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ABSTRACT

Temporal point processes (TPPs) provide a natural mathematical framework for
modeling heartbeats due to capturing underlying physiological inductive biases.
In this work, we apply density-based neural TPPs to model heartbeat dynamics
from 18 subjects. We adapt a goodness-of-fit framework from classical point
process literature to Neural TPPs and use it to optimize hyperparameters, iden-
tify appropriate training sequence lengths to capture temporal dependencies, and
demonstrate zero-shot predictive capability on heartbeat data.

1 INTRODUCTION

Temporal point processes (TPP) provide a powerful framework for modeling several physiological
phenomena in an etiologically faithful way. One such example is heartbeats, which are known
to have statistical structure governed by point processes Barbieri et al. (2005). Recent work has
introduced a framework of neural TPPs Shchur et al. (2021) for non-physiological time series data.
These models hold the potential for greater representational power for complex nonlinear dynamics
and increased ease of handling big data compared to existing physiological point process models.

However, most Neural TPP methods use negative log likelihoods (NLLs) as the main metric of
model evaluation. This choice is not optimal for several reasons: (1) NLLs are not comparable across
sequences of different length; (2) NLLs serve as both loss and metric, which can bias evaluations;
(3) NLLs are not comparable across models; and (4) most importantly, NLLs do not question the
underlying generative assumptions of the model itself: whether or not the point process model
in question is an appropriate choice for the data. Past work (Shchur et al. (2021) also notes the
limitations of NLL as an evaluation metric.

In this work, we introduce a goodness-of-fit (GOF) framework that draws on classical TPP theory
and apply it to Neural TPPs. This framework provides a natural metric for evaluating model fit,
the KS-distance (defined in Section 2.1). We apply the framework to electrocardiogram (ECG) data
(specifically a publicly available dataset from the Physionet collection Moody et al. (2001)), for
which there is known statistical structure underlying the generative process. The GOF framework
offers the following benefits: (1) a metric independent from model optimization, (2) a method to
question underlying generative assumptions on a per dataset basis, (3) comparability across models,
and (4) significance cutoffs for the KS-distance that account for sequence length. To our knowledge,
this work is the first application of classical GOF frameworks to Neural TPPs and of density-based
Neural TPP models to ECG data. We use the GOF framework to (1) perform systematic hyperparam-
eter search, (2) evaluate the effect of altering training sequence lengths, and (3) evaluate zero-shot
learning capability.

2 BACKGROUND AND RELATED WORK

We introduce notation and mathematical details for point processes in Appendix A.1.

∗https://www.subramanianlab.com
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2.1 GOODNESS-OF-FIT AND THE TIME RESCALING THEOREM

Classical temporal point process theory already has the powerful machinery of GOF frameworks for
point processes. These methods have been vetted across domains and allow for evaluation of model
assumptions on a per dataset basis. The foundation of these is the Time Rescaling Theorem Brown
et al. (2002), which states that any point process, defined uniquely by a time-varying conditional
intensity function, can be transformed to a Poisson process with rate 1.

To formalize, suppose we have a sequence of events 0 < t1 < . . . < tN that are drawn from a
temporal point process with conditional intensity function λ(t|Ht). Then define a transformation
ri =

∫ ti
0

λ(s|Hs)ds that transforms the original sequence of events into sequence 0 < r1 < . . . <
rN . Then the time-rescaling theorem states that R = {ri} is a Poisson process with unit rate. Given
these transformed times, we can compute rescaled intervals ρi := ri − ri−1. By the time-rescaling
theorem, these are independently drawn exponential random variables with mean 1. We can perform
the transformation zi = 1− exp(−ρi)) and we will have that the zi are uniform random variables.

