
Published as a conference paper at ICLR 2023

COPY IS ALL YOU NEED

Tian Lan♢,♡,∗ Deng Cai♢,∗ ,† Yan Wang♢,† Heyan Huang♡ Xian-Ling Mao♡
♢Tencent AI Lab
♡School of Computer Science and Technology, Beijing Institute of Technology
{lantiangmftby,thisisjcykcd,yanwang.branden}@gmail.com
{hhy63,maoxl}@bit.edu.cn

ABSTRACT

The dominant text generation models compose the output by sequentially selecting
words from a fixed vocabulary. In this paper, we formulate text generation as
progressively copying text segments (e.g., words or phrases) from an existing text
collection. We compute the contextualized representations of meaningful text
segments and index them using efficient vector search toolkits. The task of text
generation is then decomposed into a series of copy-and-paste operations: at each
time step, we seek suitable text spans from the text collection rather than selecting
from a standalone vocabulary. Experiments on the standard language modeling
benchmark (WikiText-103) show that our approach achieves better generation
quality according to both automatic and human evaluations. Besides, its inference
efficiency is comparable to token-level autoregressive models thanks to the reduc-
tion of decoding steps. We also show that our approach allows for effective domain
adaptation by simply switching to domain-specific text collection without extra
training. Finally, we observe that our approach attains additional performance gains
by simply scaling up to larger text collections, again without further training.1

1 INTRODUCTION

Most neural language models (LMs) process text generation tasks by making a series of next-token
predictions in an autoregressive manner (Radford et al., 2019; Dai et al., 2019; Khandelwal et al.,
2020; Shi et al., 2022). Specifically, LMs generate the next-token distribution over a fixed vocabulary
for any given prefix. Then, the next token is selected by a chosen decoding method, such as greedy
search and nucleus sampling (Holtzman et al., 2020). This process continues until some stop condition
is reached. For example, a special end-of-generation token is emitted, or the generated text reaches
the maximum length limit.

Unlike traditional neural language models, we reformulate text generation by copying text segments
from existing text collections. The text segments can be of variable lengths, including single words
and multi-word phrases. For clarity, we will use the term “phrase” to refer to any contiguous text
segments, and a single word can also be seen as a phrase of length 1. We compute a contextualized
vector representation for each phrase and pack them into an offline index. At each decoding step,
a suitable phrase is retrieved from the offline index and appended to the current prefix. In other
words, the next-token predictions in traditional neural language models are replaced by a series of
copy-and-paste operations.

Our proposed model, named COG (short for COPY-GENERATOR), enjoys the following advantages.
First, our method selects phrases in specific contexts rather than standalone tokens in a fixed vocab-
ulary. It potentially allows for more accurate candidate representation and selection. Second, our
method allows training-free adaptation to new knowledge sources because the text collection can be
updated in a plug-and-play fashion. It could benefit application scenarios such as domain adaptation
and data expansion/filtering. Third, our method allows a sequence of multiple tokens (i.e., multi-word

∗ Contributed Equally.
† Corresponding authors.
1Our source codes are publicly available at https://github.com/gmftbyGMFTBY/Copyisallyouneed.

1

https://github.com/gmftbyGMFTBY/Copyisallyouneed

Published as a conference paper at ICLR 2023

phrase) to be generated in one single step. It could reduce the total number of decoding steps, leading
to improved inference efficiency.

We conduct extensive experiments to verify the effectiveness of our proposed COG. On the standard
language modeling benchmark (WikiText-103), our proposed COG substantially outperforms standard
baselines on automatic metrics (26.14 vs. 23.43 MAUVE (Pillutla et al., 2021)) and human evaluation
(48% vs. 28% human preference). Moreover, when we directly switch the text collection from the
WikiText-103 corpus to a domain-specific corpus, Law-MT (Koehn & Knowles, 2017), our proposed
COG outperforms strong baselines on this domain adaption setting (28.14 vs. 26.85 MAUVE and
52% vs. 36% human preference) without any domain-specific training. Furthermore, when we scale
up the text collection of COG to a larger one, the En-Wiki dataset, we obtain additional gain (26.97
vs. 23.43 MAUVE), again without any further training. Our contributions can be summarized as
follows:

• We propose COG, a method that reformulates text generation tasks as a series of copy-and-
paste operations from existing text collections.

• We show that COG can outperform standard neural language model baselines on existing
language modeling benchmarks.

• We demonstrate that COG allows for training-free adaptations to larger text collections and
domain-specific text collections.

2 BACKGROUND: NEURAL TEXT GENERATION

Neural text generation can be divided into two categories: (1) unconditional text generation; (2)
conditional text generation. Unconditional text generation (or language modeling) aims to generate a
coherent text continuation given a prefix. In this case, language models perform generation using
a density estimation over sequences pθ(x). Conditional text generation aims to generate text with
some condition c and instead estimates the probability of pθ(x|c). Its typical applications include
machine translation (Sutskever et al., 2014; Bahdanau et al., 2015), summarization (See et al., 2017).
Throughout this paper, our discussion will be focused on unconditional text generation, however, our
approach can be readily adapted to conditional text generation as well.

The canonical approach to language modeling factors the generation in an autoregressive left-to-right
manner pθ(x0:n) =

∏n
i=1 p(xi|x<i). In this case, text generation is reduced to the task of repeatedly

predicting the next token conditioned on the partial sequence (i.e., prefix) generated so far p(xi|x<i).
The model often consists of two parts: (1) a prefix encoder and (2) a set of token embeddings. The
prefix encoder is often parameterized by the Transformer architecture (Vaswani et al., 2017), which
transforms any prefix into a fixed-sized vector representation hi ∈ Rd = PrefixEncoder(x<i). Then,
the probability of the next token being w is calculated as

pθ(xi = w|x<i) =
exp(vw · hi)∑

w∈V exp(vw · hi)
,

where vw is the context-independent token embedding representing the token w, and V is the pre-
defined vocabulary consisting of all possible tokens. Based on the chosen decoding method, such as
greedy search and nucleus sampling (Holtzman et al., 2020), the next token is selected according to
the probability distribution over the fixed vocabulary V . This process is repeated in an autoregressive
manner, until some stop condition is reached, e.g., the maximum length of generation is reached.

