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Abstract

Embedding-based methods have attracted in-001
creasing attention in recent entity alignment002
(EA) studies. Although great promise they can003
offer, there are still several limitations. The004
most notable is that they identify the aligned005
entities based on cosine similarity, ignor-006
ing the semantics underlying the embeddings007
themselves. Furthermore, these methods are008
shortsighted, heuristically selecting the closest009
entity as the target and allowing multiple enti-010
ties to match the same candidate. To address011
these limitations, we model entity alignment012
as a sequential decision-making task, in which013
an agent sequentially decides whether two en-014
tities are matched or mismatched based on015
their representation vectors. The proposed re-016
inforcement learning (RL)-based entity align-017
ment framework can be flexibly adapted to018
most embedding-based EA methods. Our ex-019
periments demonstrate that it consistently ad-020
vances the performance of several state-of-the-021
art methods, with a maximum improvement of022
31.1% on Hits@1.023

1 Introduction024

Entity alignment (EA) is one of the most crucial025

tasks in knowledge graph (KG) studies. It aims to026

seek the potentially aligned entity pairs between027

two KGs, such that distributed knowledge can be028

linked for better supporting downstream applica-029

tions. Generally, a fact in a KG can be represented030

by a triplet (e1x, r
1, e1y), where e1x, e1y denote the031

head and tail entities in the first KG G1. r1 is the032

relation connecting them. With a small number033

of known alignment pairs as anchors, embedding-034

based entity alignment (EEA) methods can learn035

the representations of entities belonging to respec-036

tive KGs in a unified space and exploit the underly-037

ing aligned pairs based on the embedding distance.038

For example, e2x will be chosen as target entity for039

e1x if its embedding is closest to the embedding of040

e1x in vector space.041

Outer Space Jitters

Of Cash and Hash

Guns a Poppin!

Q
7112014

Q
7078739

Q
5619358

Figure 1: Different evaluation strategies. The ranking
strategy (left) heuristically selects the candidate with
the largest similarity. The sequential strategy (right) al-
lows each candidate to be matched only once. Deeper
color indicates higher similarity. Diagonals are correct
matches. Cells with yellow borders are the selected en-
tities, while those with dotted borders denote the ex-
cluded entities.

Although recent EEA methods (Chen et al., 042

2017; Sun et al., 2017, 2018; Guo et al., 2019; Wu 043

et al., 2019) have made great performance improve- 044

ment, they rarely consider the evaluation process. 045

For example, in Figure 1, all three films are di- 046

rected by Jules White and have similar casts. This 047

makes the EEA methods confused to discriminate 048

the true aligned entities from other candidates. Cur- 049

rent ranking strategy heuristically chooses the near- 050

est entities without considering that some entities 051

have already been matched before. An entity with 052

the largest similarity is not always the true target, 053

especially when this candidate has been matched 054

with other entities. In contrast, we can model en- 055

tity alignment as a sequential decision-making task, 056

where the agent sequentially decides whether a can- 057

didate embedding is aligned with the input one. 058

Then, the environment will exclude the matched 059

candidates in the subsequent decisions. 060

One issue with the sequential strategy is the ac- 061

cumulated errors. Due to the heterogeneity of KGs, 062

a pair of underlying aligned entities may not share 063

an identical neighborhood. This makes their em- 064

beddings not as similar as desired with each other 065

(e.g., “Guns a Poppin!” in Figure 1). But seman- 066
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tics in the embeddings may still indicate the actual067

