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ABSTRACT

Multi-task learning (MTL) provides a powerful paradigm for jointly optimizing
multiple objectives, yet real-world tasks often differ in maturity, difficulty, and im-
portance. Naively training all tasks simultaneously risks premature updates from
unstable objectives and interference with high-priority goals. We introduce SCD-
VIO—Stratified Constraint Descent via Variational Inequalities and Operators—
a new operator-theoretic paradigm for hierarchy-aware MTL. Rather than heuristic
reweighting, SCD-VIO formulates training as a stratified variational inequality,
where task feasibility is defined relative to its own cumulative performance and
enforced through Yosida-regularized soft projections. This self-calibrated gating
(SC Gate) ensures that lower-priority tasks are activated only after higher-priority
ones have stabilized, aligning optimization flow with natural task dependencies.
SCD-VIO is model-agnostic and integrates seamlessly with standard MTL back-
bones. Experiments on three large-scale recommendation benchmarks—TikTok,
QK-Video, and KuaiRand1k—show that it consistently boosts prioritized objec-
tives while maintaining or improving overall performance. Taken together, these
results position SCD-VIO as both a principled theoretical formulation and a prac-
tical, plug-and-play solution for hierarchy-aware MTL.

1 INTRODUCTION

MTL has emerged as a foundational paradigm in machine learning, enabling models to optimize
multiple objectives concurrently through shared representations. From recommendation systems
to autonomous agents and multi-modal AI, it promises efficiency, generalization, and data reuse
(Guo et al., 2024). Yet these benefits rest on an implicit assumption: that all tasks are equally sta-
ble and jointly learnable throughout training. In practice, this assumption rarely holds (Li et al.,
2023). Real-world tasks exhibit inherent asymmetries in difficulty, maturity, and downstream sig-
nificance. In recommendation, clicks or short views are easy to optimize but only loosely correlated
with long-term engagement such as likes or follows (Yang et al., 2023a). In autonomous driving,
perception modules must stabilize before downstream control policies can be trained reliably (Wang
et al., 2023). Ignoring these dependencies leads to premature optimization, noisy gradient inter-
ference, and ultimately degraded primary-task performance—a manifestation of negative transfer
(Bi et al., 2024). Existing approaches largely fall into two camps. Architectural solutions (e.g.,
MMoE (Ma et al., 2018a), PLE (Tang et al., 2020)) introduce routing or modularization, but they
remain static and cannot enforce stage-wise learning. Gradient-balancing schemes dynamically ad-
just task weights, yet they provide no mechanism to guarantee that lower-priority tasks wait for
higher-priority ones to stabilize (Mu et al., 2025; Cui & Mitra, 2024). Both families lack an explicit
principle for encoding hierarchical precedence.

To address this gap, we propose SCD-VIO—Stratified Constraint Descent via Variational
Inequalities and Operators. Rather than heuristically balancing losses, SCD-VIO formulates
priority-aware MTL as a stratified variational inequality. Each task’s feasibility is defined rela-
tive to its cumulative historical performance, yielding a self-calibrated gating mechanism. Yosida-
regularized soft projections translate hard precedence constraints into smooth masks, making them
amenable to standard gradient-based optimization. As shown in Figure 1, this yields optimization
trajectories aligned with the natural task hierarchy, mitigating premature interference. Our frame-
work is modular, differentiable, and model-agnostic, making it easy to plug into existing MTL back-
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Figure 1: Trajectory comparison in the (L1, L2) loss plane. Traditional MTL (red) updates both
tasks from the outset, allowing the easier auxiliary task L2 to dominate and slow the convergence of
the primary task L1. In contrast, SCD-VIO (blue) enforces a priority-aware schedule: L2 remains
gated until L1 surpasses its self-calibrated baseline (shaded region), after which L2 is smoothly
activated. This illustrates SCD-VIO’s core principle of aligning gradient flow with task hierarchy to
mitigate premature interference.

bones (e.g., STEM (Su et al., 2024), OMoE (Ma et al., 2018a)). Experiments on three large-scale
benchmarks confirm that SCD-VIO consistently boosts high-priority objectives while maintaining
or improving overall multi-task effectiveness.