3 COPY-GENERATOR

Unlike traditional language models that compute the next token distribution over a fixed vocabulary
that is usually composed of words or sub-words (Sennrich et al., 2016; Kudo & Richardson, 2018), our
proposed COG has a dynamic “vocabulary” that is dependent on the available source text collections.
Each item in the “vocabulary” corresponds to a text segment (termed as phrase in this paper) in the
source text collection. Importantly, all phrases are context-sensitive. That is, the same phrases in
different contexts are considered to be different. The overall framework is depicted in Figure 1.

Formally, our approach assumes a set of source documents {D1, . . . , Dn} is available. For each
document Di, a phrase k = Di

s:e of length e− s+ 1 can be extracted, where s and e mark the start

2

Published as a conference paper at ICLR 2023

Prefix Encoder

BERT model

�������� ������

Phrase Encoder

…

Token Embeddings

+

The Dune film was released [in theaters on October 22, 2021 in the United States] [and was extremely well-received by critics
and audiences] [Before] [that] [,] [the film premiered at the 78�ℎ International Film Festival on September 3, 2021.]

… …

Phrase Table

… and was extremely
well-received by critics

and audiences …

and audiences

… in theaters on
October 22, 2021 in
the United States …

in States

… the film premiered
at the 78�ℎ …

September 3, 2021.

the .
Source Text
Collection

Maximum Inner Product Search
[…][…][…][…]

Copy

Figure 1: The overview of our proposed COG. Given the prefix The Dune film was released, COG
retrieve 3 phrases (in different colors) from the documents and generates 3 tokens (Before, that, and
the comma ,) from the fixed vocabulary to form the whole generation.

and end positions of the phrase in the document, respectively. We denote all the phrases in the source
text collection as P . For a given prefix x<i, we aim to select the best phrases that can form a coherent
text continuation following the prefix. To this end, we compute a contextualized representation for
each phrase pk ∈ Rd = PhraseEncoder(s, e,Di) using a phrase encoder. Thus, a phrase table
{(k, pk)|k ∈ P} can be constructed. Similar to traditional language models, at test time, COG also
employs a prefix encoder to map the prefix x<i into a vector representation qi. The fitness of a phrase
k to the prefix x<i is then measured by the dot product of their vector representations pk and qi:

p(k|x<i) ∝ exp(pk · qi). (1)

At each time step, a suitable phrase is selected and appended to the current prefix accordingly.

Note that the size of the phrase table can be up to billions. To search over this large candidate pool, we
pre-compute the phrase representations and use a coarse-to-fine search pipeline based on maximum
inner product search (MIPS) (Johnson et al., 2019). The details are deferred to Section 4.2. Moreover,
to support the scenarios where no suitable phrases are available, we also add the context-independent
token embeddings {(w, vw)|w ∈ V } in standard LMs to the phrase table.

Ethical Consideration The text generated by COG contains text segments copied from other
documents, which may cause copyright disputes in real-world applications. Therefore, there are a few
things to be considered: (1) The copyright of the source text documents needs to be carefully checked.
One should not use documents with strict copyright protection and/or private information; (2) It is
recommended to quote the original source explicitly, especially when the retrieved phrases are long.

3.1 MODEL ARCHITECTURE

As illustrated in Figure 1, our proposed model consists of three major components: (1) a prefix
encoder that maps prefixes to fixed-sized representations; (2) a context-dependent phrase encoder
that computes the vector representations of the phrases in the source text collection; (3) a set of
context-independent token embeddings similar to the one used in standard neural language models.

Prefix Encoder The prefix encoder is responsible for encoding the prefix x<i into a vector represen-
tation for the next-phrase prediction. We treat the prefix as a sequence of tokens (previously predicted
phrases are split into tokens as well) and encode them using the standard Transformer architecture
with causal attention (Vaswani et al., 2017; Radford et al., 2019). Causal attention only allows each
position in the input sequence to attend to its preceding positions. Therefore, the prefix representation
can be computed incrementally as the generation progresses, leading to faster inference. Concretely,
the prefix encoder transforms a prefix x<i of length i into a matrix Hi ∈ Ri×dL, where d is the
hidden dimension and L is the number of Transformer layers. The computation can be written as:

Hi+1 = PrefixEncoder(xi,Hi).

We use the hidden state of the last token as the prefix representation qi.

3

Published as a conference paper at ICLR 2023

Phrase Encoder Given a set of source documents {D1, ..., Dn}, the phrase encoder computes the
vector representations of all the phrases in the documents. Inspired by previous work (Lee et al., 2016;
Seo et al., 2018; Lee et al., 2021), we construct context-dependent phrase representations as follows.
For a document D = D1, . . . , Dm of length m, we first apply a deep bidirectional Transformer
(Devlin et al., 2019) to obtain contextualized token representations D ∈ Rm×dt , where dt is the
dimension of token representations. Then, we apply two MLPs models, MLPstart and MLPend, to
convert D into start and end token representations Dstart,Dend ∈ Rm× d

2 , respectively:

Dstart = MLPstart(D),Dend = MLPend(D).

For each phrase Ds:e that starts at s and ends at e in the document, we use the concatenation of the
corresponding start and end vectors as the phrase representation.