target. It is worth estimating the alignment score068

directly from their embeddings. It is also important069

to refuse a most likely candidate for maximizing070

the long-term rewards.071

In this paper, we draw on the insights of rein-072

forcement learning (RL) that has recently received073

great attention in many fields (Mnih et al., 2015;074

Lillicrap et al., 2016; Silver et al., 2016). With the075

trained embeddings of any existing EEA models076

as raw input, we train an agent to find as many077

alignment pairs as possible to maximize the reward.078

Meanwhile, we adopt a curriculum learning (El-079

man, 1993) strategy for the environment to provide080

candidate entity pairs as observations of increasing081

difficulty. In sum, our contributions are three-fold:082

• We propose to model entity alignment as a083

sequential decision-making task. To the best084

of our knowledge, this is the first method that085

provides a general solution to improve the086

evaluation strategy for the EEA task.087

• We implement an end-to-end RL-based en-088

tity alignment (RLEA) framework to solve089

the sequential EEA problem. We elaborate090

an entity alignment environment to sample091

candidate pairs as observations efficiently. Be-092

sides, we design a policy network that takes093

self-embedding, neighborhood, and long-term094

rewards into account.095

• We conduct extensive experiments to show096

that RLEA can significantly and consistently097

improve the state-of-the-art EEA methods.098

2 Related Work099

2.1 Embedding-based Entity Alignment100

We divide the exiting EEA methods into two cat-101

egories. The first is based on the well-known KG102

embedding method TransE (Bordes et al., 2013).103

TransE models a triplet (e1x, r
1, e1y) as e1x+r1 ≈ e1y,104

with the boldfaced as the corresponding embed-105

dings. Many methods use TransE as the KG embed-106

ding model for the EA task: MTransE (Chen et al.,107

2017) sets a learnable matrix to project the entity108

embeddings from the source KG to the space of the109

target KG. Then, the distance among entity embed-110

dings from different KGs can be used to estimate111

the similarity. This idea is extended by later works,112

e.g., KDCoE (Chen et al., 2018), SEA (Pei et al.,113

2019a), and OTEA (Pei et al., 2019b). Specifically,114

KDCoE learns the triplet embedding model and the 115

description embedding model in a co-training fash- 116

ion. SEA leverages adversarial learning to learn 117

better projection matrix. It also considers the at- 118

tribute information. OTEA makes use of optimal 119

transport theories to advance the learning process 120

of MTransE. On the other hand, JAPE (Sun et al., 121

2017) and IPransE (Zhu et al., 2017) adopt a map- 122

ping strategy that utterly different from MTransE. 123

They directly set two entities in a known alignment 124

pair to one embedding vector. Therefore, the vector 125

spaces of two KGs are naturally connected. For 126

example, given a known alignment (e1, e2), e1, e2 127

will be mapped to one embedding vector e. 128

The other line of EEA research focuses on the de- 129

sign of embedding models. Great efforts were put 130

into graph convolutional networks (GCNs) (Kipf 131

and Welling, 2017), e.g., GCN-Align (Wang et al., 132

2018), RDGCN (Wu et al., 2019), and graph at- 133

tention networks (GATs) (Velickovic et al., 2018), 134

e.g., MuGNN(Cao et al., 2019), AliNet (Sun et al., 135

2020a). Most of them adopt the mapping strategy 136

to map entities in each known pair to one vector to 137

connect two KGs. Therefore, these methods center 138

on the design of different graph network structures, 139

which is out of the discussion of this paper. We 140

refer the readers to (Sun et al., 2020b; Wang et al., 141

2017) for details. 142

One unique method, BootEA (Sun et al., 2018), 143

iteratively labels likely entity alignment as training 144

data. BootEA is a powerful method that greatly im- 145

proved the performance of the basic AlignE model. 146

This bootstrapping method is closely related to 147

RLEA as it also assumes that a candidate entity 148

should not be matched more than once. However, 149

BootEA does not have a learning process. The 150

entity alignment pairs are computed based on the 151

cosine similarity and further threshed by a hyper- 152

parameter to filter out those with low similarity. On 153

the other hand, the bootstrapping algorithm must 154

run with the embedding model iteratively, making 155

BootEA more sensitive to parameter settings. Nev- 156

ertheless, there is no contradiction in integrating 157

RLEA with BootEA to achieve better performance 158

(please see Section 4.6 for details). 159

The above methods have different objectives and 160

investigate diverse techniques. However, RLEA 161

only needs their trained embeddings as input data, 162

which is sufficient to achieve much better perfor- 163

mance on several datasets. 164
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2.2 Reinforcement Learning for Knowledge165

