because MNIST and EMNIST partially reinforce these direc-
tions (they both include them), the union of their subspaces can appear “wider” or more dominant
in that region of feature space. Consequently, for many test samples zℓ with black backgrounds and
centered shapes: ∥∥ zℓ − ProjVMN∪VEMN

(zℓ)
∥∥
2
<

∥∥ zℓ − ProjVKM
(zℓ)

∥∥
2
.

Hence, the router sees a smaller residual for MNIST/EMNIST, declaring those tasks more suitable
even if the glyph belongs to KMNIST.

During the fixed merging step, instead of aggregating all task matrices, we only keep those that are
sufficiently distinct. We first select a single task matrix as the initial element of the merge set. Then,
for each remaining task matrix, we determine whether to include it based on its similarity to the

4
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matrices already in the set. A task matrix is added only if its similarity to all previously accepted
matrices remains below a predefined threshold.

Formally, let {∆a1 , . . . ,∆ar} be the set of accepted updates at a given layer. When evaluating a
new task update ∆i, we flatten it as δi = vec(∆i) and compute its cosine similarity sim(δi, δam)
with each previously accepted update δam . If

max
1≤m≤r

sim(δi, δam
) > ε ,

where ε is a user-specified threshold (e.g. ε = 0.3), we discard ∆i and do not merge it; else we
accept it. This ensures that highly similar task subspaces do not overshadow less common ones.
This procedure is performed before merging, see lines 2–8 of Algorithm 2.

3.3 ADAPTIVE MERGING AND INFERENCE

With the router having selected a subset Ω of relevant tasks, we merge their subspaces via TSV-M
(Gargiulo et al., 2025) into a single model θMASS. Crucially, unlike standard model merging, which
assumes an oracle provides the correct task head at inference, we do not know the task in advance.
Instead, after obtaining the shared representation zL−1 ∈ Rd from θMASS, we run each head hi :
Rd → RCi for every selected task i ∈ Ω:

zi = hi(zL−1), zi ∈ RCi .

We then pick the highest logit among all heads in Ω. Formally:

(i⋆, c⋆) = argmax
(i,c)∈Ω×{1,...,Ci}

zi[c] .

In other words, we identify which head i⋆ is most “confident” and select its predicted class c⋆. This
procedure covers the unknown-task scenario, allowing the model to determine both head and label
space on a per-input basis.

3.4 RESIDUAL MINIMIZATION AS MAXIMUM A POSTERIORI ESTIMATION

The task selection process in MASS can be viewed as a maximum a posteriori (MAP) estimation
problem. If residuals follow an isotropic Gaussian, the likelihood of a feature vector given a task
decays exponentially with its squared ℓ2 reconstruction error. Thus, choosing the task with min-
imal residual is equivalent to the MAP estimate. This view parallels probabilistic PCA (Tipping
& Bishop, 1999), where squared reconstruction error minimization corresponds to maximum like-
lihood estimation under the same Gaussian assumption. Residual-based selection is therefore sta-
tistically optimal under a simple, least-informative model that is particularly apt for MASS, which
lacks training data to fit more complex distributions. The isotropic prior treats all directions equally,
avoiding bias toward specific tasks.
Proposition 3.1. Let zℓ ∈ Rd be a feature vector, and for each task i, decompose it as

zℓ = ViV
⊤
i zℓ + εi, εi =

(
I − ViV

⊤
i

)
zℓ.

Assume εi ∼ N (0, σ2I) and a uniform prior over tasks: p(task = i) = 1
K for all i ∈ {1, 2, . . . ,K}..

Then the maximum a posteriori estimate of the task reduces to

ı̂MAP = argmax
i

p(task = i | zℓ) = argmin
i
∥εi∥22.

4 EXPERIMENTS

4.1 MERGING PERFORMANCE

Models, baselines and datasets We conduct our experiments on three versions of the CLIP (Rad-
ford et al., 2021) model, each equipped with a different ViT (Dosovitskiy et al., 2021) visual
encoder: ViT-B-32, ViT-B-16, and ViT-L-14. As baselines, we compare against multiple
training-free merging strategies, notably weight averaging, Task Arithmetic (Ilharco et al.,
2023), and Consensus Merging (Wang et al., 2024). For additional context, zero-shot perfor-
mance serves as a null reference point, and the mean accuracy of individually fine-tuned models

5
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Method
ViT-B-32 ViT-B-16 ViT-L-14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zeroshot 48.1(54.8) 56.9(64.5) 57.5(65.2) 55.3(60.6) 61.9(67.9) 62.5(68.3) 64.9(69.2) 69.1(73.8) 68.2(72.7)
B

as
e

Finetuned 90.3(100) 89.0(100) 89.5(100) 92.4(100) 91.3(100) 91.9(100) 94.2(100) 93.4(100) 94.0(100)

Fi
xe

d

Weight Averaging 67.1(74.6) 65.5(73.8) 64.4(72.6) 73.0(78.8) 70.8(77.3) 69.2(75.3) 80.5(85.2) 78.5(83.8) 76.1(80.9)

Task Arithmetic 68.8(75.7) 64.6(72.5) 64.0(71.9) 73.0(78.3) 70.6(77.0) 69.0(75.0) 84.4(89.3) 80.4(85.8) 76.9(81.7)

