

ALDEN: REINFORCEMENT LEARNING FOR ACTIVE NAVIGATION AND EVIDENCE GATHERING IN LONG DOCUMENTS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Vision–language models (VLMs) excel at interpreting text-rich images but strug-
 014 gle with long, visually complex documents that demand analysis and integration
 015 of information spread across multiple pages. Existing approaches typically rely
 016 on fixed reasoning templates or rigid pipelines, which force VLMs into a pas-
 017 sive role and hinder both efficiency and generalization. We present Active Long-
 018 DocumEnt Navigation (ALDEN), a multi-turn reinforcement learning framework
 019 that fine-tunes VLMs as interactive agents capable of actively navigating long,
 020 visually rich documents. ALDEN introduces a novel `fetch` action that directly
 021 accesses the page by index, complementing the classic `search` action and bet-
 022 ter exploiting document structure. For dense process supervision and efficient
 023 training, we propose a rule-based cross-level reward that provides both turn-
 024 and token-level signals. To address the empirically observed training instabil-
 025 ity caused by numerous visual tokens from long documents, we further propose
 026 a visual-semantic anchoring mechanism that applies a dual-path KL-divergence
 027 constraint to stabilize visual and textual representations separately during train-
 028 ing. Trained on a corpus constructed from three open-source datasets, ALDEN
 029 achieves state-of-the-art performance on five long-document benchmarks. Over-
 030 all, ALDEN marks a step beyond passive document reading toward agents that
 031 autonomously navigate and reason across long, visually rich documents, offering
 032 a robust path to more accurate and efficient long-document understanding. All
 033 code and datasets will be released on to support future research.

1 INTRODUCTION

036 Visually rich documents (VRDs) serve as primary vehicles for storing and communicating structured
 037 knowledge in real-world applications. Unlike plain text, these documents combine different modal-
 038 ities, including text, tables, and figures, embedded in human-friendly layouts that encode semantic
 039 relationships. Effectively understanding such documents requires not only extracting textual content
 040 but also reasoning over their visual and structural organization. This has given rise to the task of
 041 visually rich document understanding (VRDU) (Wang et al., 2023; Ding et al., 2022) which aims
 042 to develop systems to automatically analyze VRDs and answer user queries, underpinning various
 043 practical applications (Liang et al., 2024; Rombach & Fettke, 2024)

044 Despite recent progress of vision–language models (VLMs) on single-page or short documents (Xie
 045 et al., 2024; Lv et al., 2023; Hu et al., 2024), real-world long documents spanning dozens or even
 046 hundreds of pages remain highly challenging. Feeding entire documents into a model’s context is
 047 computationally expensive and introduces substantial noise, making it difficult for VLMs to focus
 048 on relevant pages (Cho et al., 2024). A more scalable alternative is to have the VLM reason only
 049 over semantically relevant pages retrieved by a multimodal retriever (Faysse et al., 2025), following
 050 the retrieval-augmented generation (RAG) paradigm (Cho et al., 2024; Chen et al., 2025a). Recent
 051 work has extended this idea by building prompting-based pipeline in which VLMs passively perform
 052 predefined subtasks such as query reformulation or retrieval analysis within fixed workflows (Han
 053 et al., 2025; Wang et al., 2025b). While effective, these systems rely on static reasoning patterns
 This motivates shifting the research focus to the **Agentic VRDU** (A-VRDU) task, which requires

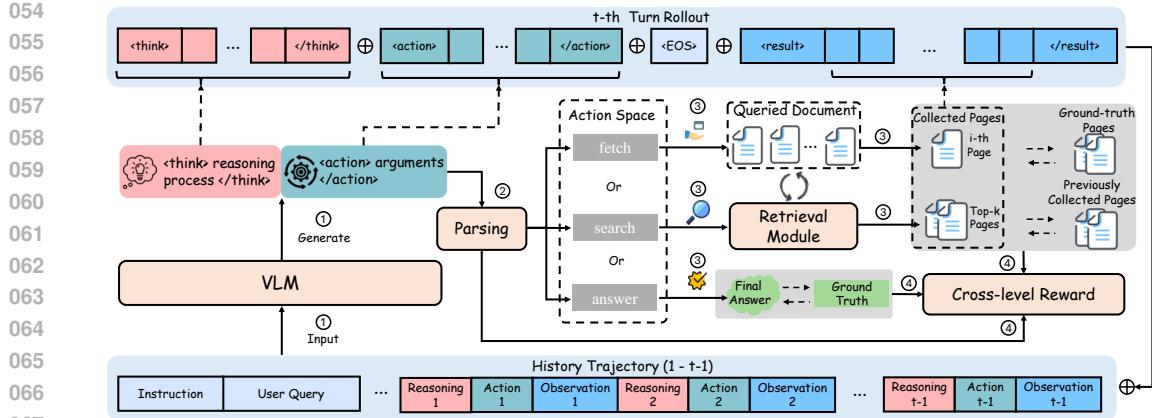


Figure 1: Overview of the rollout process. At each turn: (1) the VLM generates a response conditioned on the dialogue history; (2) the response is parsed into an action (search, fetch, or answer); (3) the action is executed, where search or fetch collect document pages and answer terminates the process; and (4) the cross-level reward function assigns rewards based on execution outcomes and parsing results.

the model to act as an agent that can actively navigate and reason over long documents to deliver accurate and adaptive question answering beyond fixed RAG pipelines.

Recent studies (Chen et al., 2025b; Jin et al., 2025; Song et al., 2025) show that modeling search as an action and optimizing the workflow with outcome-based RL yields more generalizable agents that can actively gather information from external databases, offering a promising direction for the open problem of A-VRDU. However, extending this framework to fine-tune VLMs for A-VRDU poses unique challenges. User queries often reference specific documents, page numbers, or require reasoning across consecutive pages, where generic semantic retrieval is inefficient. Moreover, document-level information gathering typically demands multi-turn interaction with retrieval models, where sparse and delayed outcome-based rewards fail to reinforce helpful intermediate steps or discourage redundant actions. A further challenge arises from the high-dimensional visual inputs. We empirically observe that fully masking the visual tokens when computing the policy gradient, as in existing approaches, leads to unstable training dynamics and can even cause collapse.

These limitations motivate our framework, **Active Long-DocumEnt Navigation** (ALDEN), a multi-turn RL framework that trains VLMs as interactive agents for navigation in long, visually-rich documents. The overall reasoning-action rollout of ALDEN is illustrated in Fig. 1. ALDEN expands the action space by introducing the `fetch` action, which enables direct page-index access to complement search-based retrieval and efficiently handle diverse queries. We incorporate a *cross-level reward function* as opposed to the sparse outcome-based reward typically used, which integrates rule-based turn-level supervision with a token-level repetition penalty to provide fine-grained process supervision, encouraging informative evidence collection while discouraging repeated query formulations. Finally, ALDEN incorporates a *visual semantic anchoring* mechanism, which constrains the hidden states of generated and visual tokens separately during training to preserve the grounding of visual-token representations and improve overall training robustness.

We build a training corpus from DUDE (Van Landeghem et al., 2023), MPDocVQA (Tito et al., 2023b), and SlideVQA (Tanaka et al., 2023b) to train an A-VRDU agent with ALDEN and evaluate it on five benchmarks. Experimental results show that ALDEN achieves state-of-the-art performance over strong baselines and demonstrates the effectiveness of its key components. Overall, the A-VRDU task establishes a new paradigm for processing practical, lengthy VRDs, shifting from passive document reading to autonomous navigation and reasoning. ALDEN’s strong results validate this paradigm and provide guidance for building efficient, robust A-VRDU agents from VLMs.

Overall, our main contribution can be summarized as follows:

- We propose the agentic visually-rich document understanding (A-VRDU) task that aims to develop agents that can actively navigate and reason over long visually-rich documents.
- To perform the A-VRDU task, we introduce **ALDEN**, a multi-turn RL framework with three key components: an expanded action space featuring a novel `fetch` action, a cross-level reward

108 function, and a visual semantic anchoring mechanism, which together enable efficient and robust
 109 training.

110 • We construct a training corpus for training the A-VRDU agent and conduct extensive experiments
 111 on five commonly used VRDU benchmarks, showing that ALDEN significantly outperforms the
 112 strongest baseline, improving the answer accuracy by 9.14% on average.

113

114 2 RELATED WORK

117 2.1 VISUALLY-RICH DOCUMENTS UNDERSTANDING

119 Recent VLMs that process document images directly without OCR (Hu et al., 2024; Xie et al., 2024;
 120 Feng et al., 2024; Liu et al., 2024b) have shown strong performance on single-page or short-
 121 document benchmarks (Mathew et al., 2021; Masry et al., 2022; Mathew et al., 2022). In contrast,
 122 real-world documents often span dozens or hundreds of pages, requiring reasoning across dispersed
 123 text, tables, and figures (Deng et al., 2024; Ma et al., 2024b). Extending context length to encode
 124 entire documents (Tito et al., 2023b; Blau et al., 2024) is computationally prohibitive and introduces
 125 noise, while semantic retrieval provides a more scalable way to focus on relevant pages (Chen et al.,
 126 2025b; Jin et al., 2025; Song et al., 2025). However, existing retrieval-based methods largely rely on
 127 prompting-based workflows (Han et al., 2025; Wang et al., 2025b), which are static and brittle. In
 128 contrast, we study A-VRDU task, and propose to fine-tune VLMs with RL, enabling them to serve
 129 as VRDU agents capable of active, multi-step retrieval and reasoning.

