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Abstract
Causal effect estimation aims to measure the true causal re-
lationship between treatment and outcome variables, which
is widely applied in areas such as medicine, commerce, and
sociology. A challenge in causal effect estimation is that un-
measured variables may affect both treatment and outcome
variables, which are named unmeasured confounders. Tradi-
tional methods of causal effect estimation are biased in the
presence of unmeasured confounding. Previous data fusion-
based methods employ observational data (OBS) combined
with limited-sized randomized controlled trial (RCT) data to
eliminate confounding bias. However, existing methods typi-
cally assume that the OBS and RCT data come from the same
target population, a relatively strong assumption given the
difficulties of randomized trials. In this paper, we consider re-
laxing this assumption to achieve data fusion in the case where
the RCT data is a biased sample of the target population, thus
eliminating selection bias and obtaining unbiased estimates
of causal effects. We propose a reweighting-based approach
that uses OBS and RCT data successively and debiases in
the second stage via reweighting. Extensive experiments are
conducted to demonstrate the effectiveness of our method.

Introduction
Estimation of causal effects, which aims at quantifying the
impact of the treatment variable on the outcome variable (Im-
bens and Rubin 2015), is one of the most important tasks
of causal science (Robins and Hernán 2016) and has a wide
range of applications in medicine (Prosperi et al. 2020), soci-
ology (Gangl 2010), and many other fields (Campbell 2007;
Reich et al. 2021; Wang et al. 2023). Conditional average
causal effect (CATE) is one of the most commonly considered
causal effects estimands by machine learning approaches.
CATE examines the average causal effect in a population
given the covariates, and therefore reflects the effect of the
treatment on different populations in a more fine-grained way
than the average treatment effect (ATE), enabling precision
medicine, fine-grained governance (Athey 2015), etc.

A classic challenge in CATE estimation is unmeasured
confounding (Fewell, Davey Smith, and Sterne 2007), which
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refers to the presence of unobserved variables affecting both
the treatment and the outcome, thus introducing an unknown
bias to the estimate (VanderWeele and Arah 2011). For ex-
ample, when estimating the effect of a treatment regime on
a disease in a medical scenario, we are unable to accurately
quantify the lifestyle of the patients, which may affect both
the choice of treatment regime and the progression of the dis-
ease (Zhang et al. 2018). In sociology, parental relationship
status may be a potential confounder that is difficult to mea-
sure when estimating the effect of hours spent in childcare
on aggressive behaviour of children (Orri et al. 2019).

Under standard assumptions, unmeasured confounding is
not identifiable (Dorn, Guo, and Kallus 2024). Thus previous
classes of approaches to this problem have often relied on ad-
ditional assumptions. Such methods include sensitivity anal-
yses (Imbens 2003), instrumental variable methods (Joshua
D. Angrist and Rubin 1996), and negative control meth-
ods (Shi et al. 2020). Sensitivity analysis methods have strong
modelling assumptions (Borgonovo and Plischke 2016) and
are difficult to apply in the real world. Instrumental variables
and negative control methods, for example, rely on special
variables that are very difficult to find and observe, and the as-
sumptions about these variables are often untestable (Lousdal
2018).

One way to address unmeasured confounding is data fu-
sion, which combines data from a small number of unbiased
randomized controlled trials with a large amount of biased
observational data to jointly estimate causal effects. Data fu-
sion methods can be categorized into one-stage and two-stage
approaches, where the former focuses on joint learning of
causal effects (Wu et al. 2022) as well as propensity scores
using the idea of entire space, and the latter focuses on the
idea of correcting for the difference between the true CATE
and the estimated CATE using RCT data. Some of the two-
stage methods consider traditional statistical models such
as linear regression (Kallus, Puli, and Shalit 2018), while
others are based on machine learning (Hatt, Tschernutter, and
Feuerriegel 2022). What these data fusion methods have in
common is that all assume that the OBS and the RCT are
derived from the same target population.

However, this assumption is difficult to justify in practice.
For example, in a healthcare scenario, the target population
for a new drug may be the entire population, but clinical trials
rely on volunteer enrollment. Pregnant women and the elderly



often do not tend to enroll, and children and patients with
underlying medical conditions are often excluded from tri-
als (Ronconi, Shiner, and Watts 2014). This makes RCT data
not a representative sample of the target population (Kennedy-
Martin et al. 2015).