In summary, our contributions are as follows:

• We formalize premature optimization in hierarchical MTL and introduce SCD-VIO, a prin-
cipled operator-theoretic framework for dynamic task prioritization.

• We propose SC Gate, a self-calibrated gating mechanism that enforces soft hierarchical
constraints via Yosida-regularized projections, requiring no manual schedules.

• We provide theoretical grounding through variational inequalities and monotone operator
splitting, establishing convergence guarantees under standard assumptions.

• Extensive experiments across datasets and architectures validate SCD-VIO’s effectiveness,
showing consistent improvements on critical tasks with minimal overhead.

2 RELATED WORK

Recent years have witnessed significant progress in MTL, spanning several complementary direc-
tions, including task interaction modeling, task weighting and gradient balancing, multi-objective
optimization, and constraint-driven curriculum or scheduling.

Task Interactions and Architecture. Mixture-of-Experts (MoE) architectures, such as TaskEx-
pert (Ye & Xu, 2023) and sparsely activated expert networks (Zhang et al., 2022), dynamically route
task-specific representations to minimize interference, thereby improving performance on dense pre-
diction benchmarks. MTI-Net (Vandenhende et al., 2020) leverages multi-scale feature distillation
to model inter-task affinities, while hierarchical MTL frameworks (Oh et al., 2023) explicitly encode
task dependencies in session-based recommendation scenarios. However, these architectural designs
are typically static and lack flexibility in enforcing optimization order, leaving gradient-level con-
flicts unresolved. Recent studies on hierarchical session-based MTL (Oh et al., 2023) and selective
task group updates (Jeong & Yoon, 2025) emphasize the growing need for dynamic, order-aware
architectures, further motivating our operator-theoretic perspective.
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Task Weighting and Gradient Balancing. A separate line of work focuses on dynamically ad-
justing task-specific losses to balance gradient magnitudes or directions. Representative methods
include PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021), GradNorm (Chen et al., 2018), Gra-
dient Vaccine (Wang et al., 2021), DRGrad (Liu et al., 2025), and LBTW (Liu et al., 2019). While
effective at mitigating negative transfer, these approaches lack explicit mechanisms for enforcing
hierarchical constraints or stage-wise curricula. Alternatives such as AdaTask (Yang et al., 2023b),
Dynamic Task Prioritization (Guo et al., 2018), and uncertainty-based weighting (Kendall et al.,
2018) offer partial solutions but fail to provide formal guarantees or fully resolve premature op-
timization of auxiliary tasks. Recent overviews on gradient similarity surgery (Hu et al., 2025a)
further highlight that gradient-level conflict resolution alone is insufficient without structural priori-
tization.

Multi-Objective Optimization (MOO). Another direction treats MTL as a multi-objective opti-
mization problem, aiming to balance trade-offs across tasks. Techniques such as MGDA (Sener &
Koltun, 2018), Pareto MTL (Navon et al., 2022), and more recent Pareto-aware frameworks (Bai
et al., 2024) optimize along the Pareto front. While these methods achieve better fairness across
tasks, they generally overlook task ordering or prioritization, and often introduce significant com-
putational overhead. Recent advances in Pareto-aware learning, such as Pareto low-rank adapters
with deterministic preference sampling (Dimitriadis et al., 2025), as well as surveys of Pareto front
learning (Kang et al., 2025), confirm the vibrancy of this research area but also its lack of explicit
hierarchy-aware solutions.

Constraint-driven Curriculum and Scheduling. A few recent works cast MTL as a constrained
optimization problem. For example, prioritized Lagrangian approaches (Cheng et al., 2025) impose
step-wise constraints, while information-theoretic methods (Hu et al., 2025b) enforce structured
dependencies through hierarchical representation learning. However, these frameworks typically
lack soft, dynamic thresholding mechanisms that can adaptively evolve during training. Recent
work in constrained multi-objective RL (Kim et al., 2025) also explores conflict-averse gradient
aggregation under constraints, suggesting that constraint-driven scheduling is becoming increasingly
relevant beyond supervised MTL.