Graphs166

One most relevant work to this paper is167

CEAFF (Zeng et al., 2021), which also leverages168

RL algorithms and believes in 1-to-1 alignment.169

But CEAFF focuses more on generating and inte-170

grating different entity features. The RL part is less171

explored. From its experimental results (Zeng et al.,172

2021), we can find that RL-based CEAFF only out-173

performed its heuristic version slightly. Moreover,174

CEAFF does not provide a general solution for175

sequential EEA task. It is not applicable to most176

existing EEA methods.177

DeepPath (Xiong et al., 2017) and its follow-178

ers (Das et al., 2018; Wan et al., 2020) are also well-179

known RL-based KG embedding methods. They180

leverage RL agents to continually extend paths for181

multi-hop reasoning. There are two major differ-182

ences. First, DeepPath focuses more on the design183

of the reward function. It takes accuracy, diversity,184

and efficiency into consideration when estimating185

an action’s reward. However, the design of the en-186

vironment is relatively straightforward, as the next187

state is certain after receiving an edge as action. By188

contrast, the reward in our sequential EA task can189

be simply assigned by comparing the output action190

(i.e., match or mismatch) with the actual label; nev-191

ertheless, any valid entity pair can be set as next192

state. Therefore, we focus more on formalizing this193

problem and building a proper environment where194

the agent can explore efficiently.195

Additionally, some methods like KAGAN (Qu196

et al., 2019) only use the policy gradient algo-197

rithm (Williams, 1992) to update their network pa-198

rameters. They do not really learn a policy to solve199

a sequential decision-making problem. Therefore,200

we do not review them in this paper.201

3 Methodology202

3.1 Preliminaries203

Let G1 = {E1,R1, T1} and G2 = {E2,R2, T2} be204

the source and target KGs, with E , R, T denot-205

ing the entity, relation, and triplet sets respectively.206

The proposed RL-based framework consists of two207

modules, i.e., the agent and the environment. We208

use the trained entity embeddings E1, E2 of any209

EEA models as input for the agent. The training set,210

same to the existing works, is still a small number211

of known entity alignment S ⊂ E1 × E2 provided212

by the dataset.213

In each training episode, the states and actions 214

are generated by the environment and the agent 215

in an alternative order, i.e., s1, a1, s2, a2, ..., si, ai. 216

We define a state s as a pair of arbitrary entities 217

[ex, ey] belonging to respective KGs (we rewrite 218

[e1x, e
2
y] as [ex, ey] for readability, the same below). 219

An action a ∈ {0, 1} represents the decision of the 220

agent that indicates match or mismatch for [ex, ey]. 221

Each state also has a label l ∈ {0, 1}, implying the 222

right decision. It is worth noting that an action may 223

still have a positive effect even if it is not equal to 224

the label. For example, an incorrect match action 225

can also exclude two wrong entities correctly. 226

In the following sections, we call the case of 227

a = 0 ∧ l = 0 a true mismatch, a = 0 ∧ l = 1 a 228

false mismatch, a = 1 ∧ l = 0 a false match, and 229

a = 1∧ l = 1 a true match. Therefore, the number 230

of correct aligned entity pairs equals to that of true 231

match, which is proportional to the Hits@1 result 232

in the conventional EEA task. 233

3.2 Agent 234

We start by introducing the agent module, which is 235

modeled by neural networks. 236

State A state s = [ex, ey] is given by the environ- 237

ment. We take the following features into consid- 238

eration: (1) the embeddings of two entities ex, ey; 239

(2) the neighbor embedding sets of two entities Nx, 240

Ny; (3) the opponent entity embedding set Oy of 241

ey. We term the k-nearest candidates to ex except 242

ey “opponent entities”, as they are also possible 243

aligned entities to ex. These entities can provide 244

additional information for refusing or accepting the 245

input entity pair [ex, ey]. 246

Action An action a is a binary number that rep- 247

resents the agent’s choice. The binary schema has 248

two advantages. First, the corresponding best pol- 249

icy can be an easier function to be approximated. 250

Selecting one entity from multiple candidates is sig- 251

nificantly more complex than judging a pair of enti- 252

ties, especially for the case of existing thousands of 253

different candidates. On the other hand, the binary 254

schema enables the agent to suspend the current 255

candidate pair. For example, if the agent chooses 256

mismatch, the source entity still has a chance to 257

be correctly matched in the following interactions. 258

By contrast, in the classification schema, the agent 259

must select one entity as the final choice. 260

Policy The policy π(a|s, θ) is parameterized by 261

graph neural networks (GNNs), where θ denotes 262
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Figure 2: Overview of the policy network. We first use a GNN model to aggregate the neighbor embeddings of each
entity. The output representations of ex, ey are then fed into a linear layer that maps features to an unnormalized
estimation of the alignment score. We also leverage a mutual information estimator, which takes the opponent
entity representations as negative examples. We combine the output of two types of estimations to obtain the final
action distribution.