PhraseEncoder(s, e,D) = [Dstart[s];Dend[e]] ∈ Rd (2)

The advantages of the above representation method are that (1) we only need to encode the document
once to obtain all phrase representations; and (2) we only need to store all the token representations
instead of all phrase representations.

Context-Independent Token Embeddings Although COG can copy phrases from other documents,
we would like to retain the generalization capability to compose output with standalone tokens. This
can be especially useful when there is no suitable phrase in the source text collection. Therefore,
we also add the traditional context-independent token embeddings V ∈ R|V |×d to our phrase table.
These tokens can be seen as phrases of length 1 without any context information.

3.2 MODEL TRAINING

COG decomposes the task of text generation into a series of copy-and-paste operations: at each time
step, it selects the next phrase either from the source text collection or the fixed token vocabulary. In
other words, phrases are used as the basic building blocks for text generation. To train COG, each
document in the training set is chunked into a sequence of phrases in a similar spirit. Specifically, we
propose a greedy segmentation algorithm based on forward maximum matching. Taking a document
D = D1, . . . , Dm of m tokens as an example, our algorithm segments the document from left to
right. The first i tokens will be cut out as a phrase if it can be found as a sub-sequence in other
documents and i is the maximum valid value. The above process is repeated until all tokens are cut
out. Note that some resultant phrases can be single tokens in the fixed token vocabulary when no
proper matching can be found. Detailed explanations of the phrase segmentation algorithm can be
found in Appendix D.

Suppose that a document D has been split into n phrases D = p1, . . . , pn. If the k-th phrase
pk is copied from another document, let Dk be the source document and let sk, ek be the start
and end positions of pk in Dk, the phrase encoder is used to extract its context-dependent phrase
representations PhraseEncoder(sk, ek, D

k) (Eq. 2). On the other hand, we directly retrieve the
context-independent token embedding of pk if it is copied from the fixed token vocabulary. As
illustrated by Eq. 1, COG relies on a shared vector space of prefix and phrase representations, where
the representations of semantically coherent prefixes and phrases should be closer to each other while
others should be pushed apart. We define the training loss for next-phrase predictions by using the
InfoNCE loss with in-batch negatives (Karpukhin et al., 2020):

Lp = − 1

n

n∑
k=1

log
exp(qk · pk)∑

p∈Pk
exp(qk · pp) +

∑
w∈V exp(qk · vw)

where Pk consists of all the phrases in the source document Dk, V is the set of all tokens in the token
vocabulary, and qk denotes the representation of the prefix preceding the phrase pk in D.

Additionally, to retain the capability of token-level generation, we also train COG with the standard
token-level autoregressive loss.

Lt = −
1

m

m∑
i=1

log
exp(qi, vDi

)∑
w∈V exp(qi, vw)

4

Published as a conference paper at ICLR 2023

where qi denotes the prefix representation preceding the token Di in D. Finally, the training loss is
the sum of these two losses:

L = Lp + Lt

4 EXPERIMENTAL SETUP

4.1 BASELINES

We compare COG with the following three baselines:

• Transformer (Vaswani et al., 2017) has been the de facto model for neural language
models. Concretely, we fine-tune the pre-trained GPT2 model (Radford et al., 2019) in our
experiments.

• kNN-LM (Khandelwal et al., 2020) is a retrieval-augmented generation model, which ex-
tends a pre-trained neural language model by linearly interpolating its next token distribution
with a k-nearest neighbors (kNN) model.

• RETRO (Borgeaud et al., 2022)2 is another retrieval-augmented generation model which
combines a frozen BERT retriever, a differentiable encoder and a chunked cross-attention
mechanism to predict next tokens. Since there is no pre-trained RETRO model that could be
accessed, we train it from scratch on the WikiText-103 dataset.

4.2 IMPLEMENTATION DETAILS

All the baselines and our source codes are based on the popular Huggingface transformers package
(Wolf et al., 2020). For a fair comparison, the prefix encoders in Transformer, kNN-LM, and COG
use the same model architecture as the pre-trained GPT2 model (12 layers, 12 heads, and 768 hidden
dimensions) (Radford et al., 2019). For the phrase encoder in COG, we fine-tune the pre-trained
BERT-base-cased model (Devlin et al., 2019) (12 layers, 12 heads, and 768 hidden dimensions). We
train baselines and COG for 400,000 steps on 8 Tesla-V100 GPUs. For all the baselines, the learning
rate, dropout rate, and gradient clipping are set as 5e-5, 0.1, and 1.0, respectively. Due to memory
limitation, the batch size is set to contain 256 phrases. For the BERT model in the phrase encoder,
the maximum sequence length is set as 256. For the GPT2 model in the prefix encoder, the maximum
sequence length is set as 512. Our proposed COG contains overall 248M parameters from BERT and
GPT2 models, and other baselines contain over 124M parameters. As suggested by Borgeaud et al.
(2022), the hyper-parameters λ and α of kNN-LM are set as 0.118 and 0.00785, respectively.

To improve the inference efficiency of COG, we encode all the documents in the source text collections
offline. Note that retrieving from such a super large phrase collection faces severe challenges on the
engineering side. This paper uses a coarse-to-fine pipeline to address this challenge. Specifically, we
first use a document retriever to retrieve top-k related documents for each given prefix. Then, their
corresponding phrase representations are collected for selection. In this paper, a popular semantic
matching model, DPR (Karpukhin et al., 2020) and a vector search toolkit, FAISS (Johnson et al.,
2019) are used as the document retriever, which can recall documents that have similar topics with
the prefix. The value k is empirically set to 1024.