Positioning of This Work. Our proposed SCD-VIO framework draws inspiration from the above
paradigms while addressing their limitations. Unlike static architectural designs, SCD-VIO operates
directly at the gradient level using Yosida-regularized projections and recursive priority masks to dy-
namically enforce task hierarchies. Additionally, it incorporates a curriculum-style SC Gate scheme
to progressively schedule task participation—an essential yet underexplored feature in current MTL
and MOO methodologies. As such, SCD-VIO provides a principled, scalable, and theoretically
grounded solution for managing complex task dependencies in hierarchical multi-task settings.

3 METHODOLOGY

3.1 LIMITATIONS OF WEIGHTED SUMS AND THE NEED FOR STRATIFIED CONSTRAINTS

The prevailing paradigm in MTL reduces complex task relationships to a simplistic weighted sum:

min
θ

N∑
i=1

λiLi(θ), (1)

where static weights λi presume both simultaneous learnability and equal importance across tasks.
This reductionist approach fundamentally misrepresents the hierarchical nature of real-world objec-
tives, where downstream tasks (e.g., long-term engagement prediction) should only optimize once
upstream prerequisites (e.g., click-through rates) have stabilized. The failure to capture these pri-
ority relationships allows noisy gradients from immature tasks to destabilize learning of critical
objectives, ultimately leading to suboptimal convergence and performance.

We introduce a paradigm shift from static weighting to dynamic constraint satisfaction. Rather
than asking “how much should each task contribute?”, we address a more fundamental question:
“when should a task be allowed to contribute?”. This leads us to formulate priority-aware MTL as
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a constrained optimization problem where task feasibility is determined by its performance relative
to an adaptive, self-calibrated baseline.

3.2 THE STRATIFIED VARIATIONAL INEQUALITY FRAMEWORK

Our key insight is that task priorities naturally form a stratified structure that can be elegantly cap-
tured through variational inequalities (VI). To cast the problem into this framework, we first need a
notion of task feasibility that determines whether a task is ready to participate in optimization. For
each task i, we establish such a benchmark using its cumulative mean loss:

εi(t) =
1

t

t∑
s=1

Li(θs). (2)

creating a scale-invariant reference that adapts to each task’s inherent difficulty. To evaluate whether
the task is improving relative to this baseline, we define the residual ri(θ) = Li(θ) − εi(t). A task
is deemed feasible if its current loss does not exceed its historical average, i.e., ri(θ) ≤ 0.

The hierarchical dependency structure can be encoded through nested feasible sets:

Ci = {θ : rj(θ) ≤ 0, ∀j < i}, (3)

which formalize the requirement that task i may only contribute once all higher-priority tasks are
feasible.

To capture both the optimization objectives and these feasibility constraints in a unified manner, we
turn to the framework of VI. In this view, the gradients of the task losses define a smooth operator
that drives optimization, while the constraints Ci are represented by their normal cone operators.
The resulting stratified VI seeks θ∗ such that:

0 ∈
N∑
i=1

∇Li(θ)︸ ︷︷ ︸
=:G(θ)

+

N∑
i=2

NCi(θ)︸ ︷︷ ︸
=:N(θ)

, (4)

where NCi
= ∂ιCi

denotes the normal cone operator of Ci.
This formulation clearly separates the problem into two complementary components: G(θ) drives
joint optimization of all tasks, while N(θ) enforces the stratified feasibility sets, thus embedding
task priorities directly into the optimization dynamics.

3.3 YOSIDA REGULARIZATION: FROM HARD CONSTRAINTS TO DIFFERENTIABLE GATES

While the VI formulation offers theoretical clarity, the normal cone operators NCi
are inherently

non-differentiable, making them unsuitable for direct use in gradient-based optimization. To enable
smooth updates, we require differentiable surrogates that retain the effect of feasibility enforcement.
A principled way to achieve this is through Yosida regularization, which replaces discontinuous
normal cones with Lipschitz-continuous approximations.