Therefore, to test the GOF of a point process model, we can transform the empirical intervals using
the time-rescaling theorem and assess whether the resulting zi’s are independent, uniform random
variables. To do this, we use a visualization called the Kolmogorov-Smirnov (KS) plot, which plots
the quantiles of the zi’s against the quantiles from a uniform distribution (Fig 1). For a well-fitting
model, the zi’s should closely follow along the line y = x. We can quantify this by computing
a KS-distance, which is the maximum vertical distance from the y = x line Brown et al. (2002).
The 95% significance cutoff for the KS-distance is defined as 1.36/

√
n, where n is the number

of data points in the sequence. Another visualization technique to assess GOF is to plot pairs of
subsequent intervals against each other. The original intervals from a point process are typically
highly correlated, whereas the rescaled intervals (ρi’s) should be uncorrelated.

2.2 THE NEURAL TEMPORAL POINT PROCESS

A parameterized temporal point process is governed by a set of parameters θ. It is possible to start
from a parameterized conditional intensity function λ∗

θ or from a parameterized conditional density
p∗θ . In this work, we focus on the parameterized density p∗θ following Shchur et al. (2019). As we
will see shortly, this choice simplifies the form of the negative log-likelihood. It also appropriately
represents the known physiology of heartbeat generation (Section 2.3). We can then learn θ from
data by minimizing the parameterized negative log-likelihood

θ∗ = argmin
θ

−
∑
i

log p∗θ(τi) = argmin
θ

[
−
∑
i

log λ∗
θ(ti) +

∫ tN

0

λ∗
θ(s)ds

]
(1)

We parameterize the conditional density p∗θ as a mixture of lognormal distributions:

p(τ |w, µ, s) =
K∑

k=1

wk
1

τsk
√
2π

exp

(
− (log τ − µk)

2

2s2k

)
(2)

where wk, sk, µk are learnable parameters. Neural TPPs embed the history up to t, Ht, into fixed
embeddings h ∈ RH where H is the size of the history embedding space. In this work we use
recurrent neural networks to perform this embedding hi = RNN(t1, . . . , ti−1). We also consider
RNN variants like GRUs and LSTMs Goodfellow et al. (2016). We also allow the model to learn a
sequence specific embedding e. The context is defined as the concatenation of the history and the
embedding vectors c = h||e. The parameters for the density are learned functions of the context
(where V, b are learned from data): w = softmax(Vwc+ bw), s = exp(Vsc+ bs), µ = Vµc+ bµ.

2.3 STATISTICAL MODELS OF HEARTBEATS

The ECG measures electrical activity of the heart. The most notable morphology of the ECG is
the R complex or R peak, which denotes the heartbeat. The intervals in between subsequent R
peaks are referred to as RR intervals. The electrochemical process that gives rise to each R peak
in the heart has been shown to be modeled by a Gaussian random walk with linear drift Barbieri
et al. (2005), with the RR intervals therefore following an inverse Gaussian distribution Barbieri
et al. (2005); Chhikara (1988). By rigorously modeling the generative process of a heartbeat, the
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Figure 1: (Top) An architecture diagram for the density-based neural TPP model. (Bottom) The
goodness-of-fit (GOF) framework. The time-rescaling theorem is used to test the GOF of the density
neural TPP model with standard statistical methodology like the KS-plot.

resulting model allows for a degree of accuracy and precision in tracking subtle but physiologically
important beat-to-beat variations not achieved by other standard smoothing or averaging techniques.
The lognormal distribution has also been employed to model physiological time series (including
heartbeat dynamics in children Gee et al. (2016)) because of its similarity to the inverse Gaussian as
a heavier-tailed distribution Subramanian et al. (2020). Therefore, the lognormal neural TPP is an
apt initial choice of neural model for heartbeat dynamics applications.

3 METHODS AND RESULTS

Fig 1 illustrates the Neural TPP architecture and the GOF framework that we leverage in this work
to evaluate Neural TPP models. Using this GOF framework, we compute the the KS-distance as the
primary measure of model performance. We consider the publicly available MIT-BIH normal sinus
rhythm dataset1. This dataset consists of 130 minutes of ECG recording of normal sinus rhythm
from each of 18 subjects (ages 20-50, 13 women). Each subject’s ECG data was preprocessed using
the Pan-Tompkins algorithm Pan & Tompkins (1985) to extract the times of the R peaks.