the parameter set. We illustrate its architecture263

in Figure 2. Given a state s = [ex, ey], we first264

extract the features by a multi-layer GNN. Here,265

we use vanilla GCN (Kipf and Welling, 2017) for266

graph convolution, but other GNN models like267

GATs (Velickovic et al., 2018) can also be em-268

ployed. The output embedding of ex at layer k is269

defined as:270

gk
x = σ(

∑
ei∈N(ex)∪{ex}

1

cx
Wk

gg
k−1
i ) (1)271

where gkx denotes the output hidden of layer k for272

ex. cx is the normalization constant. Wk
g is the273

weight matrix at layer k. σ(·) is the activation274

function (ReLU (Nair and Hinton, 2010) in our275

implementation). For the first layer, we set g0
i = ei,276

where ei denotes the input embedding of ei. GCNs277

efficiently aggregate the neighborhood and self-278

information into a single vector, which is supposed279

to be more robust and informative than directly280

using the trained embeddings. Furthermore, GCNs281

also allow RLEA to reweight entity embeddings282

for sequential EEA. For simplicity, we denote the283

output of the last GCN layer by gx.284

Next, we use a linear layer to combine the out-285

put embeddings gx, gy, which can be written as286

follows:287

hex,ey = σ(Wh(gx||gy) + bh), (2)288

where || is the concatenation operator to concat gx,289

gy to one hidden vector. Wh and bh are the weight290

matrix and bias vector, respectively.291

We also take the mutual information292

I(ex, ey) (Belghazi et al., 2018) as an addi-293

tional feature. Unlike the cosine similarity that294

weights the difference of two vectors at each295

dimension, mutual information values more on the296

high-level correlations. Therefore, it is especially297

appropriate for the EEA task, where two aligned298

entities may not have identical neighborhoods 299

due to the heterogeneity. Following (van den 300

Oord et al., 2018), we leverage a neural function 301

f(gx,gy) to estimate the density ratio: 302

f(gx,gy) = exp(gT
xWfgy), (3) 303

where Wf is the weight matrix. As aforemen- 304

tioned, we consider opponent entities a kind of 305

future information to aid the agent in making deci- 306

sions. This idea can be naturally reified by viewing 307

the opponents as negative examples: 308

Îex,ey =
f(gx,gy)∑

ei∈Oy∪{ey} f(gx,gi)
. (4) 309

The above equation has a similar form to that used 310

in InfoNCE (van den Oord et al., 2018). But from 311

another aspect, Îex,ey can be also understood as the 312

probability of outputting the action match based on 313

the mutual information estimator (MIE). 314

Finally, we concatenate all estimates to obtain 315

the final action distribution: 316

pex,ey = Softmax(Wp(hei,ej ||Îex,ey)), 317

= π(a|s, θ) (5) 318

where pex,ey is the normalized action distribution . 319

Wp is the weight matrix. 320

Reward We assign the reward for the given out- 321

put action a by the following equation: 322

r =


1, a true match,
−10, a false mismatch,
0, elsewise.

(6) 323

The goal of the agent is to maximize the overall re- 324

ward, i.e., output 1 as much as possible for aligned 325

pairs. Therefore, we set a positive reward for a = l 326

when the input pair match and a severe penalty 327

(−10 is most efficient in our implementation) for 328

a false mismatch. For other cases, the agent will 329

receive a reward 0, as they do not directly increase 330

or decrease the number of alignment pairs. 331
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Optimization We use the policy gradient algo-332

