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ABSTRACT

Existing feature distillation methods commonly adopt the One-to-one Representa-
tion Matching between any pre-selected teacher-student layer pair. In this paper,
we present N-to-One Representation Matching (NORM), a new two-stage knowl-
edge distillation method, which relies on a simple Feature Transform (FT) module
consisting of two linear layers. In view of preserving the intact information learnt
by the teacher network, during training, our FT module is merely inserted after
the last convolutional layer of the student network. The first linear layer projects
the student representation to a feature space having N times feature channels
than the teacher representation from the last convolutional layer, and the second
linear layer contracts the expanded output back to the original feature space. By
sequentially splitting the expanded student representation into N non-overlapping
feature segments having the same number of feature channels as the teacher’s,
they can be readily forced to approximate the intact teacher representation simul-
taneously, formulating a novel many-to-one representation matching mechanism
conditioned on a single teacher-student layer pair. After training, such an FT
module will be naturally merged into the subsequent fully connected layer thanks
to its linear property, introducing no extra parameters or architectural modifications
to the student network at inference. Extensive experiments on different visual
recognition benchmarks demonstrate the leading performance of our method. For
instance, the ResNet18|MobileNet|ResNet50-1/4 model trained by NORM reaches
72.14%|74.26%|68.03% top-1 accuracy on the ImageNet dataset when using a pre-
trained ResNet34|ResNet50|ResNet50 model as the teacher, achieving an absolute
improvement of 2.01%|4.63%|3.03% against the individually trained counterpart.
Code is available at https://github.com/OSVAI/NORM.

1 INTRODUCTION

Knowledge distillation (KD), an effective way to train compact yet accurate neural networks through
knowledge transfer, has attracted increasing research attention recently. Bucilǎ et al. (2006) and Ba &
Caruana (2014) made early attempts in this direction. Hinton et al. (2015) presented the well-known
KD using a teacher-student framework, which starts with pre-training a large network (teacher), and
then trains a smaller target network (student) on the same dataset by forcing it to match the logits
predicted by the teacher model. Many subsequent methods follow this two-stage KD scheme but use
hidden layer features as extra knowledge, while others use a one-stage KD scheme in which teacher
and student networks are trained from scratch jointly (Guo et al., 2021). In this paper, we focus on
two-stage feature distillation (FD) research, mainly for supervised image classification tasks.

Existing two-stage FD methods primarily use feature maps (Romero et al., 2015), or attention
maps (Zagoruyko & Komodakis, 2017), or other forms of features (Chen et al., 2021a) at one or
multiple hidden layers as knowledge representations. Generally, modern neural network architectures
engineered on the ImageNet classification dataset (Russakovsky et al., 2015) adopt a multi-stage
design paradigm. At a pair of the same staged layers, a teacher network typically has more output
feature channels than a student network while keeping the same spatial feature size. All feature
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Figure 1: An architectural comparison of prevailing One-to-one Representation Matching (ORM)
schemes (left figure) and our N-to-One Representation Matching (NORM, right figure). Based on
ORM, existing feature distillation methods apply their feature transforms (FTs) to (1) the student
network, or (2) the teacher network, or (3) both of them, at any pre-selected hidden layer pair.
Unlike them, NORM leverages a simple linear FT module added after the last convolutional layer
of the student network to formulate a many-to-one representation matching scheme via feature
expansion, splitting and mimicking. For inference, our FT module will be merged into its subsequent
fully connected layer, introducing no extra parameters or architectural modifications to the student
network. Best viewed with zoom in, and see the Method section for a detailed formulation of NORM.

dimensions may be different at a cross-stage layer pair. To align the feature dimensions, there have
been many feature transform (FT) designs. However, prevailing teacher FT designs cause information
loss due to dimension reduction, as studied in (Heo et al., 2019a; Tian et al., 2020). More importantly,
we observe that existing FD methods adopt the One-to-one Representation Matching (ORM) between
each pre-selected teacher-student layer pair, indicating that only one knowledge transfer route is
introduced. We argue that this leaves considerable room to promote two-stage FD research.

Driven by the above analysis, in this paper, we present a new two-stage feature distillation method
dubbed N-to-One Representation Matching (NORM) that relies on a simple FT module consisting
of two linear layers. An architectural comparison of popular ORM schemes and NORM is depicted
in Figure 1. When formulating NORM, we leverage three basic principles: (1) using as few FTs
as possible; (2) enabling many-to-one feature mimicking flow via student representation expansion
and splitting; (3) making FT module absorbable. With the first principle, our FT module is merely
inserted after the last convolutional layer of the student network. In this way, the intact information
learnt by the teacher network is preserved, and knowledge transfer flow only needs to be considered
between the last convolutional layer pair. With the second principle, our FT module starts with a
linear layer that projects the student representation to a feature space having N times feature channels
than the teacher representation. This allows NORM to introduce many parallel knowledge transfer
routes between a single teacher-student layer pair via simple student feature splitting and group-wise
feature mimicking operations. With the third principle, our FT module ends with another linear layer
that projects the expanded student representation back to the original feature space, and it does not
contain any non-linear activation functions, making all of its operations linear. As a result, after
training the FT module can be directly merged into its subsequent fully connected layer, without
introducing any extra parameters or architectural modifications to the student network at inference.

We evaluate the performance of NORM on different visual recognition benchmarks. On the CIFAR-
100 dataset, the student models trained by NORM show a mean accuracy improvement of 2.88%
over 7 teacher-student pairs of the same type network architectures. Over 6 teacher-student pairs of d-
ifferent type network architectures, the mean accuracy improvement reaches 5.81%, and the maximal
gain is 6.92%. Leading results are obtained on the large-scale ImageNet dataset. With NORM, the
ResNet18|MobileNet|ResNet50-1/4 model reaches 72.14%|74.26%|68.03% top-1 accuracy when us-
ing a pre-trained ResNet34|ResNet50|ResNet50 model as the teacher, showing 2.01%|4.63%|3.03%
absolute gain to the baseline model. Thanks to its simplicity and compatibility, we show that improved
performance could be further attained by combining NORM with other popular distillation strategies
like logits based supervision (Hinton et al., 2015) and contrastive learning (Tian et al., 2020).

2 RELATED WORK

Two-stage KD methods. This category of KD methods first assumes that a pre-trained teacher
network is available, and then uses its learnt representation as extra supervision to guide the training
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of a student network. The vanilla KD (Hinton et al., 2015) uses the logits output from the teacher
network as soft supervision. FitNets (Romero et al., 2015) show that the feature maps from hidden
layers can also be used as hints to improve distillation performance. AT (Zagoruyko & Komodakis,
2017) uses spatial attention maps instead of source feature maps. Many follow-up methods intend to
improve the knowledge representation via different techniques, such as feature encoding (Yim et al.,
2017; Chen et al., 2021a; Srinivas & Fleuret, 2018), feature selection (Heo et al., 2019a;b; Chen
et al., 2021b), distribution learning (Ahn et al., 2019; Huang & Wang, 2017; Passalis & Tefas, 2018;
Malinin et al., 2020; Yang et al., 2021), attention rephrasing (Kim et al., 2018; Ji et al., 2021), and
reuse of teacher classifier (Chen et al., 2022). Besides, some works (Peng et al., 2019; Yin et al., 2020;
Park et al., 2019; Tung & Mori, 2019) explore the use of sample relations. It is also worth noting that
several recent works (Yue et al., 2020; Liu et al., 2020b; Deng et al., 2022) propose reinforcement
learning based searching methods to improve feature distillation process.

One-stage KD methods. This category of KD methods adopts an online training framework that
does not require to pre-train the teacher model. ONE (Lan et al., 2018) presents a multi-branch
training strategy using an on-the-fly branch ensemble to guide the training of individual branches.
DML (Zhang et al., 2018b) uses a mutual learning strategy to jointly train a set of peer models from
scratch. During training, every peer model acts as a teacher of the others. DCM (Yao & Sun, 2020)
shows that the logits from auxiliary branches of teacher and student networks can improve mutual
distillation performance. Many one-stage KD variants have been presented recently, including but
not limited to (Guo et al., 2020a; Chung et al., 2020; Malinin et al., 2020; Wu & Gong, 2021).

Other KD variants. Extending knowledge distillation methodology from standard supervised
learning to other learning scenarios has gained broad attention. BANs (Furlanello et al., 2018) improve
the training of a target network via a progressive self-distillation formulation. CRD (Tian et al., 2020)
formulates an effective structural representation matching loss based on contrastive learning. Xu
et al. (2020) further presented a way to combine self-supervision and contrastive learning. Besides,
there also exist various KD variants for life-long learning (Li & Hoiem, 2016), semi-supervised
learning (Pham et al., 2021), few-shot learning (Shen et al., 2021), data-free learning (Lopes et al.,
2017), adversarial learning (Chung et al., 2020) and distributed learning (Anil et al., 2018). Although
these methods are still tailored to image classification, KD has also been applied to handle other
tasks, such as semantic segmentation (Liu et al., 2019b), object detection (Wang et al., 2019), image
super-resolution (Liu et al., 2020a), and neural machine translation (Kim & Rush, 2016).