Specifically, for each task i we define smooth feasibility maps:

pi(θ) = σ
(

ri(θ)
α

)
, gi(θ) =

i−1∏
j=1

σ
(
− rj(θ)

α

)
, (5)

where σ(·) is the sigmoid function and α > 0 controls the sharpness of the relaxation. Here, pi(θ)
acts as a violation indicator, softly increasing a task’s influence when it fails its feasibility test,
while gi(θ) serves as a stratified mask, suppressing task i whenever any higher-priority task remains
infeasible. Together, these two components constitute the Self-Calibrated Gate (SC Gate), which
operationalizes the core principle of SCD-VIO: downstream tasks are only activated once upstream
ones have stabilized.

The resulting regularized operator is

F (θ) =

N∑
i=1

gi(θ) pi(θ)∇Li(θ). (6)
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Algorithm 1 SCD-VIO with Self-Calibrating Gate
Require: Learning rate η; task losses {Li(θ)}Ni=1 (ordered by priority); smoothing parameter α > 0

1: Initialize model parameters θ; for each task i: ti ← 0, L̄i ← 0
2: for each training step do
3: Update task statistics and residuals for i = 1 to N
4: ti ← ti + 1
5: δ ← Li(θ)− L̄i ▷ Welford’s online mean
6: L̄i ← L̄i + δ/ti
7: εi ← L̄i ▷ Self-calibrated threshold
8: ri ← Li(θ)− εi ▷ Performance residual
9: pi ← σ(ri/α) ▷ Violation indicator

10: end for
11: Construct stratified feasibility masks
12: g1 ← 1 ▷ Highest-priority task always active
13: for i = 2 to N do
14: gi ←

∏i−1
j=1 σ(−rj/α) ▷ Mask: ≈ 1 if all prior tasks feasible

15: end for
16: Compute loss and update parameters
17: L ←

∑N
i=1 gi · (1 + softplus(ri/α)) · Li(θ)

18: θ ← θ − η∇θL

This operator preserves the semantics of the original stratified VI while being smooth and single-
valued, making it directly amenable to standard gradient-based optimizers such as SGD or Adam.

3.4 THE SCD-VIO ALGORITHM: PRACTICAL IMPLEMENTATION

To facilitate seamless integration with modern deep learning frameworks, we derive a scalar loss
function whose gradient approximates F (θ):

LSCD-VIO(θ) =

N∑
i=1

gi(θ) (1 + softplus(ri(θ)/α)) Li(θ). (7)

This construction ensures that: (1) the term 1 + softplus(ri/α) provides adaptive weighting based
on feasibility status, and (2) the product structure of gi(θ) maintains strict hierarchical enforcement.

The resulting SCD-VIO algorithm (Algorithm 1) alternates between updating task statistics and per-
forming gradient steps, creating an efficient, practical implementation of the theoretical VI frame-
work. Crucially, the self-calibrating thresholds εi(t) eliminate the need for manual schedule tuning,
making the approach both parameter-efficient and robust across diverse task structures.

3.5 THEORETICAL GUARANTEES AND INTERPRETATION

SCD-VIO provides compelling theoretical properties that distinguish it from heuristic MTL ap-
proaches:

• Exponential Hierarchy Enforcement: The product structure of gi ensures exponential
suppression (gi ≲ e−|rj |/α) of downstream tasks when upstream constraints are violated,
providing strong priority preservation
text

• Scale Invariance: The use of relative residuals ri(θ) makes feasibility conditions invariant
to task-specific loss scaling, ensuring robust performance across diverse objective magni-
tudes

• Asymptotic Convergence: Under standard co-coercivity conditions, the algorithm con-
verges to stationary points of the stratified VI problem (see Appendix A for proofs)

• Graceful Degradation: When all tasks achieve feasibility (ri(θ) ≤ 0), the method reduces
to conventional MTL, ensuring no performance degradation in stable regimes

5
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By reformulating priority-aware MTL through the lens of variational inequalities and monotone op-
erator theory, SCD-VIO transcends the limitations of heuristic weighting schemes. Our approach
provides a mathematically rigorous foundation for hierarchical optimization while maintaining prac-
tical efficiency through differentiable approximations, creating a versatile framework that combines
theoretical elegance with empirical effectiveness.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate SCD-VIO on three public multi-task recommendation datasets (Yuan et al., 2022):
TikTok, QK-Video, and KuaiRand1k. TikTok and QK-Video are standard two-task benchmarks
curated from short-video interaction logs. In both cases, Like serves as the primary objective,
reflecting long-term user preference, while Finish (TikTok) or Click (QK-Video) act as auxiliary
tasks that capture short-term engagement signals. These datasets provide compact settings to eval-
uate whether prioritization benefits critical objectives even in shallow task structures.