rithm REINFORCE (Williams, 1992) to find the333

parameters leading to a larger reward. To reduce334

the variance, we employ a baseline function for335

comparison. Therefore, the gradient at i-step in an336

episode is:337

∇θ = αγiδ∇ lnπ(a|[ex, ey]), (7)338

where α is the learning step-size. γ is the dis-339

count factor. δ is the relative advantage of policy340

π(a|[ex, ey]) than the baseline, i.e., how much bet-341

ter the output action a is than mean or random. It342

can be defined as follows:343

δ = G− v̂([ex, ey])344

=
T∑

k=i+1

γk−i−1rk − v̂([ex, ey]), (8)345

where G is the return based on the future rewards.346

T denotes the episode length. The baseline func-347

tion v̂([ex, ey]) in this paper is an estimate of the348

state value.349

3.3 Environment350

Generally, the environment for an RL task should351

conform with three basic properties: dependency,352

dynamics, and difficulty.353

Dependency The output action may change the354

later states. For sequential entity alignment, a true355

match will not only yield a correct alignment, but356

also exclude some plausible candidates for the fol-357

lowing judgments, contributing to higher overall358

reward. Even a false match also has its value in fil-359

tering out two wrong entities. Therefore, we should360

consider the long-term dependencies.361

To this end, for each entity ex in G1, its k-362

nearest entities e1, e2, ..., ek in G2 are selected363

as candidates. Those entities are then con-364

catenated with ex to form k candidate pairs365

[ex, e1], [ex, e2], ..., [ex, ek]. The environment366

maintains a sequence c1, c2, ..., cj , in which each367

element is such a candidate pair. At the i-th step,368

the environment pops a candidate pair [ex, ey] as si.369

If it receives an action ai = 1 from the agent, all370

candidate pairs containing ex or ey will be removed371

from the sequence.372

Dynamics The environment is usually dynamic.373

The state-action sequences are different in differ-374

ent episodes. A dynamic environment makes the375

agent capable of capturing the general rules of the376

game, which is crucial to avoid overfitting. For the 377

EEA task, if the state sequence is constant at each 378

training episode, the agent will fit this sequence. 379

However, the states are entirely different at the test- 380

ing phase. 381

To ensure the dynamic property, we set a skip 382

rate ps. The environment randomly skips a candi- 383

date pair with probability ps and then pops the next 384

pair. Therefore, the length and elements of the state 385

sequence change in each episode. 386

Difficulty Often, the difficulty of a game is im- 387

proved gradually as step number grows. For exam- 388

ple, the health and speed of enemies in video games 389

usually increase over game time. On the other hand, 390

it is also a general strategy to break down complex 391

knowledge by a sequence of learning episodes of 392

increasing difficulty, which is known as curriculum 393

learning (Elman, 1993). 394

For sequential entity alignment, the difficulty 395

of a candidate pair can be estimated based on the 396

cosine similarity of the two entities and their label, 397

which can be written as follows: 398

d(ex, ey) = l(Cex,emax − Cex,ey) 399

+ (1− l)(τ − Cex,emax + Cex,ey)
(9)

400

where Cex,ey is the cosine similarity between ex 401

and ey. emax denotes the entity with the largest 402

similarity to ex. We use the difference between 403

Cex,emax and Cex,ey as the basis to estimate the 404

extent, and the label l as the sign. When l = 1, i.e., 405

the first term in Eq. (9), a large difference between 406

Cex,ey and Cex,emax will result in high difficulty 407

because ex, ey may be too dissimilar with each 408

other. The situation is reversed for l = 0. We add 409

a hyper-parameter τ to balance difficulty scores 410

between these two cases. 411

Then, we can sort candidate pairs by the diffi- 412

culty in ascending order, such that the agent will 413

always start from the relatively easier states. How- 414

ever, this operation is inapplicable to the testing 415

set where the label information is unknown. To 416

mitigate this problem, we propose a curriculum 417

learning strategy. We do not directly sort the can- 418

didate pairs by difficulty score. Instead, we sort 419

them based on the cosine similarity and re-weight 420

the skip rate ps for each pair by its normalized 421

difficulty score. Therefore, for each episode, the 422

agent will start from pairs with high similarity, and 423

the more difficult states will be skipped with larger 424
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Figure 3: Illustration of how the environment interacts
with the agent in RLEA.