Consensus TA 72.6(80.1) 70.3(78.9) 68.5(76.8) 75.9(81.7) 74.9(81.7) 72.2(78.4) 85.5(90.5) 82.0(87.6) 78.9(83.8)

TSV-M 83.2(91.8) 78.6(88.0) 75.6(84.3) 85.5(92.2) 81.4(88.8) 78.8(85.5) 91.2(96.7) 88.8(94.9) 87.5(93.0)

Iso-C 82.8(91.7) 78.4(88.0) 73.2(81.9) 87.5(94.4) 79.8(87.0) 75.3(81.6) 92.6(98.2) 89.6(95.8) 86.8(92.3)

Iso-CTS 82.0(90.9) 80.6(90.4) 77.0(86.2) 88.7(95.9) 84.1(91.8) 80.7(87.7) 92.8(98.5) 91.1(97.4) 89.2(94.9)

WeMoE 88.8(97.5) 74.3(82.8) 68.2(76.3) 89.1(96.4) 76.6(83.2) 65.0(70.5) 88.7(94.2) 72.3(76.8) 65.0(69.4)

M
oE SMILE-1 83.2(92.1) 75.4(84.5) 72.8(82.3) 87.8(94.9) 81.7(89.5) 79.5(86.7) 91.2(96.7) 86.6(92.7) 84.9(90.5)

SMILE-2 84.4(93.5) 76.4(85.6) 74.1(83.8) 89.0(96.2) 82.7(90.7) 80.4(87.7) 92.0(97.6) 87.1(93.4) 85.5(91.1)

MASS 87.0(96.5) 82.9(93.2) 81.1(90.9) 90.6(98.0) 87.8(96.1) 81.1(88.7) 92.9(98.6) 90.9(97.3) 90.8(96.6)

Table 1: Average absolute accuracy results on model merging benchmarks; subscript (in parenthe-
ses) is the normalized average accuracy.

Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg.

Finetuned 75.0(100) 83.4(100) 87.5(100) 91.5(100) 85.4(100) 85.9(100) 93.6(100) 88.7(100) 86.4(100)

Weight Averaging 69.1(92.1) 62.6(75.1) 79.4(90.7) 89.8(98.1) 83.9(98.2) 81.2(94.5) 91.7(97.9) 73.2(82.5) 78.9(91.3)

Task Arithmetic 70.5(94.0) 57.8(69.3) 78.4(89.6) 90.2(98.6) 83.6(97.9) 80.5(93.7) 92.3(98.6) 77.8(87.7) 78.9(91.3)

Ties-Merging 70.3(93.7) 65.0(77.9) 78.9(90.2) 90.2(98.6) 83.5(97.8) 81.6(95.0) 91.7(97.9) 78.3(88.3) 79.9(92.5)

WeMoE 72.5(96.6) 79.0(94.7) 51.9(59.3) 89.3(97.5) 69.6(81.4) 81.5(94.8) 88.6(94.6) 82.1(92.5) 76.8(88.9)

SMILE-1 72.0(96.0) 84.2(101.0) 84.3(96.3) 91.3(99.8) 84.7(99.2) 84.1(97.9) 93.3(99.7) 87.0(98.1) 85.1(98.5)

SMILE-2 73.2(97.6) 84.2(101.0) 85.0(97.1) 91.3(99.8) 84.9(99.4) 84.8(98.7) 93.5(99.9) 87.3(98.4) 85.5(99.0)

MASS 74.1(98.8) 83.2(99.8) 85.8(98.1) 90.9(99.3) 85.1(99.6) 84.9(98.8) 94.2(100.6) 88.9(100.2) 85.9(99.4)

Table 2: Accuracy when merging 8 fine-tuned models on the GLUE (Wang et al.) benchmark;
Normalized average accuracy in subscript.

marks the upper bound on achievable performance. We evaluate on three collections of tasks, con-
taining 8, 14, and 20 tasks, respectively. The latter is the most extensive setup considered in (Wang
et al., 2024; Gargiulo et al., 2025; Daniel et al., 2025). We refer to Section B.3 for the specifics. We
quantify results using both average absolute accuracy and average normalized accuracy.

Cars
DTD

EuroSAT

GTSRB

MNIST

RESISC45
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CIFAR100

STL10
Flowers102
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FER2013
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FashionMNIST

RenderedSST2

KMNIST
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0.4

0.6

0.8

1.0

WEMoE SMILE MASS

Figure 3: Per-dataset accuracies.

MoErging results Table 1 reports the average absolute
accuracy and the corresponding normalized accuracy (sub-
script, also in percentage) for each method, model size, and
number of vision tasks. To adapt SMILE and WeMoE to our
general setting, we employ a majority-voting-based heuris-
tic to route the classification head. Details in §B.6.

We first note that MASS sets a new state of the art for Mo-
Erging across 8 out of 9 benchmarks, with gains as high as
≈ 6% with respect to the best performing baseline. Fig-
ure 3 shows a per-dataset breakdown of the results, indi-
cating that the accuracy is consistently high throughout all
the datasets and not skewed on a subset of easier ones. In
terms of storage, MASS requires a constant 2× parame-
ter increase, whereas other MoErging baselines range from
∼ 2.5× up to ∼ 14×. A breakdown is provided in §B.1.

