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ABSTRACT 

This paper explores the integration of strategic optimization methods in the context of search advertising, focusing on ad 

ranking and bidding mechanisms within e-commerce platforms. Employing a combination of reinforcement learning and 

evolutionary strategies, we propose a dynamic model that adjusts to varying user interactions and optimizes the balance 

between advertiser cost, user relevance, and platform revenue. Our results suggest significant improvements in ad 

placement accuracy and cost-efficiency, demonstrating the model’s applicability in real-world scenarios. 
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1．INTRODUCTION 

Search advertising is crucial for e-commerce systems, significantly boosting revenue and supporting merchant growth. 

Technological innovation, especially in big data and algorithms, is now essential for search marketing. The ad ranking and 

bidding process begins with advertisers setting bids on keywords. The search advertising engine then evaluates ad quality 

(based on metrics like click-through and conversion rates) alongside the bid amount to rank ads, with top-ranked ads 

winning the display slots. Electronic business platform‘s search advertising operates on a cost-per-click model, charging 

advertisers only when a user clicks an ad. This process impacts all stakeholders—advertisers gain product exposure and 

potential sales, users seek efficient, personalized recommendations, and platforms aim to maximize profits while 

maintaining user and advertiser satisfaction. The key to satisfying all parties lies in optimizing the ad sorting algorithm 

and the pricing mechanism used, which in our approach involves a policy optimization algorithm designed as a 

reinforcement learning[1] problem, enhancing the sorting formula across various search contexts. 

2．PROBLEM STATEMENT 

Optimizing ad ranking and bidding impacts revenue for advertisers, users, and platforms. Advertisers rely on display 

opportunities for promotion, users benefit from high-quality ads, and platforms drive revenue through engagement and 

transactions. The sorting formula balances these interests, aligning ad relevance with search results to optimize user 

engagement. The learning process for the sorting formula, defined by 𝑎 = 𝐴(𝑠)  where 𝑎 denotes parameters and s 

represents the search context, spans beyond localized interactions to encompass global user sequences for maximal 

cumulative reward. Our focus on maximizing RPM (revenue per thousand impressions) considers CTR, CVR, and GMV 

to ensure sustainable platform profitability. 

3．THEORETICAL FRAMEWORK 

In the future, the sorting formula will have the ability to control the revenue of advertisers, users and platforms. We design 

the sorting formula as follows. 
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𝜙(𝑠, 𝑎, 𝑎𝑑) = 𝑓𝑎1
(𝐶𝑇𝑅)  ·  𝑏𝑖𝑑 + 𝑎2  · 𝑓𝑎3

(𝐶𝑇𝑅, 𝐶𝑉𝑅) +  𝑎4  ·  𝑓𝑎5
(𝐶𝑉𝑅, 𝑝𝑟𝑖𝑐𝑒)                                (1) 

Note that the equation is centered using a center tab stop 

Where 𝑎 = 𝑎i (i = 1, . . . ,5)  represents the parameters of the sorting formula, bid represents the user’s bid for the 

advertisement ad, price represents the price of the product corresponding to the advertisement, CTR, CVR are The system 

predicts click probability and conversion probability. 𝑓𝑎1
 in the sorting formula can be considered as the expected value of 

the platform’s income; 𝑓𝑎2
 considers the user’s click probability and conversion probability, and is mainly used to describe 

the user’s satisfaction; 𝑓𝑎3
 considers factors related to purchase and represents the Possible benefits to the plaintiff. In 

addition, 𝑎2  and 𝑎4  are used to adjust the balance relationship of the latter two factors. We use ad, ad’ to represent 

advertisements ranked between two adjacent positions. According to GSP’s deduction calculation method, the current 

click deduction can be calculated as: 

 𝑐𝑙𝑖𝑐𝑘_𝑝𝑟𝑖𝑐𝑒 =
𝜙(𝑠,𝑎,𝑎𝑑′)−(𝑎2 · 𝑓𝑎3(𝐶𝑇𝑅,𝐶𝑉𝑅)+𝑎4 · 𝑓𝑎5(𝐶𝑉𝑅,𝑝𝑟𝑖𝑐𝑒))

𝑓𝑎1(𝐶𝑇𝑅)
                                        (2) 