Our work focuses on two-stage KD research, mainly for supervised image classification tasks.
Specifically, we attempt to shift the prevailing one-to-one feature representation matching paradigm
to a many-to-one alternative conditioned on a single teacher-student layer pair. This makes our
method differ with existing KD methods both in motivation and formulation.

3 METHOD

3.1 BACKGROUND: ONE-TO-ONE REPRESENTATION MATCHING

We first review the representation matching of existing two-stage feature distillation (FD) methods
in a general formulation. Suppose that we have a pre-trained teacher network T , a target student
network S, a given image classification dataset X and its ground truth label set Y . For a pre-selected
teacher-student layer pair (two same staged layers of T and S, as default), let Ft ∈ RH×W×Ct |Fs ∈
RH×W×Cs denote the output feature maps for the teacher|student network, where H , W and Ct|Cs

are the channel height, width and number, respectively. Let Tt|Ts denote the feature transform (FT)
for the teacher|student network, which projects Ft|Fs to the same feature space, respectively. Then,
the representation matching loss of existing FD methods, in general, can be defined as:

Lfd = d(Ts(Fs), Tt(Ft)). (1)

Various distance metrics d(·), such as l2-norm distance (Romero et al., 2015; Zagoruyko & Ko-
modakis, 2017; Heo et al., 2019b), l1-norm distance (Kim et al., 2018) and maximum mean discrep-
ancy (Huang & Wang, 2017) are popularly used in FD research. Furthermore, existing FD methods
usually apply the feature representation matching to one or multiple pre-selected teacher-student layer
pairs. Under this context, it is clear that the use of FT and the design of FT are two key problems for
the feature representation matching. To the first problem, there are three choices: applying one or
multiple FTs to (1) the student network (Romero et al., 2015); (2) the teacher network (Yue et al.,
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2020); (3) both teacher and student networks (Zagoruyko & Komodakis, 2017; Heo et al., 2019b;
Srinivas & Fleuret, 2018; Heo et al., 2019a; Chen et al., 2021a). They are illustrated in Figure 1
(left figure). Comparatively, the last choice is much more popular than the other two. To the second
problem, there exist many FT designs (Guo et al., 2021) that generate aligned feature maps, or atten-
tion maps, or other forms of features used as the knowledge representation for matching. However,
according to Eq. 1, we can see that existing FD methods use the One-to-one Representation Matching
(ORM). More specifically, they perform global single-shot feature mimicking process, meaning that
there exists only one knowledge transfer route between any teacher-student layer pair. We conjecture
that if we can formulate an effective mechanism to introduce multiple global knowledge transfer
routes between any teacher-student layer pair, it will offer more chances to inject the intact teacher’s
knowledge into the student network, and improved FD performance could be attained.

3.2 N-TO-ONE REPRESENTATION MATCHING

Motivated by the above analysis, we present N-to-One Representation Matching (NORM), a new
two-stage feature distillation method that relies on a simple FT module. In the formulation of NORM,
we rethink the representation matching mechanism from the following perspectives: (1) regarding
the use of FT, where to place it? (2) regarding the design of FT, how to adapt it for introducing
many parallel global knowledge transfer routes between any pre-selected teacher-student layer pair?
(3) regarding the distillation performance, how to make the accuracy-efficiency tradeoff? To the
first and third questions, our basic principle is “using as few FTs as possible”, partially inspired
by (Romero et al., 2015; Heo et al., 2019a; Tian et al., 2020). Accordingly, we merely insert an FT
module after the last convolutional layer of the student network. In this way, NORM preserves the
intact information learnt by the pre-trained teacher network, and knowledge transfer flow only needs
to be considered between the last convolutional layer pair. Note that the design of directly plugging
an FT module into the student network is in sharp contrast to existing FD methods which typically
use their FTs as auxiliary branches that will be discarded at inference. To the second question,
our basic principle is “enabling many-to-one knowledge mimicking flow via student representation
expansion and splitting”. Accordingly, we construct a student FT module which starts with a linear
layer that projects the student representation to a feature space having N times feature channels
than the teacher representation. By sequentially splitting the expanded student representation into
N non-overlapping segments having the same number of feature channels as the teacher’s, we can
force them to approximate the intact teacher representation simultaneously, formulating an effective
many-to-one feature matching mechanism conditioned on a single teacher-student layer pair. To the
third question, we additionally use a “making FT module absorbable” principle. Accordingly, our
student FT module ends with another linear layer that projects the expanded student representation
back to the original feature space, and it does not contain any non-linear activation functions. As
a result, such an FT module will be naturally merged into its subsequent fully connected layer
after training, without introducing any extra parameters or architectural modifications to the student
network at inference. An overview of NORM is depicted in Figure 1 (right figure).

Now, we provide the formulation of NORM following the notations in Eq. 1. Given a teacher-student
layer pair (last convolutional layer pair, as default) with the output feature maps Ft ∈ RH×W×Ct

and Fs ∈ RH×W×Cs , let Ts(Wse,Wsc) denote our student FT module consisting of two linear
layers. The first linear layer uses a 1 × 1 convolutional kernel Wse ∈ R1×1×Cs×NCt along the
channel dimension to project each pixel in Fs to a desired channel dimension NCt, producing an
expanded student representation Fse ∈ RH×W×NCt havingN times feature channels than the teacher
representation. The second linear layer uses another 1×1 convolutional kernelWsc ∈ R1×1×NCt×Cs

to project each pixel in Fse back to the original channel dimension Cs, producing Fsc ∈ RH×W×Cs .
Mathematically, the student FT module with the input Fs can be written as:

Fse =Wse ∗ Fs, Fsc =Wsc ∗ Fse, (2)

where ∗ denotes the convolution operation. Next, we sequentially split the expanded student rep-
resentation Fse into N non-overlapping segments F i

se ∈ RH×W×Ct , 1 ≤ i ≤ N having the same
number of feature channels as the teacher’s. This allows us to force N student feature segments to
approximate the intact teacher representation simultaneously by minimizing an l2-norm distance
metric, formulating our many-to-one representation matching mechanism conditioned on a single
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teacher-student layer pair. Specifically, our many-to-one representation matching loss is defined as:

Lnorm =
1

N

N∑
i=1

||F i
se − Ft||22, (3)

and the total training loss of NORM to be minimized is defined as:

Ltotal = Lce + αLnorm, (4)

where Lce denotes the standard cross-entropy loss of the student network supervised by the ground
truth labels, and α is a positive coefficient (α = 10, as default) to weight the loss Lnorm.

Interpretation of NORM. The formulation of NORM can be interpreted as a novel way of learning
a dynamically mixed feature ensemble over multiple augmented views of the same student represen-
tation by forcing them to mimic the intact teacher representation simultaneously. More precisely,
in NORM, the first linear layer Wse acts as a set of independently initialized feature transforms to
generate N channel-expanded views of the student feature Fs whose representation abilities are then
parallelly augmented by the distillation supervision from the intact teacher feature Ft, and the second
linear layer Wsc performs a learnable ensemble of N distillation-augmented student feature views
via fully connected channel mixing operations (which make the feature ensemble Fsc has the same
size to Fs, guaranteeing the absorbable property of NORM at inference). Our mixed student feature
ensemble learning further benefits from the standard cross-entropy loss supervised by the ground
truth labels. In order to understand what enables the distillation effectiveness, we systematically
study the major components of NORM in the Experiments section.

Augmented NORM. Thanks to its simplicity, NORM can be easily augmented by additionally
introducing a vanilla logits based KD loss (at the network head) (Hinton et al., 2015) into Eq. 4:

Ltotal = Lce + αLnorm + βLkd, (5)

where Lkd matches the logits distribution of the student network to a target distribution produced by
the teacher network, and β is a positive coefficient (β = 4, as default). Besides, NORM can be also
combined with a contrastive KD loss (Tian et al., 2020) for improved results, as tested in experiments.