We also report the accuracies obtained by fixed merging methods, i.e. those not employing a router.
These are evaluated with the ground truth classification head, i.e. assuming the task is known at
inference time. While our evaluation setting is significantly more challenging, MASS still outper-
forms these ones by a consistent margin. In particular, when comparing it with the TSV-M baseline
it builds upon, we see that routing produces a ≈ 5% increase in accuracy.
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Figure 4: Per-layer task accuracies for ViT-B-32 on the 20-task benchmark. Layers starting with
‘A’ indicate attention layers, while those starting with ‘M’ refer to MLPs.

We further compare MASS with TwinMerging (Lu et al., 2024) on the 8-task benchmark us-
ing ViT-B-32, the only vision setting with reported results in their paper. Despite the lack of
evaluation code for other setups, we find that MASS achieves 97.6% normalized accuracy in this
shared setting, exceeding the 95.3% reported for TwinMerging. Notably, the latter assumes or-
acle knowledge of the correct classification head, whereas MASS selects both the merged experts
and the output space at inference time. Despite operating in a more general setting, MASS still
reaches a higher accuracy. We also report in Table 2 the results on merging 8 Flan-T5-Base
models (Chung et al., 2024) finetuned on the language tasks in GLUE (Wang et al.). MASS still
yields the best results, showing its benefits to be modality agnostic.

80 85 90 95 100
Normalized accuracy

B-32

B-16

L-14

99.66

99.69

99.78

97.12

99.39

99.54

98.63

90.18

99.26

n = 8 n = 14 n = 20

Figure 5: Batched accuracy.

Batched inference In the main experiments, we evaluated
our method in the most challenging scenario, where each
sample may belong to a different task, forcing the router
to operate per input. Yet, in many practical settings (e.g.,
batched requests from the same domain), several inputs share
the same task. In such cases, we can router-select a single
merged model once per batch, closing the gap almost entirely:
as shown in Figure 5, our approach achieves a mean normal-
ized accuracy of at least 97% in 8 out of 9 settings, effectively
matching individually fine-tuned models. This indicates that
while our per-sample approach is already effective, batching
can further reduce overhead and significantly boost accuracy.

4.2 CHOOSING A ROUTING LAYER

We now investigate the effect of routing layer selection on task accuracy. Figure 4a shows the
task prediction accuracy obtained by routing at different layers for ViT-B-32 and ViT-B-16
architectures. Interestingly, the best layer is consistent across architectures, with ViT-B-32 and
ViT-B-16 both achieving peak performance at layer 9, and MLP layers exhibiting slightly better
performance than the self-attention layers. However, it is immediately clear that the best layer varies
significantly across tasks. In fact, some layers exhibit a variance of up to 40% in accuracy across
tasks. This can be better appreciated by looking at Figure 4b, where we can see the per-layer task
accuracies on STL10 and SUN397 for a ViT-B-32. While both tasks can be accurately predicted
with the best chosen layer ℓ = 9, the former shows a marked improvement in accuracy when routing
at earlier layers ℓ = 3, 4, 5, while the latter benefits from routing at later layers ℓ = 9, 10, 11 and
results in poor performance in the earlier ones. This suggests that the best routing layer is task-
dependent, and may encourage further research on adaptive ways to determine it. We report an
analogous analysis for the ViT-L-14 model in the appendix.

4.3 COMPARISON WITH OTHER ROUTERS

We compare our router with two alternatives that differently balance accuracy, data, and compute.

Nearest Neighbor (nn) first constructs a small support set of representative examples from each
task’s validation data. For each test sample, we compare its intermediate representation zℓ to the
stored representations of all support examples. Formally, we compute the cosine similarity to each
support sample and select the nearest neighbor among all tasks, inferring the task identity from
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the task to which the support sample belongs. This method requires no additional parameters but
assumes access to (and storage for) a curated batch of validation embeddings per task.

The second approach (mlp) fits an MLP over the union of validation sets from all tasks, with each
example labeled by its originating task. After extracting zℓ, we train an MLP fθ to predict the task
via cross-entropy loss. Full architectural details are in the supplementary materials.

MASS ViT-L-14

+ 8 tasks 14 tasks 20 tasks

nn 94.0 92.1 92.0

mlp 98.9 99.5 98.3

projPRE 99.1 97.7 91.9

projTSV-M 98.6 97.3 96.6

Table 3: Average normalized
accuracy for different routers.

Results Table 3 shows the average normalized accuracy obtained
by MASS when varying routing strategy. The nn approach, which
stores and compares with a small validation set from each task, gen-
erally performs well but remains slightly below our best results. The
MLP router achieves the highest accuracy overall, but it relies on a
labeled validation set for training–a requirement that contradicts the
core premise of merging methods, where access to original task data
is often unavailable. This dependency makes the MLP less broadly
applicable in realistic scenarios, such as when downloading fine-
tuned models from public hubs without any accompanying data.

Focusing on the projection-based router (proj), we observe that
starting from the TSV-M model (projTSV-M) outperforms routing from the pretrained backbone
(projPRE) when scaling the number of tasks to 20. This is further confirmed in Table 7, where the
gap widens to ≈ 10% accuracy for a ViT-B-32. This gap underscores the core key insight behind
our method: TSV-M arranges each task’s top singular vectors into distinct, orthogonal subspaces, all
contained in the final merged model. Therefore, projTSV-M only needs to measure how well each
subspace reconstructs the activations, “finding back” the subspace that was originally embedded for
each task. In other words, once TSV-M has embedded each task’s directions into a single model, a
projection is enough to pinpoint the correct subspace, requiring no labels or additional training.