To fill this gap, we consider relaxing this assumption in
this paper. Specifically, it is a reality in our clinical trials
that RCTs are a biased sample of the target population. We
propose a two-stage reweighting method that eliminates the
confounding bias in the OBS data and selection bias in the
RCT data to obtain an unbiased estimate of CATE. The con-
tribution of this paper can be summarized as follows:

• We relax the assumption that RCT and OBS data come
from the same target population in CATE estimation under
unmeasured confounding.

• We propose a reweighting-based approach for CATE
estimation under unmeasured confounding with non-
representative randomized data.

• We conduct extensive experiments on a public semi-
synthetic dataset to demonstrate the effectiveness of our
method in CATE estimation.

Preliminaries
Problem Setup
We review the estimation of the conditional average treatment
effect (CATE) for binary treatment with large-scale OBS and
small-scale RCT data. We have m units (i = 1, 2, . . . ,m)
from the OBS data and n units (i = m + 1, . . . ,m + n)
from the RCT data, where m,n ∈ Z+ and m > n. For each
unit, we observe a four-element tuple (T,X, Y,G) following
distribution P , where T ∈ {0, 1} is an indicator for binary
treatment, with T = 1 for the treatment group and T = 0
for the control group. X ∈ X ⊆ Rd is a covariate vector
of the unit with d dimensions, either discrete or continuous.
Y ∈ Y ⊆ R is the observed outcome for the unit, in our
work, it can be either binary or continuous. G ∈ {R,O} is
an indicator of data source, with G = R for the RCT group
and G = O for the OBS group.

In this paper, we consider the scenario when RCT data
is non-representative. In other words, we assume the RCT
data is randomly sampled from the target population, while
the RCT data is with selection bias. As for the covariate
distributions, we have

P (X|G = R) ̸= P (X|G = O). (1)

Using the Neyman–Rubin causal model, we let Y (1) be the
potential outcome under treatment and Y (0) be the potential
outcome under control. The estimand of interest is the CATE

τ(x) = E(Y (1)− Y (0)|X = x), x ∈ X . (2)

Note that we implicitly require that the CATE in the OBS
group is identical to that of the RCT group, i.e., E(Y (1) −
Y (0)|X = x,G = O) = E(Y (1)− Y (0)|X = x,G = R),
thus omitting the target population condition in τ(x). To
estimate CATE with the RCT and OBS data, apart from the
stable unit treatment value assumption (SUTVA), we assume
Y = Y (1)T +Y (0)(1−T ), i.e., we can only observe one of

the potential outcomes corresponding to the actual treatment
received. We also require the positivity assumption, formally
0 < P (T = 1 | X = x) < 1 for all x ∈ X .

Since randomization is guaranteed by the randomized trial,
strong ignorability holds for the RCT data, formally,

(Y (0), Y (1)) ⊥⊥ T |X,G = R. (3)

Meanwhile, for the OBS data, we consider the case where
there is unmeasured confounding and the strong ignorability
does not hold, i.e.,

(Y (0), Y (1)) ̸⊥⊥ T |X,G = O. (4)

Previous Work
Based on the aforementioned assumptions especially (3), one
can identify the CATE with RCT data as follows.
Lemma 1.

τ(x) = E(Y | T = 1, X = x,G = R)− E(Y | T = 0, X = x,G = R).

The identification result itself implies an unbiased estima-
tor for CATE. Nevertheless, randomized controlled trials are
not conducted on a large scale due to their high cost and
ethical and regulatory constraints. Consequently, the amount
of data is frequently less extensive than that derived from
observational studies. Consequently, the utilization of RCT
data alone may result in overfitting for a learning algorithm.

The estimation of CATE using a combination of large-scale
OBS data and small-scale RCT data has been previously
proposed as a potential approach. Due to the presence of
unmeasured confounding, the average outcome of OBS data
is biased. Let

ω(x) = E(Y | T = 1, X = x,G = O)− E(Y | T = 0, X = x,G = O)

be the average outcome difference in the OBS group, then the
presence of unmeasured confounding and violation of strong
ignorability (4) indicates that ω(x) ̸= τ(x). We denote the
residuals as η(x) = τ(x)− ω(x).