Implementation and Inference. As our FT module does not have any non-linear activation functions,
we empirically find that inserting it after the last convolutional layer of different student networks will
mostly lead to obvious accuracy drop in the standard training regime (individually train the student
model), but with NORM the performance of final student models will be improved significantly. To
suppress the accuracy drop issue, we add a linear residual connection (identity mapping, as shown in
Figure 1) from the input to the output of our student FT module, while maintaining the absorbable
property. In implementation, we use this student FT module as our default setting to NORM, and
set N = 8 for all main experiments (the choice of N is studied in Figure 2). For inference, let
Wfc ∈ RCs×Cfc denote the learnt parameters of the fully connected (FC) layer after the student FT
module Ts(Wse,Wsc), we can directly merge the student FT module into its subsequent FC layer
by Wfc = Wfc(WscWse + I), where I ∈ RCs×Cs is an identity matrix. Note that modern neural
networks typically have a global average pooling layer before the FC layer, and it does not affect the
absorbable property of our student FT module at inference. We put the proofs of them in the Appendix.

Differences with network re-parameterization methods. The absorbable property of our student
FT module is based on the network re-parameterization. In recent years, there have been lots of
network re-parameterization methods that are presented in the deep learning field. ACNet (Ding et al.,
2019) uses an absorbable multi-branch block based on 1D asymmetric convolutions to replace the
square convolution. RepVGG (Ding et al., 2021) presents an absorbable multi-branch block to replace
a stack of 3× 3 convolutions in VGG-like networks (Simonyan & Zisserman, 2015). This category
of methods focuses on strengthening the learning power of basic convolutions via equivalent multi-
branch alternatives, particularly from the perspective of network structure engineering in the standard
training regime. Clearly, our method differs with them both in focus, formulation and application.
ExpandNets (Guo et al., 2020b) and WIN (Zhou et al., 2020) leverage over-parameterization designs
based on linear expansion and contraction to improve the training of a thin network, which are more
closely related to our work. ExpandNets expand all convolutional and FC layers during training,
and convert the expanded network back to the original one at inference. WIN first trains a wider
network generated by uniformly expanding the width of all building blocks in a given thin network,
and uses it as the teacher. Then, it inserts a pair of linear expansion and contraction layers between
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Table 1: Top-1 mean accuracy (%) comparison on CIFAR-100. The teacher and student have the same
type network architectures. The results of the current mainstream KD methods are obtained from the
papers of CRD, SemCKD, ReviewKD, SimKD and DistPro. The plain FT and the default FT denote
our student feature transform module without and with a linear residual connection, respectively.
NORM+KD and NORM+CRD denote combining NORM with the vanilla logits based KD and the
contrastive KD, respectively. The best and second best results are bolded and underlined, respectively.

Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110 ResNet32x4 VGG13
Student WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet32 ResNet8x4 VGG8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student (reported in CRD) 73.26 71.98 69.06 69.06 71.14 72.50 70.36
Student (our reproduced) 73.80 71.70 69.53 69.53 71.56 72.87 70.75
Student (w/ 1 plain FT) 72.59 71.14 68.09 68.09 70.17 73.51 70.17
Student (w/ 1 default FT) 73.72 72.09 69.55 69.55 71.64 73.72 70.64

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT 74.08 72.77 70.55 70.22 72.31 73.44 71.43
SP 73.83 72.43 69.67 70.04 72.69 72.94 72.68
CC 73.56 72.21 69.63 69.48 71.48 72.97 70.71
VID 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT 74.54 73.45 70.34 70.25 72.61 73.64 72.88
AB 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT 73.25 71.59 69.84 70.22 72.37 72.86 70.58
FSP 72.91 n/a 69.95 70.11 71.89 72.62 70.23
NST 73.68 72.24 69.60 69.53 71.96 73.30 71.53
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94

SRRL n/a 74.64 n/a n/a n/a 75.39 n/a
SemCKD n/a 74.41 n/a n/a n/a 76.23 74.43
ReviewKD 76.12 75.09 71.89 n/a 73.89 75.63 74.84
SimKD n/a 75.56 n/a n/a n/a 78.08 n/a
DistPro 76.36 n/a 72.03 n/a 73.74 n/a n/a

NORM (w/ 1 plain FT) 75.57 74.78 70.70 71.01 73.27 76.76 73.64
NORM 75.65 74.82 71.35 71.55 73.67 76.49 73.95
NORM+KD 76.26 75.42 71.61 72.00 73.95 76.98 74.46
NORM+CRD 76.02 75.37 71.51 71.90 73.81 76.49 73.58

any two neighboring building blocks of the given thin network, and considers the sequential stacks
of expanded building blocks as a set of subnetworks, which are trained progressively one by one
using the one-to-one feature representation matching. ExpandNets and WIN all adopt the vanilla
KD (Hinton et al., 2015) to further fine-tune their trained models. In sharp contrast to them, our
method aims to advance two-stage feature distillation research by presenting a novel many-to-one
representation matching strategy conditioned on a single teacher-student layer pair. Accordingly, our
method inserts only one linear FT module to the last convolutional layer of a student network, without
need of multi-layer feature mimicking and progressive training with multiple restarts. Furthermore,
our method is applicable to various teacher-student pairs with both the same type and different type
network architectures. Comparatively, our method is a more simple and easy to use, and it (without
the vanilla KD) outperforms ExpandNets and WIN with large margins on ImageNet (see Table 6).

4 EXPERIMENTS

4.1 PERFORMANCE ON IMAGE CLASSIFICATION TASK

Datasets and experimental setups. We use CIFAR-100 (Krizhevsky & Hinton, 2009) and Ima-
geNet (Russakovsky et al., 2015) datasets for basic experiments. CIFAR-100, which consists of
50,000 training images and 10,000 test images with 100 classes, is a popular classification dataset
for KD research. Following the settings of CRD (Tian et al., 2020), we use 13 teacher-student pairs
having either the same type or different type network architectures (see Table 1,2) for experiments.
Each experiment is conducted for 5 separate runs, and we report top-1 mean recognition rate on the
test set. ImageNet contains over 1.2 million images for training and 50,000 images for validation,
including 1,000 image classes. Comparatively, ImageNet is much more challenging than CIFAR-100.
Following the settings of Tian et al. (2020); Yang et al. (2021); Chen et al. (2021b), we use 2 popular
teacher-student pairs (see Table 3) for experiments. We report top-1 recognition rate on the validation
set. For comprehensive comparisons, we compare our method with the current mainstream two-stage
and one-stage KD methods, including the vanilla KD (Hinton et al., 2015), FitNets (Romero et al.,
2015), AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), CC (Peng et al., 2019),
VID (Ahn et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), AB (Heo et al.,
2019b), FT (Kim et al., 2018), FSP (Yim et al., 2017), NST (Huang & Wang, 2017), CRD (Tian et al.,
2020), OFD (Heo et al., 2019a), SSKD (Xu et al., 2020), ONE (Lan et al., 2018), PCL (Wu & Gong,
2021), SRRL (Yang et al., 2021), ReviewKD (Chen et al., 2021b), SemCKD (Chen et al., 2021a),
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Table 2: Top-1 mean accuracy (%) comparison on CIFAR-100. The teacher and student have different
type network architectures. Basic settings are the same to those described in the caption of Table 1.

Teacher VGG13 ResNet50 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 VGG8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student (reported in CRD) 64.60 64.60 70.36 70.50 71.82 70.50
Student (our reproduced) 64.81 64.81 70.75 71.63 72.96 71.63
Student (w/ 1 plain FT) 63.95 63.95 70.17 71.82 72.55 71.82
Student (w/ 1 default FT) 64.13 64.13 70.64 71.76 72.71 71.76

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 63.16 70.69 73.59 73.54 73.73
AT 59.40 58.58 71.84 71.73 72.73 73.32
SP 66.30 68.08 73.34 73.48 74.56 74.52
CC 64.86 65.43 70.25 71.14 71.29 71.38
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
AB 66.06 67.2 70.65 73.55 74.31 73.34
FT 61.78 60.99 70.29 71.75 72.50 72.03
NST 58.16 64.96 71.28 74.12 74.68 74.89
CRD 69.73 69.11 74.30 75.11 75.65 76.05

SRRL n/a n/a n/a 75.18 n/a n/a
SemCKD n/a n/a n/a n/a 77.62 n/a
ReviewKD 70.37 69.89 n/a 77.45 77.78 77.14
SimKD n/a n/a n/a 77.18 n/a n/a
DistPro n/a n/a n/a 77.18 77.54 77.24

NORM (w/ plain FT) 69.37 70.94 74.37 75.93 77.34 76.61
NORM 68.94 70.56 75.17 77.42 78.07 77.06
NORM+KD 69.38 71.17 75.67 77.79 78.32 77.63
NORM+CRD 69.17 71.08 75.51 77.50 77.96 77.09

Table 3: Top-1 accuracy (%) comparison on ImageNet. The results in the bracket are for our
reproduced student baselines, and the results of the current mainstream KD methods are obtained
from the papers of CRD, SSKD, SRRL, SemCKD, ReviewKD, SimKD and DistPro.