probabilities. As the policy is optimized, we gradu-425

ally decrease ps to approximate the testing environ-426

ment. The final state sequence shall have a similar427

arrangement to that at the testing phase.428

The skip rate pi,ts at the i-th step in episode t can429

be written as:430

pi,ts = max(pmin
s , ηt−1psdi), (10)431

where pmin
s is the minimal skip rate to ensure the432

dynamic property. ps is the basic skip rate. di433

denotes the difficulty of state si at i-th step. As434

episode number grows, pi,ts decreases with dis-435

count factor η exponentially until it meets the lower436

bound pmin
s .437

We illustrate how the environment collaborates438

with the agent in Figure 3: a. the environment pops439

an entity pair c from the candidate pair sequence;440

b. this entity pair may be skipped with probabil-441

ity ps (Equation (10)); c. the non-skipped pair is442

outputted by the environment as si; d. the agent443

takes si as input, and its output action changes the444

candidate pair sequence reversely. The detailed445

implementation can be found in Appendix A.446

4 Experiment447

We conducted experiments to verify the effective-448

ness of the proposed RL-based framework. The449

trained entity embeddings were obtained from the450

OpenEA project 1. The source code was uploaded451

and will be available online.452

1https://github.com/nju-websoft/OpenEA

4.1 Dataset Settings 453

We used the 15K benchmark proposed by OpenEA. 454

It consists of four subsets: EN-FR, EN-DE, D-W, 455

and D-Y. The former two are cross-lingual datasets, 456

where EN, FR, DE denote English, French, and 457

German versions of DBpedia, respectively. The lat- 458

ter two are cross-source datasets, where D, W, Y de- 459

note DBpedia (Auer et al., 2007), WikiData (Vran- 460

dečić and Krötzsch, 2014), and Yago (Fabian et al., 461

2007), respectively. We used “V1” subsets that has 462

similar distributions to original KGs. Please refer 463

to (Sun et al., 2020b) for detailed statistics. 464

4.2 Compared Methods 465

We select the following methods as baselines: 466

• JAPE (Sun et al., 2017), which learns attribute 467

embeddings and relational embeddings jointly 468

for EEA. 469

• SEA (Pei et al., 2019a), which adopts adver- 470

sarial learning to learn the projection matrix. 471

• RSN (Guo et al., 2019), which leverages recur- 472

rent neural networks (RNNs) (Williams and 473

Zipser, 1989) to learn KG embeddings. 474

• RDGCN (Wu et al., 2019), which uses GCNs 475

to capture the neighborhood information into 476

entity embeddings. 477

We also design a basic sequential strategy called 478

Seq for comparison. We follow the algorithm used 479

in BootEA (Sun et al., 2018) to implement it. Entity 480

pairs with similarity above a predefined threshold 481

are regarded as match, or the algorithm randomly 482

chooses actions based on cosine similarity. 483

4.3 Main Results 484

The results on four datasets are shown in Table 1. 485

Orig denotes the original results of the EEA meth- 486

ods. We can observe that RLEA significantly im- 487

proved the performance of all baseline methods, 488

including the best-performing one, RDGCN. There- 489

fore, we believe that RLEA provides a better way 490

to exploit aligned entity pairs from embeddings 491

than the widely-used heuristic strategy. 492

Specifically, the performance improvement of 493

JAPE is most notable, with 30.4% and 31.1% in- 494

creases on EN-FR and D-Y, respectively. Although 495

RSN has minimal performance increase, the dif- 496

ference is still significant. Similarly, RDGCN also 497

achieved better performance, leading to a new state- 498

of-the-art on the benchmark. 499
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Table 1: Hits@1 results on four datasets (5-fold cross-validation).

Methods
EN-FR EN-DE D-W D-Y

Orig Seq RLEA Orig Seq RLEA Orig Seq RLEA Orig Seq RLEA

JAPE (Sun et al., 2017) .247 .291 .322 .307 .332 .336 .259 .279 .301 .463 .547 .607
SEA (Pei et al., 2019a) .280 .317 .365 .530 .556 .571 .360 .359 .414 .500 .564 .643
RSN (Guo et al., 2019) .393 .410 .429 .587 .614 .634 .441 .466 .493 .514 .546 .566
RDGCN (Wu et al., 2019) .755 .801 .830 .830 .861 .878 .515 .517 .541 .931 .951 .974

0.4

0.6

0.8

1

1 3 5 10 20 50

H
its

@
1

Candidate Number

0

50

100

150

200

250

1 3 5 10 20 50

E
pi

so
de

 T
im

e 
(s

ec
on

ds
)

Candidate Number

EN-FR

EN-DE

D-W

D-Y

Figure 4: Hits@1 and episode time w.r.t. candidate
number on four datasets.

With the basic sequential strategy Seq, four base-500

line methods also achieved better Hits@1 results501

on most datasets except D-W. This observation em-502

pirically proves the advantages of modeling EA as503

a sequential decision-making task.504

Note that RLEA also has its limitations. We505

find there exists a dataset bias. The performance506

improvement on EN-FR dataset is notable, but that507

on D-W is less significant. We believe that the508

sequential evaluation process might cause this bias.509

For instance, Seq also got worse performance than510

the original method SEA on D-W. We leave how to511

mitigate this problem in future work.512

4.4 Influence of Candidate Number513

In RLEA, the candidate number for each entity514

is an important hyper-parameter as it decides the515

length of the candidate sequence. A large value516

means covering more correct alignment pairs as517

well as more plausible pairs. Therefore, it is neces-518

sary to study how this hyper-parameter influences519

the performance of RLEA.520

We used the embeddings of the best-performing521

method RDGCN as input in this experiment. As522

shown in the left of Figure 4, the Hits@1 results523

on four datasets gradually increase with candidate524

number from 1 to 5, but converge after 10. When525

candidate number was set to 1, for each entity, only526

the pair with the highest similarity was added to the527

sequence, resulting in similar or even worse results528

compared with the original method. For example,529

on D-W, the hits@1 of RLEA is 0.478, significantly530

below that of the original RDGCN (0.541). As the531

candidate number increased, more aligned pairs532

0

500

1000

1500

2000

2500

0 100 200 300

A
lig

nm
en

t n
um

be
r

Epoch

EN-FR

RLEA
w/o MIE
RandEnv

0

500

1000

1500

2000

2500

0 100 200 300
Epoch

D-W

RLEA
w/o MIE
RandEnv

Figure 5: Alignment number w.r.t. episode number, on
EN-FR and D-W datasets.