COG can be used with both greedy search and nucleus sampling. For greedy search, COG selects the
phrase that has the highest fitness score at each time step. As for nucleus sampling, we first obtain
the next-phrase distribution by using the softmax function over the fitness scores of all candidate
phrases. Then, the next phrase is sampled over this distribution.

More details of the implementation can be found in Appendix A and B.

4.3 AUTOMATIC EVALUATION METRICS

For each document in the test set, we use the first 32 tokens as the prefix. The baselines and our
proposed COG generate text continuations of length 128 based on the same prefix. Following

2https://github.com/lucidrains/RETRO-pytorch.

5

https://github.com/lucidrains/RETRO-pytorch

Published as a conference paper at ICLR 2023

conventions (Welleck et al., 2020; Su et al., 2022), we use greedy search and nucleus sampling
(Holtzman et al., 2020) (p = 0.95) throughout our experiments. Following previous work (Welleck
et al., 2020; Su et al., 2022) and report the results on the following evaluation metrics:

• MAUVE (Pillutla et al., 2021), an efficient, interpretable, practical automatic evaluation, is
highly coherent with human judgments and widely used to evaluate modern text generation
models (Su et al., 2022; Krishna et al., 2022). In this paper, MAUVE leverages the GPT2-
large model to generate the scores, and the scaling factor is set as 2.0.

• Rep-n (Welleck et al., 2020) measures the sequence-level repetition as the portion of
duplicate n-grams in the generated text (Welleck et al., 2020). For a generation text x, Rep-n
can be formulated as: 100× (1.0− |unique n−gram(x)|

|total n−gram(x)|). Higher Rep-n denotes the severe
degeneration problem in generations.

• Diversity (Welleck et al., 2020) measures the diversity of the generations, which is formu-
lated as Π4

n=2(1−
Rep−n
100)). Generations that have higher Diversity scores usually are more

informative.

Note that previous work (Khandelwal et al., 2020; Dai et al., 2019) often uses perplexity as the
primary evaluation metric to measure the performance of language modeling. However, since our
proposed COG does not calculate next-token distributions over a fixed vocabulary, the comparison of
perplexities is not reliable and thus omitted. However, we can test the perplexity of generated text
using an external language model, and the results are shown in Appendix C.

5 EXPERIMENTAL RESULTS

In this paper, we evaluate baselines and our proposed COG in three different settings: (1) standard
language modeling; (2) domain adaption; (3) enlarged phrase index.

5.1 LANGUAGE MODELLING ON WIKITEXT-103

In this setting, models are trained on the training set of the WikiText-103 dataset and evaluated on its
test set. The WikiText-103 dataset (Merity et al., 2017) contains an extensive collection of Wikipedia
articles with over 100 million words, which is widely used to evaluate the performance of universal
language modeling (Khandelwal et al., 2020; Dai et al., 2019; Su et al., 2022).

Model Decoding MAUVE↑ Rep-2↓ Rep-3↓ Rep-4 ↓ Diversity↑ Latency (s)↓

Transformer greedy 19.87 43.56 38.55 35.5 22.37 1.32
nucleus 23.43 5.10 1.33 0.50 93.22 1.48

kNN-LM greedy 19.92 43.79 38.76 35.69 22.13 10.36
nucleus 22.50 3.33 0.69 0.21 95.8 10.42

RETRO greedy 21.19 44.65 39.63 36.6 21.19 4.39
nucleus 22.86 6.21 1.93 0.86 91.19 4.51

COG greedy 26.01 28.14 23.80 21.40 43.03 1.29
nucleus 26.14 7.31 2.66 1.28 89.07 1.54

Table 1: The automatic evaluation on the test set of WikiText-103. As for each model with nucleus
sampling, we run 10 times and recorded the average MAUVE and Diversity scores.

Results Table 1 shows the performance comparison between the baselines and our proposed COG
on the test set of the WikiText-103 corpus. It can be found that our proposed COG substantially
outperforms the Transformer and kNN-LM baselines on most metrics. Specifically, COG improves
MAUVE score over the best baseline (Transformer with nucleus sampling) from 23.43 to 26.14 –
an improvement of 2.71%. Interestingly, although it is well known that greedy search could raise
severe degeneration problems (Welleck et al., 2020), COG with greedy search still outperforms the
standard Transformer baseline with nucleus sampling, with 2.58% improvements on MAUVE. This

6

Published as a conference paper at ICLR 2023

The Man Trap ”. He is also involved in

science fiction drama series Magic Roundabout television series

The first regular episode (" The Man
Trap ") of Star Trek: The Original …

… like Metallica . He is also
influenced by orchestral and

classical composer …

… However , Jerry Hardin , who
was involved in another morph to

his character Deep Throat, …

… of Thor with the high-tech
science fiction in Iron Man …

… she became the youngest
actress in a drama series

when she starred …

Eric Thompson who narrated The Magic
Roundabout television series , was born

in a house on Jermyn Street

The Man Trap ”. He is also involved in
an ongoing science fiction drama series
called the Magic Roundabout television

series …

In 2000 Boulter had a guest-
starring role on the television

series The Bill ; he portrayed "
Scott Parry " in the episode, "

Input Prefix

Generated Continuation

Document Document Document

Document Document Document

called the

an ongoing

Figure 2: An example generated by COG on the test set of WikiText-103. The dotted squares denote
that the content (highlighted in red)is copied from the token vocabulary, and the solid squares denote
that the content (highlighted in blue) is copied from other documents.

observation demonstrates that COG is more robust and less prone to the degeneration problem, which
can be considered as an additional bonus.

Method Uni-gram 2-gram 3-gram 4-gram 5-gram 6-gram
Greedy 0.583 0.195 0.121 0.056 0.029 0.017
Nucleus 0.434 0.219 0.181 0.09 0.048 0.028

Table 2: The statistics on the length of the copied phrases
(on the test set of WikiText-103).