130

131 2.2 RL TRAINING FOR LLMs/VLMs

133 RL was introduced to LLM fine-tuning by Ouyang et al. (2022); Ziegler et al. (2019) through
 134 reinforcement learning from human feedback (RLHF), where a learned reward model guides the
 135 RL-based tuning of the policy LLM typically via the Proximal Policy Optimization (PPO) algo-
 136 rithm (Schulman et al., 2017). Recently, RL with verifiable outcome-based rewards (RLVR) (Shao
 137 et al., 2024) further demonstrates impressive effect in inducing sophisticated reasoning ability in
 138 LLMs. Building on this progress, several recent studies integrate RL with retrieval-augmented gen-
 139 eration (RAG), fine-tuning LLMs as agents that actively gather evidence through retrieval and reason
 140 over it (Jin et al., 2025; Song et al., 2025). However, extending these methods to the A-VRDU task
 141 remains largely unexplored. Unlike open-domain retrieval, VRDU requires exploiting explicit doc-
 142 ument structure (e.g., page indices), denser supervision to guide multi-turn navigation, and stability
 143 against the large number of unconstrained visual tokens introduced by high-resolution document
 144 pages, motivating new RL frameworks tailored for this task.

145

146 3 PRELIMINARIES

147

148 3.1 PROBLEM FORMULATION

149

150 In the A-VRDU task, a user query q_u is paired with a document $\mathcal{D} = (p_1, p_2, \dots, p_{|\mathcal{D}|})$ that can
 151 only be accessed through specific ways, where p_i denotes the i -th page and $|\mathcal{D}|$ the total number
 152 of pages. The goal is to build an agent that can actively analyzes available information, decides
 153 whether and how to collect additional pages from the document, and ultimately generates a final
 154 answer y' based on the collected evidence. This sequential decision-making process can be naturally
 155 formulated as a Markov Decision Process (MDP) (Bellman, 1957). Formally, at each turn t , the
 156 agent generates an action a_t from the action space \mathcal{A} . Upon executing the action, the document
 157 returns a visual observation $o_t \in \mathcal{O}$ (i.e., a page image) and a scalar reward $r_t \in \mathbb{R}$, which reflects
 158 the action's utility in acquiring useful evidence or answering the query. The state s_t is defined as the
 159 interaction history up to turn t , given by $s_t = [x, a_1, o_1, \dots, a_{t-1}, o_{t-1}]$, where x denotes the initial
 160 prompt constructed from the query and task instructions. The agent's objective is to maximize the
 161 expected cumulative reward $\sum_{t=1}^T \gamma^t r(s_t, a_t)$, where T is the maximum number of interaction turns
 per episode, γ denotes the discount factor.

162 3.2 PROXIMAL POLICY OPTIMIZATION FOR FINE-TUNING LLMs
163

164 PPO algorithm is an actor-critic RL algorithm that has been widely used in RLHF to fine-tune
165 language models toward task-specific preferences. In the classical RLHF setup, the problem is
166 typically modeled as a contextual bandit, where each episode involves a single interaction step.
167 Formally, given an input prompt x , the LLM auto-regressively generates a variable-length token
168 sequence $(a_1^1, \dots, a_1^L) \in \mathcal{V}^L$ as a single action a_1 where \mathcal{V} denotes the vocabulary and L is the
169 sequence length. A scalar reward r_1 is assigned to the action by a learned reward model. Since
170 LLMs operate token-by-token, PPO is actually applied at the token level by treating each token
171 $a_1^i \in \mathcal{V}$ as an action, with state $s_1^i = (x, a_1^1, \dots, a_1^{i-1})$ defined as the prompt concatenated with the
172 partial response. To propagate the turn-level reward r_1 to individual tokens, a token-level reward
173 signal is assigned as

$$174 \quad r_1^i = \begin{cases} r_1 - \beta \cdot \text{KL}[\pi_\theta(a_1^i | s_1^i) || \pi_{\text{ref}}(a_1^i | s_1^i)], & \text{if } i = L \\ -\beta \cdot \text{KL}[\pi_\theta(a_1^i | s_1^i) || \pi_{\text{ref}}(a_1^i | s_1^i)], & \text{otherwise} \end{cases} \quad (1)$$

175 where π_{ref} is the reference model (e.g., a frozen copy of the pre-trained LLM), the $\text{KL}(\cdot)$ term
176 acts as a penalty to prevent the policy from drifting too far from the reference model, β is the
177 hyperparameter to control the weight of the KL divergence penalty. In addition to the policy π_θ , a
178 value function $V_\phi(s_1^i)$ is trained to predict the expected return at each token position. Generalized
179 Advantage Estimation (GAE) (Schulman et al., 2015) is generally used to calculate the advantage
180 of each token-level action:

$$181 \quad A_1^i = \sum_{k=i}^L (\gamma_{\text{token}} \lambda_{\text{token}})^{k-i} \delta_k, \quad \delta_k = r_1^k + \gamma_{\text{token}} V_\phi(s_1^{k+1}) - V_\phi(s_1^k) \quad (2)$$

182 where $\lambda \in [0, 1]$ is a hyperparameter to balance the estimation bias and variance. The value function
183 is then optimized by minimizing the mean squared error between predicted values and GAE-
184 estimated target values $\hat{V}_1^i = A_1^i + V_\phi(s_1^i)$. The LLM is finally optimized by maximizing the
185 following surrogate objective:

$$186 \quad \mathcal{L}_{\text{policy}} = \mathbb{E}_x \left[\sum_{i=1}^L \left[\min \left[\frac{\pi_\theta(a_1^i | s_1^i)}{\pi_{\text{old}}(a_1^i | s_1^i)} A_1^i, \text{clip} \left(\frac{\pi_\theta(a_1^i | s_1^i)}{\pi_{\text{old}}(a_1^i | s_1^i)}, 1 - \epsilon, 1 + \epsilon \right) A_1^i \right] \right] \right] \quad (3)$$

187 where π_θ and π_{old} are the current and old policy models, ϵ is a clipping-related hyper-parameter introduced
188 in PPO for stabilizing training. The single-turn PPO framework propagates only immediate
189 rewards to tokens, neglecting each action's contribution to final task completion and fine-grained token
190 supervision. We next describe how we adapt it for long-horizon, multi-turn interaction in the
191 A-VRDU task.

192 4 METHODOLOGY

193 We propose **Active Long-DocumEnt Navigation (ALDEN)**, a reinforcement learning framework for
194 training VLMs as interactive agents that can actively navigate and reason over long, visually rich
195 documents by operating in a multi-turn reasoning-action loop, incrementally collecting evidence
196 pages until a question can be confidently answered. To this end, ALDEN introduces three key
197 components. **(i) Expanded action space:** the agent is equipped with both a semantic `search` action
198 for retrieving relevant pages and a novel `fetch` action for direct page access, enabling flexible ex-
199 ploitation of document structure (§4.1). **(ii) Cross-level reward function:** supervision is provided
200 jointly at the turn level and the token level, guiding the agent toward effective evidence collection
201 and accurate answer generation (§4.2). **(iii) Visual semantic anchoring:** to stabilize RL training,
202 ALDEN constrains the hidden-state evolution of generated and visual tokens respectively, mitigat-
203 ing drift and preserving semantic grounding during optimization (§4.3). The overall RL training
204 pipeline of ALDEN is illustrated in Fig. 2 and Alg. 1.

205 4.1 EXPANDED ACTION SPACE

206 In Agentic VRDU, agents must flexibly access information that may be referenced either semanti-
207 cally or structurally. Relying solely on semantic retrieval is often insufficient: while it works for

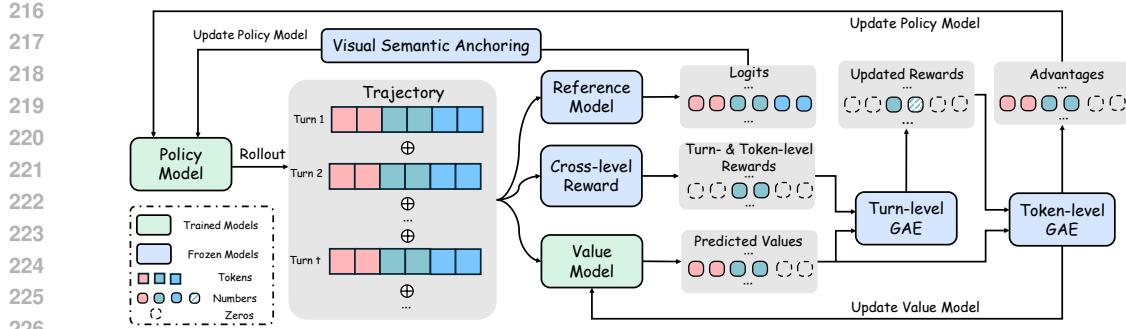


Figure 2: Overview of RL training in ALDEN. The policy model generates multi-turn trajectories, which are scored by a **cross-level reward function** and a **value model**. **Turn-level GAE** integrates future rewards to update the cross-level reward, and **token-level GAE** produces advantages for policy updates. A **reference model** supplies logits for both generated and visual tokens, which the **visual semantic anchoring** mechanism uses to constrain hidden-state evolution during optimization.

open-ended queries, it cannot efficiently resolve explicit page references (e.g., “see page 12”) or reasoning steps that span consecutive pages. To address this, ALDEN augments the standard `search` operation with a complementary `fetch` action, which enables direct page-index access and better exploits the inherent structure of documents. The action space thus consists of three options, each expressed in a structured format that combines free-form reasoning with explicit actions:

- **Search** — `<think>...</think><search>...</search>`
Generates a reasoning trace within the `<think>` tags followed by a semantic query enclosed within the `<search>` tags. An external retrieval module returns a ranked list of pages relevant to the current query using semantic similarity. This action is effective for open-ended queries where relevant content is not explicitly referenced.
- **Fetch** — `<think>...</think><fetch>...</fetch>`
Similar to search, but the agent specifies a page number within the `<fetch>` tag, enabling direct access to that page without semantic matching. This action is crucial for handling explicit references to page numbers or structured navigation across consecutive pages.
- **Answer** — `<think>...</think><answer>...</answer>`
Outputs the reasoning trace followed by the final answer. This action terminates the rollout.

Once the action is parsed, the document returns the corresponding page images enclosed within the `<result>` tag. For the `search` action, the associated page numbers are also returned to provide cues of document structure.