One approach utilizes the OBS data to derive a biased esti-
mate ω̂(x), fits the residual η̂(x), and adds ω̂(x) and η̂(x) to
obtain an unbiased estimate of CATE. The alternative method-
ology employs a two-stage pretraining-finetuning framework
(TSPF), whereby the OBS data are used to obtain an initial
estimator model, which is then finetuned with the RCT data
to yield an unbiased estimator (Zhou et al. 2025).

Proposed Method
In the presence of unmeasured confounding, previous data
fusion methods have often implicitly assumed that RCT data
and OBS data come from the same target population. How-
ever, randomized trials in the real world in medicine, psy-
chology, and other fields often have strict inclusion-exclusion
criteria or have higher propensities to recruit certain groups
of people. We therefore consider relaxing the assumption and
consider the case where the OBS data is representative yet
the RCT data is non-representative of the target population.

Note that with the biased-sampled RCT data, we can still
identify the CATE using Lemma 1. However, due to the in-
consistency of the distribution of covariate X on the RCT



Algorithm 1: Learning algorithm for potential out-
come estimation combining large-scale OBS data and
non-representative RCT data.

Input: OBS data
DOBS = {(Xi, Ti, Yi, Gi = O)}mi=1, RCT
data DRCT = {(Xi, Ti, Yi, Gi = R)}m+n

i=m+1

1 Compute wi = Ti

2u + 1−Ti

2(1−u) with u = 1
m

∑m
i=1 Ti for

i = 1, ...,m;
2 Train the first-stage potential outcome estimation

model f(X,T ; θf ) with DOBS and weights wi;
3 With data DRCT ∪ DOBS , train a model q(X; θq) to

predict the probability that the data comes from
DRCT with only covariate X as the input;

4 Initialize the second-stage potential outcome
estimation model g(X,T ; θg), where part of the
parameters are initialized with that of the first-stage
model f(X,T ; θf ) to make sure
g(x, t; θg) = f(x, t; θf ),∀x ∈ X , t ∈ {0, 1};

5 Compute vi = ( Ti

2u + 1−Ti

2(1−u) ) ·
1−q(Xi;θq)
q(Xi;θq)

· nm with

u = 1
n

∑m+n
i=m+1 Ti for i = m+ 1, ...,m+ n;

6 Finetune the second-stage potential outcome
estimation model g(X,T ; θg) with DRCT and
weights vi;

Output: The potential outcome estimation model
g(X,T ; θg).

with that on the OBS, direct use of the raw RCT data on a
learning approach may result in slow convergence, especially
with limited data size (Hatt et al. 2022). Take a binary co-
variate such as biological sex for example. If males are much
more likely to participate in a randomized controlled trial,
this may result in a very small sample of females in the RCT
data and thus the algorithm may be hard to converge and
results in large error.

Inspired by the TSPF (Zhou et al. 2025), in this paper we
adopt a two-stage approach named W-TSPF, where the OBS
data is used to train a CATE estimation model containing a
representation module and two predictor heads in the first
stage, while the non-representativeness of the RCT data is
addressed in the second stage using a re-weighting method.

Two-Stage Framework
We adopt the TSPF framework (Zhou et al. 2025) to build our
method. In this framework, the models in the two stages
are different. In the first stage, we follow the methodol-
ogy of previous work to train a neural network f(X,T ; θf )
consisting of a representation module ϕ(X, θϕ) to balance
the covariate, a reconstruction module ψ(ϕ; θψ) to ensure
not much information of covariate is lost, and two predic-
tion heads h0(ϕ; θh0

), h1(ϕ; θh1
) to predict the potential out-

comes. Note that in the first stage, we only use the OBS
data and adopt a weighting approach to address the problem
of uneven sample sizes in the treatment and control groups.
The sample weights are given by wi = Ti