Teacher Student CC SP ONE PCL SSKD KD AT OFD RKD CRD SRRL SemCKD ReviewKD SimKD DistPro NORM

ResNet34 | 73.31 ResNet18 | (70.13) 69.96 70.62 70.55 70.42 71.62 70.68 70.59 71.08 71.34 71.17 71.73 70.87 71.61 71.66 71.89 72.14
ResNet50 | 76.16 MobileNet | (69.63) n/a n/a n/a n/a n/a 70.68 70.72 71.25 71.32 71.40 72.49 n/a 72.56 n/a 73.26 74.26

SimKD (Chen et al., 2022) and DistPro (Deng et al., 2022). All experiments are implemented with
PyTorch (Paszke et al., 2019). Experimental details are put in the Appendix.

Results on CIFAR-100. Table 1 shows the results comparison on CIFAR-100 with 7 teacher-student
pairs having the same type network architectures. In average, NORM brings 2.88% top-1 gain to the
baseline student models, with the maximal gain of 3.99%. Table 2 provides the results comparison
with 6 teacher-student pairs having different type network architectures. In average, NORM brings
5.81% top-1 gain to the baseline student models, with the maximal gain of 6.92%. Generally, NORM
shows very competitive results compared to the current mainstream KD methods which usually adopt
multi-layer feature distillation schemes. Note that many top KD methods use the vanilla logits based
distillation (Hinton et al., 2015) as the extra supervision. Besides, CRD, SRRL and SSKD utilize
the contrastive learning to augment knowledge distillation process. In Table 1 and Table 2, we also
explore the compatibility of NORM with these two types of distillation regularization (denoted as
NORM+KD and NORM+CRD). We can see that: (1) the vanilla logits based distillation can further
improve the performance of NORM, showing 0.46% extra gain in average, with the maximal extra
gain of 0.61%; (2) the contrastive learning can also improve the performance of NORM in most cases,
showing 0.18% extra gain in average, with the maximal extra gain of 0.55%. Finally, NORM+KD
achieves the best and the second best results on 7 and 4 of 13 teacher-student pairs, respectively.

Results on ImageNet. Table 3 shows the results comparison on ImageNet. We can see that our
method always shows the best performance compared to these competing KD methods. Specifically,
for the teacher-student pair of ResNet34→ResNet18, NORM improves top-1 accuracy of the student
model from 70.13% to 72.14%, outperforming the current best method by a margin of 0.25%. Taking
a pre-trained ResNet50 as the teacher model and a MobileNet (Howard et al., 2017) as the target
student, the MobileNet model trained by NORM attains 74.26% top-1 accuracy, showing 4.63% gain
to the baseline model trained individually. Compared to ResNet34→ResNet18, the capacity gap of
the teacher and student network becomes larger for ResNet50→MobileNet. Under this context, the
top-1 margin of NORM against the current best method is pronounced, reaching 1.00%.

4.2 ABLATION STUDY

To have a deep analysis of NORM, we further provide a lot of ablative experiments mostly performed
on CIFAR-100, unless otherwise stated. For the experiments on CIFAR-100, we run our method 5
times for each setting with random initialized seeds, and report top-1 mean recognition rate.
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Figure 2: The selection of N . On CIFAR-100
with ResNet32x4→ResNet8x4, we compare the
performance of NORM with different N settings.

Figure 3: The selection of α. On CIFAR-100
with ResNet32x4→ResNet8x4, we compare the
performance of NORM (N = 8) by changing α.

Table 4: Top-1 accuracy (%) comparison of ap-
plying NORM to more teacher-student layer pairs.
On ImageNet with ResNet34→ResNet18, we in-
sert 2 FT modules (N = 8) after conv5 x (our
default design) and conv4 x of ResNet18, and
compare the following two settings: (1) using
NORM to the same staged teacher-student layer
pairs; (2) forcing the student representations ex-
panded from conv4 x and conv5 x to match the
teacher representation learnt from conv5 x. Plain
FT does not have a linear residual connection.

Layer pair# 1 (default) 2 (same staged) 2 (cross staged)

NORM (w/ plain FT) 71.42 71.40 70.89
NORM 72.14 72.03 71.49

Figure 4: The role of many-to-one representation
matching. On CIFAR-100 with ResNet32x4→
ResNet8x4, we compare the performance of NOR-
M using n (1≤n≤N ) of N = 8 student feature
segments to match the teacher representation.

The selection of N and α. In our formulation, NORM has two hyper-parameters: N to control the
desired number of representation matching routes between a single teacher-student layer pair and α
to weight the many-to-one representation matching loss Lnorm. Accordingly, our first two sets of
ablative experiments on CIFAR-100 are conducted for the selection of N and α. Specifically, we
use a teacher-student pair of ResNet32x4→ResNet8x4. Figure 2 and Figure 3 show the performance
comparison of NORM with different settings of N and α, respectively. From Figure 2, we can
observe that: (1) increasing N from 1 to 2 brings 2.28% extra accuracy gain; (2) this gain becomes
larger when N gradually increases, and reaches the first peak value at N = 8 (3.02% to N = 1 and
3.62% to the baseline student model). To balance training accuracy and efficiency, we set N = 8 for
the experiments both on CIFAR-100 and ImageNet. According to Figure 3, we typically set α = 10
for the experiments on CIFAR-100. For the experiments on ImageNet, we empirically set α = 8.

The role of the many-to-one representation matching. In NORM, the many-to-one representation
matching is performed after sequentially splitting the expanded student representation into N non-
overlapping segments having the same number of feature channels as the teacher’s. Given N student
segments, is it necessary to force them to simultaneously approximate the teacher representation?
Again, we use the teacher-student pair of ResNet32x4→ResNet8x4 with N = 8 to explore this
question. From Figure 4, we can see: the more the segments used to match the teacher representation,
the larger the accuracy gain. Specifically, using all 8 segments outperforms using only 1 of 8 segments
by a margin of 0.98%. Moreover, using 1 of 8 segments for representation matching (75.51% vs.
73.47%) is much better than N = 1 in Figure 2. These results validate the advantage of our design.

Applying NORM to more teacher-student layer pairs. Recall that NORM performs the proposed
many-to-one representation matching between a single teacher-student layer pair, as our FT module
is merely inserted after the last convolutional layer of the student network. A natural question is
how about the performance when applying NORM to multiple teacher-student layer pairs. We study
this question on ImageNet with ResNet34 as teacher and ResNet18 as student. In the experiments,
we add two FT modules (N = 8) after conv5 x (our default design) and conv4 x of ResNet18, and
consider the following two settings: (1) applying NORM to the same staged teacher-student layer
pairs simultaneously; (2) forcing two different staged student representations to simultaneously match
the teacher representation from conv5 x. Architectural illustrations of these two NORM variants
are referred to the Appendix. From the results shown in Table 4 we can see that these two variant
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Table 5: The effect of linear FT modules to top-1
baseline accuracy (%). On ImageNet, we insert 1
or 2 our linear FT modules into the ResNet-18 net-
work, and train it from scratch individually. Plain
FT does not have a linear residual connection.

FT module number 0 (baseline) 1 2

ResNet18 (w/ plain FT) 70.13 69.20 68.70
ResNet18 (w/ default FT) 70.13 70.40 70.39

Table 6: Top-1 accuracy (%) comparison of NOR-
M with network re-parameterization methods us-
ing KD. The results of ExpandNets and Win on
ImageNet are obtained from their original paper-
s (Guo et al., 2020b; Zhou et al., 2020).

Student model ExpandNets+KD WIN+KD NORM

MobileNet 70.47 N/A 74.26
ResNet50-1/4 N/A 67.50 68.03

designs lead to worse results than our default design no matter the FT module has a linear residual
connection or not, although both of them improve the student accuracy. At first blush, this might seem
surprising, since multi-layer feature matching strategies are widely used in KD research (Zagoruyko
& Komodakis, 2017; Yim et al., 2017; Heo et al., 2019b; Srinivas & Fleuret, 2018; Heo et al., 2019a;
Chen et al., 2021a). As we explained next, this is due to our linear FT modules.

The effect of linear FT modules. Someone may concern that the model accuracy improvement
may mainly from inserting a linear FT module into each student network. Accordingly, we conduct
ablative experiments on ImageNet to explore this concern. In the experiments, we add 1 or 2
linear FT modules into ResNet18 (after conv4 x and conv5 x) first, then train each of them from
scratch individually. We consider the linear FT module without or with a linear residual connection,
separately. Table 5 shows the results. We can observe that adding one linear FT module without a
linear residual connection into ResNet18 leads to obvious accuracy drop (0.93%), and the accuracy
drop becomes more serious when adding two this type FT modules. The accuracy drop issue is
suppressed by our default FT module having a linear residual connection which only brings marginal
model accuracy improvement. Similarly, adding two default FT modules into ResNet18 shows
slightly worse model accuracy compared to just adding one. Furthermore, in Table 1 and Table 2, we
provide the individually trained model results when adding our two types of FT modules separately
to many different student networks on CIFAR-100, and similar observations can be found. These
experimental observations are mainly due to the structure of our FT modules. Note that our FT design
does not contain popular non-linear activation functions which are critical to stabilize and improve the
training process, in order to gain the absorbable property for maintaining efficient inference. Because
of this, applying NORM to more teacher-student layer pairs does not achieve further improved
performance compared to NORM conditioned on the last convolutional pair, as shown in Table 4.