4.2 CROSS-LEVEL REWARD MODELING

Training agentic VRDU systems requires reward signals that are both structured enough to enforce valid behaviors and fine-grained enough to guide efficient exploration. To this end, ALDEN employs a cross-level reward function that integrates supervision at two complementary levels: turn-level rewards for overall action quality and token-level rewards for local shaping.

Turn-level Reward. The immediate turn-level reward r_t is defined as $r_t = f_t + u_t$, where the format reward f_t enforces the response format and the result reward u_t evaluates the quality of the action outcome. The format reward f_t is given by:

$$f_t = \begin{cases} 0, & \text{if the format is correct} \\ -1, & \text{otherwise} \end{cases} \quad (4)$$

Thus, only well-formed responses avoid penalty, ensuring consistent structured outputs across turns. The result reward is defined based on the action type $a_t \in \{\text{search}, \text{fetch}, \text{answer}\}$, the set of page indices collected in the current turn $\mathcal{C}_t = \{c_1, \dots, c_{|\mathcal{C}_t|}\} \subseteq \{1, \dots, |\mathcal{D}|\}$, the set of ground-truth page indices $\mathcal{G} = \{g_1, \dots, g_{|\mathcal{G}|}\} \subseteq \{1, \dots, |\mathcal{D}|\}$, and the set of previously accessed pages $\mathcal{R} = \bigcup_{k=1}^{t-1} \mathcal{C}_k$.

$$u_t = \mathbb{1}_{a_t=\text{answer}} \cdot \text{F1}(y, y') \cdot \alpha + \mathbb{1}_{a_t=\text{fetch}} \cdot (f_{\text{idx}}(\{c_1\}, \mathcal{G}) - f_{\text{rep}}(\mathcal{C}_t, \mathcal{R})) \cdot \eta + \mathbb{1}_{a_t=\text{search}} \cdot (NDCG@m - f_{\text{rep}}(\mathcal{C}_t, \mathcal{R})) \cdot \eta \quad (5)$$

270 where $\mathbb{1}(\cdot)$ denotes the indicator function, $\alpha > 1$ scales the reward of `answer` as the outcome
 271 reward, and η controls the weight of the repetition penalty. The term $\text{F1}(y, y')$ is the character-
 272 level F1 score between the generated answer y' and the ground-truth answer y . For `fetch`,
 273 $f_{idx}(\{c_1\}, \mathcal{G}) = e^{-\bar{d}(\{c_1\}, \mathcal{G})}$ smoothly rewards fetching pages near the ground-truth pages, where
 274 $\bar{d}(i, \mathcal{G}) = \frac{1}{|\mathcal{G}|} \sum_{i=1}^{|\mathcal{G}|} |c_1 - g_i|$. $NDCG@m$ evaluates the ranked list of retrieved pages, providing
 275 a fine-grained reward for search. For both `fetch` and `search`, $f_{rep}(\mathcal{C}_t, \mathcal{R}) = \frac{|\mathcal{C}_t \cap \mathcal{R}|}{|\mathcal{C}_t|}$ penalizes
 276 repeated page collection. To account for long-horizon credit assignment, following Zhou et al.
 277 (2024); Wang et al. (2025a), we extend immediate rewards with turn-level GAE.
 278

$$279 \hat{V}_t = \sum_{k=t}^T (\gamma_{\text{turn}} \lambda_{\text{turn}})^{k-t} \delta_k + V_\phi(s_t^L), \quad \delta_k = r_k + \gamma_{\text{turn}} V_\phi(s_{k+1}^L) - V_\phi(s_k^L) \quad (6)$$

282 where $V_\phi(s_t^L)$ denotes the value predicted at the last token of the t -th response, serving as the turn-
 283 level value estimate. The resulting \hat{V}_t replaces the raw r_t as the per-turn reward signal to provide a
 284 richer learning signal that aligns token-level updates with long-horizon objectives.

285 **Token-level Reward.** Unlike the `fetch` action, whose argument is a single page number, the
 286 `search` action takes a search query composed of multiple tokens. A turn-level repetition penalty
 287 cannot identify which tokens are repeated, and thus fails to effectively curb redundant search actions.
 288 To address this limitation, we further introduce a token-level penalty applied specifically to the query
 289 span of search actions. Starting from the second invocation of `search` within an episode, we compute
 290 the maximum Jaccard similarity between the current query's n-grams and those of all past queries:

$$291 \text{overlap}_t = \max_{j < t} \frac{|Q_n(q_t) \cap Q_n(q_j)|}{|Q_n(q_t) \cup Q_n(q_j)|} \quad (7)$$

293 where $Q_n(q)$ denotes the set of n-grams of the query. To distribute this penalty at the token level,
 294 we assign per-token weights so that tokens inside repeated n-grams receive proportionally higher
 295 penalties. For each token u in the query span a_t^{query} , the weight is defined as $w_u = \frac{c_u}{\sum_{v \in a_t^{\text{query}}} c_v}$,
 296 where $c_u \in \{0, 1, 2, \dots\}$ counts how many repeated n-grams include token u .

297 Finally, the reward assigned to each generated token a_t^i within turn t is defined by combining turn-
 298 level and token-level signals:

$$300 r_t^i = \begin{cases} \hat{V}_t, & \text{if } i = L \\ 301 -w_i \cdot \text{overlap}_t, & \text{if } t > 1 \text{ and } a_t = \text{search} \text{ and } a_t^i \in a_t^{\text{query}} \\ 302 0, & \text{otherwise} \end{cases} \quad (8)$$

303 This formulation anchors the turn-level objective to the response boundary, while applying localized
 304 penalties to redundant query tokens, yielding a unified cross-level reward signal for token-level PPO
 305 training. Token-level GAE is then applied to compute advantages for policy updates as in Eq. (2).

307 4.3 VISUAL SEMANTIC ANCHORING

309 A unique challenge in RL training for A-VRDU stems from the large number of visual tokens in
 310 the trajectory introduced by high-resolution document pages. Without explicit constraints on these
 311 tokens, we empirically observe pronounced training fluctuations and rapid entropy collapse (Fig. 3).
 312 To address this issue, we propose a Visual Semantic Anchoring mechanism that constrains hidden
 313 states during policy optimization through dual-path KL regularization. The KL term for textual
 314 tokens regularizes the policy distribution against a frozen reference model, stabilizing language
 315 generation, while the KL term for visual tokens anchors their hidden states to the reference model,
 316 preserving semantic grounding and preventing drift. Formally, we define

$$317 \mathcal{L}_{\text{policy}} = \mathbb{E}_x \left[\frac{1}{T} \sum_{t=1}^T \left[\frac{1}{L} \sum_{i=1}^L \left[\min \left[\frac{\pi_\theta(a_t^i | s_t^i)}{\pi_{\text{old}}(a_t^i | s_t^i)} A_t^i, \text{clip} \left(\frac{\pi_\theta(a_t^i | s_t^i)}{\pi_{\text{old}}(a_t^i | s_t^i)}, 1 - \epsilon, 1 + \epsilon \right) A_t^i \right] \right] \right. \right. \\ 318 \left. \left. + \beta_{\text{gen}} \text{KL}[\pi_\theta(a_t^i | s_t^i) || \pi_{\text{ref}}(a_t^i | s_t^i)] + \frac{1}{H} \sum_{j=1}^H \beta_{\text{obs}} \text{KL}[\pi_\theta(o_t^j | o_t^{<j}, a_t, s_t) || \pi_{\text{ref}}(o_t^j | o_t^{<j}, a_t, s_t)] \right] \right] \quad (9)$$

322 where H denotes the number of visual tokens. β_{gen} and β_{obs} are independent coefficients. In practice,
 323 we set $\beta_{\text{obs}} > \beta_{\text{gen}}$ to tightly regularize the much larger observation-token set while allowing more
 324 flexibility for generated tokens to adapt to the task.

324

5 EXPERIMENTS

326 We conduct experiments on long VRDU benchmarks to (i) compare ALDEN with strong baselines
 327 and (ii) assess the contribution of its key components, including expanded action space, cross-level
 328 reward, and visual semantic anchoring, to navigation accuracy, answer quality, and training stabil-
 329 ity. We first outline datasets, baselines, implementation details, and evaluation metrics (§5.1), then
 330 present main results (§5.2), followed by ablations (§5.3) and detailed component analyses (§5.4).

332

5.1 EXPERIMENTAL SETUP

334 **Datasets.** We build the training set by merging and processing three multi-page
 335 VRDU datasets: DUDE (Van Landeghem et al., 2023), MPDocVQA (Tito et al., 2023a),
 336 and SlideVQA (Tanaka et al., 2023a). We filter out documents with fewer than 10
 337 pages. To enrich query diversity, we use GPT-4o (Hurst et al., 2024) to rewrite part
 338 of MPDocVQA, increasing the proportion of page-index-referenced queries in the final
 339 training corpus. Detailed statistics of the resulting training set are provided in Tab. 1.
 340 The evaluation is conducted mainly on
 341 the following VRDU benchmarks: **MM-LongBench** (Ma et al., 2024b), **Long-
 342 DocURL** (Deng et al., 2024), **PaperTab** (Hui et al., 2024), **PaperText** (Hui
 343 et al., 2024), and **FetaTab** (Hui et al., 2024). To evaluate the `fetch` action,
 344 we create DUDE-sub, a DUDE validation
 345 subset with 480 general queries and 480 queries containing explicit page references or implicit se-
 346 quential navigation cues. More details about the dataset can be seen in Appx. A.

347 Table 1: Statistics of the training dataset. #GQ and
 348 #PQ denote the numbers of general user queries and page-
 349 index-referenced queries, respectively.