2u + 1−Ti

2(1−u) , where

u = 1
n

∑m
i=1 Ti. The weights are added on the empirical risk

Lf =
1

m

m∑
i=1

wi · l(Yi, f(Xi, Ti; θf )),

where l is a loss function like mean squared error (MSE).
In the second stage, we use another neural net-

work g(X,T ; θg) consisting of a representation mod-
ule ϕ directly adopted from f , an augmented repre-
sentation module ϕ̃(X, θϕ̃), and two prediction heads
h̃0(ϕ, ϕ̃; θh̃0

), h̃1(ϕ, ϕ̃; θh̃1
). Note that the reconstruction

module ψ is removed. h̃0 and h̃1 are an neural network aug-
mented from h0 and h1 respectively. Specifically, h̃0 and h̃1
have the same layer numbers as h0 and h1, yet the layers in
h̃0 and h̃1 are wider. During the second-stage training, we
fix the representation module ϕ, leaving only ϕ̃, h̃0 and h̃1 to
be trainable. In the original framework, the training data of
the second stage is from the RCT group. However, we aim
to address the non-representativeness of the RCT data, thus
motivated to combine both OBS and RCT data in this stage.

Re-weighting in the Second Stage
We aim to re-weight the samples in RCT data to adapt the
covariate distribution P (X|G = R) to that of the OBS data.
For simplicity, we denote the covariate distribution of the
OBS group as PO(X) and the covariate distribution of the
RCT group as PR(X). We can get the following weights
inspired by Colnet et al. (2022).
Proposition 1. Given the assumption PR(x) > 0,∀x ∈ X ,
the weight PO(X)

PR(X) can adjust the covariate distribution of the
RCT group to that of the OBS group.

The Proposition 1 can be validated as follows. Consider
an arbitrary integrable function ζ(·), we have E(ζ(X) | G =
R) =

∫
X ζ(x)P (X = x | G = R)dx. The re-weighting

lead us to
∫
X ζ(x)P (X = x | G = R) · PO(x)

PR(x)dx =∫
X ζ(x)P (X = x | G = O)dx = E(ζ(X) | G = O).

In other words, the re-weighting shifts the expectation of the
RCT population to that of the targeted OBS population.

From the discussion above we can see that adding the
weight PO(X)

PR(X) can address the non-representativeness of RCT
data theoretically. However, when the covariate X is high-
dimensional, which is very likely in real-world data, to esti-
mate the covariate distributions PO(X) and PR(X) directly
is extremely challenging.

We propose to transform the weight using the Bayesian
formula to obtain an equivalent form that is easier to estimate.

Lemma 2. PO(x)
PR(x) =

P (G=O|X=x)
P (G=R|X=x) ·

P (G=R)
P (G=O) .

Notice that the right-hand side of Lemma 2 consists of four
termsP (G = O | X = x), P (G = R | X = x), P (G = R)
and P (G = O). The first two terms, i.e., the probabilities
of being in the OBS group or RCT group given covariate
X = x, can be directly estimated via logistic regression.
The last two terms, i.e., the marginal distribution of G, can
be estimated with the sample size of RCT and OBS data.
After fitting a model q(X; θq) to estimate the probability



P (G = R | X), then another probability P (G = O | X)
would be 1− q(X; θq). The maximum likelihood estimator
will be n

m+n and m
m+n for P (G = R) and P (G = O).

We use the plug-in estimator combined with the weights
balancing treatment and control groups to obtain the ultimate
weights for RCT data as follows.

vi = (
Ti
2u

+
1− Ti
2(1− u)

) · 1− q(Xi; θq)

q(Xi; θq)
· n
m
,

with u = 1
n

∑m+n
i=m+1 Ti for i = m+ 1, ...,m+ n. As in the

first stage, we only add weights on the empirical risk

Lg =
1

n

n∑
i=1

vi · l(Yi, g(Xi, Ti; θg)).

The overall algorithm of our method is presented in Algo-
rithm 1. Note that the algorithm outputs a potential outcome
estimation model with two heads estimating E(Y (0) | X)
and E(Y (1) | X) respectively. For CATE estimation, we
need to compute the difference between the outputs of two
heads h̃1 and h̃0.