Performance comparison with network re-parameterization methods. In Section 3.2, we discuss
the connections and differences of NORM and network re-parameterization methods. In Table 6,
we further compare their performance on ImageNet. Clearly, our method obtains more accurate
student models than top network re-parameterization methods that also apply knowledge distillation
during training. Specifically, for the MobileNet (student), NORM without KD reaches 74.26% top-1
accuracy with a pre-trained ResNet50 as teacher, while ExpandNets (Guo et al., 2020b) with KD gets
70.47% top-1 accuracy using a pre-trained ResNet152 as teacher; for the ResNet50-1/4 (student),
NORM without KD reaches 68.03% top-1 accuracy with a pre-trained ResNet50 (teacher), while
WIN (Zhou et al., 2020) with KD gets 67.50% top-1 accuracy using a pre-trained wide teacher which
is 4 times larger than the student.

More experiments and discussions. Please note that in the Appendix, we provide more ablative
experiments, for a better understanding of NORM. The limitations of NORM are also discussed.

5 CONCLUSION

In this paper, we present NORM, a new two-stage feature distillation method. It relies on a linear
feature transform module inserted after the last convolutional layer of the student network, and
enables a novel many-to-one representation matching mechanism conditioned on a single teacher-
student layer pair via feature expansion, splitting and group-wise mimicking. Thanks to its linear
property, after training such a feature transform module will be naturally merged into the subsequent
FC layer, maintaining the same student network architecture at inference. Extensive experiments
on popular image recognition benchmarks show that NORM can attain promising performance in
both distillation accuracy and efficiency. We hope NORM would inspire the community to pay more
attention to many-to-one representation matching research.
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A APPENDIX

A.1 PROOFS OF THE ABSORBABLE PROPERTY OF OUR FEATURE TRANSFORM MODULES

Here we provide the proofs to show that our feature transform (FT) module without or with a linear
residual connection (identity mapping) could be merged into the subsequent fully connect (FC) layer
of the student network after training.

Given a student network S, let Ts(Wse,Wsc) denote an FT module (without a linear residual
connection) inserted after the last convolutional layer of S, let Wfc denote the weight matrix of the
subsequent FC layer, let F ∈ RH×W×Cs denote the input feature maps of Ts, where H , W and Cs

are the channel height, width and number, respectively. For inference, the mathematical operations
from the FT module to the subsequent FC layer can be defined as:

F
′
=Wsc ∗ (Wse ∗ F ), O =Wfc(GAP (F

′
)), (6)

where ∗ denotes the convolution operation, Wse ∈ R1×1×Cs×NCt ,Wsc ∈ R1×1×NCt×Cs denote
two point-wise convolutional kernels for channel expansion and contraction, respectively; Wfc ∈
RCs×Cfc in the FC layer can be also seen as a point-wise convolutional kernel; GAP denotes global
average pooling operation; F

′ ∈ RH×W×Cs denotes the output feature maps of the FT module;
O ∈ RCfc denotes the output vector of the FC layer.

We use Fi,j ∈ RCs to denote the vector of channel pixels at spatial location (i, j) of F . For the
point-wise convolutional kernel Wse, we have:

(Wse ∗ F )i,j =WseFi,j . (7)

Therefore, the vector of channel pixels at spatial location (i, j) of F
′

can be calculated as:

F
′

i,j = (Wsc ∗ (Wse ∗ F ))i,j =Wsc(WseFi,j) = (WscWse)Fi,j , (8)

then we can write:

O =WfcGAP (F
′
)

=Wfc

H∑
i=1

W∑
j=1

F
′

i,j

HW

=Wfc

H∑
i=1

W∑
j=1

(WscWse)Fi,j

HW

= (WfcWscWse)

H∑
i=1

W∑
j=1

Fi,j

HW

=W
′

fcGAP (F ),

(9)

where W
′

fc = WfcWscWse. Now, it is clear that we can directly merge the FT module (without a
linear residual connection) into its subsequent FC layer of the student network at inference.

For the FT module with a linear residual connection, the calculation of F
′

is defined as:

F
′

i,j = (Wsc ∗ (Wse ∗ F ) + F )i,j

= (Wsc(WseF ))i,j + Fi,j

= (WscWse)Fi,j + Fi,j

= (WscWse + I)Fi,j ,

(10)
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where I ∈ RCs×Cs is an identity matrix. Then we have:

O =Wfc

H∑
i=1

W∑
j=1

F
′

i,j

HW

=Wfc

H∑
i=1

W∑
j=1

(WscWse + I)Fi,j

HW

=Wfc(WscWse + I)

W∑
i=1

W∑
j=1

Fi,j

HW

=W
′

fcGAP (F ).

(11)

where W
′

fc =Wfc(WscWse + I). Again, it is clear that we can directly merge the FT module (with
a linear residual connection) into its subsequent FC layer of the student network at inference.

A.2 DATASETS AND IMPLEMENTATION DETAILS

Recall that our basic experiments are conducted on two image classification datasets: CIFAR-
100 (Krizhevsky & Hinton, 2009) and ImageNet (Russakovsky et al., 2015). This section provides
the experimental details.

A.2.1 IMAGE CLASSIFICATION ON CIFAR-100

CIFAR-100, which consists of 50,000 training images and 10,000 test images with 100 classes, is
a popular classification dataset for KD research. Following the settings of CRD (Tian et al., 2020),
we use 13 teacher-student pairs having either the same type or different type network architectures
(see Table 1,2 in the main paper) for experiments. Each experiment is conducted for 5 separate runs,
and we report top-1 mean recognition rate on the test set. For fair comparisons, we use the same
training settings to conduct the experiments with our method, following CRD. Specifically, for each
teacher-student pair, the model is trained by the stochastic gradient descent (SGD) optimizer for
240 epochs, with a batch size of 64, a weight decay of 0.0005 and a momentum of 0.9. The initial
learning rate is set to 0.1 and decreased by a factor of 10 at epoch 150, 180 and 210.

All models are trained on an Intel Xeon Silver 4214R CPU server using one NVIDIA GeForce RTX
3090 GPU.

A.2.2 IMAGE CLASSIFICATION ON IMAGENET

ImageNet is much more challenging than CIFAR-100, which contains over 1.2 million images for
training and 50,000 images for validation, including 1,000 image classes. Following the settings
of Tian et al. (2020); Yang et al. (2021); Chen et al. (2021b), we use 2 popular teacher-student pairs
(see Table 3 in the main paper), namely ResNet34→ResNet18 and ResNet50→MobileNet (Howard
et al., 2017), for experiments. For fair comparisons, we adopt the standard data augmentation to train
and evaluate each network. For training, we first resize the input images to 256× 256, then randomly
sample 224 × 224 image crops or their horizontal flips. We standardize the cropped images with
mean and variance per channel. For evaluation, we use the center crops of the resized images, and
report top-1 recognition rate on the ImageNet validation set.

Training setup for ResNet34→ResNet18. The model is trained by SGD optimizer for 100 epochs,
with a batch size of 256, a weight decay of 0.0001 and a momentum of 0.9. The initial learning rate
is set to 0.1 and decreased by a factor of 10 every 30 epochs.

Training setup for ResNet50→MobileNet. The model is trained by SGD optimizer for 100 epochs,
with a batch size of 256, a weight decay of 0.0001 and a momentum of 0.9. The initial learning rate
is set to 0.1 and and scheduled to arrive at zero with a cosine decaying strategy.