Sub-dataset	DUDE	SlideVQA	MPDocVQA
#GQ	6,943	10,615	7,992
#PQ	1,011	2	4,165
Sum	7,954	10,617	12,157

350 **Baselines.** To validate the effectiveness of ALDEN, we compare it with three categories of base-
 351 lines. (1) **Full-Document Input**: mainstream state-of-the-art VLMs are prompted with the entire
 352 document as context to answer user queries. (2) **Visual RAG**: methods that retrieve the most relevant
 353 document pages using the user query, including M3DocRAG (Cho et al., 2024), and ReSearch-VL,
 354 a Search-only ALDEN variant trained with GRPO using outcome-based rewards adapted from a
 355 fully textual method ReSearch (Chen et al., 2025b). (3) **Hybrid RAG**: approaches that augment
 356 page images with OCR-extracted text for retrieval and reasoning, including MDocAgent (Han et al.,
 357 2025), VidoRAG (Wang et al., 2025b). Detailed baseline configurations can be seen in Appx. B

358 **Implementation Details.** Both the policy and value models are initialized from Qwen2.5-VL-7B-
 359 Instruct (Bai et al., 2025), and all Visual RAG and Hybrid RAG baselines use the same backbone
 360 for fairness. During training, we adopt the single-vector retriever vdr-2b-v1 (Ma et al., 2024a) for
 361 images and e5-large-v2 (Wang et al., 2022) for text. For evaluation, we also report results with the
 362 multi-vector retrievers ColQwen2-v1.0 (ColQwen) (Faysse et al., 2025) for images and ColBERT-
 363 v2.0 (ColBERT) (Santhanam et al., 2021) for text. Unless otherwise noted, each `search` action
 364 retrieves the top-1 candidate page, with a maximum of $T = 6$ reasoning-action turns. On average,
 365 ALDEN collects 1.87 unique pages per query; hence, single-turn RAG baselines are set to retrieve
 366 the top-2 pages for a fair comparison. Further implementation details are provided in Appx. C.

367 **Evaluation Metrics.** The primary evaluation metric is GPT-4o-judged answer accuracy (**Acc**) on
 368 each benchmark. For finer-grained analysis of ALDEN’s components, we further assess navigation
 369 quality using trajectory-level retrieval recall (**Rec**), precision (**Pre**), F1-score (**F1**), and the number
 370 of unique collected pages (**#UP**). Detailed definitions of these metrics are provided in Appx. D.

371

5.2 MAIN RESULTS

372 Table 5.2 reports answer accuracy across all baselines. Directly prompting large VLMs with the
 373 entire document performs poorly ($\text{Acc} < 0.30$), confirming the difficulty of long-document reasoning
 374 where irrelevant content overwhelms true evidence. Retrieval-based methods achieve substantially
 375 better results. Among Visual RAG approaches, ALDEN with ColQwen attains the highest average
 376 accuracy (0.410), surpassing M3DocRAG by 3.2 points. In Hybrid RAG, baselines such as Vi-
 377 DoRAG and MDdocAgent benefit from textual signals but are limited by fixed reasoning pipelines.
 ALDEN with hybrid retrievers achieves the best overall performance, exceeding the strongest hy-

378

379
380
Table 2: Answer accuracy comparison on five VRDU benchmarks. \dagger indicates the strongest non-ALDEN
baseline used to compute the relative improvement (%). **Bold** indicates the best result per dataset.

Method	MMLongBench	LongDocUrl	PaperTab	PaperText	FetaTab	Avg
<i>Full Document Input</i>						
SmolVLM-Instruct (Marafioti et al.)	0.072	0.165	0.065	0.142	0.148	0.118
Phi-3.5-Vision-Instruct (Abdin et al.)	0.141	0.285	0.068	0.174	0.232	0.180
mPLUG-DocOwl2 (Hu et al.)	0.159	0.273	0.072	0.162	0.288	0.191
Qwen2-VL-7B-Instruct (Wang et al.)	0.177	0.280	0.077	0.146	0.339	0.203
LEOPARD (Jia et al.)	0.196	0.313	0.112	0.189	0.341	0.230
Qwen2.5-VL-7B-Instruct (Bai et al.)	0.221	0.375	0.131	0.265	0.336	0.265
InternVL3.5-8B-Instruct (Wang et al.)	0.219	0.381	0.130	0.271	0.348	0.270
<i>Visual RAG methods</i>						
ReSearch-VL (ColQwen)	0.274	0.384	0.150	0.295	0.406	0.302
M3DocRAG (ColQwen) \dagger	0.330	0.464	0.201	0.350	0.547	0.378
ALDEN (vdr-2b-v1)	0.335	0.513	0.201	0.342	0.542	0.386
ALDEN (ColQwen)	0.367	0.526	0.211	0.345	0.603	0.410
Relative Improvement (%)	11.21	13.36	4.98	-1.43	10.23	10.81
<i>Hybrid RAG methods</i>						
ViDoRAG (ColQwen + CoBERT)	0.215	0.323	0.158	0.264	0.358	0.264
MDocAgent (ColQwen + CoBERT) \dagger	0.347	0.494	0.221	0.408	0.607	0.415
ALDEN (vdr-2b-v1 + c5-large-v2)	0.385	0.542	0.228	0.416	0.611	0.436
ALDEN (ColQwen + CoBERT)	0.392	0.551	0.245	0.421	0.623	0.446
Relative Improvement (%)	12.97	11.54	10.86	3.18	2.63	7.47

396
397
Table 3: Answer accuracy for different ablations of ALDEN on five VRDU benchmarks. **Bold** indicates the
best result per dataset.

Method	MMLongBench	LongDocUrl	PaperTab	PaperText	FetaTab	Avg
Full ALDEN	0.335	0.513	0.201	0.342	0.542	0.386
w/o Fetch	0.301	0.469	0.140	0.258	0.443	0.322
w/o Cross-level Reward	0.329	0.483	0.148	0.301	0.518	0.356
w/o Visual Semantic Anchoring	0.326	0.502	0.181	0.328	0.529	0.373

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
1006

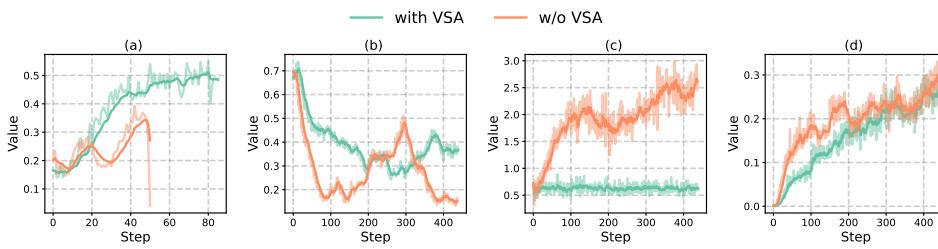


Figure 3: Training dynamics of ALDEN with and without Visual Semantic Anchoring (VSA). Panel (a) shows the turn-level reward of the `answer` action, panel (b) shows token-level entropy, panel (c) and (d) plot the KL divergence of visual tokens and generated tokens respectively.

The number of unique pages rises from 1.03 to 1.19, reflecting broader coverage. These results confirm that combining index-based `fetch` with semantic search enables more flexible and efficient navigation, especially for queries that reference specific pages or require traversal across consecutive pages.

Effect of Reward Design. We evaluate how different reward schemes affect ALDEN’s retrieval and reasoning (Table 5). (i) Outcome-based Only assigns a single scalar reward for final answer correctness. (ii) Turn-level + Outcome adds rule-based turn-level supervision, improving Acc from 0.483 to 0.509 and Rec from 0.483 to 0.497, showing that denser feedback aids evidence localization. (iii) Full ALDEN further introduces token-level shaping, yielding a smaller but consistent gain (Acc 0.513, Rec 0.506) and increasing unique pages from 1.22 to 1.39, indicating reduced query repetition and broader exploration. Overall, the cross-level reward design fosters richer query reformulation and more thorough evidence gathering, enhancing both navigation and answer quality.

Effect of Visual Semantic Anchoring. We evaluate the effect of Visual Semantic Anchoring (VSA) on training stability and representation drift, as shown in Figure 3. With a larger batch size (512) than in the main experiments (128), the VSA-enabled model achieves steadily increasing answer rewards, while the non-VSA variant fluctuates and collapses (a). VSA also maintains higher policy entropy, supporting healthier exploration (b). For representation alignment, KL divergence of visual tokens grows unchecked without VSA, indicating hidden-state drift, whereas VSA constrains these values while allowing moderate growth for action tokens (c,d). Overall, VSA achieves stabilizing RL training and preventing drift in visual representations.

Table 4: Comparison between search-only and full ALDEN on the DUDE-sub dataset.

Method	Acc	Rec	Pre	F1	#UP
Search-only	0.545	0.471	0.841	0.531	1.03
Full ALDEN	0.653	0.598	0.874	0.628	1.19

Table 5: Effect of reward design of outcome-based, turn-level and outcome-based, and full ALDEN on LongDocURL.

Method	Acc	Rec	Pre	F1	#UP
Outcome-based Only	0.483	0.483	0.612	0.520	1.27
Turn-level + Outcome	0.509	0.497	0.608	0.522	1.22
Full ALDEN	0.513	0.506	0.612	0.526	1.39

6 CONCLUSIONS

We introduced the **Agentic VRDU** task and proposed **ALDEN**, a reinforcement-learning framework that trains VLMs as autonomous agents capable of multi-turn navigation and evidence gathering. ALDEN integrates a `fetch` action for direct page access, a cross-level reward for fine-grained reward modeling, and a visual semantic anchoring mechanism for stable training. Extensive experiments on multiple long-document benchmarks show that ALDEN achieves state-of-the-art accuracy and improves evidence localization. Ablation studies further confirm the contribution of each component and offer broader insights for multi-turn RL in multimodal agents. The A-VRDU paradigm marks a shift from passive document reading to autonomous navigation and reasoning across vast information landscapes, and ALDEN’s strong performance demonstrates the potential of such agents to deliver more accurate, scalable, and adaptive understanding of complex, visually rich documents. While promising, the trained agent still faces challenges in balancing exploration and exploitation and in reliably recognizing true evidence pages. Future work could focus on building larger and higher-quality datasets, leveraging trajectories from stronger models with validation and reflection, and adopting curriculum learning to handle tasks of varying difficulty.