were added to the sequence, the performance im- 533

proved steadily. It then gets saturated due to more 534

unaligned pairs were also added to the sequence. 535

On the right of Figure 4, we show the runtime of 536

one testing episode w.r.t. candidate number, which, 537

however, grows exponentially. This observation 538

suggests that setting a large candidate number is 539

computationally expensive. Therefore, we decide 540

to use the top-10 candidates in our implementation, 541

for sake of performance and efficiency. 542

4.5 Effectiveness of Modules 543

We conducted experiments to verify the effective- 544

ness of mutual information estimator (MIE) and the 545

proposed environment. We developed two variants 546

of RLEA: (1) RLEA without MIE (denoted as w/o 547

MIE), and (2) RLEA with a random environment 548

(RandEnv). The random environment still main- 549

tains a candidate pair sequence but does not have 550

the difficulty and skipping settings. All candidate 551

pairs in the sequence are randomly reset at the start 552

of each episode. 553

We compare the results in Figure 5, from which 554

we find that the agent does not work in the random 555

environment on all datasets. The alignment num- 556

ber even slowly decreases during training. This 557

is because that the state sequence in the random 558

environment changes irregularly. The agent fails 559

to establish an effective policy to maximize the re- 560

ward for all episodes. Furthermore, the random 561

environment does not have a curriculum learning 562

strategy to help the agent study from easy to hard. 563

Therefore, the agent is not able to capture the gen- 564

eral rules in the random environment. 565
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Table 2: Comparing RLEA with conventional methods.

Methods
EN-FR EN-DE D-W D-Y

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LogMap .818 .729 .771 .925 .725 .813 - - - .960 .943 .951
PARIS .907 .900 .903 .938 .933 .935 .746 .723 .734 .875 .868 .872

OpenEA .755 .755 .755 .830 .830 .830 .572 .572 .572 .931 .931 .931
RLEA .830 .830 .830 .878 .878 .878 .611 .611 .611 .974 .974 .974
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Figure 6: A comparison between RLEA and BootEA.