4．METHODOLOGY 

The emergence of artificial intelligence has profoundly impacted various fields, such as machine learning[2][6], natural 

language processing[7][10], computer vision[11][12], deep learning[13][15], and reinforcement learning. Reinforcement learning 

is often used in virtual environments like games and is crucial in advertising to evaluate the effects of initialization and 

exploration processes. Our system includes three key modules: offline search advertising simulation, offline reinforcement 

learning, and online strategy optimization. The offline simulation module simulates strategy impacts, such as ranking 

outcomes and user behaviors, enabling safe exploration of strategies. It produces numerous training samples for 

reinforcement learning, records contexts, simulates policy functions, and predicts metrics like ad views and clicks. This 

helps maintain user experience and platform revenue while simplifying complex real-world scenarios.In the design of the 

reward function, if the user clicks and platform revenue are optimized, the reward function can be designed as: 

 𝑟(𝑠𝑡 , 𝑎𝑡) = 𝐶𝑇𝑅 ·  𝑐𝑙𝑖𝑐𝑘_𝑝𝑟𝑖𝑐𝑒 + 𝛿 ·  𝐶𝑇𝑅                                              (3) 

Among them, δ is the adjustment factor, which is used to adjust the balance between click-through rate and deduction. 

 

Figure 1. Strategy optimization system framework. 

 

Figure 2. DDPG network structure. 

The offline reinforcement learning module optimizes strategies using simulated data to initialize the strategy model, 

employing an off-policy model with a continuous action space, as shown in Figure 1. We use a Deep Deterministic Policy 

Gradient (DDPG) model with an Actor-Critic structure and feature encoding through embedding layers, as shown in 

Figure 2. This module focuses on critical actions and supports asynchronous learning with multiple agents, enhancing 

strategy generation and network updates. 
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In strategy optimization, the system adjusts the balance between click-through rate and cost using a reward function that 

considers both user clicks and platform revenue. Calibration methods like Isotonic regression ensure that simulated 

outcomes closely match real online responses. 

5．MODEL OPTIMIZATION 

Although in the process of policy optimization learning, we used an offline simulation model to explore the policy space 

and perform reward calibration on the estimated results, the simulation results do not represent the real behavior of users, 

as shown in Figure 3. Because the user’s behavior will be affected by other environmental factors, and as mentioned in the 

simulation system, the simulation system still does not consider many factors, such as the advertiser’s budget, bids and 

other information, which the simulation system cannot obtain. Serialized simulation results. Therefore, the strategy 

optimization algorithm needs to learn online based on real online feedback. 

 

Figure 3. Offline DDPG learning process framework. 

For online learning methods, we use the Evolution Strategy method for online strategy updates. For a given ranking 

strategy model 𝜋𝜃(𝑠𝑡), Evolution Strategy performs strategy exploration and model updating by performing the following 

two steps: (1) Adding Gaussian noise to the model parameter space θ to generate exploration action 𝑎; (2) Statistically 

different The reward results obtained by the strategy under noise, and the network parameters are updated based on the 

results. Suppose we perturb the parameter space n times to generate the perturbed parameter space 𝛩𝜋 = 𝜃𝜋 + 𝜖1, 𝜃𝜋 +
𝜖2, . . . , 𝜃𝜋 + 𝜖𝑛 . The actual reward on the corresponding line is Ri . Then the parameter update method is 𝜃𝜋

′ = 𝜃𝜋 +

𝜂
1

𝑛𝜎
∑ 𝑅�̅�𝜖𝑖

𝑛
𝑖=1 , where𝜂 represents the learning rate. Using Evolution Strategy to update model parameters has three 

advantages. First of all, Evolution Strategy is a derivative-free update method. Using this update method can avoid the 

calculation amount caused by calculating gradients; secondly, under the distributed parameter-serving framework, each 

worker only needs to The reward value can be passed to the parameter-server, which can greatly reduce the demand for 

network bandwidth for online learning; finally, this method can calculate the reward as a whole in one episode without 

having to consider the impact of reward sparsity in the state transfer process on the algorithm. influence, thereby achieving 

the overall optimization effect based on the browsing sequence. 