486 LLM USAGE STATEMENT
487488 Large Language Models (LLMs) were used as general-purpose writing and editing aids. Specifi-
489 cally, OpenAI’s ChatGPT (GPT-5) assisted in polishing grammar, improving clarity, and suggesting
490 alternative phrasings. All research ideas, experimental design, data processing, model development,
491 and analysis were conceived and executed solely by the authors. The LLM provided no novel re-
492 search insights or substantive scientific contributions.494 REPRODUCIBILITY STATEMENT
495496 We are committed to ensuring the reproducibility of our results. To this end, we will release:
497498 • All source code for training, evaluation, and data preprocessing, including scripts for dataset con-
499 struction, reward computation, and reinforcement-learning training with ALDEN.
500 • The processed training corpus derived from DUDE, MPDocVQA, and SlideVQA, along with
501 instructions to regenerate it from the original public datasets.
502 • Detailed configuration files specifying model hyperparameters, random seeds, and hardware set-
503 tings.
504 • Checkpoints for both the policy and value models, and prompts used for GPT-4o evaluation.505 Our experiments were run on NVIDIA A100 GPUs (80GB) with PyTorch 2.4 and HuggingFace
506 Transformers 4.49; exact package versions will be provided in the released code. These resources
507 will allow other researchers to fully reproduce our training, evaluation, and analysis results.
508510 REFERENCES
511512 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
513 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
514 cal report. *arXiv preprint arXiv:2412.08905*, 2024.516 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
517 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
518 2025.519 Richard Bellman. A markovian decision process. *Journal of mathematics and mechanics*, pp. 679–
520 684, 1957.522 Tsachi Blau, Sharon Fogel, Roi Ronen, Alona Golts, Roy Ganz, Elad Ben Avraham, Aviad Aber-
523 dam, Shahar Tsiper, and Ron Litman. Gram: Global reasoning for multi-page vqa. In *Proceedings*
524 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15598–15607,
525 2024.526 Jian Chen, Ruiyi Zhang, Yufan Zhou, Tong Yu, Franck Dernoncourt, Jiuxiang Gu, Ryan A. Rossi,
527 Changyou Chen, and Tong Sun. SV-RAG: LoRA-contextualizing adaptation of MLLMs for long
528 document understanding. In *The Thirteenth International Conference on Learning Representa-
529 tions*, 2025a. URL <https://openreview.net/forum?id=FDaHjwInXO>.531 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
532 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinfor-
533 cement learning. *arXiv preprint arXiv:2503.19470*, 2025b.534 Jaemin Cho, Debanjan Mahata, Ozan Irsoy, Yujie He, and Mohit Bansal. M3docrag: Multi-
535 modal retrieval is what you need for multi-page multi-document understanding. *arXiv preprint
536 arXiv:2411.04952*, 2024.538 Chao Deng, Jiale Yuan, Pi Bu, Peijie Wang, Zhong-Zhi Li, Jian Xu, Xiao-Hui Li, Yuan Gao, Jun
539 Song, Bo Zheng, et al. Longdocurl: a comprehensive multimodal long document benchmark
integrating understanding, reasoning, and locating. *arXiv preprint arXiv:2412.18424*, 2024.

540 Yihao Ding, Zhe Huang, Runlin Wang, YanHang Zhang, Xianru Chen, Yuzhong Ma, Hyunsuk
 541 Chung, and Soyeon Caren Han. V-doc: Visual questions answers with documents. In *Proceedings*
 542 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 21492–21498, 2022.
 543

544 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, CELINE HUDELOT,
 545 and Pierre Colombo. Colpali: Efficient document retrieval with vision language models. In
 546 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ogjBpZ8uSi>.
 547

548 Hao Feng, Qi Liu, Hao Liu, Jingqun Tang, Wengang Zhou, Houqiang Li, and Can Huang. Docpedia:
 549 Unleashing the power of large multimodal model in the frequency domain for versatile document
 550 understanding. *Science China Information Sciences*, 67(12):1–14, 2024.
 551

552 Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, and Huaxiu Yao. Mdoca-
 553 gent: A multi-modal multi-agent framework for document understanding. *arXiv preprint*
 554 *arXiv:2503.13964*, 2025.
 555

556 Anwen Hu, Haiyang Xu, Liang Zhang, Jiabo Ye, Ming Yan, Ji Zhang, Qin Jin, Fei Huang, and
 557 Jingren Zhou. mplug-docowl2: High-resolution compressing for ocr-free multi-page document
 558 understanding. *arXiv preprint arXiv:2409.03420*, 2024.
 559

560 Yulong Hui, Yao Lu, and Huanchen Zhang. Uda: A benchmark suite for retrieval augmented gener-
 561 ation in real-world document analysis. *Advances in Neural Information Processing Systems*, 37:
 562 67200–67217, 2024.
 563

564 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 565 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 566 *arXiv:2410.21276*, 2024.
 567

568 Mengzhao Jia, Wenhao Yu, Kaixin Ma, Tianqing Fang, Zhihan Zhang, Siru Ouyang, Hongming
 569 Zhang, Dong Yu, and Meng Jiang. Leopard: A vision language model for text-rich multi-image
 570 tasks. *arXiv preprint arXiv:2410.01744*, 2024.
 571

572 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 573 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforce-
 574 learning. *arXiv preprint arXiv:2503.09516*, 2025.
 575

576 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 577 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 578 *arXiv:2408.03326*, 2024.
 579

580 Zhenwen Liang, Kehan Guo, Gang Liu, Taicheng Guo, Yujun Zhou, Tianyu Yang, Jiajun Jiao,
 581 Renjie Pi, Jipeng Zhang, and Xiangliang Zhang. SceMQA: A scientific college entrance level
 582 multimodal question answering benchmark. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 583 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 584 *Linguistics (Volume 2: Short Papers)*, pp. 109–119, Bangkok, Thailand, August 2024. Asso-
 585 ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.11. URL <https://aclanthology.org/2024.acl-short.11/>.
 586

587 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 588 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 589 pp. 26296–26306, 2024a.
 590

591 Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma, Shuo Zhang, and Xiang Bai.
 592 Textmonkey: An ocr-free large multimodal model for understanding document. *arXiv preprint*
 593 *arXiv:2403.04473*, 2024b.
 594

595 Tengchao Lv, Yupan Huang, Jingye Chen, Yuzhong Zhao, Yilin Jia, Lei Cui, Shuming Ma, Yaoyao
 596 Chang, Shaohan Huang, Wenhui Wang, et al. Kosmos-2.5: A multimodal literate model. *arXiv*
 597 *preprint arXiv:2309.11419*, 2023.
 598

594 Xueguang Ma, Sheng-Chieh Lin, Minghan Li, Wenhui Chen, and Jimmy Lin. Unifying multi-
 595 modal retrieval via document screenshot embedding. In Yaser Al-Onaizan, Mohit Bansal, and
 596 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natu-
 597 ral Language Processing*, pp. 6492–6505, Miami, Florida, USA, November 2024a. Associa-
 598 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.373. URL <https://aclanthology.org/2024.emnlp-main.373/>.

600 Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu
 601 Liu, Yan Ma, Xiaoyi Dong, Pan Zhang, Liangming Pan, Yu-Gang Jiang, Jiaqi Wang, Yixin Cao,
 602 and Aixin Sun. MMLONGBENCH-DOC: Benchmarking long-context document understand-
 603 ing with visualizations. In *The Thirty-eight Conference on Neural Information Processing Systems
 604 Datasets and Benchmarks Track*, 2024b. URL <https://openreview.net/forum?id=1oJM1acwzf>.

606 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Manuel Cuenca
 607 Jiménez, Cyril Zakka, Loubna Ben allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivas-
 608 stav, Joshua Lochner, Hugo Larcher, Mathieu Morlon, Lewis Tunstall, Leandro Von Werra, and
 609 Thomas Wolf. SmolVLM: Redefining small and efficient multimodal models. In *Second Con-
 610 ference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=qMUbhGUFB>.

613 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
 614 mark for question answering about charts with visual and logical reasoning. In Smaranda Mure-
 615 san, Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the Association for Computational
 616 Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May 2022. Association for Compu-
 617 tational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL <https://aclanthology.org/2022.findings-acl.177/>.

618 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 619 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 620 pp. 2200–2209, 2021.

622 Minesh Mathew, Viraj Bagal, Rubén Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 623 Infographicvqa. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
 624 Vision*, pp. 1697–1706, 2022.

626 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 627 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 628 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 629 27730–27744, 2022.

630 Alexander Michael Rombach and Peter Fettke. Deep learning based key information extraction from
 631 business documents: Systematic literature review. *ACM Computing Surveys*, 2024.

633 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
 634 Colbertv2: Effective and efficient retrieval via lightweight late interaction. *arXiv preprint
 635 arXiv:2112.01488*, 2021.

636 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 637 dimensional continuous control using generalized advantage estimation. *arXiv preprint
 638 arXiv:1506.02438*, 2015.

640 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 641 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

642 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 643 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 644 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

646 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 647 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 learning. *arXiv preprint arXiv:2503.05592*, 2025.

648 Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
 649 Slidevqa: a dataset for document visual question answering on multiple images. In *Proceedings*
 650 *of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on*
 651 *Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Ad-*
 652 *vances in Artificial Intelligence, AAAI'23/IAAI'23/EAAI'23*. AAAI Press, 2023a. ISBN 978-1-
 653 57735-880-0. doi: 10.1609/aaai.v37i11.26598. URL <https://doi.org/10.1609/aaai.v37i11.26598>.

654

655 Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
 656 Slidevqa: A dataset for document visual question answering on multiple images. In *Proceedings*
 657 *of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 13636–13645, 2023b.

658

659 Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Hierarchical multimodal transformers for
 660 multipage docvqa. *Pattern Recogn.*, 144(C), December 2023a. ISSN 0031-3203. doi: 10.1016/j.
 661 patcog.2023.109834. URL <https://doi.org/10.1016/j.patcog.2023.109834>.