4.4 INTERPRETING TASK SINGULAR VECTORS

Finally, we attempt to interpret the task singular vectors that are used for routing in MASS. Notably,
prior work suggests that mid-layer embeddings in CLIP-like models preserve semantic content,
implying that routing at this layer hinges on meaningful features. To validate this, we interpret
TSVs using the TEXTSPAN algorithm (Gandelsman et al., 2024; Basile et al., 2024). The latter
iteratively identifies and removes the most influential text directions, revealing which concepts best
explain how the model’s weight changes affect its representation. Importantly, while TEXTSPAN
was originally developed to analyze image embeddings, we employ it here to interpret singular
vectors derived from weight updates.

Our results, illustrated in Figure 6, confirm that TSVs capture meaningful and interpretable visual-
language associations. For example, the singular vectors associated with the Cars dataset (Krause
et al., 2013) strongly activate the description “IMAGE OF A CAR”, whereas those for the DTD dataset
(Cimpoi et al., 2014) align closely with the phrase “CLOSE-UP OF A TEXTURED MESH”. Interest-
ingly, across architectures (ViT-L-14, ViT-B-32), we find consistent textual concepts emerg-
ing from similar singular vectors for the same tasks. For instance, the singular vectors for both
ViT-L-14 at layer 21 and ViT-B-32 at layer 10 align with almost equal phrases. This con-
sistency hints at the intriguing possibility of transferring semantic information across architectures
using text embeddings as an interpretable common ground.

We further note that the interpretability of these embeddings strongly depends on the chosen routing
layer. While mid-to-late layers (e.g., layer 10 in ViT-B-32 and layer 21 in ViT-L-14) yield se-
mantically meaningful descriptions aligned closely with each dataset’s visual domain, earlier layers
(e.g., layer 3 in ViT-B-32) produce irrelevant or misleading concepts such as “IMAGE WITH A
PENGUIN” for the texture dataset (DTD) or “PHOTO TAKEN IN SANTORINI” for digit classification
(MNIST). Such discrepancies suggest that early layers encode generic or low-level features, while
mid-to-late layers become progressively specialized toward domain-specific semantic structures.

Overall, these analyses validate our routing strategy: the task singular vectors at mid-layer embed-
dings capture precisely the semantic differences the router exploits to discriminate tasks. This also
points to a deeper insight: the singular vectors derived from weight updates mirror the semantic
structure of the data itself, highlighting a direct connection between weights and data.
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L-14, L21: IMAGE OF A CAR

B-32, L10: IMAGE OF A CAR

B-32, L3: AERIAL VIEW OF A HAMLET

(a) Cars

L-14, L21: CLOSE-UP OF A TEXTURED SYNTHETIC MESH

B-32, L10: CLOSE-UP OF A TEXTURED MESH

B-32, L3: IMAGE WITH A PENGUIN

(b) DTD

L-14, L21: AN IMAGE OF THE NUMBER 9

B-32, L10: AN IMAGE OF THE NUMBER 8

B-32, L3: PHOTO TAKEN IN SANTORINI

(c) MNIST

L-14, L21: AERIAL VIEW OF AN AGRICULTURAL FIELD

B-32, L10: AERIAL VIEW OF A FARMLAND

B-32, L3: RURAL WINDMILL SILHOUETTE

(d) EuroSAT

Figure 6: Captions obtained by decoding task singular vectors as text as described in Section 4.4,
accompanied by task representative images. Captions produced by the task singular vectors of pre-
dictive layers reflect the task content, those obtained by non-predictive ones do not.

5 RELATED WORK

Model Merging has emerged as a lightweight alternative to ensembling. Early work focused on
aligning models trained from scratch with different random seeds by solving permutation and mode-
connectivity issues (Frankle et al., 2020; Entezari et al., 2022; Ainsworth et al., 2023; Crisostomi
et al., 2025). More recent approaches instead merge multiple fine-tuned models derived from a
common backbone (Ilharco et al., 2023; Yadav et al., 2023; Yu et al., 2024; Wang et al., 2024;
Gargiulo et al., 2025; Daniel et al., 2025). These methods typically treat task updates as vectors and
combine them through rescaling, pruning, or averaging, while newer work shows that respecting the
layer-wise structure of updates significantly improves results (Gargiulo et al., 2025; Daniel et al.,
2025). Our method builds directly on this line by adding adaptivity through input-driven routing,
narrowing the performance gap between merged and fine-tuned models.

MoErging. A parallel line of work incorporates routing into merging, often referred to as “Mo-
Erging” (He et al., 2023; Yadav et al., 2024; Tang et al., 2024a; Lu et al., 2024). In the LLM domain,
routers are trained to select among LoRAs or adapters (Jang et al., 2023; Chronopoulou et al., 2023;
Muqeeth et al., 2024), sometimes requiring additional supervision or fine-tuning. Closer to our
setting, Transformer2 (Sun et al., 2025) introduces a two-step routing pipeline but relies on a
modified fine-tuning procedure, while SMILE (Tang et al., 2024a) proposes a data- and training-free
approach that leaves the pretrained backbone unchanged and adds task-specific low-rank updates at
inference through layer-wise routing. In contrast, MASS embeds all updates into a single model, per-
forms task selection once across layers, and deactivates irrelevant subspaces via a projection-based
router. Finally, TwinMerging (Lu et al., 2024) requires per-task labels to train its router, whereas
MASS is fully training- and data-free. We defer further discussion of related work to Section A.