Inference Speed Furthermore, we
also compare the average time cost of
different methods for completing the
generation on the test set. Since the
phrase representations in COG are pre-
computed offline, its encoding time
cost is not included. The results are
reported in Table 1. As seen, COG still achieves comparable inference efficiency with the standard
Transformer baseline. The reason is that the copied phrases usually contain multiple tokens (the
statistics of phrase length are shown in Table 2). As a result, COG uses fewer decoding steps
when generating the text of the same length. Unlike COG that uses a coarse-to-fine search pipeline,
kNN-LM conducts large-scale vector search at every decoding step. Its inference latency is much
higher than Transformer, and COG, which is aligned with previous work(Alon et al., 2022).

Comparison Better No Prefer. Worse
COG vs.

Transformer
48% 24% 28%

Table 3: Human evaluation on the WikiText-
103 corpus.

Human Evaluation To ensure the reliability of
our evaluations, we also run human evaluation with
three native-speaker graders from a third-party grad-
ing platform. Specifically, we randomly select 100
test prompts. For each test prompt, the annotators
are given two continuations, in random order, which
are generated by COG and Transformer respectively.
The annotators are asked to decide which one is better by considering the following aspects:

• Fluency: Whether the generated text is fluent and easy to understand.
• Informativeness: Whether the generated text is diverse and contains interesting content.

When annotators make different decisions on the same sample, we ask them to have a discussion and
make the final decision. As shown in Table 3, our proposed COG model significantly outperforms
strong Transformer baseline, indicating its better generation quality.

Case Study For a better understanding of the performance of COG, we present an example of the
text continuations generated by our proposed COG in Figure 2. It can be found that COG can retrieve
phrases that are semantically coherent and fluent for given prefixes. For example, at the second
decoding step, COG generate the punctuations [”, .] from the pre-defined vocabulary to close the film
name “The Man Trap” and the sentence. Besides, at the ninth decoding step, COG directly copied
the named entity Magic Roundabout television series from the related document. More examples can
be found in Appendix E.

7

Published as a conference paper at ICLR 2023

5.2 DOMAIN ADAPTION ON LAW-MT

In the domain adaption setting, the models trained on the WikiText-103 dataset are tested on a
specific domain. Following previous work (He et al., 2021; Alon et al., 2022), we use the English
part of Law-MT (Koehn & Knowles, 2017), which is an English-German translation dataset for
law documents. The memory of kNN-LM, RETRO and COG are constructed from the training
set of Law-MT. We also present the performance of Transformer baselines with or without further
fine-tuning on the training set of Law-MT.

Model Decoding MAUVE ↑ Diversity ↑

Transformer w/o FT greedy 20.32 70.66
nucleus 25.21 93.88

Transformer w/ FT greedy 23.00 80.52
nucleus 26.85 90.14

kNN-LM greedy 23.31 19.85
nucleus 24.75 94.60

RETRO greedy 18.70 71.14
nucleus 20.35 94.81

COG greedy 21.31 84.32
nucleus 28.14 92.56

Table 4: The automatic evaluation on Law-MT.

Results As shown in Table 4, it can be ob-
served that COG even outperforms the Trans-
former model further fine-tuned on the Law-
MT corpus (Transformer w/ FT). Specifically,
COG outperforms Transformer w/ FT by 2.93%
MAUVE score. The results indicate that COG
allows a single model to be specialized in dif-
ferent domains, by simply switching the source
text collection. Although kNN-LM brings in
higher Diversity scores, COG surpasses it by
3.39% MAUVE score, which shows COG has
higher generation quality in general.

Comparison Better No Prefer. Worse
COG vs.

Transformer w/ FT
52% 12% 36%

Table 5: Human evaluation on Law-MT.

Human Evaluation We also conduct the hu-
man evaluation on the Law-MT corpus, which
has a similar setup to that in (§5.1). Table 5
shows that most of COG’s generations are bet-
ter than a strong Transformer baseline. This
observation demonstrates that COG can even
outperform the fine-tuned Transformer baseline without any domain-specific training.

5.3 ENLARGED PHRASE INDEX WITH EN-WIKI

In the enlarged phrase index setting, we make use of a large text collection, the En-Wiki corpus, and
test baselines on the test set of WikiText-103. The En-Wiki corpus contains a large-scale collection
of Wikipedia articles with over 3 billion words, whose size is much larger than the WikiText-103
dataset. The memory of kNN-LM, RETRO, and COG are built from the training set of En-Wiki3.
Similar to the domain adaption setting, we also present the results of Transformer baselines with or
without further fine-tuning on the En-Wiki corpus.

Results The experimental results are shown in Table 6. COG with En-Wiki memory surpasses
other strong baselines and COG with WikiText-103 memory. This is especially remarkable because
COG does not require any additional training, suggesting we can train COG with a smaller corpus
but leverage additional information in a larger corpus in a plug-and-play fashion. Similar to the
domain adaption setting, we also notice that, although kNN-LM baseline improves Diversity scores,
it obtains a much lower MAUVE score than COG (23.39 vs. 26.97). Note that the Transformer w/ FT
is slightly worse than that without fine-tuning on the En-Wiki dataset. This phenomenon is mainly
because there are deviations between En-Wiki and WikiText-103 datasets.

Effects of Index Size To further investigate how the size of the phrase index affects the generation
quality, we randomly sample several subsets of the En-Wiki dataset with proportions from 0.1% to
100%. As shown in Figure 3, when the proportion is less than 1%, COG exhibits a similar quality,
which is unsurprising since few enlarged documents are added to the phrase index. In contrast, once
the proportion is larger than 1%, the larger the phrase index becomes, the better generation quality
the model achieves.