Experiments
Dataset and Preprocessing
Following previous work, we validate our approach on a
publicly available semi-synthetic dataset, IHDP (Hill 2011).
The original dataset includes 747 units with 25 covariates.
19% of the units are treated while 81% of them are in the
control group. We divide the dataset into training, validation
and test sets with the ratio 80/10/10. For sample i in the index
set of the training samples T , we randomly assign them into
RCT group with probability β·σ(W ·Xi)∑

j∈T σ(W ·Xj)
, where β = 0.1

is a hyperparameter controlling the ratio of RCT samples
in the whole training set, σ(·) is the sigmoid function, and
W ∼ N (a1d, Id). We set a = 5, 10, 20 to generate RCT
samples with different covariate distribution patterns. For
the training samples assigned into the RCT group and all
the validation samples, we randomly re-assign treatment to
simulate randomized trial.

Tnew = Bern(0.5), Ynew = I{Tnew = T}(Yf−Ycf )+Ycf ,
where the Bern(·) is the Bernoulli distribution, Yf is the
factual outcome, and Ycf is the counterfactual outcome.

Baselines and Evaluation Metrics
We choose two important and commonly used base-
lines in CATE estimation performance comparison, T-
learner (Künzel et al. 2019) which has a simple model archi-
tecture and DragonNet (Shi, Blei, and Veitch 2019) which
integrates propensity score in the model. We also include
two-stage methods CorNet (Hatt, Tschernutter, and Feuer-
riegel 2022) and TSPF (Zhou et al. 2025) to further validate
the effectiveness of the re-weighting strategy.

Following previous work in CATE estimation (Shalit, Jo-
hansson, and Sontag 2017), we evaluate the performance
with the square root of Precision in Estimation of Hetero-
geneous Effects (PEHE), as well as the Average Treatment
Effect (ATE). The definitions of the metrics are as follows.

√
ϵPEHE =

√√√√ 1

N

N∑
i=1

((Ŷi,1 − Ŷi,0)− (Yi,1 − Yi,0))2,

ϵATE =
1

N
|
N∑
i=1

((Ŷi,1 − Ŷi,0 − (Yi,1 − Yi,0)|.

Performance Analysis
The performance of the baselines and our method in the case
of a = 5, 10, 20 is shown in Tables 1. Our method outper-
forms the baselines in all scenarios on both metrics. Particu-
larly, the significant superiority against the other two-stage
methods CorNet and TSPF demonstrats the effectiveness of
the reweighting strategy.

Table 1: Performance on IHDP dataset with a = 5, 10, 20.

a = 5
√
ϵPEHE ϵATE

T-learner 3.72± 0.46 2.19± 0.95
DragonNet 3.85± 0.39 2.27± 0.51
CorNet 3.16± 0.21 1.92± 0.63
TSPF 2.86± 0.47 1.65± 0.80
W-TSPF 1.97± 0.31 0.72± 0.53

a = 10
√
ϵPEHE ϵATE

T-learner 3.81± 0.45 2.34± 1.01
DragonNet 3.99± 0.43 2.54± 0.55
CorNet 3.25± 0.28 2.06± 0.74
TSPF 2.97± 0.53 1.78± 0.85
W-TSPF 2.02± 0.34 0.77± 0.52

a = 20
√
ϵPEHE ϵATE

T-learner 4.08± 0.52 2.49± 1.06
DragonNet 4.17± 0.50 2.68± 0.61
CorNet 3.33± 0.39 2.13± 0.77
TSPF 3.14± 0.59 1.90± 0.83
W-TSPF 2.08± 0.30 0.84± 0.62

Conclusion
In the presence of unmeasured confounding, previous meth-
ods of estimating treatment effects combining OBS and RCT
data have tended to rely on an implicit assumption that both
the OBS and the RCT are unbiased samples of the target
population. This paper aims to relax this assumption by con-
sidering a scenario where OBS data consists of representative
samples while RCT data does not. We propose a re-weighting
strategy based on a two-stage pre-training fine-tuning frame-
work to adapt the samples in the RCT group to represent the
target population. Experiments conducted on a semi-synthetic
dataset IHDP demonstrate the effectiveness of our method.
One limitation of this paper is the assumption that the support
set of the covariate distribution function of the RCT group is
the full set, since inclusion criteria may exclude parts of the
population from randomized controlled trials in real studies.
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