On the other hand, we find that MIE slightly im-566

proves the performance. It does not have a signifi-567

cant advantage over the final reward or alignment568

number. This may be because that the output em-569

beddings of GNNs have already included sufficient570

information to judge entity pairs. Nevertheless, the571

estimation provided by MIE helps the agent find572

the best policy rapidly, which is crucial when ap-573

plying to larger datasets. A more detailed version574

of Figure 5 is shown in Appendix B, from which575

we can obtain the consistent observations.576

4.6 A Comparison of RLEA and BootEA577

BootEA (Sun et al., 2018) is a bootstrapping578

method that iteratively labels possible entity align-579

ment as training data. Like RLEA, BootEA as-580

sumes a candidate entity should not be aligned581

twice. Therefore, it is interesting to compare and582

discuss these two methods.583

We illustrate the experimental results on four584

datasets in Figure 6. AlignE is a variant of BootEA585

without bootstrapping process. We first compare586

the left four columns. Obviously, BootEA (4th587

column) has a better effect in improving the perfor-588

mance of AlignE, as it directly participates in train-589

ing AlignE by iteratively adding plausible align-590

ment pairs. In contrast, Seq (2nd column) and591

RLEA (3rd column) only use the trained embed-592

dings as input and do not modify the embeddings or593

training procedure. They are thus more extensible594

and applicable to arbitrary EEA methods.595

In fact, it is no contradiction to integrate these596

two types of methods. The performance improve-597

ment (5th and 6th columns) is still significant and598

consistent on all four datasets.599

4.7 Competing with Conventional Methods 600

There has always been an argument about the prac- 601

tical use of EEA. Most EEA methods are end-to- 602

end and easy to be deployed. The performance 603

also improves when new models are developed. 604

However, a significant performance gap still ex- 605

ists between EEA methods and those conventional 606

methods like Paris (Suchanek et al., 2012) and 607

LogMap (Jiménez-Ruiz and Grau, 2011). We show 608

in Table 2 that RLEA with the embeddings of best 609

EEA methods as input can narrow this gap and 610

even outperform the conventional methods on some 611

datasets. As shown in Table 2, PARIS is the best 612

method that outperformed others on all datasets 613

except D-Y. However, The second method changed 614

from LogMap to RLEA. We can find that RLEA 615

not only outperformed LogMap on EN-FR, but also 616

achieved the best performance on D-Y. 617

We should notice that the alignment pairs ex- 618

ploited by EEA methods and conventional methods 619

are not all overlapped (Sun et al., 2020b). It is 620

possible to integrate them to achieve better per- 621

formance (Sun et al., 2017, 2020b). In this sense, 622

RLEA is also the best choice to be combined with 623

conventional methods. 624

5 Conclusion and Future Work 625

In this paper, we proposed an RL-based entity align- 626

ment framework, which can advance most existing 627

EEA methods without modifying their parameter 628

settings or infrastructures. Our experiments demon- 629

strate consistent and significant improvement on 630

all baseline methods. We plan to study how to 631

jointly train EEA methods and RLEA for further 632

improvement in future work. 633
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A Implementation774

A.1 Algorithm775

We show the training procedure of RLEA by Algo-776

rithm 1. The input is two KGs, trained embeddings777

of an arbitrary EEA method, and parameter settings.778

If the EEA method has projection matrices (Chen779

et al., 2017; Pei et al., 2019a), the embeddings of780

G2 should be projected to the space of G1 by the781

corresponding matrix before the training starts. We782

first initialize all parameters of the policy network.783

The episode sequence and candidate pair sequence784

will be reset at the start of each episode. After that,785

the agent interacts with the environment, which786

generates a state-action sequence. We then use RE-787

INFORCE algorithm to update the policy network788

with the generated sequence.

Algorithm 1: RLEA
Input: Two KGs G1, G2, entity embeddings

E1, E2, and number of episodes N .
Output: The policy π(a|s, θ).

1 Initialize the policy parameter θ;
2 for t=1:N do
3 Reset episode sequence to empty and

initialize candidate pair sequence;
4 repeat
5 Pop a candidate pair c from

candidate pair sequence;
6 Calculate the skip rate ps with

Equation (10);
7 µ← RandInt(0, 1, ps);
8 if µ = 1 then continue ;
9 else s← c ;

10 a ∼ π(a|s, θ);
11 if a = 1 then Update candidate pair

sequence according to c ;
12 Add s, a to episode sequence;
13 until All entities are matched or

candidate pair sequence is empty.;
14 for each step in the episode sequence do
15 Update the policy parameter θ

according to Equation (7).
16 end
17 end
18 Output π(a|s, θ).

789

A.2 Parameter Settings790

For each EEA method, we directly used their791

trained entity embeddings as input and did not mod-792

ify these vectors during training. The embedding- 793

size was identical to that used in OpenEA (Sun 794

et al., 2020b). The number of training episodes 795

was set to 500, and the learning step-size was set to 796

0.0001. The candidate pair number for each entity 797

was set to 10. 798

B Detailed Results of Ablation Study 799

The detailed results of RLEA and its two variants 800

are shown in Figure 7. Overall, the full RLEA 801

still has the best performance and training speed, 802

especially on D-Y dataset. The method without 803

MIE also have competitive performance on four 804

datasets, which demonstrates the effectiveness of 805

the RL-based sequential EEA. 806

From the bottom sub-figures, we find that the 807

agent tries to find a policy to achieve high rewards 808

in the random environment. However, 0 is almost 809

the best reward it can get. The agent fails to estab- 810

lish a good policy in this dynamic environment. 811

C Results on OpenEA 100K datasets 812

As shown in Table 3, the Hits@1 results on Ope- 813

nEA 100K datasets are consistent with those on 814

15K datasets. RLEA still outperformed the base- 815

lines on four datasets. We did not consider RDGCN 816

and RSN in this experiment, as they can only be 817

trained on CPUs (confirmed from the authors of 818

OpenEA). 819
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Table 3: Hits@1 results on OpenEA 100K datasets.

Methods
EN-FR EN-DE D-W D-Y

Orig Seq RLEA Orig Seq RLEA Orig Seq RLEA Orig Seq RLEA

JAPE (Sun et al., 2017) .165 .172 .197 .152 .162 .169 .211 .229 .257 .287 .308 .323
SEA (Pei et al., 2019a) .225 .229 .261 .341 .345 .376 .291 .293 .338 .490 .525 .545
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Figure 7: Alignment number, episode length, and reward w.r.t. episode number, on four datasets.
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