In contrast, KuaiRand1k defines eight sequential user behaviors that naturally form a decision hier-
archy, progressing from low-commitment to high-commitment actions: is click, long view, is like,
is follow, is comment, is forward, is profile enter, and is hate. This ordering reflects a user deci-
sion funnel: casual engagement such as clicks and long views precedes stronger preference signals
like likes and follows, which in turn precede social or expressive behaviors (comment, forward),
and finally culminate in profile entry and even negative feedback (hate). The mixture of positive
and negative signals, together with its depth, makes KuaiRand1k particularly suitable for testing
hierarchy-enforcing algorithms: premature optimization of deeper tasks could easily destabilize
training. SCD-VIO addresses this by activating downstream tasks only once upstream ones are
sufficiently captured, which aligns naturally with the dataset’s structure.

Together, these datasets span both shallow and deep dependency structures, enabling a comprehen-
sive evaluation of priority-aware optimization. SCD-VIO is model-agnostic and can be integrated
into any parameter-sharing MTL backbone. Rather than modifying architectures, it operates as a
plug-in optimization module that enforces dynamic task prioritization via smooth constraint regular-
ization. We integrate SCD-VIO into several representative MTL models—Shared-Bottom (Caruana,
1997), OMoE (Ma et al., 2018a), MMoE (Ma et al., 2018a), PLE (Tang et al., 2020), ESMM (Ma
et al., 2018b), AITM (Xi et al., 2021), and STEM (Su et al., 2024)—and evaluate its impact across
all three datasets. The hyperparameter α in Equation 5 is set to 1.0, with the rationale detailed in
Appendix B.

Method Without SCD-VIO With SCD-VIO
Finish AUC Like AUC Avg. AUC Finish AUC Like AUC Avg. AUC

STEM 0.7388 0.8861 0.8124 ↓0.57% ↑2.47% ↑2.24%
SharedBottom 0.7498 0.9002 0.8050 ↑0.72% ↑1.26% ↑1.91%
MMoE 0.7508 0.9017 0.8160 ↑0.95% ↑1.35% ↑2.16%
PLE 0.7510 0.9025 0.7967 ↓0.53% ↑1.89% ↑2.01%
AITM 0.7508 0.9016 0.8062 ↑0.73% ↑1.35% ↑2.21%
ESMM 0.7498 0.8993 0.8246 ↑1.08% ↑1.14% ↑2.22%
OMoE 0.7512 0.9012 0.8162 ↓0.71% ↑1.94% ↑2.08%

Table 1: TikTok results across seven MTL backbones. The left block reports baseline AUCs, and
the right block shows relative changes after adding SCD-VIO (↑ increase, ↓ decrease, relative to
baseline). SCD-VIO consistently boosts the primary Like task, causes only small fluctuations on the
auxiliary Finish, and yields improvements in overall Avg. AUC for all models.

4.2 ANALYSIS OF PRIORITY-AWARE OPTIMIZATION BENEFITS

Experimental results consistently demonstrate that SCD-VIO improves multi-task performance
across diverse architectures and datasets by enforcing task priorities in a structured and differen-
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Model Without SCD-VIO With SCD-VIO
Click AUC Like AUC Avg. AUC Click AUC Like AUC Avg. AUC

STEM 0.8919 0.8373 0.8546 ↓0.64% ↑2.01% ↑2.41%
SharedBottom 0.8917 0.8367 0.8442 ↑0.76% ↑1.10% ↑2.06%
MMoE 0.8917 0.8368 0.8473 ↑0.51% ↑1.54% ↑2.52%
PLE 0.8917 0.8352 0.8335 ↓0.74% ↑1.77% ↑1.86%
AITM 0.8916 0.8379 0.8347 ↑0.82% ↑1.38% ↑2.31%
ESMM 0.8915 0.8343 0.8629 ↑0.66% ↑1.31% ↑2.19%

Table 2: Results on the QK-Video dataset. Although overall gains are smaller due to saturated
baselines, SCD-VIO still achieves consistent improvements on the prioritized Like objective and
raises the overall Avg. AUC across all backbones, with only minor fluctuations in Click. This
highlights SCD-VIO’s robustness even under limited headroom for improvement.