3.1 HYPERPARAMETER EXPLORATION

We split each subject’s data into sequences of R peak times in non-overlapping 10-minute segments.
The first 11 of those sequences per subject were for training (191 sequences total), the next one was
for validation (18 sequences total), and the last for the test set (18 sequences total). We explored
modifying context length C (16, 32, 64, 128), the number of components K (1, 2, 4, 8, 16), and
type of RNN (GRU, RNN, LSTM). We used the validation set for early stopping. We computed
the 95% confidence interval (CI) for the mean KS-distance across the test set along with the mean
95% significance cutoff for the KS-distance for each run. Full details are available in Appendix A.2,
Table 1.

We found that the model is most sensitive to RNN type, with GRU consistently outperforming the
other types. Increasing model size (C, K) improves performance up to a certain point (C = 64 and
K = 8) after which there are diminishing returns.

3.2 VARYING TRAINING SEQUENCE LENGTH

We sought to evaluate the sensitivity of the model to shorter training sequences while keeping the
test sequence length constant. We divided the 110 minutes of training data for each subject into
different length sequences of 1, 2, or 5 minutes, while keeping the same 10-minute validation and
test set sequences. For each training sequence length, we varied hyperparameters and measured

1https://www.physionet.org/content/nsrdb/1.0.0/
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Figure 2: Zero-shot prediction results for one test subject with 30-minute test sequences. (a) Train-
ing fit improves dramatically with more training, with mean KS-distance (red) well below cutoff
(black). (b) Rescaling original RR intervals from the test subject using the time-rescaling theorem
yields uncorrelated rescaled intervals, as expected for a well-fitting model. (c) The KS-plot shows
remarkable fit across all 30-minute test subject sequences, with rescaled interval quantiles aligned
closely with the y = x line and falling almost fully within the significance cutoffs (black). (d) The
trained model tightly predicts the mean RR interval using a mixture of lognormal densities.

model performance as in Section 3.1. Full details are available in Appendix A.3, Table 2. We find
the best model performance for training sequences around 2-5 minutes, with decreased performance
for training sequences both shorter and longer than that (Fig 3).

3.3 ZERO-SHOT EXPERIMENTS

We sought to evaluate the zero-shot predictive power of the density-based neural TPP framework
on longer time-frame data from new subjects (as would be admitted to a hospital). Therefore, we
trained the model on data from 17 subjects for 1000 epochs using 5-minute training sequences and
evaluated the trained model on both 10-minute and 30-minute sequences from a held-out test subject.
We rotated each subject as the test subject. We computed the 95% CI for the mean KS-distance
across test subject sequences along with the mean 95% significance cutoff for the KS-distance.

Fig 2 and Fig 4 (Appendix A.4) show the zero-shot prediction results for 2 example subjects. The
95% CI for the test subject mean KS-distance was fully below the mean significance cutoff for 13
subjects with 10-minute test sequences and 5 subjects with 30-minute test sequences. The 95% CI
contained the mean significance cutoff for the remaining 5 subjects with 10-minute test sequences
and 9 of the remaining subjects with 30-minute test sequences. Results are summarized in Ap-
pendix A.4, Table 4. Unsurprisingly, the zero-shot prediction is better for shorter length sequences.
However, as Figs 2 and 4 demonstrate, the zero-shot prediction performance is still remarkable on
longer test sequences.

4 DISCUSSION

In this work, we present three principal findings. First, we successfully adapted classical GOF
frameworks to evaluate neural TPP model fit on per dataset basis. This opens the door for statisti-
cally rigorous evaluation of neural TPPs and for systematic comparisons with existing point process
methods. We will do this comparison in future work. We will also test this framework on more and
larger ECG datasets, extend to other physiological time series, and explore modeling multi-sensor
physiological time series.