6 CONCLUSIONS

In this paper, we introduced MASS (MoErging through Adaptive Subspace Selection), a method that
aggregates low-rank task updates with adaptive routing, jointly selecting both encoder subspaces and
classification heads without test-time supervision. To address the absence of per-task data in realistic
merging scenarios, we designed a projection-based router that is entirely training- and data-free.

Our experiments show that MASS achieves state-of-the-art performance, recovering nearly the full
accuracy of fine-tuned experts at a fraction of their combined storage cost. Future work includes
refining the router for more precise subspace selection and extending MASS to out-of-distribution
settings, where unseen tasks could be composed on the fly from existing singular vectors.
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REPRODUCIBILITY STATEMENT

All implementation details and hyperparameter settings required to reproduce our results are pro-
vided in Sections 3, 4 and in Appendix B. Code is provided in the supplementary materials and will
be publicly released along with all the checkpoints and logs.
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A EXTENDED RELATED WORK

A.1 MODEL MERGING

Model Merging has recently gained traction as a computationally efficient alternative to ensembling.
Early methods, motivated by linear mode connectivity (Frankle et al., 2020; Entezari et al., 2022;
Mirzadeh et al., 2021; Garipov et al., 2018), primarily aligned models trained with different opti-
mization seeds. This was achieved by finding neuron permutations matching these ones before the
aggregation (Ainsworth et al., 2023; Jordan et al., 2023; Crisostomi et al., 2025; Singh & Jaggi,
2020; Stoica et al., a; Guerrero-Peña et al., 2023; Navon et al., 2023; Horoi et al., 2024). More
recent merging approaches aggregate instead multiple fine-tuned models derived from a shared pre-
trained backbone (Ilharco et al., 2023; Yadav et al., 2023; Yu et al., 2024; Matena & Raffel, 2022;
Wortsman et al., 2021; Davari & Belilovsky, 2025; Wang et al., 2024; Zhou et al., 2024; Gargiulo
et al., 2025; Ortiz-Jiménez et al., 2023; Mencattini et al., 2025; Huang et al., 2024; Daheim et al.;
Stoica et al., b; Yang et al., 2024a; Tang et al.). These methods incorporate various strategies to
improve the merging, such as finding the optimal combination of task vectors (Yang et al., 2024b),
mitigating sign disagreement (Yadav et al., 2023), randomly dropping a fraction of the updates (Yu
et al., 2024), or employing evolutionary strategies (Akiba et al., 2025; Mencattini et al., 2025). The
most recent line of work considers task vectors at a layer level, accounting this way for the natural
structure of the layers and significantly improving the merging outcome (Stoica et al., b; Gargiulo
et al., 2025; Daniel et al., 2025). Our approach builds upon the latter methodologies by introducing
adaptivity through input-driven routing, significantly narrowing the performance gap between the
finetuned endpoints and their resulting merge.

A.2 MOERGING

Model Merging with Mixture-of-Experts, often referred to as “MoErging” (He et al., 2023; Yadav
et al., 2024; Jang et al., 2023; Chronopoulou et al., 2023; Belofsky, 2023; Zhao et al., 2024; Muqeeth
et al., 2024; Tang et al., 2024b; Ostapenko et al., 2024; Cheng et al., 2025; Tang et al., 2024a; Lu
et al., 2024; Sun et al., 2025), explores how independently trained experts–potentially contributed
by a decentralized community–can be combined within a single adaptive model by dynamically
selecting which expert(s) should handle a given input. In the LLM domain, specialized modules
(e.g., LoRAs or adapters) are merged via parametric or data-driven routers that match the incom-
ing prompt to the most relevant module (Jang et al., 2023; Chronopoulou et al., 2023; Belofsky,
2023; Zhao et al., 2024; Muqeeth et al., 2024; Tang et al., 2024b; Ostapenko et al., 2024; Cheng
et al., 2025); some approaches, such as PHATGOOSE (Muqeeth et al., 2024), require fine-tuning
additional routing parameters, whereas others, like weight-ensembling MoE (Tang et al., 2024b),
may need to train the router at test time. Sharing a similar two-pass pipeline, Transformer2

(Sun et al., 2025) modifies the finetuning procedure to yield task-aligned singular vectors, allowing
for expert routing at test time. Differently from the latter, MASS works on any independently fine-
tuned models finetuned with no ad hoc routines. A similar strategy was independently introduced by
SMILE (Tang et al., 2024a), which, like our method, enables data-free merging of multiple experts.
However, SMILE leaves the pretrained backbone intact and selectively adds task-specific low-rank
updates at inference, whereas MASS begins with a single model containing all updates and deac-
tivates any irrelevant subspaces via a router. The fact that both lines of work arrived at a similar
subspace-activation concept, despite differing motivations, highlights the versatility and broad ap-
peal of such an approach. Lastly, TwinMerging (Lu et al., 2024) similarly merges a shared expert
and multiple task-specific experts via a gating function. However, TwinMerging relies on flat
task arithmetic (Ilharco et al., 2023) and requires per-task labeled data to train its router, reducing
its applicability. In contrast, MASS operates in a fully data-free and training-free regime by design.