Model Task A Task B Task C Task D Task E Task F Task G Task H Avg. AUC MTL Gain
STEM 0.9865 0.9879 0.9492 0.9047 0.9880 0.9103 0.9174 0.9822 0.9461 –
STEM–SCD-VIO 0.9916 0.9829 0.9520 0.9239 0.9901 0.9206 0.9135 0.9800 0.9599 ↑2.38%
SharedBottom 0.9795 0.9898 0.9362 0.8892 0.9832 0.8877 0.8923 0.9218 0.9182 –
SharedBottom–SCD-VIO 0.9859 0.9899 0.9394 0.8904 0.9846 0.8915 0.9019 0.9283 0.9317 ↑2.35%
MMoE 0.9805 0.9895 0.9412 0.8864 0.9836 0.8557 0.9069 0.9412 0.9388 –
MMoE–SCD-VIO 0.9861 0.9898 0.9450 0.9135 0.9865 0.9023 0.9103 0.9759 0.9547 ↑2.52%
PLE 0.9728 0.9797 0.9423 0.8989 0.9847 0.8823 0.9102 0.9611 0.9269 –
PLE–SCD-VIO 0.9771 0.9808 0.9452 0.9145 0.9867 0.9095 0.9115 0.9771 0.9456 ↑2.37%
AITM 0.9858 0.9819 0.9370 0.8965 0.9813 0.8893 0.8996 0.9765 0.9170 –
AITM–SCD-VIO 0.9902 0.9808 0.9454 0.9051 0.9849 0.9001 0.9112 0.9709 0.9320 ↑2.15%
OMoE 0.9759 0.9787 0.9422 0.8776 0.9843 0.8703 0.9076 0.9091 0.9259 –
OMoE–SCD-VIO 0.9818 0.9810 0.9405 0.8820 0.9842 0.8826 0.9026 0.9241 0.9472 ↑2.13%

Table 3: Results on the KuaiRand1k dataset with eight hierarchically dependent tasks. SCD-VIO
consistently raises the overall Avg. AUC across diverse backbones and delivers notable improve-
ments on downstream behaviors that are typically harder to optimize, demonstrating its effectiveness
in deep hierarchical settings.

tiable manner. Gains are most pronounced on high-priority objectives, validating the intuition that
premature updates from unstable tasks often hinder the optimization of critical ones.

On the TikTok dataset, for example, STEM and PLE achieve Like-AUC improvements of +2.47%
and +1.89%, respectively, while auxiliary Finish-AUC remains essentially unchanged. This indi-
cates that SCD-VIO accelerates and stabilizes the optimization of the primary objective without
sacrificing short-term engagement signals. On KuaiRand1k, MMoE achieves up to +2.52% in av-
erage AUC. Here, the benefits stem from gating deeper tasks (e.g., comment, profile enter, hate)
until upstream behaviors are reliably captured, which prevents noisy gradients from destabilizing
training.

Importantly, these improvements are observed consistently across both shallow two-task bench-
marks (TikTok, QK-Video) and the deeper eight-task hierarchy of KuaiRand1k. The fact that
SCD-VIO delivers gains on architectures ranging from simple parameter-sharing (Shared-Bottom)
to modular designs (PLE, STEM) highlights its generality. Compared to heuristic reweighting or
gradient-balancing baselines, SCD-VIO directly encodes task precedence, leading to more stable
convergence and interpretable training dynamics.

We note that the reported improvements in average AUC are calculated as relative gains with respect
to the baseline average rather than as the arithmetic mean of per-task improvements.