662

663 Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Hierarchical multimodal transformers for
 664 multipage docvqa. *Pattern Recognition*, 144:109834, 2023b.

665 Jordy Van Landeghem, Rubèn Tito, Łukasz Borchmann, Michał Pietruszka, Paweł Joziaik, Rafal
 666 Powalski, Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Anckaert, Ernest Valveny, et al. Docu-
 667 ment understanding dataset and evaluation (dude). In *Proceedings of the IEEE/CVF International*
 668 *Conference on Computer Vision*, pp. 19528–19540, 2023.

669

670 Kangrui Wang, Pingyue Zhang, Zihan Wang, Yaning Gao*, Linjie Li, Qineng Wang, Hanyang Chen,
 671 Chi Wan, Yiping Lu, Zhengyuan Yang, Lijuan Wang, Ranjay Krishna, Jiajun Wu, Li Fei-Fei, Yejin
 672 Choi, and Manling Li. Reinforcing visual state reasoning for multi-turn vlm agents, 2025a. URL
 673 <https://github.com/RAGEN-AI/VAGEN>.

674

675 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 676 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv*
 677 *preprint arXiv:2212.03533*, 2022.

678

679 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 680 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 681 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 682 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

683

684 Quchen Wang, Ruixue Ding, Zehui Chen, Weiqi Wu, Shihang Wang, Pengjun Xie, and Feng Zhao.
 685 Vidorag: Visual document retrieval-augmented generation via dynamic iterative reasoning agents.
 686 *arXiv preprint arXiv:2502.18017*, 2025b.

687

688 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 689 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 690 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025c.

691

692 Zilong Wang, Yichao Zhou, Wei Wei, Chen-Yu Lee, and Sandeep Tata. Vrd: A benchmark for
 693 visually-rich document understanding. In *Proceedings of the 29th ACM SIGKDD Conference on*
 694 *Knowledge Discovery and Data Mining*, pp. 5184–5193, 2023.

695

696 Xudong Xie, Hao Yan, Liang Yin, Yang Liu, Jing Ding, Minghui Liao, Yuliang Liu, Wei Chen, and
 697 Xiang Bai. Wukong: A large multimodal model for efficient long pdf reading with end-to-end
 698 sparse sampling. *arXiv preprint arXiv:2410.05970*, 2024.

699

700 Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. ArCHer: Training lan-
 701 guage model agents via hierarchical multi-turn RL. In *Forty-first International Conference on*
 702 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=b6rA0kAHT1>.

703

704 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 705 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
 706 *preprint arXiv:1909.08593*, 2019.

702 A DATASETS
703704 A.1 TRAINING DATASET
705706 **Training.** We construct our training dataset by combining samples from three publicly available
707 multi-page document understanding datasets: DUDE (Van Landeghem et al., 2023), MP-
708 DocVQA (Tito et al., 2023a), and SlideVQA Tanaka et al. (2023a). These datasets provide diverse
709 document layouts and question-answering formats, making them well-suited for training models on
710 complex multi-turn document question answering tasks.711 DUDE is a large-scale benchmark designed for multi-page, visually rich document understanding.
712 It covers diverse domains such as scientific articles, financial and legal reports, technical manuals,
713 and presentations. Each example consists of a full PDF document rendered into page images, paired
714 with a natural-language query and a free-form textual answer, along with page-level ground-truth
715 evidence annotations. SlideVQA contains questions grounded in slide decks, where understanding
716 layout and inter-slide referencing is crucial. It contains slide decks from diverse topics such as
717 education, business, and research talks, requiring models to reason across sequential pages that mix
718 text, charts, and images. Each example provides a slide deck rendered as ordered page images,
719 a natural-language question, and a free-form textual answer, with annotations of relevant slides for
720 evidence grounding. MPDocVQA extends the traditional single-page VQA setting (originally based
721 on DocVQA) by concatenating additional pages to the original single-page input, while retaining
722 the same set of user questions. However, since many of these questions were authored under the
723 assumption that only one page is visible (e.g., “What is the date?” or “Who is the author?”), they
724 often lack sufficient context to guide document retrieval or navigation. To address this, we first use
725 GPT-4o (Hurst et al., 2024) to automatically identify this kind of samples. Then we integrate the
726 index of referred pages into the questions to get page-index-referenced questions, e.g., “In page 5,
727 what is the date?”. The prompt we used is shown below:
728729 **Prompt for Filtering Queries**730 You are given a question from a multi-page document VQA dataset. Some questions are not
731 suitable for training an agent to autonomously locate the target page, because they assume
732 the agent already knows which page is relevant. These questions are often vague, layout-
733 based, or refer to elements only visible on a known page (e.g., “What is the PVR no given
734 in the approval sheet?”, or “What is written at the top right?”). Your task is to assign a label
735 to each question:736 - 1 if the question belongs to this kind of problem, i.e., it assumes the correct page is known
737 and cannot be answered without it.
738 - 0 if the question does not belong to this kind of problem, i.e., it can be answered after
739 locating the page based on content in the question.

740 Respond with a JSON object containing only the field “label”. Examples:

741 Question: What is the PVR no given in the approval sheet? Answer: { “label”: 1 }
742 Question: What is the project name mentioned in the title block? Answer: { “label”: 0 }
743 Question: What is the symposium organized by Division of Agricultural and Food Chemistry? Answer: { “label”: 0 }
744 Question: What is written on the top right corner? Answer: { “label”: 1 }
745 Question: What is the page number? Answer: { “label”: 1 }
746 Question: What is the Date? Answer: { “label”: 1 }
747 Now, label the following question:

748 Question: {question}

749 To ensure that our model is consistently exposed to multi-page reasoning scenarios, we additionally
750 discard any documents with fewer than 10 pages from all three datasets. This helps avoid biasing
751 the model toward short-context behavior and ensures a consistent level of document complexity.
752753 After merging and filtering, we obtain a training set consisting of 30,728 samples, each comprising
754 a user query and its corresponding multi-page document context, answer and the index of evi-
755 dence pages. Finally, we proportionally sample 1,024 samples from the validation set of these three
756 datasets as our validation set.

756 A.2 BENCHMARKS
757

758 We evaluate our method on a diverse set of benchmarks: MMLongBench (Ma et al., 2024b), Long-
759 DocURL (Deng et al., 2024), PaperTab (Hui et al., 2024), PaperText (Hui et al., 2024), and Fe-
760 taTab (Hui et al., 2024). These datasets span a wide range of scenarios, including both open-domain
761 and closed-domain tasks, and include textual as well as visual content. The documents also vary in
762 length and structure, ranging from short forms to complex, multi-page documents. This diversity en-
763 sures a comprehensive and fair evaluation of our model’s performance across real-world document
764 understanding tasks.

765 • **MMLongBench-Doc** is a large-scale benchmark designed to evaluate how multimodal large lan-
766 guage models handle long, visually rich documents. It contains over a thousand expert-annotated
767 questions drawn from lengthy PDFs (averaging 50 pages and 20k tokens) that mix text, tables,
768 charts, and images. Tasks require single-page, cross-page, and sometimes unanswerable reason-
769 ing, testing a model’s ability to retrieve and integrate evidence across multiple modalities and
770 extended contexts.

771 • **LongDocURL** is a benchmark for evaluating large vision-language models on long, multimodal
772 documents by combining three core task types: understanding, numerical reasoning, and element
773 locating. It includes 2,325 high-quality question-answer pairs over 396 documents totaling over
774 33,000 pages, with an average of 85.6 pages per document. Tasks vary in their evidence require-
775 ments: some require single-page evidence, others multi-page, and many involve locating evidence
776 across different layout elements (text, tables, figures, and layout).

777 • **PaperText** is a subset in the UDA benchmark made up of academic papers (in PDF form) used for
778 retrieval-augmented generation / document question answering tasks. Each document comes with
779 multiple question-answer pairs drawn from “Qasper” (an academic paper reading comprehension
780 dataset), where questions may be extractive, yes/no, or free-form. The dataset preserves full
781 documents to allow answering from context, rather than just small passages.

782 • **PaperTab** is another subset in UDA also based on academic papers, but the focus is on Q&A
783 pairs where evidence comes from or interacts with tables inside papers. Like PaperText, it retains
784 full PDF documents so that models must locate and reason over tabular content, as well as textual
785 content. The questions are similarly diverse (extractive, yes/no, free-form), and the average size
786 is modest (10–11 pages per document).

787 • **FetaTab** is a subset of the UDA (Unstructured Document Analysis) benchmark that focuses on
788 free-form question answering over Wikipedia tables in both HTML and PDF formats. It comprises
789 878 documents and 1,023 QA pairs, averaging about 14.9 pages per document. The questions are
790 “free-form” (i.e. natural language answers, not limited to extractive spans or simple yes/no),
791 which requires models to understand table content, context, and sometimes cross-format layout.

792 B BASELINES
793

794 To evaluate the effectiveness of ALDEN, we compare it against three categories of methods:
795

796 • **Base VLMs supporting multi-image input.** These models directly take the entire multi-page
797 document as context without retrieval, leveraging their built-in multi-page visual processing ca-
798 pabilities. For fairness, we select open-source VLMs of similar scale to Qwen2.5-VL-7B, in-
799 cluding LLaVA-v1.6-Mistral-7B (Liu et al., 2024a), Phi-3.5-Vision-Instruct (Abdin et al., 2024),
800 LLaVA-One-Vision-7B (Li et al., 2024), SmolVLM-Instruct (Marafioti et al., 2025), mPLUG-
801 DocOwl2 (Hu et al., 2024), LEOPARD (Jia et al., 2024), InternVL3.5-8B-Instruct (Wang et al.,
802 2025c).