Second, with respect to heartbeat dynamics in normal sinus rhythm, the ability of the neural TPP
model to capture nonlinearity and long-range temporal dependencies through model complexity
allows us to measure how much ‘memory’ the physiological phenomena requires. In this case, the
system has memory, evidenced by the sensitivity of the model to the specific RNN architecture
(GRU vs others) and the effectiveness of 2-5 minute vs 1-minute training sequences. However,
this memory is not infinite, as evidenced by the diminishing returns on performance with longer
training sequences or continually increasing model size. This result supports previous work in the
field, where limited range history-dependent models have been successfully employed to represent
the known influence of respiration and basic hemodynamic reflexes Barbieri et al. (2005); Gee et al.
(2016). The required ’memory’ of the system may change with specific pathology, however.
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Third, the framework of density-based neural TPPs retains the rich physiologically relevant point
process prior, but also allows for shared learnable parameters. Our experiments with zero-shot
prediction revealed that neural TPPs can learn generalizable models of human heartbeat dynamics
during normal sinus rhythm for new subjects. In future work, we will probe this generalizability in
the setting of different pathologies.

This work represents an important first step towards bridging the fields of physiology, statistics, and
AI to yield generalizable models of physiological processes.
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A APPENDIX

A.1 POINT PROCESSES

We define a temporal point process as a random process which generates a series of arrival times
0 < t1 < . . . < tn. We define τi = ti − ti−1 to be the interevent time. We define the set of events
T = {t1, . . . , tn}. The next arrival time may depend on the history of the process thus far defined
as Ht = {tj ∈ T |tj < t}.
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A point process is uniquely defined by its conditional intensity function λ∗
θ(t) = λ(t|Ht). The

conditional intensity function is defined as the probability of an event occurring in an infinitesimal
time interval

λ∗
θ(t) = lim

∆→0

P (event in [t, t+∆)|Ht)

∆
(3)

We will also find it useful to alternatively consider the conditional density function p∗θ(τi) =
pθ(τi|Ht) and conditional cumulative density function F ∗

θ . The density and intensity functions
are related by the following equations

p∗θ(τi) = λ∗
θ(ti−1 + τi) exp

(
−
∫ τi

0

λ∗
θ(ti−1 + s)ds

)
, λ∗

θ(τi) =
p∗θ(τi)

1− F ∗
θ (τi)

(4)

The log-likelihood L of a series of events is given by

L =
∑
i

log p∗θ(τi) =
∑
i

log λ∗
θ(ti)−

∫ tN

0

λ∗
θ(s)ds (5)

A.2 OPTIMIZATION AND HYPERPARAMETERS

We performed systematic hyperparameter optimization of neural TPP parameters including the con-
text size C, the number of mixture components K, the choice of RNN cell, and the number of
training epochs. All sequences are of length 10 minutes. The 130 minutes of ECG data per each
subject are chopped into 13 10-minute sequences of R peak times. These sequences are split across
training, validation and test. 110 minutes of data are used for training, 10 for validation and 10
for test. Models were optimized using Adam Kingma & Ba (2014) on a T4 GPU. Training runs
typically took under 10 minutes. Full results are provided in Table 1.

Table 1: Hyperparameter Exploration. C is the context length. K is the number of components.
Epochs is the maximum number of epochs allowed (but models may stop earlier due to early stop-
ping.) RNN indicates type of RNN cell. All training sequences are of length 10 minutes. 95% CI
Test KS indicates the 95% confidence interval for the mean KS-distance on the test set. 95% CI Val
KS and 95% CI Train KS have similar meanings. The mean 95% test cutoff KS-distance is 0.0471.
The mean 95% validation cutoff KS-distance is 0.0477. The mean 95% train cutoff KS-distance is
0.0481.
C K RNN Epochs 95% CI Test KS 95% CI Val KS 95% CI Train KS