4.3 COMPARISON WITH TASK SCHEDULING BASELINES

To further contextualize these improvements, we compare SCD-VIO against several task scheduling
and conflict-mitigation methods, including DRGrad (Liu et al., 2025), NMT (Cheng et al., 2025),
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and AdaTask (Yang et al., 2023b). All methods are integrated into the STEM backbone and evaluated
on the TikTok dataset under identical training protocols.

Method Finish Like Avg. AUC
STEM (Baseline) 0.7388 0.8861 0.8124
+AdaTask ↑0.36% ↑0.39% ↑0.76%
+NMT ↑0.26% ↑0.33% ↑0.53%
+DRGrad ↑0.37% ↑0.41% ↑0.69%
+SCD-VIO ↓0.57% ↑2.47% ↑2.24%

Table 4: Performance comparison between SCD-VIO and task
scheduling baselines on TikTok datasets. Values in parentheses
denote relative gains over the vanilla STEM baseline.

As shown in Table 4, DR-
Grad and AdaTask yield moder-
ate gains over the STEM base-
line, while NMT provides only
marginal improvements. In con-
trast, SCD-VIO achieves the
largest boost across metrics,
with up to +2.47% relative im-
provement on Like-AUC and
+2.24% on average AUC. We
also observe a slight decrease
on the auxiliary Finish task,
which reflects the framework’s
intended prioritization of the
primary objective. Crucially, the trade-off is highly asymmetric: minor Finish losses are outweighed
by substantial Like improvements, validating the principle of hierarchy-aware optimization.

The comparison further highlights a qualitative difference: AdaTask and DRGrad reduce gradient
conflict but treat all tasks symmetrically, whereas SCD-VIO enforces a structured optimization order
through self-calibrated gating and recursive masking. This mechanism aligns gradient flow with task
importance, yielding faster convergence and more stable training. Moreover, in saturated regimes
such as STEM on QK-Video—where performance ceilings limit further gains—SCD-VIO intro-
duces no degradation, suggesting that the method naturally deactivates when hierarchy enforcement
is unnecessary.

Overall, these findings support our central hypothesis: explicitly encoding task precedence via a
variational inequality framework not only enhances prioritized objectives but also stabilizes opti-
mization dynamics and mitigates interference throughout training.

Category Variant Finish AUC Like AUC Avg. AUC

Stratified Mask gi
Full SCD-VIO (recursive) 0.7251 0.9008 0.8348
Independent gates (σ(−ri/α)) ↑0.30% ↑0.74% ↑0.76%
No gating (gi ≡ 1) ↑0.43% ↑0.21% ↑0.22%

Violation Map pi
Full SCD-VIO (with pi, softplus) 0.7251 0.9008 0.8348
Remove pi / softplus penalty ↑0.10% ↑0.50% ↑0.64%

SC Gate (thresholds)

Cumulative mean (default, SC Gate) 0.7251 0.9008 0.8348
Historical median ↓1.26% ↑1.14% ↑1.83%
EMA (exp. moving avg.) ↓1.18% ↑1.32% ↑2.10%
Fixed manual threshold ↑0.40% ↑0.27% ↑0.32%

Priority Order Correct order (Like high-priority) 0.7251 0.9008 0.8348
Mis-ordered (Like as secondary) ↑0.70% ↓0.10% ↓0.05%

Hierarchy Depth
First 2 tasks only – – ↑0.89%
First 4 tasks – – ↑1.38%
All 8 tasks – – ↑1.76%

Table 5: Ablation studies of SCD-VIO on TikTok (top four categories) and KuaiRand1k (hierarchy
depth). We observe that: (i) recursive stratified masks gi are essential—removing them boosts Finish
but hurts Like and overall Avg; (ii) violation-aware mapping pi accelerates convergence of high-
priority tasks; (iii) self-calibrated thresholds (SC Gate) outperform fixed thresholds while requiring
no tuning; (iv) correct task ordering is critical—mis-ordering improves Finish but degrades Like
and Avg; (v) relative gains grow with hierarchy depth, showing that SCD-VIO scales with complex
pipelines.
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4.4 ABLATION STUDIES

To better understand the contribution of each component in SCD-VIO, we conduct a series of ab-
lation studies across TikTok and KuaiRand1k. These experiments isolate the effect of stratified
masking, violation-aware reweighting, self-calibrated gating, and hierarchy design. Results are sum-
marized in Table 5.