All models are trained on an Intel Xeon Silver 4214R CPU server with 2 NVIDIA GeForce RTX
3090 GPUs.
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A.3 APPLYING NORM TO MORE TEACHER-STUDENT LAYER PAIRS

Since our FT module is merely inserted after the last convolutional layer of a student network,
NORM performs the proposed many-to-one representation matching between a single teacher-student
layer pair. A natural question is how about the performance when applying NORM to multiple
teacher-student layer pairs. In the main paper, we provide a set of ablative experiments to explore
this question on ImageNet with ResNet34 as teacher and ResNet18 as student (see Table 4 in the
main paper). In the experiments, we add two linear student FT modules (N = 8) after conv5 x (our
default design) and conv4 x of ResNet18, and consider the following two settings: (1) using the
same staged teacher-student representations for many-to-one matching simultaneously; (2) forcing
two different staged student representations to match the teacher representation from conv5 x. For
the teacher-student layer pair of conv5 x→conv4 x, we apply a 2× 2 average pooling with a stride
of 2 to the expanded student representation in order to match the spatial dimension of the teacher
representation. Figure 5 shows an architectural overview of these two NORM variants.
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Figure 5: Architectural overview of applying NORM to two teacher-student layer pairs. For the
ablative experiments on ImageNet with ResNet34 as teacher and ResNet18 as student (Table 4 in the
main paper), we add two linear FT modules (N = 8) after conv5 x (our default design) and conv4 x
of ResNet18, and consider the following two settings: (1) applying NORM to two same staged
teacher-student layer pairs (after conv4 x and conv5 x) simultaneously (the figure in the first row);
(2) forcing the student representations expanded from conv4 x and conv5 x to match the teacher
representation from conv5 x (the figure in the second row). For the teacher-student layer pair of
conv5 x→conv4 x, we apply a 2 × 2 average pooling with a stride of 2 to the expanded student
representation in order to match the spatial dimension of the teacher representation.

A.4 CONTRACTING TEACHER REPRESENTATION

In our formulation, NORM enables the many-to-one representation matching via expanding the
student representation to have N times feature channels than the teacher’s. Naturally, a reversed way
for enabling the many-to-one representation matching is to contract the teacher representation to
have 1/N times feature channels than the student’s. In principle, such a reversed NORM variant is
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Table 7: Comparison of expanding student representation vs. contracting teacher representation.
On ImageNet with a teacher-student pair ResNet34→ResNet18, we compare NORM (N = 8 and
α = 8) with a reversed NORM variant which enables the many-to-one representation matching via
contracting the teacher representation to have 1/N feature channels than the student’s.

Student Baseline NORM (default) Reversed NORM

ResNet18 (w/ plain FT) 70.13 71.42 70.82
ResNet18 (w/ default FT) 70.13 72.14 71.20

Table 8: Effect of different distance metrics. On CIFAR-100, we compare the performance of using
3 different distance metrics to compute the many-to-one representation matching loss of NORM
(N = 8 and α = 10).

Distance metric l1-norm l2-norm (default) MMD

ResNet32x4→ResNet8x4 75.10 76.49 76.62

more efficient than NORM. However its performance is limited by the information missing caused
by dimension reduction to the teacher representation. To validate this problem, we perform a set of
ablative experiments on ImageNet with ResNet34 as teacher and ResNet18 as student. We compare
NORM (using a linear FT module either with or without a linear residual connection) and the
reversed NORM (using a popular FT consisting of one 1 × 1 convolutional layer). Table 7 shows
detailed results, from which we find the reversed NORM can also improve the baseline student but
performs obviously worse than NORM. Specifically, NORM outperforms the reversed NORM by a
top-1 margin of 0.60% and 0.94% for the FT module without and with a linear residual connection,
respectively.

A.5 PERFORMANCE COMPARISON WITH NETWORK RE-PARAMETERIZATION METHODS

In Table 6 of the main paper, we compare the performance of NORM with two network re-
parameterization methods on the ImageNet dataset, which also apply the vanilla logits based KD
during model training. For the student MobileNet, a pre-trained ResNet50 is used as the teacher in
NORM, while a more powerful ResNet152 is used as the teacher in the paper of ExpandNets (Guo
et al., 2020b) when performing the logits based KD. Even with a less powerful teacher model, the
MobileNet model trained by our NORM without the logits based KD is obviously more accurate
than that trained by ExpandNets+KD, showing 3.79% top-1 gain. For the student ResNet50-1/4, we
follow basic training settings of WIN (Zhou et al., 2020). Specifically, a pre-trained ResNet50 is
used as our teacher. The student model is trained by SGD optimizer for 100 epochs, with a batch
size of 256, a weight decay of 0.0001 and a momentum of 0.9. The initial learning rate is set to
0.1 and scheduled to arrive at zero with a cosine decaying strategy. Strong augmentations like label
smoothing (Szegedy et al., 2016) and mixup (Zhang et al., 2018a) are not used in our method. After
training, for the ResNet50-1/4 (student), NORM without KD reaches 68.03% top-1 accuracy with a
pre-trained ResNet50 (teacher), while WIN (Zhou et al., 2020) with KD gets 67.50% top-1 accuracy
using a pre-trained wide teacher which is 4 times larger than the student.

A.6 EFFECT OF DIFFERENT DISTANCE METRICS

In NORM, we use the l2-norm distance metric to compute the many-to-one representation matching
loss Lnorm defined in Eq. 3 of the main paper. In Table 8, we compare the performance of our method
with three different distance metrics including l2-norm (our choice), l1-norm and mean maximum
discrepancy (MMD). In the experiments, we use the teacher-student pair of ResNet32x4→ResNet8x4
withN = 8 and α = 10. Comparatively, l2-norm is superior to l1-norm. With MMD, NORM reaches
76.62% accuracy for the student model, showing 0.13% improvement to l2-norm. This indicates that,
with a better distance metric, our method might yield a student model with higher accuracy. We
currently choose the l2-norm distance metric owing to its simplicity and effectiveness.

A.7 TRAINING COST COMPARISON

Table 9 shows a comparison of the total training cost of NORM and the individual training. We can
see that the total training cost of NORM for the student ResNet18, MobileNet and ResNet50-1/4 is
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Table 9: Training cost comparison. All models are trained on ImageNet with the same settings to
those for Table 3 and Table 6 in the main paper, using an Intel Xeon Silver 4214R CPU server with
two NVIDIA GeForce RTX 3090 GPUs.

Teacher-student pair Total training cost of individual training (hour) Total training cost of NORM (hour)

ResNet34→ResNet18 24.14 67.11
ResNet50→ResNet50-1/4 39.92 97.28
ResNet50→MobileNet 30.33 72.52

2.78×, 2.48×, 2.39× than the individual training, with the teacher network ResNet34, ResNet50
and ResNet50-1/2, respectively. These results indicate that NORM is efficient since it uses the
standard teacher-student training framework in which the pre-trained teacher model runs in the
forward phase of the whole training procedure. The forward time of the teacher can be saved by
offline representation pre-computing. For easy implementation, we do not use it.

A.8 VISUALIZATION RESULTS

NORM achieves the feature distillation goal with the proposed many-to-one representation matching
mechanism at a single teacher-student layer pair. This means that the feature distribution of the
student network would be more similar to that of the teacher network after NORM training, compared
to the individual training. Under this context, it is necessary to study the learnt feature distributions
with and without NORM. To this end, we use a teacher-student model pair (ResNet110→ResNet32)
well trained by NORM (N = 8 and α = 10) on the CIFAR-10 dataset (which is popularly used
to analyze the learnt feature distributions in KD research) and all images in the validation set, and
conduct a set of experiments to analyze the learnt last-layer feature distributions using t-SNE (Maaten
& Hinton, 2008). Comparative visualization results are shown in Fig. 6, from which we can observe
that NORM shows relatively strong feature mimicking capability. Each color denotes one image
category in the learnt feature distribution.

Figure 6: Comparison of learnt feature distributions. We use a well-trained ResNet110→ResNet32
model pair (N = 8 and α = 10) on the CIFAR-10 dataset and all images in the validation set, and
conduct a set of experiments to analyze the learnt last-layer feature distributions using t-SNE (Maaten
& Hinton, 2008). The left figure shows the feature distribution from an individually trained student
model; the middle figure shows the feature distribution from the student model trained by NORM;
and the right figure shows the feature distribution from the pre-trained teacher model. We can observe
that NORM shows relatively strong feature mimicking capability. Each color denotes one image
category in the learnt feature distribution.

A.9 MORE EXPERIMENTS AND DISCUSSIONS FOR THE REBUTTAL

In this section, we provide a lot of extra experiments and discussions provided for the rebuttal1.

A.9.1 A SYSTEMATIC STUDY OF NORM

So far, we have provided several sets of ablative experiments to show: (1) a large N value is much
better thanN = 1, see Figure 2; (2) given the expanded student representation consisting ofN feature
segments, the more the feature segments used to match the teacher representation, the larger the
accuracy gain, see Figure 4; (3) inserting a linear FT module into different student networks usually
does not bring accuracy improvement under the individual training, see Table 1, Table 2 and Table 5.

1We would like to acknowledge the contributions by intern Jiawei Fan supervised by Anbang Yao. He
conducted the experiments to test the effectiveness of our method on image segmentation task, object detection
task, and image classification with the masked generative learning.
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Table 10: The role of the learnable ensemble layer (i.e., the second linear layer of our student FT
module). On ImageNet with a teacher-student pair ResNet34→ResNet18, we compare NORM
(N = 8 and α = 8) with 3 different student FT designs. Best result is bolded.