64 8 GRU 2000 0.0225, 0.0314 0.0346, 0.0829 0.0501, 0.0636
128 8 GRU 1500 0.0229, 0.0307 0.0228, 0.0323 0.0277, 0.0309

32 8 GRU 500 0.0332, 0.0434 0.0353, 0.0474 0.0401, 0.0453
64 8 RNN 500 0.0396, 0.0514 0.0421, 0.0626 0.0493, 0.0562
64 8 LSTM 500 0.0377, 0.0538 0.0394, 0.0575 0.0436, 0.0499
64 16 GRU 500 0.0322, 0.0417 0.0302, 0.0411 0.0344, 0.0392
64 32 GRU 1000 0.0258, 0.0331 0.0236, 0.0331 0.0265, 0.0293
64 4 GRU 500 0.028, 0.0389 0.0361, 0.0466 0.0402, 0.045
64 2 GRU 1000 0.0282, 0.0383 0.0273, 0.0415 0.0328, 0.0368
64 1 GRU 500 0.0405, 0.0577 0.0363, 0.0587 0.0491, 0.0563

128 32 GRU 500 0.0285, 0.0402 0.0301, 0.0446 0.0328, 0.0373
128 2 GRU 500 0.0314, 0.0399 0.0304, 0.0428 0.0341, 0.0382

A.3 TRAINING SEQUENCE LENGTHS

We followed the same general procedure as in Section A.2, but divided the 110 minutes of training
data for each subject divided into different length sequences of 1,2,5 or 10 minutes. The validation
set still contained a single 10-minute sequence for each subject and the test set was still a single 10-
minute sequence for each subject. See full results in Table 2. Fig 3 summarizes results and shows
that between 2-5 minutes of training sequence length is sufficient for best results.
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Table 2: Training Sequence Length Variation. C is the context length. K is the number of com-
ponents. L is the length of the training sequences in minutes. Epochs is the maximum number of
epochs allowed (but models may stop earlier due to early stopping.) RNN indicates type of RNN
cell. 95% CI Test KS indicates the 95% confidence interval for the mean KS-distance on the test
set. 95% CI Val KS and 95% CI Train KS have similar meanings. The mean 95% test cutoff KS-
distance is 0.0471. The mean validation cutoff KS-distance is 0.0477. The mean 95% train cutoff
KS-distance is 0.0681 for 5-minute sequences, 0.1082 for 2-minute sequences, 0.1541 for 1-minute
sequences.
C K RNN L Epochs 95% CI Test KS 95% CI Val KS 95% CI Train KS

64 8 GRU 5 min 2000 0.0241, 0.0381 0.0186, 0.0282 0.0315, 0.0336
128 8 GRU 5 min 1000 0.0225, 0.0322 0.0242, 0.0393 0.0355, 0.0384

32 8 GRU 5 min 3000 0.0227, 0.0306 0.022, 0.0294 0.0321, 0.0344
16 8 GRU 5 min 1000 0.0272, 0.0352 0.029, 0.0369 0.0368, 0.0393
32 8 RNN 5 min 1000 0.0338, 0.0432 0.0306, 0.0423 0.0417, 0.0455
32 8 LSTM 5 min 1000 0.0237, 0.0313 0.0227, 0.035 0.0357, 0.0384
32 16 GRU 5 min 2000 0.023, 0.0307 0.0225, 0.0335 0.0326, 0.0348
32 4 GRU 5 min 1000 0.0247, 0.0346 0.0279, 0.0447 0.0404, 0.0439
32 2 GRU 5 min 1000 0.0293, 0.0386 0.0273, 0.041 0.04, 0.0433
32 1 GRU 5 min 1000 0.0349, 0.0514 0.0323, 0.0515 0.0503, 0.0545

128 16 GRU 5 min 2000 0.0201, 0.0288 0.0211, 0.0354 0.0319, 0.0342
64 16 GRU 5 min 2000 0.0201, 0.0277 0.0218, 0.0296 0.0316, 0.0337
64 8 GRU 2 min 1000 0.0208, 0.0286 0.023, 0.0319 0.0471, 0.0491
64 8 RNN 2 min 1000 0.0256, 0.0348 0.0277, 0.0398 0.0537, 0.0561
64 8 LSTM 2 min 1000 0.0233, 0.0313 0.0242, 0.0321 0.0531, 0.0555