803 • **Visual RAG methods.** These methods use the user query to retrieve the most relevant document
804 pages and feed them into the model as context. We include M3DocRAG (Cho et al., 2024) as a
805 strong baseline, as well as our proposed ALDEN. To isolate the impact of our reward function
806 design, we additionally evaluate a variant that trains the same backbone with GRPO using only
807 outcome-based rewards (no turn-level shaping), mirroring common text-only RLHF setups as in
808 ReSearch (Chen et al., 2025b). Specifically,
809 – M3DocRAG is a multi-modal document understanding framework designed for multi-page
and multi-document question answering. It first encodes each page into joint visual-text em-

810 beddings using a multi-modal encoder, then retrieves the top-K relevant pages via a MaxSim-
 811 based retrieval mechanism, optionally accelerated with FAISS for large-scale documents.
 812 Finally, a multi-modal language model processes the retrieved pages to generate precise an-
 813 swers, effectively handling complex queries that require reasoning over both textual and vi-
 814 sual content.

815 – ReSearch introduces a framework that trains large language models to integrate reasoning
 816 and search in a unified process. The model learns, via reinforcement learning, when and
 817 how to perform search actions during multi-step reasoning, using search results to guide
 818 subsequent reasoning steps. By treating search as part of the reasoning chain, ReSearch
 819 enables LLMs to solve complex multi-hop tasks, demonstrate self-correction and reflection,
 820 and generalize effectively across benchmarks, achieving significant performance gains over
 821 baseline models.

822 • **Hybrid RAG methods.** These approaches combine visual and textual retrieval by first applying
 823 an OCR tool to extract all text from the document. The query is then used to retrieve both the
 824 most relevant page image and the most relevant OCR-extracted text, which are jointly fed into
 825 the model. We evaluate MDocAgent (Han et al., 2025) and VidoRAG (Wang et al., 2025b) as a
 826 representative method in this category.

827 – MDocAgent is a multi-modal, multi-agent framework for document understanding that com-
 828 bines Retrieval-Augmented Generation (RAG) with specialized agents to handle complex
 829 documents. The system employs a General Agent for multi-modal context retrieval, a Crit-
 830 ical Agent for identifying key information, a Text Agent for analyzing textual content, an
 831 Image Agent for interpreting visual elements, and a Summarizing Agent to synthesize re-
 832 sults. By coordinating these agents, MDocAgent effectively integrates textual and visual
 833 reasoning, achieving significant improvements in accuracy and error reduction compared to
 834 existing large vision-language models and RAG-based methods. For all five agents in this
 835 framework, we consistently use the original LLaMA3.1-8B as the LLM for the text agent,
 836 while employing a consistent VLMs, i.e., Qwen2.5-VL-7B, for remaining agents.

837 – ViDoRAG is a multi-agent framework designed to enhance the understanding of visually rich
 838 documents. It employs a Gaussian Mixture Model (GMM)-based hybrid retrieval strategy
 839 to effectively handle multi-modal retrieval, integrating both textual and visual information.
 840 The framework incorporates a dynamic iterative reasoning process, utilizing agents such as
 841 Seeker, Inspector, and Answer to iteratively refine the understanding and generation of re-
 842 sponses. This approach addresses challenges in traditional Retrieval-Augmented Generation
 843 (RAG) methods by improving retrieval accuracy and enabling complex reasoning over visual
 844 documents. We use Qwen2.5-VL-7B as backbone for all agents in this methods.

845 C IMPLEMENTATION DETAILS

846 Our implementation is based on the EasyR1¹ framework. Both the policy model and the value
 847 function are initialized from Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We use a batch size of 128,
 848 with fixed learning rates of 1×10^{-6} for the policy model and 1×10^{-5} for the value function.
 849 The maximum number of interaction turns is set to $T = 6$. For visual inputs, we constrain the
 850 number of image pixels to lie between 261,070 and 2,508,800. Based on these settings, we set the
 851 maximum number of tokens in the trajectory as 19000. The KL coefficients for generated tokens
 852 and observation tokens are set to $\beta_{\text{gen}} = 0.001$ and $\beta_{\text{obs}} = 0.01$, respectively. For the search
 853 actions, we used only the top-1 retrieved pages. While calculating the $NDCG@m$ metrics, we set
 854 m as 5 to avoid sparse, all zero rewards. Besides, we set the scale coefficient $\alpha = 5$. The weight
 855 of repetition penalty is set as $\eta = 0.5$. For the calculation of GAE, we set $\gamma_{\text{token}} = 1.0$, $\gamma_{\text{turn}} = 0.9$
 856 and $\lambda_{\text{token}} = \lambda_{\text{turn}} = 1.0$. During training, we adopt the single-vector retriever vdr-2b-v1 (Ma et al.,
 857 2024a) for images and e5-large-v2 (Wang et al., 2022) for text for training efficiency. For evaluation,
 858 we also report results with the multi-vector retrievers ColQwen2-v1.0 (ColQwen) (Faysse et al.,
 859 2025) for images and ColBERT-v2.0 (ColBERT) (Santhanam et al., 2021) for text. All experiments
 860 are conducted on 16 NVIDIA A100-80Gb GPUs.

861 The system prompt that we used during training of Visual RAG variant of ALDEN is shown here:

862
 863 ¹<https://github.com/hiyoga/EasyR1>

864
865**System prompt of ALDEN with Visual RAG**866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

You are a helpful assistant designed to answer user questions based on a user-provided multi-page document. The document can not be input directly with the question, you must reason step by step to determine how to obtain evidence document pages by optimally utilizing tools and analyze the relevant content in the obtained document pages to precisely answer user's question. Your reasoning process MUST BE enclosed within `<think> </think>` tags. Your answer MUST BE enclosed within `<answer> </answer>` tags. In the last part of the answer, the final exact answer is enclosed within `\boxed{\{\}}` with latex format. The available tool is a **search tool**. After reasoning, you can invoke the search tool by generating `<search> your search query here </search>` to retrieve document pages most relevant to your search query. For example, your response could be in the format of '`<think> your reasoning process </think> <search> search query </search>`', or '`<think> your reasoning process </think> <answer> your answer here`'. The final answer is `\[\boxed{\{answer here\}} \] </answer>`'. After invoking a tool, the user will return obtained document pages inside `<result> </result>` tags to you. Besides, the user will additionally provide the page number of the obtained page.

Important constraints:

- Only if you get all the potential evidence pages and find that the there is no evidenced answer or the document content is irrelevant to the user query, you can respond with '`<think> your reasoning process </think> <answer> The final answer is \[\boxed{The problem is not answerable} \] </answer>`'.
- If multiple valid answers are found, return them separated by semicolons.
- You may not get the true evidence page in one-shot, carefully check whether the obtained pages are the true evidence page. If not, try different rewritings of your query or try different tool usage strategy several times.

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

The system prompt that we used during training of Hybrid RAG variant of ALDEN is shown here

918
919**System prompt of ALDEN with Hybrid RAG**920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

You are a helpful assistant designed to answer user questions based on a user-provided multi-page document. Each page exists in two modalities: the original image and an OCR text extraction. You cannot access the full document directly; instead, you must reason step by step to determine how to obtain evidence document pages by optimally utilizing tools and analyze the relevant content in the obtained document pages to precisely answer user's question. Your reasoning process **MUST BE** enclosed within `<think> </think>` tags. Your answer **MUST BE** enclosed within `<answer> </answer>` tags. In the last part of the answer, the final exact answer should be enclosed within `\boxed{\{\}}` with latex format. The available tools include a ****search tool**** and a ****fetch tool****. After reasoning, you can invoke either the search tool by generating `<search>` your search query here `</search>` to retrieve relevant document pages in both modalities or the fetch tool by generating `<fetch>` modal, page number `</fetch>` to obtain a specific document page in the specified modal, where the modal should be 'image' or 'text' and the page number should be a integrity number chosen from the user specified page number range. For example, your response could be in the format of '`<think>` your reasoning process `</think> <search>` search query `</search>`', or '`<think>` your reasoning process `</think> <fetch>` image, page number `</fetch>`', or '`<think>` your reasoning process `</think> <fetch>` text, page number `</fetch>`', or '`<think>` your reasoning process `</think> <answer>` your answer here. The final answer is `\[\boxed{\{\text{answer here}\}} \] </answer>`'. After invoking a tool, the user will return obtained document pages inside `<result> </result>` tags to you. For the search tool, the user will return both the relevant image pages and the relevant OCR text pages and attach them with corresponding page numbers. For the fetch tool, the user will only return either the image page or the OCR text page according to your input arguments.

****Important constraints**:**

- Only if you get all the potential evidence pages and find that the there is no evidenced answer or the document content is irrelevant to the user query, you can respond with '`<think>` your reasoning process `</think> <answer>` The final answer is `\[\boxed{\{\text{The problem is not answerable}\}} \] </answer>`'.
- If multiple valid answers are found, return them separated by semicolons.
- Only one page can be fetched at a time using the fetch tool.
- You may not get the true evidence page in one-shot, carefully check whether the obtained pages are the true evidence page. If not, try different rewritings of your query or try different tool usage strategy several times.
- Page numbers shown in the document pages may not be consistent with user specified page number range. In case of any discrepancy, the user defined parge number range shall prevail.
- You need to invoke the tools at least once and can invoke up to 5 times. When you output the answer, the interaction stops.

954

955

D EVALUATION METRICS

956

We evaluate models using both answer quality and intermediate navigation metrics.

957

Model-based Accuracy (Acc). Answer quality is assessed with an LLM-as-judge protocol. Given a predicted answer and the ground-truth reference, GPT-4o is prompted to classify the prediction as *Correct*, *Incorrect*, or *Tie/Unclear*. We compute accuracy for each benchmark as the percentage of responses judged *Correct* over all responses:

958
959
960
961
962
963

$$\text{Acc} = \frac{\#\text{Correct}}{N}, \quad (10)$$

where N is the number of test instances.