3Due to the hardware limitation, RETRO uses the subset of the En-Wiki corpus (over 6 million chunks).

8

Published as a conference paper at ICLR 2023

Model Decoding MAUVE ↑ Diversity ↑

Transformer w/o FT greedy 19.87 22.37
nucleus 23.43 93.22

Transformer w/ FT greedy 20.21 19.62
nucleus 21.31 92.92

kNN-LM greedy 23.21 20.33
nucleus 23.39 96.37

RETRO greedy 19.75 21.15
nucleus 22.87 91.09

COG greedy 24.68 40.45
nucleus 26.97 90.00

Table 6: The automatic evaluation on the test set
of WikiText-103, the memory is built on the train
set of En-Wiki. Transformer w/ FT and Trans-
former w/o FT denote the Transformer baseline
with and without further fine-tuning on the train
set of En-Wiki, respectively.

0.0 0.001 0.003 0.01 0.03 0.1 0.3 1.0
The proportion of enlarged En-Wiki Documents

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

M
AU

VE
 s

co
re

Transformer w/o FT

CoG

Figure 3: Generation quality of COG with differ-
ent sizes of the phrase index. For each proportion
(point in the X-axis), we sample 10 times and
record the averaged MAUVE score. A propor-
tion of 0.0 indicates that only documents from
WikiText-103 are used.

6 RELATED WORK

Dense Retrieval The dense retrieval technique (Karpukhin et al., 2020) has been widely used in
many downstream NLP tasks, such as open-domain question answering (Karpukhin et al., 2020;
Lee et al., 2021), open-domain dialogue systems (Lan et al., 2021) and machine translation (Cai
et al., 2021). Different from the traditional sparse retrieval system, such as BM25 and TF-IDF
(Robertson & Zaragoza, 2009), dense retrieval learns a shared vector space for queries and documents,
where relevant pairs of query and document have smaller distances (i.e., higher similarities) than the
irrelevant pairs.

The most closely related work to our study is DensePhrase (Lee et al., 2021). DensePhrase reformu-
lates the question-answering task as a phrase retrieval problem, where phrases are directly retrieved
and returned as answers to factual questions. Differently, our work aims to generate coherent text
continuations through multiple rounds of phrase retrieval. Since the connection between two adjacent
phrases should be coherent and fluent in the text generation task, it is much more difficult.

Retrieval-Augmented Text Generation (RAG) Retrieval-augmented text generation has gained
increasing interest recently. Most prior work improves the generation quality (e.g., informativeness) of
language models by grounding the generation on a set of retrieved materials (e.g., relevant documents)
(Li et al., 2022; Guu et al., 2020; Hashimoto et al., 2018; Weston et al., 2018; Cai et al., 2019a;b;
Khandelwal et al., 2020; Wu et al., 2019; Guu et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022;
Yang et al., 2023). Our work is on this line of research but takes a radical step forward. Unlike prior
work that builds the combinations of retrieval and generation, retrieval is generation in COG.

One contemporary work to our work is Min et al. (2022), which shares the idea of replacing the
fixed vocabulary with a nonparametric phrase table. However, Min et al. (2022) focuses on masked
language modeling while our focus is on causal language modeling and text generation.

7 CONCLUSION

In this paper, we reformulated text generation as progressively copying phrases from the massive
text collection. Following this formalization, we proposed a novel neural text generation model,
named COG, which generates text by retrieving semantically coherent and fluent phrases from other
documents. Experimental results proved the advantages of COG over the strong baselines on three
experimental settings: standard language modeling (WikiText-103), domain adaptation (Law-MT),
and enlarged phrase index (En-Wiki).

9

Published as a conference paper at ICLR 2023

JUSTIFICATION OF CHANGES

Note that the experimental results in the current version have some changes from the previous version
that has been reviewed. We made a number of revisions to the experiments according to the valuable
suggestions from the reviewers.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their valuable suggestions and comments on our
paper, which significantly improves the quality of our paper.

REFERENCES

Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig. Neuro-symbolic
language modeling with automaton-augmented retrieval. In International Conference on Machine
Learning. PMLR, 2022.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International Conference on
Machine Learning. PMLR, 2022.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, Wai Lam, and Shuming Shi. Skeleton-to-
response: Dialogue generation guided by retrieval memory. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019a.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, and Shuming Shi. Retrieval-guided
dialogue response generation via a matching-to-generation framework. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1866–1875, Hong Kong,
China, November 2019b. Association for Computational Linguistics. doi: 10.18653/v1/D19-1195.
URL https://aclanthology.org/D19-1195.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and Lemao Liu. Neural machine translation with
monolingual translation memory. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. A retrieve-and-edit framework
for predicting structured outputs. In Advances in Neural Information Processing Systems, 2018.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor language
models. arXiv preprint arXiv:2109.04212, 2021.

10

https://aclanthology.org/D19-1195

Published as a conference paper at ICLR 2023

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, 2020.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3), 2019.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation, 2017.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. Rankgen: Improving text generation
with large ranking models. arXiv preprint arXiv:2205.09726, 2022.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, 2018.

Tian Lan, Deng Cai, Yan Wang, Yixuan Su, Xian-Ling Mao, and Heyan Huang. Exploring dense
retrieval for dialogue response selection. arXiv preprint arXiv:2110.06612, 2021.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi Chen. Learning dense representations of
phrases at scale. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2021.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, and Jonathan Be-
rant. Learning recurrent span representations for extractive question answering. arXiv preprint
arXiv:1611.01436, 2016.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented text
generation. ArXiv, abs/2202.01110, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-tau Yih, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Nonparametric masked language modeling. arXiv preprint arXiv:2212.01349, 2022.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
divergence frontiers. Advances in Neural Information Processing Systems, 34, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 2019.