128 8 GRU 2 min 1000 0.0267, 0.0348 0.0199, 0.0295 0.0466, 0.0486
32 8 GRU 2 min 2000 0.0219, 0.031 0.0224, 0.034 0.0481, 0.0502
16 8 GRU 2 min 3000 0.0238, 0.0333 0.0254, 0.0347 0.0501, 0.0523
64 16 GRU 2 min 1000 0.0262, 0.035 0.0223, 0.0322 0.0471, 0.049
64 4 GRU 2 min 1000 0.0255, 0.0373 0.0245, 0.0359 0.0486, 0.0507
64 2 GRU 2 min 1000 0.0286, 0.0417 0.0281, 0.043 0.053, 0.0553
64 1 GRU 2 min 1000 0.0328, 0.052 0.0314, 0.0472 0.0578, 0.0606
64 8 GRU 1 min 1000 0.0256, 0.0369 0.0281, 0.0411 0.0679, 0.0701

128 8 GRU 1 min 1000 0.0283, 0.039 0.0327, 0.0439 0.0685, 0.0709
32 8 GRU 1 min 1000 0.0258, 0.0381 0.0358, 0.0533 0.0734, 0.0758
16 8 GRU 1 min 2000 0.0236, 0.0339 0.0242, 0.0343 0.0647, 0.0667
16 8 RNN 1 min 1500 0.0291, 0.0406 0.0359, 0.0488 0.0691, 0.0713
16 8 LSTM 1 min 1500 0.0251, 0.0357 0.0261, 0.0349 0.0647, 0.0667
16 16 GRU 1 min 1500 0.0257, 0.0342 0.0236, 0.0332 0.0666, 0.0687
16 4 GRU 1 min 1500 0.0259, 0.0348 0.0244, 0.0368 0.0681, 0.0704
16 2 GRU 1 min 1500 0.0284, 0.0397 0.0258, 0.0378 0.0692, 0.0715
16 1 GRU 1 min 1500 0.033, 0.046 0.0319, 0.0481 0.0768, 0.0793
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Figure 3: The 95% confidence intervals for the mean KS-distances of the best models on the test set
with varying training sequence lengths. Between 2-5 minutes of training seems to generalize best.

Figure 4: Zero-shot prediction results for a different subject than Fig 2 with 30-minute test se-
quences. (a) Training data fit improves dramatically with more epochs of training, with the mean
KS-distance (red) well below cutoff (black). (b) Rescaling the original RR intervals from the test
subject using the time-rescaling theorem yields uncorrelated rescaled intervals, as would be expected
for a well-fitting model. (c) The KS-plot shows reasonable fit across all 30-minute test subject se-
quences, but with more variation than Fig 2. (d) The trained model tightly predicts the mean RR
interval using a mixture of lognormal densities.

A.4 ZERO-SHOT EXPERIMENTS

Fig 4 provides full zero-shot visualizations for an additional subject. Full details of zero-shot exper-
iments are provided in Table 3. Table 4 summarizes results across all subjects.
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Table 3: Zero-Shot Testing. Subject indicates the subject used as the test subject. Ltrain is the
length of the training sequences in minutes. Ltest is the length of the test sequences in minutes. All
models were trained for 1000 epochs. RNN indicates type of RNN cell. 95% Test KS indicates the
95% confidence interval for the mean KS-distance on the test set. 95% Val KS and 95% CI Train KS
have similar meanings. Test cut indicates the mean 95% cutoff for the test set KS-distance. Train
cut indicates the mean 95% cutoff for the training set KS-distance.