B ADDITIONAL DETAILS

We here describe the details required to implement and reproduce our results. The code is provided
in the supplementary materials. In particular, Section B.2 describes implementation details, Sec-
tion B.4 specifies the employed evaluation metrics, Section B.5 reports the employed architecture
and Section C.1 specificies the hyperparameters and how they were chosen.
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Method
ViT-B-32 ViT-B-16 ViT-L-14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks
M

oE
WeMoE 5.06 8.06 11.05 5.12 8.16 11.20 5.78 9.31 12.84

SMILE-1 1.61 2.07 2.52 1.62 2.09 2.55 1.47 1.82 2.18

SMILE-2 3.05 4.60 6.14 3.09 4.67 6.24 2.59 3.78 4.96

MASS 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Table 4: Relative parameters increase with respect to the base model.

B.1 STORAGE AND COMPUTE OVERHEAD

The ∼2× compute figure is an approximation: we run the backbone twice (fixed TSV-M (Gargiulo
et al., 2025) pass + routed pass) and the router itself adds < 1% FLOPs. Since model-merging saves
training and storage rather than inference time, this modest overhead is acceptable. MASS routes per
sample, so each incurs this cost; however, batching over the same task can reduce it. For example,
with 32 samples, routing costs only 1.06× forward equivalents. The storage overhead is exactly
2×: alongside the merged model, we store 1/T TSVs per task. Summed across tasks and layers,
these form a second full set of weights, effectively doubling storage. A full comparison with the
overhead incurred by the baselines is provided in Table 4.

B.2 IMPLEMENTATION

We used the same model checkpoints as Consensus TA (Wang et al., 2024), except for the one
for the EMNIST dataset which we had to re-finetune due to an inconsistency in image orientation
between EMNIST and MNIST. Shortly, the torchvision2 version yields rotated and flipped images,
spuriously yielding extremely similar models (same classes, roughly same dataset statistics) that
performed very poorly when interchanged. Simply re-rotating and flipping the EMNIST images to
match the orientation of MNIST solves the issue. We further used a single classification head for
STL10 and CIFAR10 due to their 9 shared classes. The final head has the shared classes plus the
two dataset-specific ones, i.e. monkey and frog.

B.3 BENCHMARKS AND DATASETS

The 8-task benchmark, introduced in (Ilharco et al., 2023), comprises the following datasets: Cars,
DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN. Moving to 14 tasks, we add
CIFAR100, STL10, Flowers102, OxfordIIITPet, PCAM, and FER2013. The 20-task
suite further includes EMNIST, CIFAR10, Food101, FashionMNIST, RenderedSST2, and
KMNIST. We provide the specific dataset details in Table 5.

B.4 EVALUATION MEASURES

To account for differences in task difficulty, we report both absolute and normalized accuracy in
our results. The normalized accuracy serves as a relative performance measure by comparing the
multi-task model’s accuracy to that of individual fine-tuned models. It is computed as:

Normalized Accuracy =
1

T

T∑
i=1

accuracy(θMT , ti)

accuracy(θfti , ti)
(2)

where T represents the total number of tasks, θMT is the multi-task model, and θfti corresponds to
the fine-tuned model for task ti. By normalizing accuracy in this way, we ensure a fairer comparison
that accounts for variations in baseline task performance.

2https://pytorch.org/vision/stable/index.html
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Dataset image size # train # val # test

Cars (Krause et al., 2013) varies 7330 814 8041

DTD (Cimpoi et al., 2014) varies 1692 188 1880

EuroSAT (Helber et al., 2019) 64× 64 21600 2700 2700

GTSRB (Stallkamp et al., 2011) varies 23976 2664 12630

MNIST (Lecun et al., 1998) 28× 28 55000 5000 10000

RESISC45 (Cheng et al., 2017) 256× 256 17010 1890 6300

SUN397 (Xiao et al., 2016) varies 17865 1985 19850

SVHN (Netzer et al., 2011) 32× 32 68257 5000 26032

CIFAR100 (Krizhevsky & Hinton, 2009) 32× 32 45000 5000 10000

STL10 (Coates et al., 2011) 96× 96 4500 500 8000

Flowers102 (Nilsback & Zisserman, 2008) varies 918 102 6149

OxfordIIITPet (Parkhi et al., 2012) varies 3312 368 3669

PCAM (Veeling et al., 2018) 96× 96 257144 5000 32768

FER2013 (Goodfellow et al., 2013) 48× 48 25839 2870 7178

EMNIST (Cohen et al., 2017) 28× 28 235000 5000 40000

CIFAR10 (Krizhevsky & Hinton, 2009) 32× 32 45000 5000 10000

Food101 (Bossard et al., 2014) 512× 512 70750 5000 25250

FashionMNIST (Xiao et al., 2017) 28× 28 55000 5000 10000

RenderedSST2 (Socher et al., 2013) varies 6228 692 1821

KMNIST (Clanuwat et al., 2018) 28× 28 55000 5000 10000

Table 5: Image sizes, and numbers of train, validation, and test samples for the considered datasets.