S. Robertson and H. Zaragoza. The probabilistic relevance framework: Bm25 and beyond. Found.
Trends Inf. Retr., 3, 2009.

11

Published as a conference paper at ICLR 2023

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2016.

Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Phrase-
indexed question answering: A new challenge for scalable document comprehension. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018.

Shuming Shi, Enbo Zhao, Duyu Tang, Yan Wang, Piji Li, Wei Bi, Haiyun Jiang, Guoping Huang,
Leyang Cui, Xinting Huang, Cong Zhou, Yong Dai, and Dongyang Ma. Effidit: Your ai writing
assistant. ArXiv, abs/2208.01815, 2022.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. In Advances in Neural Information Processing Systems,
2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, 2017.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Jason Weston, Emily Dinan, and Alexander H. Miller. Retrieve and refine: Improved sequence
generation models for dialogue. In SCAI@EMNLP, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhoujun Li, and Ming Zhou. Response generation by
context-aware prototype editing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 2019.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models, 2023.

A DATASET STATISTICS

The experiments in this paper include three benchmarks: (1) WikiText-103; (2) English part of
Law-MT; (3) En-Wiki. The statistics of these benchmarks are shown in Table 7. En-Wiki corpus
is used for the enlarged phrase index settings in this paper, containing over 4,848,348 long English
Wikipedia documents.

12

Published as a conference paper at ICLR 2023

Benchmarks Train Dev Test
WikiText-103 1,801,350 3,760 4,358

Law-MT 389,292 2,000 2,000

Table 7: The number of sentences in the WikiText-103 and Law-MT datasets.

B MORE IMPLEMENTATION DETAILS

During training, the dynamic vocabulary of COG contains two parts: (1) word-level vocabulary size
(50257 in GPT2 vocabulary); (2) the phrases in a batch of training documents. During inference,
the dynamic vocabulary consists of the word-level vocabulary and the phrases extracted from the
Top-k retrieved documents (k=1024 in this paper). The size of the pre-defined word-level vocabulary
contains 50257 subwords. Since there are only a few documents encoded to extract the phrase
representations, the average number of the phrase representations is 950,942.4 in the WikiText-103
test set when K = 1024.

C PERPLEXITY OF GENERATED TEXT

Models Perplexity
greedy nucleus

Transformer 3.26 37.11
kNN-LM 3.48 78.01
RETRO 3.27 36.40

COG 10.41 27.24
Ground-Truth 18.64

Table 8: The perplexity on the test set of
WikiText-103.

We calculate the perplexity of the generated texts un-
der a large pre-trained language model (GPT2-Large).
As shown in Table 8, it can be found texts gener-
ated by greedy search can achieve very low perplex-
ity scores (even much lower than the ground-truth)4.
This is expected as greedy search targets at likelihood
maximization. Sampling-based decoding methods
give much higher perplexity scores. Moreover, it is
worth noting that COG achieves the closest perplexity
score to ground-truth.

D THE PHRASE SEGMENTATION ALGORITHM

COG takes phrases as the minimum units that can be put together to form a coherent document. To
train COG, we design a phrase segmentation algorithm to split each document in the training set
into a sequence of phrases. This algorithm makes use of a forward maximum matching strategy to
identify phrases. Maximum matching is one of the most popular structural segmentation algorithms.
This method favors long phrases and is a greedy algorithm by design. Specifically, we treat each
document as a sequence of tokens and scan each document from left to right. At each step, we search
for the longest prefix of the unsegmented part that is also a sub-sequence of other documents other
than the current document. If the length of that prefix is bigger than 2, we take that prefix as the next
phrase. Otherwise, we take the first token as the next phrase and it is labeled as coming from the fixed
token vocabulary. In both cases, we process the rest part of the current document recurrently. The
algorithm can be very time-consuming because exhaustive searches over millions of documents are
compute-intensive. Therefore, we propose an efficient approximation as follows. First, we retrieve
the top-k most similar documents for each document using the popular DPR model (Karpukhin et al.,
2020)5, and vector search toolkits, FAISS (Johnson et al., 2019). Then, the phrase search only runs
on the corresponding top-k documents. The relevant documents usually have similar topics to the
current document. The value of k is set as 1024 in our experiments. The details of our proposed
phrase segmentation algorithm can be found in Algorithm 1: SearchPhrase is a function that searches
the cached token sequence (i.e., the current candidate for the next phrase) among the most relevant
documents. It returns a label that denotes whether the phrase can be found and its position in the
relevant documents.

4Note that the original perplexity of GPT2-Large model on the test set of WikiText-103 is 22.05 (Radford
et al., 2019). The gap between it and our results is caused by the different number of samples. In this study, we
only use samples that have more than 32 tokens to generate text.

5https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base.

13

https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base

Published as a conference paper at ICLR 2023

Algorithm 1: Phrase Segmentation Algorithm

Data: Document set: D = {di, {dj}Kj=1}Ni=1, where di denotes the i-th document. K denotes
the number of retrieved documents. N denotes the number of documents in the training
set. The pre-defined maximum and minimum phrase lengths are Lmax and Lmin.

Result: Segmented document set by phrase granularity: D′ = {{(pi,x, (dj ,posj))}
||di||p
x=1 }Ni=1,

where pi,x denotes the x-th phrase in di that also appears in another document dj in
position j. ||di||p denotes the number of the collected phrases in di.