Subject Ltrain Ltest 95% Test KS Test Cut. 95% Train KS Train Cut.
1 5 min 10 min 0.0224, 0.0329 0.0459 0.0375, 0.0405 0.0681
2 5 min 10 min 0.039, 0.0537 0.055 0.0337, 0.0359 0.0674
3 5 min 10 min 0.0271, 0.0394 0.0482 0.0336, 0.0357 0.0679
4 5 min 10 min 0.0332, 0.0501 0.0476 0.0326, 0.0346 0.068
5 5 min 10 min 0.042, 0.0509 0.0445 0.0336, 0.0356 0.0682
6 5 min 10 min 0.0445, 0.0755 0.0519 0.0329, 0.0349 0.0676
7 5 min 10 min 0.0184, 0.0302 0.05 0.0366, 0.0391 0.0678
8 5 min 10 min 0.026, 0.0347 0.0504 0.0331, 0.0353 0.0678
9 5 min 10 min 0.028, 0.0462 0.0487 0.0334, 0.0357 0.0679

10 5 min 10 min 0.0304, 0.0584 0.0525 0.0343, 0.0368 0.0676
11 5 min 10 min 0.0206, 0.0307 0.0463 0.0325, 0.0348 0.0681
12 5 min 10 min 0.0235, 0.0315 0.0451 0.0349, 0.0373 0.0682
13 5 min 10 min 0.019, 0.0238 0.0471 0.0324, 0.0344 0.068
14 5 min 10 min 0.0272, 0.0507 0.0442 0.0358, 0.0389 0.0683
15 5 min 10 min 0.0331, 0.046 0.0479 0.0351, 0.0374 0.068
16 5 min 10 min 0.0204, 0.0309 0.0514 0.0321, 0.0342 0.0677
17 5 min 10 min 0.0189, 0.0262 0.0462 0.0326, 0.0346 0.0681
18 5 min 10 min 0.0231, 0.0388 0.0403 0.0339, 0.0363 0.0686

1 5 min 30 min 0.0399, 0.0444 0.0256 0.0403, 0.0433 0.0681
2 5 min 30 min 0.0127, 0.0624 0.0307 0.0337, 0.0363 0.0674
3 5 min 30 min 0.0203, 0.0283 0.0269 0.0326, 0.0348 0.0679
4 5 min 30 min 0.0194, 0.0319 0.0265 0.0323, 0.0344 0.068
5 5 min 30 min 0.0377, 0.0544 0.0248 0.0342, 0.0365 0.0682
6 5 min 30 min 0.0272, 0.0774 0.0287 0.0322, 0.0344 0.0676
7 5 min 30 min 0.0153, 0.0182 0.0278 0.0371, 0.0394 0.0678
8 5 min 30 min 0.0219, 0.0333 0.028 0.0338, 0.0363 0.0678
9 5 min 30 min 0.0075, 0.0584 0.0274 0.0394, 0.0423 0.0679

10 5 min 30 min 0.0231, 0.0519 0.0292 0.0332, 0.0354 0.0676
11 5 min 30 min 0.0134, 0.0265 0.0259 0.0347, 0.0372 0.0681
12 5 min 30 min 0.0424, 0.052 0.025 0.0363, 0.0388 0.0682
13 5 min 30 min 0.0141, 0.0203 0.0262 0.0346, 0.037 0.068
14 5 min 30 min 0.02, 0.0407 0.0246 0.0349, 0.0374 0.0683
15 5 min 30 min 0.0129, 0.0208 0.0266 0.0412, 0.0444 0.068
16 5 min 30 min 0.01, 0.0234 0.0287 0.0356, 0.0381 0.0677
17 5 min 30 min 0.0129, 0.0226 0.0256 0.0345, 0.0369 0.0681
18 5 min 30 min 0.0542, 0.1051 0.0225 0.038, 0.0412 0.0686

Table 4: Zero-shot results summary. Ltest is the length of the test sequence. Nunder is the number
of test subjects fully under KS-cutoff, Noverlap is the number where the KS-cutoff is within the
95%-CI for the subject, Nover is the number where the 95%-CI is over the KS-cutoff, and Ntotal is
the total number of subjects

Ltest Nunder Noverlap Nover Ntotal

10 13 5 0 18
30 5 9 4 18
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