B.5 ARCHITECTURES

We use CLIP from the OpenClip library3, using the three different versions described in Table 6.
For the router, we use a small two-layer MLP with a hidden dimension of 1024. It accepts a 512-
dimensional embedding vector, applies a linear transformation, a ReLU activation, and dropout with
a probability of 0.5, and outputs logits corresponding to task selection probabilities.

Model Layers Hidden Dimension Heads Patch Size Parameters

ViT-B-32 12 768 12 32×32 ∼86M

ViT-B-16 12 768 12 16×16 ∼86M

ViT-L-14 24 1024 16 14×14 ∼307M

Table 6: Comparison of ViT-B-32, ViT-B-16, and ViT-L-14 architectures.

3https://github.com/mlfoundations/open clip/
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Figure 7: ViT-L-14 per-layer task accuracies.

B.6 ADAPTING ORACLE MOERGING METHODS

As extensively discussed, we argue that MoErging methods should not rely on an oracle head, since
their pipelines implicitly assume that the task label is unknown at inference time (otherwise, merg-
ing the correct task vector would be trivial). To respect this assumption, we introduced a routing
procedure that exploits the routers already implemented in each method. For SMILE, we extracted
the mode of the tokens at each layer and applied a naı̈ve majority-voting scheme across layers to
select the head for each sample, which was then used for the final classification. Analogously, for
WeMoE, we applied the same logic, implementing a straightforward head-selection strategy that
leverages the existing gates and coefficients. All results reported for MoE methods were obtained
under this unified setting.

Algorithm 2 Fixed Merging Step

Require: Pretrained model weights θpre, task-specific updates {∆i}Ti=1, user-specified threshold ε
Ensure: Fixed merged model weights θMT

1: Accounting for redundant directions (Section 3.2.2)
2: M = {}
3: for i = 1, . . . , T do
4: δi ← vec(∆i)
5: if max{j∈M} sim(δi, δj) < ε then
6: M←M∪ {i}
7: end if
8: end for
9: Merging step using TSV-M Gargiulo et al. (2025) on the {∆i}i∈M

10: for i ∈M do
11: ∆i = Ui Σi V

⊤
i

12: Ũi ← Ui[:,1:k], Σ̃i ← Σi[1:k,1:k], Ṽi ← Vi[:,1:k]

13: end for
14: U ← [Ũ1 | Ũ2 | · · · | ŨT ]

15: Σ← block diag(Σ̃1, Σ̃2, . . . , Σ̃T )

16: V ← [Ṽ1 | Ṽ2 | · · · | ṼT ]
17: U⊥ ← orthogonalize(U)
18: V⊥ ← orthogonalize(V )

19: ∆̂← U⊥ ΣV ⊤
⊥

20: θMT ← θpre + α ∆̂
21: return θMT

Radar charts on 8- and 14-task benchmarks. In section Section 4, we present comprehensive
results for the approach using the 20 task benchmark. Figure 9 and Figure 10 respectively display the
normalized accuracies for our method on 8 and 14 tasks across all three model sizes (ViT-B-32,
ViT-B-16, and ViT-L-14). In both cases, the approach retains a high fraction of each fine-tuned
model’s performance, with normalized accuracies often above 80–90%. Notably, the method scales
gracefully as the number of tasks increases from 8 to 14.
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Figure 9: Normalized task accuracies over models ViT-B-32, ViT-B-16 and ViT-L-14 for the
8 tasks benchmark.

C ADDITIONAL EXPERIMENTS AND RESULTS

In this section, we provide detailed per-task and per-layer accuracy plots, along with further exam-
ples of decoded task vectors, to complement the results presented in the main paper.

C.1 HYPERPARAMETER SETTINGS

Following the recommendation of TSV (Gargiulo et al., 2025), we use α as a single scaling factor
with the suggested value of 1.0 for the TSV-M merging configurations in both Algorithm 2 and
Algorithm 1. Consistent with TSV, the compression rate assigned to each task space is set to 1

T . We
optimized the similarity threshold ε over the range {0.1, 0.2, ..., 0.9} and determined the router’s
selection threshold η via a Bayesian search within the interval [0.05, 0.5]. As illustrated in Figures 4a
and 7, we identify the optimal projection layer by focusing on those revealing the highest task
accuracy. Specifically, for ViT-B-32 and ViT-B-16 models, we select the attention and MLP
layers within the range {7, ..., 11}, while for the ViT-L-14 model, the chosen layers fall in the
range {19, ..., 23}. The temperature parameter for tuning the behavior of the softmax function at
line 6 in Algorithm 1 is set to 1.

1 2 3 5

Max num tasks to select

0.05

0.1

0.15

0.2

0.3

R
ou

te
r

T
h

re
sh

ol
d

94.6 94.1 89.5 88.2

94.3 96.6 94.8 96.1

94.7 96.4 95.9 95.9

94.6 96.0 97.5 93.9

94.5 94.4 94.6 94.6

Figure 8: Hyperparameter sensitivity.