1 Preprocess: split each document into token-level pieces by using the off-the-shelf tokenizer.
The preprocessed document set can be formulated as D = {{ti,x}||di||t

x=1 , {dj}Kj=1}Ni=1, where
ti,x is the x-th token of di, which consists of ||di||t tokens. Prepare the empty list D′ = {},
empty phrase cache cachep={}, and cached search success label labellast.

2 for i← 1 to N do
3 cursor=0
4 PhraseCollection={}
5 while cursor≤ ||di||t do
6 if Lmin ≤ len(cachep) ≤ Lmax then
7 labelnow, rest=SearchPhrase(cachep)
8 else
9 if len(cachep) > Lmax then

10 cachep={}
11 end
12 end
13 if labellast is True and labelnow is False then
14 cursor -= 1
15 PhraseCollection.append(cachep, rest)
16 cachep={}
17 else
18 if labellast is False and labelnow is False then
19 PhraseCollection.append(cachep, None)
20 cachep={}
21 end
22 end
23 cursor += 1
24 labelnow=labellast
25 end
26 D′.append(PhraseCollection)
27 end

14

Published as a conference paper at ICLR 2023

E MORE CASES

In this section, we present some generated examples of COG given some specific prefixes. As shown
in Figure 4, 5 and 6, it can be observed that the generated continuations are fluent and coherent with
the given prefix. However, we also notice some flaws. For example, as shown in Figure 5, COG
copied the phrase 75 mph from the document ... sustained winds of at least 120 km / h (75 mph),
which is incoherent with the previous copied phrase 106 km / h. Moreover, as shown in Figure 6,
COG copied the phrase Rhine and Main from the document (Bt the terms of the Peace of Basel
(22 July 1795), the Prussian army was to leave the Rhine and Main river valleys ...). However, the
complete phrase should be Rhine and Main river valleys, and COG only copy a part of it, leading to
inaccurate generation results (rivers).

comer. In 2008 Nolan was announced as the star of

Seven Psychopaths

In 2008 , McCormack co-starred in
the A & E television miniseries

The Andromeda Strain …

On 21 January 2016, Nolan was
announced as the player-manager

of Leyton Orient, …

While Bart had been the star
of the show during …

After premiering at the Toronto Film
Festival, Seven Psychopaths (Farrell’s

second movie …

Comer. In 2008, Nolan was announced
as the star of Seven Psychopaths. He

cast Matthew Morrison as

Newman was nominated for a
Golden Globe Award for Best
Actor. Gleason and Scott were

each nominated for Best
Supporting Actor and Scott was

also nominated as Best New

Input Prefix

Generated Continuation

Document Document Document

Document

,

. He cast

He cast her in the role .
She portrayed …

Document

Matthew Morrison as

… Of the principal cast ,
Ryan said : " Casting

Matthew Morrison as …

Document

Figure 4: An example generated by COG. The dotted squares denote that the content (highlighted in
red)is generated from the token vocabulary, and the solid squares denote that the content (highlighted

in blue) is copied from other documents.

with a peak wind gust of 106 km/h 75 mph

being measured

Cyclone Calasanjy caused heavy
damage in western Madagascar ,

with a peak wind gust of 195
km/h …

… at the Wilmington International
Airport , while gusts reached 66

mph (106 km / h) at …

… sustained winds of at least
120 km / h (75 mph) …

Texas coastal plain led to extremely high
rainfall totals being measured in parts of

Jefferson …

with a peak wind gust of 106 km / h
(75 mph) being measured on Pagan

Island.

In the Philippines, officials
evacuated over 14 @,@ 000

people. Imbudo was the
strongest typhoon to strike since

Typhoon Zeb five years prior,

Input Prefix

Generated Continuation

Document Document Document

Document

on Pagan Island

… with gusts to 183 km / h (114
mph) on Pagan Island . The

typhoon caused heavy crop …

Document

.

()

Figure 5: An example generated by COG. The dotted squares denote that the content (highlighted in
red)is generated from the token vocabulary, and the solid squares denote that the content (highlighted

in blue) is copied from other documents.

15

Published as a conference paper at ICLR 2023

Unternehmen Aster was a battle fought in the Ardennes forest

near the junction of the

… in a retreat codenamed
Operation Aster (German :

Unternehmen Aster) …

… fought on September 7 , 1812 ,
was a battle fought in the

Napoleonic Wars during the
French invasion of Russia.

The offensive against American
forces in the Ardennes forest had

preoccupied Hitler 's mind …

 … Spafford Farm , was
located near the junction of
the Spafford 's Branch …

Unternehmen Asterisk), was a battle fought in
the Ardennes forest near the junction of the

Rhine and Main rivers on 8 October

The Battle of Defcrenstein (also
known as the Battle of <unk>,
Battle of <unk> and Battle of

<unk> ; German :

Input Prefix

Generated Continuation

Document Document Document

Document

Rhine and Main

By the terms of the Peace of Basel
(22 July 1795) , the Prussian army

was to leave the Rhine and Main
river valleys …

Document

rivers

isk),

on 8 October

… independence in June 1991 ;
however the declaration came into

effect on 8 October 1991 …

Document

Figure 6: An example generated by COG. The dotted squares denote that the content (highlighted in
red)is generated from the token vocabulary, and the solid squares denote that the content (highlighted

in blue) is copied from other documents.

16

	Introduction
	Background: Neural Text Generation
	Copy-Generator
	Model Architecture
	Model Training

	Experimental Setup
	Baselines
	Implementation Details
	Automatic Evaluation Metrics

	Experimental Results
	Language Modelling on WikiText-103
	Domain Adaption on Law-MT
	Enlarged Phrase Index with En-Wiki

	Related Work
	Conclusion
	Dataset Statistics
	More Implementation Details
	Perplexity of Generated Text
	The Phrase Segmentation Algorithm
	More Cases