Methods Top-1 accuracy (%)

Baseline 70.13
NORM + a default 2-layer FT module 72.14
NORM + a 2-layer FT module w/ the fixed ensemble layer 71.91
NORM + a 3-layer FT module 72.21

Table 11: The role of the student FT module initialization. On ImageNet with a teacher-student pair
ResNet34→ResNet18, we compare NORM (N = 8 and α = 8) with 3 different weights initialization
strategies. Best result is bolded.

Methods Top-1 accuracy (%)

Baseline 70.13
NORM (N=1) 71.23
NORM (N=8) + default weights initialization 72.14
NORM (N=8) + initialization with a higher weights variance 72.22
NORM (N=8) + initialization with the same weights to N student feature segments 72.08

In order to better understand what enables the distillation effectiveness, here we systematically study
the major components of NORM from the following four more aspects.

All following ablative experiments are performed on ImageNet dataset with ResNet34 as teacher and
ResNet18 as student, N = 8 and α = 8.

The role of the learnable ensemble layer. In light of the interpretation of NORM given in the
Method section, the second linear layer Wsc of our student FT module performs a learnable ensemble
of N distillation-augmented student feature views via fully connected channel mixing operations.
Accordingly, we conduct a set of ablative experiments to explore the role of this component. In
the experiments, we compare NORM with 3 different student FT designs: (a) our default two-layer
student FT module, (b) a two-layer student FT module with the fixed ensemble layer (i.e., feature
channels from different segments are sequentially averaged), and (c) a three-layer student FT module
(i.e., having two same-size linear layers as a learnable ensemble). Detailed results are summarized
in Table 10. It can be seen that all three student FT modules bring clear accuracy improvements,
validating the importance of the second linear layer for ensembling N augmented student feature
views. Comparatively, NORM with the learnable ensemble layer is better than NORM with the
fixed ensemble layer, and further improved result is attained when using a more complex learnable
ensemble (two-layer).

The role of the student FT module initialization. Note that N expanded student feature segments
generated by the first linear layer of our student FT module enable the many-to-one representation
matching. Next, we perform a set of ablative experiments to study the effect of different weights
initialization strategies for the first linear layer. In the experiments, we compare NORM with 3
different weights initialization strategies: (a) the default weights initialization we used, (b) initializa-
tion with a higher weights variance (8× of the default), and (c) initialization with the same weights
to N segments. Detailed results are summarized in Table 11. It can be seen that all three weights
initialization strategies get promising performance, showing the robustness of our method to different
initialization strategies. Comparatively, initialization with a higher weights variance tends to bring a
bit more gain. What’s more, initialization with the same weights to N = 8 segments is much better
than N = 1. This benefits from the second linear layer which uses fully connected operations for
dynamically mixed feature ensembling. As a result, the gradients are different to the weight groups
initialized with the same values, producing different student feature segments (we also confirm this
by recording and comparing them on the fly) to match the teacher representation.

The role of the designs to construct the many-to-one representation matching. NORM enables
the many-to-one representation matching via expanding the student representation to have N times
feature channels than the teachers. We can also construct multiple student-to-teacher matching
routes in other ways. Accordingly, we perform another set of ablative experiments to study the
effect of different designs to construct the many-to-one representation matching. In the experiments,
we compare 5 different designs: (a) our default design, (b) a reversed design (contracting the
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Table 12: The role of the designs to construct the many-to-one representation matching. On ImageNet
with a teacher-student pair ResNet34→ResNet18, we compare NORM (N = 8 and α = 8) with 5
different designs to construct the many-to-one representation matching. Best result is bolded.

Methods Top-1 accuracy(%)

Baseline 70.13
NORM (default, student-to-teacher matching routes N : 1) 72.14
Reversed NORM (1 FT to contract teacher features, w/o our linear student FT module, N : 1) 71.20
Reversed NORM (N teacher FTs, w/o our linear student FT module, 1 : N ) 71.18
Paired NORM (N teacher FTs, N student FTs, N : N ) 70.62
Paired NORM (N teacher FTs, w/ our linear student FT module, N : N ) 71.78

Table 13: The role of the ways to split the expanded student representation. On ImageNet with a
teacher-student pair ResNet34→ResNet18, we compare NORM (N = 8 and α = 8) with 3 different
feature splitting strategies. Best result is bolded.

Methods Top-1 accuracy (%)

Baseline 70.13
NORM + sequential feature splitting (default) 72.14
NORM + random feature splitting 72.13
NORM + importance-based feature splitting 72.15

teacher representation by a single FT to have 1/N times feature channels than the students, without
using our linear student FT module), (c) a reversed design (using N independent FTs to the teacher
representation, without using our linear student FT module), (d) a paired design (usingN independent
FTs to the teacher representation and another N independent FTs to the student representation), and
(e) a paired design (using N independent FTs to the teacher representation, and using our linear
student FT module). Detailed results are summarized in Table 12. It can be seen that all five designs
improve the performance of the student network, validating the importance of the many-to-one
representation matching concept. Comparatively, our default design achieves the best performance,
and the designs that apply a single FT or multiple FTs to the teacher representation show obviously
worse performance due to the information loss (that is, it is important to preserve the intact pre-trained
teacher representation).

The role of the ways to split the expanded student representation. In NORM, for simplicity, we
sequentially split the expanded student representation intoN feature segments. Our last set of ablative
experiments is to study the effect of different feature splitting strategies. In the experiments, we
test NORM with 3 different feature splitting strategies: (a) sequential feature splitting, (b) random
feature splitting, and (c) importance-based feature splitting in which we first sort feature channels in
descending order based on the learnt mean values of channel-wise batch normalization parameters at
the fifth epoch, and then use sequential feature splitting to enable our many-to-one representation
matching. Detailed results are summarized in Table 13. It can be seen that all three feature splitting
strategies show almost the same performance. This is because that there is no semantic channel-wise
alignment between the teacher and the expanded student representations before the many-to-one
representation matching.

Based on all ablations described above, we validate the roles of the major components of our method,
and provide a deep understanding of what enables the distillation effectiveness of NORM.

A.9.2 SEMANTIC SEGMENTATION ON CITYSCAPES DATASET

In order to test the effectiveness of our method on image segmentation task, we perform two sets of
experiments with Cityscapes dataset (Cordts et al., 2016). Cityscapes dataset contains 5000 images
with a split of 2975, 500 and 1525 images are for training, validation and test, respectively. In the
experiments, we test our method with both same type and different type teacher-student network pairs
for semantic segmentation, and compare it with SKD (Liu et al., 2019a), IFVD (Wang et al., 2020),
CWD (Shu et al., 2021), CIRKD (Yang et al., 2022a) and MGD (Yang et al., 2022c). Specifically, we
test our method using DeepLabV3-ResNet101 (Chen et al., 2017) as teacher network and DeepLabV3-
ResNet18 as student network first, and then using PSPNet-ResNet101 (Zhao et al., 2017) as teacher
network and DeepLabV3-ResNet18 as student network, following the training and test settings
used in very recent works of CIRKD and MGD. We add NORM (N = 2 for training efficiency)
after the last feature layer of DeepLabV3-ResNet18. All models are trained with 8 NVIDIA Tesla
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Table 14: Results comparison on Cityscapes dataset with the same type teacher-student network pair.
Best result is bolded.

Teacher Student Methods Performance (mIOU, %)

DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) SKD 75.42
DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) IFVD 75.59
DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) CWD 75.55
DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) CIRKD 76.38
DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) MGD n/a
DeepLabV3-ResNet101 (78.07) DeepLabV3-ResNet18 (74.21) NORM (ours) 77.03

Table 15: Results comparison on Cityscapes dataset with the different type teacher-student network
pair. Best result is bolded.

Teacher Student Methods Performance (mIOU, %)

PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) SKD 73.87
PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) IFVD n/a
PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) CWD 75.93
PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) CIRKD n/a
PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) MGD 76.02
PSPNet-ResNet101 (78.34) DeepLabV3-ResNet18 (73.20) NORM (ours) 76.51

V100-SXM3 GPUs. Detailed results are summarized in Table 14 and Table 15. It can be seen that our
method achieves new state-of-the-art results on these two teacher-student network pairs, validating its
effectiveness in handling semantic segmentation task.