Sensitivity to Hyperparameters The merging co-
efficient is set to 1 as in TSV-M (Gargiulo et al.,
2025). Figure 8 shows how accuracy changes with
routing threshold η and top-K. At low η (0.05) and
large K, too many tasks are merged, causing inter-
ference. At high η (≥ 0.3), only the top task is se-
lected, making performance insensitive to K (it’s ef-
fectively an argmax). The best accuracy occurs in
a broad middle range, peaking at η = 0.2, K = 3,
where the router balances selectivity and coverage.
We also vary the cosine threshold ε used to discard
similar task updates before merging. Due to the high
dimensionality of the ∆s, large thresholds (ε ≥ 0.4)
retain all updates, leaving redundancy unaddressed
(accuracy 93.5). Small ones (ε ≤ 0.05) instead re-
move even distinct directions, significantly harming
accuracy (≤ 88.6). Intermediate values (ε ≈ 0.2)
offer a robust filtering, improving performance (≥ 93.9) by suppressing redundancy.

Layer-wise accuracies for individual datasets. Figures 11 and 12 show per-layer accuracies for
ViT-B-32 on different subsets of the 8-task benchmark:

• Figure 11 focuses on Cars, DTD, EuroSAT, and GTSRB.
• Figure 12 displays results for MNIST, RESISC45, SUN397, and SVHN.
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Figure 10: Normalized task accuracies over models ViT-B-32, ViT-B-16 and ViT-L-14 for
the 14 tasks benchmark.
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(b) DTD.
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(c) EuroSAT.
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Figure 11: Per-layer task accuracies for ViT-B-32 on Cars, DTD, EuroSAT, and GTSRB.
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(b) RESISC45.
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(c) SUN397.
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Figure 12: Per-layer task accuracies for ViT-B-32 on MNIST, RESISC45, SUN397, and SVHN.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

MASS ViT-B-32 ViT-B-16

+ 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

nn 92.7 89.6 89.4 92.7 90.0 90.2

mlp 96.8 95.8 95.8 97.1 94.8 96.5

projPRE 98.2 88.6 79.4 98.7 92.0 81.2

projTSV-M 96.5 93.2 90.9 98.0 96.1 88.7

Table 7: Average normalized accuracy for different routers.

Again, the top-performing layer is not shared across the tasks, confirming what we observed in the
main paper.

Layer-wise accuracies for ViT-L-14. Figure 7 reports average per-layer task accuracy for the
larger ViT-L-14, showing that in this case the most predictive layer for routing is ℓ = 20. Since
ViT-L-14 has 24 layers (compared to the 12 layers in ViT-B-32 and ViT-B-16), the most
predictive layer is roughly at the same relative depth.

Visualizations for additional datasets. Following the approach in Section 4.4, Figure 13 shows
examples of decoded task vectors for datasets like SVHN, GTSRB, SUN397, and RESISC45. Here,
we see textual prompts such as “An image of the number 4” or “Aerial view of an industrial area”,
which align with each dataset’s distinct domain. This reaffirms that our singular vectors capture
domain-specific transformations while preserving high-level semantic alignment to the pretrained
model.

“AN IMAGE OF THE NUMBER 4”

(a) SVHN

“A BADGE”

(b) GTSRB

“AN IMAGE OF AN INTERIOR OF A ROOM”

(c) SUN397

“AERIAL VIEW OF AN INDUSTRIAL AREA”

(d) RESISC45

Figure 13: Captions obtained by decoding task singular vectors as text for datasets SVHN, GTSRB,
SUN397, and RESISC45 as described in Section 4.4, accompanied by three representative images
for each dataset.

D PROPOSITIONS AND PROOFS

Proposition D.1 (Optimality of Orthogonal Projection). Let V ∈ Rd×k have orthonormal columns
spanning a subspace S ⊆ Rd, and let a ∈ Rd. Then the unique minimizer of ∥a − w∥22 over all
w ∈ S is

ŵ = V V ⊤ a.
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Proof. Any w ∈ S can be written as V α for some α ∈ Rk. The problem

min
w∈S

∥a−w∥22 ⇐⇒ min
α∈Rk

∥a− V α∥22

has a strictly convex objective, so its global minimizer is found by setting the gradient to zero. A
short calculation shows

α = V ⊤a =⇒ ŵ = V (V ⊤a) = V V ⊤ a.

Uniqueness follows from the strict convexity, and ∥a − ŵ∥2 is necessarily the smallest possible
distance in S. Equivalently, a−ŵ is orthogonal to S, so no further reduction in norm is possible.

Proposition D.2 (§3.1). Let zℓ ∈ Rd be a feature vector, and for each task i, decompose it as

zℓ = ViV
⊤
i zℓ + εi, εi =

(
I − ViV

⊤
i

)
zℓ.

Assume εi ∼ N (0, σ2I). Then the maximum a posteriori estimate of the task reduces to

ı̂MAP = argmax
i

p(task = i | zℓ) = argmin
i
∥εi∥22.

Thus, under these assumptions, selecting the task with the smallest squared Euclidean residual is
exactly equivalent to maximizing the posterior.

Proof. By assumption, p(εi) = (2πσ2)−d/2 exp
(
−∥εi∥22/(2σ2)

)
, so − log p(εi) ∝ ∥εi∥22. Since

ViV
⊤
i zℓ is a deterministic shift, the likelihood p(zℓ | task = i) depends only on εi. With a uniform

prior over tasks,

ı̂MAP = argmax
i

p(zℓ | task = i) = argmax
i

p(εi) = argmin
i
∥εi∥22.

Hence, minimizing the ℓ2 residual is exactly equivalent to maximizing the posterior.
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