ALGORITHM 1: Asynchronous DDPG Learning 

Input: Simulated transition tuple set 𝛤 in the form 𝜓 =< 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 >  

Output: Strategy Network  𝜋𝜃𝜋
(𝑠𝑡) 

Initialize critic network 𝑄𝜃𝑄
(𝑠𝑡, 𝑎𝑡) with parameter 𝜃𝑄 and actor network 𝜋𝜃𝜋

(𝑠𝑡) with parameter 𝜃𝜋; 

Initialize target network 𝑄′, 𝜋′ with weights 𝜃𝑄′ ← 𝜃𝑄, 𝜃𝜋′ ← 𝜃𝜋; 

repeat 

Update network parameters 𝜃𝑄, 𝜃𝑄′, 𝜃𝜋 and 𝜃𝜋′ from parameter server; 

Sampling subset 𝛹 = {𝜓1, 𝜓2, . . . , 𝜓𝑚} from 𝛤; 

For each ψi, calculate 𝑄∗ = 𝑟𝑡 + 𝛾 ∙ 𝑄′(𝑠𝑡+1, 𝜋′(𝑠𝑡)); 

Calculate critic loss 𝐿 = ∑
1

2𝜓𝑖∈𝛹 ∙ (𝑄∗ − 𝑄(𝑠𝑡 , 𝑎𝑡))2; 
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Compute gradients of 𝑄 with respect to 𝜃𝑄 by 𝛻𝜃𝑄
𝑄 =

𝜕𝐿

𝜕𝜃𝑄
; 

Compute gradients of π with respect to 𝜃𝜋 by 

𝛻𝜃𝜋
𝜋 = ∑

𝜕𝑄(𝑠𝑡,𝜋(𝑠𝑡))

𝜕𝜋(𝑠𝑡)𝜓𝑖∈𝛹 ∙
𝜕𝜋(𝑠𝑡)

𝜕𝜃𝜋
= ∑

𝜕𝐴(𝑠𝑡,𝜋(𝑠𝑡))

𝜕𝜋(𝑠𝑡)𝜓𝑖∈𝛹 ∙
𝜕𝜋(𝑠𝑡)

𝜕𝜃𝜋
; 

Send gradients 𝛻𝜃𝑄
𝑄 and 𝛻𝜃𝜋

𝜋 to the parameter server; 

Update 𝜃𝑄 and 𝜃𝜋 with 𝛻𝜃𝑄
𝑄 and 𝛻𝜃𝜋

𝜋 for each global N steps by gradients method; 

Update 𝜃𝑄′ and 𝜃𝜋′ by 𝜃𝑄′ ← 𝜃𝑄′ + (1 − 𝜏)𝜃𝑄, 𝜃𝜋′ ← 𝜃𝜋′ + (1 − 𝜏)𝜃𝜋; 

Until Convergence; 

6．EXPERIMENT ANALYSIS AND DISCUSSION 

We address several key questions through experiments: Can the model converge to the optimal solution? How do different 

network architectures and parameter designs affect model convergence? What gains does online updating provide in 

enhancing the model’s online performance? 

To answer the first two questions, we represent the search context feature, s, simply using the query word ID. On the 

offline simulation platform, by employing a sliding window search over the parameter set a, we identify the optimal 

parameter values for the sorting function. We then compare these values with those obtained from DDPG to assess 

method convergence. Figures 4 and Figure 5 showcase the training convergence under various model configurations. The 

results indicate that: (1) The dueling architecture significantly boosts model convergence by distinguishing between the 

reward function (value function) and the advantage function (advantage function); (2) A larger training dataset size (batch 

size) benefits convergence due to the high variance in data. 

 

Figure 4. Effect of using dueling structure on convergence. 

For question three, we put the policy model learned by DDPG online for 2% traffic testing, and used ES to update the 

policy, online ES effect change trend is shown in Figure 6. The experiment lasted for 4 days, mainly comparing the 

changes in CTR, PPC, and RPM indicators. The experimental results are shown in the figure below. 
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Figure 5. The impact of using different attenuation factors and different batch training data sets (batch size) on convergence. 

 

Figure 6. Online ES effect change trend. 

7．CONCLUSION 

This paper emphasizes the success of integrating reinforcement learning with GSP auction models to optimize search ad 

placements, enhancing platform revenue, user, and advertiser satisfaction, and supporting a sustainable advertising 

ecosystem. Future research could expand this model to various digital advertising platforms and adapt it to changing 

market dynamics. The study’s main limitations are its dependence on high-quality simulation data for initial training and 

the necessity for continuous adjustments to keep the model accurate and relevant. Investigating adaptive learning rates and 

other reinforcement learning algorithms may help overcome these challenges, leading to more autonomous and efficient 

advertising systems. 
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