A.9.3 OBJECT DETECTION ON MS COCO DATASET

In order to test the effectiveness of our method on object detection task, we also perform two sets of
experiments with MS COCO dataset (Lin et al., 2014). MS COCO dataset (2017 version) contains
118,000 training images and 5,000 validation images with 80 object classes. In the experiments, we
test our method with both same type and different type teacher-student network pairs, and compare it
with FKD (Zhang & Ma, 2021), CWD (Shu et al., 2021), FGD (Yang et al., 2022b) and MGD (Yang
et al., 2022c). Specifically, we test our method using RetinaNet-ResNeXt101 (Lin et al., 2017b) as
teacher detector and RetinaNet-ResNet50 as student detector first, and then using Cascade Mask
RCNN-ResNeXt101 (He et al., 2017) as teacher detector and Faster RCNN-ResNet50 (Ren et al.,
2015) as student detector, following the training and test settings used in very recent papers of FGD
and MGD. We add NORM (N = 4 for training efficiency) after each output of the FPN neck (Lin
et al., 2017a) of RetinaNet-ResNet50/Faster RCNN-ResNet50. All models are trained with 8 NVIDIA
Tesla V100-SXM3 GPUs. Detailed results are summarized in Table 16 and Table 17. It can be seen
that our method achieves new state-of-the-art mAP results on these two teacher-student detector pairs,
validating its effectiveness in handling object detection task.

A.9.4 MORE DISCUSSIONS AND EXPERIMENTS

Here, we additionally discuss some potential extensions of NORM.

NORM vs. self-supervised learning methods. Recently, self-supervised learning research with
self-distillation settings (a particular type of unsupervised learning) has attracted increasing attention.
In this line of research (e.g., SimCL (Chen et al., 2020b), MoCo (He et al., 2020), SwAV (Caron
et al., 2020), BYOL (Grill et al., 2020), DenseCL (Wang et al., 2021), DINO (Caron et al., 2021),
iGPT (Chen et al., 2020a), iBOT (Zhou et al., 2022), BeiT (Bao et al., 2022) and MAE (He et al.,
2022)), matching N features of the student to N features of the teacher by referring to dense features
of different image patches has been explored. Indeed, they also have the concept of many parallel

Table 16: Results comparison on MS COCO dataset with the same type teacher-student network pair.
Best result is bolded.

Teacher Student Methods mAP (%) APS (%) APM (%) APL (%)

RetinaNet-ResNeXt101 (41.0) RetinaNet-ResNet50 (37.4) FKD 39.6 22.7 43.3 52.5
RetinaNet-ResNeXt101 (41.0) RetinaNet-ResNet50 (37.4) CWD 40.8 22.7 44.5 55.3
RetinaNet-ResNeXt101 (41.0) RetinaNet-ResNet50 (37.4) FGD 40.7 22.9 45.0 54.7
RetinaNet-ResNeXt101 (41.0) RetinaNet-ResNet50 (37.4) MGD 41.0 23.4 45.3 55.7
RetinaNet-ResNeXt101 (41.0) RetinaNet-ResNet50 (37.4) NORM (ours) 41.1 23.3 45.3 55.7
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Table 17: Results comparison on MS COCO dataset with the different type teacher-student network
pair. Best result is bolded.

Teacher Student Methods mAP (%) APS (%) APM (%) APL (%)

Cascade Mask RCNN-ResNeXt101 (47.3) Faster RCNN-ResNet50 (38.4) FKD 41.5 23.5 45.0 55.3
Cascade Mask RCNN-ResNeXt101 (47.3) Faster RCNN-ResNet50 (38.4) CWD 41.7 23.3 45.5 55.5
Cascade Mask RCNN-ResNeXt101 (47.3) Faster RCNN-ResNet50 (38.4) FGD 42.0 23.8 46.4 55.5
Cascade Mask RCNN-ResNeXt101 (47.3) Faster RCNN-ResNet50 (38.4) MGD 42.1 23.7 46.4 56.1
Cascade Mask RCNN-ResNeXt101 (47.3) Faster RCNN-ResNet50 (38.4) NORM (ours) 42.4 24.0 46.6 56.3

Table 18: Results comparison on ImageNet dataset with a teacher-student pair of vision transformer
architectures. We combine our NORM with the masked generative learning proposed in VITKD.
Best result is bolded.

Teacher Student Methods Top-1 accuracy (%)

DeiT-Small(80.69) DeiT-Tiny (74.42) KD 75.01
DeiT-Small(80.69) DeiT-Tiny (74.42) NKD 75.48
DeiT-Small(80.69) DeiT-Tiny (74.42) VITKD 75.40
DeiT-Small(80.69) DeiT-Tiny (74.42) VITKD+NKD 76.18
DeiT-Small(80.69) DeiT-Tiny (74.42) VITKD+NORM (ours) 76.55

matching routes with their corresponding components, but our method differs with them in focus,
formulation and application. Firstly, existing methods of self-supervised learning with self-distillation
settings aim to learn a proper visual representation of a single backbone from a large set of unlabeled
images, while our work aims to improve the visual representation of a small student network by a
pre-trained larger teacher network under condition that both of them are trained on a set of labelled
images. Secondly, in formulation, many existing self-supervised learning methods (e.g., SimCL,
MoCo, SwAV, BYOL, DenseCL and DINO) define a contrastive predication task that encourages the
encoder (backbone) to attract similar (positive) sample views and dispel different (negative) sample
views with their corresponding contrastive losses leveraging data augmentation, and some others (e.g.,
iGPT, BeiT and MAE) define a masked reconstruction task that uses a decoder to predict the original
image (pixel-wise/patch-wise) given the representation learnt by the encoder (backbone) with their
corresponding reconstruction losses leveraging masked image modeling. iBOT further combines
masked image modeling into self-supervised contrastive learning for improved performance. To
these methods such as DenseCL and iBOT, self-distillation is performed between the target model
(student) and the online model (teacher, an exponential moving average of student parameters) via
contrasting dense sample view pairs of the whole image or the patch (some patches may be masked),
and both models share the same encoder (backbone). In contrast, our method leverages a linear FT
module added after the last convolutional layer of a small student network to formulate many-to-one
representation matching scheme between a single teacher-student layer via student feature expansion
and splitting, and dense mimicking. All segments of our expanded student features are simultaneously
forced to be similar to the teacher features, and there is no contrastive matching and no paired data
augmentation to the input image. Thirdly, in application, the trained encoder of self-supervised
methods is typically used to downstream tasks, while the efficient student network trained by our
method is for direct deployment. Besides, iBOT, iGPT, BeiT and MAE with masked image modeling
are particularly used to train vision transformers in unsupervised learning regime, while our method
is mainly for training efficient convolutional neural networks in supervised learning regime.

Note that recent work CRD extends contrastive learning into KD research by presenting a novel
contrastive distillation loss, and in the main paper we already validated the effectiveness of combining
our method with CRD (see Table 1 and Table 2).

Combining NORM with masked generative learning. In the main paper, we evaluate our method
with 16 teacher-student network pairs (13/3 pairs on CIFAR-100/ImageNet dataset). The main
reason for this is that in the community, mainstream KD methods for image classification, e.g., 19
recent KD methods compared in our work, typically use convolutional architectures for performance
evaluation. We follow them for fair and easy comparisons. Benefited from the simplicity of our
method, we can easily use it to other network architectures. We notice that a very recent work
VITKD (Yang et al., 2022d) explores the use of the aforementioned masked generative learning
for vision transformer based KD research. Benefited from the simplicity of our method, we can
easily combine NORM with VITKD to test our methods effectiveness in training a vision transformer
under masked generative learning. Accordingly, we perform a set of new experiments on ImageNet
dataset, using DeiT-Small (Touvron et al., 2021) as teacher network and DeiT-Tiny as student network,
following the settings of VITKD. For the student network, we add NORM (N = 4 for training
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efficiency) to the same layers as VITKD. Detailed results are summarized in Table 18. It can be seen
that our method also works well on transformer architectures, achieving promising results. Here, it
should be noted that the standard training of a popular transformer model is very time consuming
due to significantly larger model size and longer training schedule, compared to that of mainstream
convolutional networks (e.g., 300 epochs for DeiTs vs. 100 epochs for ResNets). One run of training
the above teacher-student transformer pair by NORM needs about 2.5 days with 8 NVIDIA Tesla
V100-SXM3 GPUs. We will continue to explore the potential of our method to more teacher-student
transformer pairs in the future.

A.10 LIMITATIONS OF NORM

Despite of its simple formulation and effectiveness, NORM has two limitations. The major limitation
is applying the many-to-one representation matching to multiple teacher-student layer pairs cannot
achieve further improved distillation performance, unlike many existing KD methods. This is due
to the linear property of our student FT design, as we explored in the ablative experiments (see
Table 4 and Table 5 in the main paper). Besides, applying the many-to-one representation matching
to multiple teacher-student layer pairs will lead to increased training cost because the many-to-one
representation matching also needs to be computed multiple times.
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