964

Trajectory-level Recall (Rec). Let \mathcal{G} denote the set of ground-truth evidence pages for a given query, and let \mathcal{T} denote the set of pages collected by the agent along a trajectory. The trajectory-level recall is defined as:

965
966
967
968
969
970
971

$$\text{Rec} = \frac{|\mathcal{T} \cap \mathcal{G}|}{|\mathcal{G}|}. \quad (11)$$

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985 **Algorithm 1** PPO with Dual KL Regularization for Multi-Turn VRDU Agents
 986
 987 **Require:** Actor π_θ , Critic V_ϕ , Reference model π_{ref} , KL weights $\beta_{\text{gen}}, \beta_{\text{obs}}$, discount factors
 $\gamma_{\text{token}}, \gamma_{\text{turn}}$, GAE parameters $\lambda_{\text{token}}, \lambda_{\text{turn}}$, replay buffer \mathcal{B}
 988 1: Initialize replay buffer \mathcal{B}
 989 2: **for** iteration = 1, 2, . . . **do**
 990 3: Sample $|\mathcal{B}|$ queries from the dataset
 991 4: **for** each query **do**
 992 5: Reset: query q , empty retrieval history, $t \leftarrow 1$
 993 6: **while** $t < T$ **and** $a_{t-1} \neq \text{answer}$ **do**
 994 7: π_θ generates a token sequence $a_t \sim \pi_\theta(\cdot|s_t)$
 995 8: Parse the discrete action (search, fetch, or answer) from a_t
 996 9: Execute action \rightarrow obtain new state s_{t+1} and turn reward r_t
 997 10: Store $\{a_t, s_{t+1}, r_t\}$ in \mathcal{B}
 998 11: $t \leftarrow t + 1$
 999 12: **Turn-level value estimation:**
 1000 13: **for** each episode in \mathcal{B} **do**
 1001 14: Estimate $V_\phi(s_t)$ at final token of each turn
 1002 15: Compute target turn value \hat{V}_t via turn-level GAE
 1003 16: Assign token-level reward $\tilde{r}_t \leftarrow \hat{V}_t$
 1004 17: **Dual KL penalty computation:**
 1005 18: **for** each token in \mathcal{B} **do**
 1006 19: **if** token is generated **then**
 1007 20: Compute A_t^i via token-level GAE using \tilde{r}_t
 1008 21: Compute $\text{KL}(\pi_\theta(\cdot|s) \parallel \pi_{\text{ref}}(\cdot|s))$ with weight β_{gen}
 1009 22: **else if** token is observation **then**
 1010 23: Compute $\text{KL}(\pi_\theta(\cdot|s) \parallel \pi_{\text{ref}}(\cdot|s))$ with weight β_{obs}
 1011 24: **PPO update:**
 1012 25: Update θ by maximizing policy loss $\mathcal{L}_{\text{policy}}$
 1013 26: Update ϕ by minimizing value loss $\mathcal{L}_{\text{value}}$
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 This metric measures the fraction of ground-truth pages successfully retrieved by the agent over the
 1027 course of a trajectory, providing an indicator of how effectively the agent gathers relevant information.
 1028

1029 **Trajectory-level Precision (Pre).** Let \mathcal{G} denote the set of ground-truth evidence pages for a given
 1030 query, and let \mathcal{T} denote the set of pages collected by the agent along a trajectory. The trajectory-level
 1031 precision is defined as:
 1032

$$1033 \text{Pre} = \frac{|\mathcal{T} \cap \mathcal{G}|}{|\mathcal{T}|}. \quad (12)$$

$$1034$$

$$1035$$

1036 This metric measures the fraction of pages collected by the agent that are actually relevant, providing
 1037 an indicator of how accurately the agent identifies evidence pages during a trajectory.
 1038

1039 **F1 Score (F1).** Based on the trajectory-level precision and recall, the trajectory-level F1 score is
 1040 defined as the harmonic mean of the two:
 1041

$$1042 \text{F1} = 2 \cdot \frac{\text{Pre} \cdot \text{Rec}}{\text{Prec} + \text{Rec}}. \quad (13)$$

$$1043$$

1044 This metric provides a balanced measure of the agent’s performance, accounting for both its ability
 1045 to collect relevant pages (recall) and to avoid collecting irrelevant ones (precision) over a trajectory.
 1046

1047 **Number of uniquely collected pages (#UP).**

1049 E CASE STUDY

1050 In this section, we present typical examples from the LongDocURL benchmark to analyze the be-
 1051 havior of the ALDEN model. As illustrated in the successful cases in Tab. 6 and Tab. 7, the agent
 1052 effectively learns to combine the `search` and `fetch` actions to gather evidence and correctly an-
 1053 swer the question. In particular, the example in Tab. 7 shows the agent using `fetch` to complement
 1054 `search` when the latter fails to retrieve the true evidence page in a single step, highlighting the
 1055 benefit of ALDEN’s expanded action space. Alongside these successes, we also present failure
 1056 cases in Tab. 8 and Tab. 9. These examples reveal that the model still struggles to verify evidence
 1057 pages and explore sufficiently when the `search` action returns results far from the ground-truth
 1058 pages—a challenge we leave for future work.
 1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080	
1081	
1082	
1083	
1084	
1085	
1086	
1087	
1088	
1089	
1090	User Question
1091	What's name of the figure at the page which contains a table whose name is "Table 18: Quality control related uses by type of use"?
1092	Ground-truth
1093	40
1094	Pages
1095	Generated Tra-
1096	jectory
1097	assistant
1098	<think> The question asks for the name of the figure at the page that con-
1099	tains a table with the name "Table 18: Quality control related uses by type
1100	of use". To answer this, I should use the search tool to look for the table
1101	with the specified name in the document. The fetch tool can be used to ob-
1102	tain the specific page where this table is located. </think> <search>
1103	name of the figure at the page which contains a table whose name is "Table
1104	18: Quality control related uses by type of use" </search>
1105	user
1106	<result> Page 39: Image tokens </result>
1107	assistant
1108	<think> The table mentioned in the search query is not found on the
1109	provided page. The table in the document is "Table 17: Regulatory uses
1110	by main types of uses". The search query asks for the figure at the page
1111	which contains the table "Table 18: Quality control related uses by type of
1112	use". I should use the fetch tool to obtain the page with the table "Table
1113	18: Quality control related uses by type of use". </think> <fetch> 40
1114	</fetch>
1115	user
1116	<result> Image tokens </result>
1117	assistant
1118	<think> The table mentioned in the search query is found on the pro-
1119	vided page. The table in the document is "Table 18: Quality control related
1120	uses by type of use". The search query asks for the figure at the page
1121	which contains the table "Table 18: Quality control related uses by type of
1122	use". The figure mentioned in the document is "Figure 20: Evolution of
1123	total numbers of uses of animals for pyrogenicity testing between 2015 and
1124	2018". The figure name is "Figure 20". </think> <answer> The final
1125	answer is \[\box{Figure 20} \] </answer>

Table 6: Example of a generated case showing the user question and ALDEN's full reasoning–action trajectory.

1125
1126
1127
1128
1129
1130
1131
1132
1133

User Question	What is the percentage decrease in hospitalizations between May 14 and May 20, 2020? (A). -6.5(B). +6.5(C). -65(D). +65Choose the letter name in front of the right option from A, B, C, D.
Ground-truth Pages	21
Generated Trajectory	<p>assistant <think> The question asks for the percentage decrease in hospitalizations between May 14 and May 20, 2020. To answer this, I need to find information in the document that discusses hospitalizations for these specific dates and the percentage change between them. I will use the search tool to look for the relevant information in the document. </think> <search> percentage decrease in hospitalizations between May 14 and May 20, 2020 </search></p> <p>user</p> <p><result>Page 21: Image tokens </result></p> <p>assistant</p> <p><think> The image contains the information needed to answer the question. According to the document, there has been a -6.5% decrease in hospitalized patients between May 14 and May 20, 2020. The correct answer is (A). </think> <answer> The final answer is \[\boxed{\{A\}} \]</answer></p>

Table 7: Example of a generated case showing the user question and ALDEN’s full reasoning–action trajectory.

User Question	What is the interval between specific lunar/solar events in days?
Ground-truth Pages	46, 47, 48, 55, 57, 58
Generated Trajectory	<p>assistant</p> <p><think> The question asks for the interval between specific lunar/solar events in days. To answer this, I should look for information in the document that discusses lunar and solar events and their intervals. The search tool seems the best option to find this information. I will use the search tool first. </think> <search> interval between lunar/solar events in days </search></p> <p>user</p> <p><result>Page 25: Image tokens </result></p> <p>assistant</p> <p><think> The image contains the information needed to answer the question. The document states that the interval between the lunar eclipse on April 15, 2014, and the lunar eclipse on September 28, 2015, is exactly 266 days. This matches the information in the question. The interval between specific lunar/solar events in days is 266 days. The final answer is \boxed{266} </think> <answer> The final answer is \boxed{266} </answer></p>

Table 8: Example of a generated case showing the user question and ALDEN’s full reasoning–action trajectory.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203	User Question	What penalties are specified for possession of category 1 or category 2 items?
------	----------------------	--

1204	Ground-truth Pages	21
------	---------------------------	----

1205	Generated Trajectory	assistant <think> The question asks for the penalties specified for possession of category 1 or category 2 items. To answer this, I should look for information in the document that discusses the penalties for these categories. The search tool seems the best option to start with as it can help locate the relevant information in the document. I will use the search tool first. </think> <search> penalties for possession of category 1 or category 2 items </search> user <result>Page 21: Image tokens </result> assistant <think> The image contains the information needed to answer the question. According to the document, the penalties for possession of a category 1 item or a category 2 item are specified in the Misuse of Drugs Act 1981. For a simple offence, the penalty is \$12,000 or imprisonment for 3 years or both. The relevant information is found in the document. The final answer is \[\boxed{\{\$12,000 or imprisonment for 3 years or both\}} \]</think> <answer> The final answer is \[\boxed{\{\$12,000 or imprisonment for 3 years or both\}} \]</answer>
------	-----------------------------	--

Table 9: Example of a generated case showing the user question and ALDEN’s full reasoning–action trajectory.

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241