Stratified Mask gi. Replacing the recursive product
∏

j<i σ(−rj/α) with independent gates
σ(−ri/α), or removing it altogether (gi ≡ 1), eliminates strict hierarchy enforcement. In these
settings, Finish AUC increases slightly because the auxiliary task is optimized earlier, but the Like
task suffers, leading to smaller or even negative Avg. AUC gains. This trade-off highlights that
naive gating favors low-priority tasks at the expense of the main objective. By contrast, recursive
masking ensures that premature updates from unstable tasks are suppressed, yielding the strongest
improvements on the prioritized objective.

Violation Mapping pi and Softplus Penalty. Removing the violation-aware modulation pi =
σ(ri/α) and the softplus penalty allows underperforming tasks to inject full gradients regardless of
their feasibility. This yields moderate Finish improvements but weaker Like gains and less stable
training dynamics, consistent with the intuition that pi acts as a “soft barrier” to protect high-priority
tasks. The observation that instability grows without pi further validates our monotone-operator in-
terpretation: the violation map smooths the normal-cone projection and prevents oscillatory updates.

Self-Calibrated Gating (SC Gate). We compare cumulative mean thresholds against alternative
definitions: historical median, exponential moving average (EMA), and fixed manual thresholds.
While mean, median, and EMA achieve similar overall gains, fixed thresholds are brittle and highly
sensitive to scaling, sometimes inflating Finish at the cost of Like. This demonstrates that self-
calibration not only avoids hyperparameter tuning but also provides robustness across datasets. The
fact that median and EMA perform comparably suggests that SCD-VIO is robust to different esti-
mators of task baselines, reinforcing the “zero hyperparameter” claim.

Priority Order. When the natural hierarchy is mis-ordered (e.g., treating Like as secondary), Fin-
ish improves modestly but Like and Avg. AUC degrade. This shows that the gains of SCD-VIO are
not due to generic reweighting, but to enforcing the correct precedence of tasks. In other words, the
framework is sensitive to task order in a way that directly mirrors the assumed behavioral hierarchy,
providing evidence that it captures genuine dependency structures.

Hierarchy Depth (KuaiRand1k). Finally, we test SCD-VIO on truncated versions of
KuaiRand1k. Relative gains are modest with only two tasks, increase at four tasks, and become
largest with the full eight-task hierarchy. This confirms that SCD-VIO particularly excels in com-
plex multi-task pipelines, where premature optimization and gradient interference are most severe.
The scaling behavior underscores that the method is not only effective in simple two-task bench-
marks but also robust to realistic, deeply hierarchical settings.

5 CONCLUSION

We proposed SCD-VIO, a framework that casts priority-aware MTL as a stratified variational in-
equality. Through self-calibrated gating and Yosida-regularized projections, it enforces soft task
hierarchies in a differentiable, plug-and-play form.

Experiments on three recommendation benchmarks show consistent gains on high-priority tasks
and overall averages, while ablations confirm the necessity of stratified masking, violation-aware
weighting, and self-calibration. These results highlight premature optimization as a key limitation
in MTL and demonstrate that explicitly modeling task precedence yields tangible benefits.

Looking ahead, stratified VI offer a unifying view of hierarchy-aware optimization with potential
applications in vision, language, and multi-agent learning.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following:

Theory. Appendix A contains full proofs of all theoretical results, including convergence of the
operator iteration, gradient approximation of the composite loss, and guarantees of hierarchy en-
forcement and scale invariance.

Experiments. Section 4 details the setup. All backbones (e.g., STEM, MMoE, PLE) use standard
implementations. Hyperparameters are documented in the supplementary material. Sensitivity of α
is analyzed in Appendix B, with a robust default α = 1.0.

Resources. Experiments were run on servers with NVIDIA V100/A100 GPUs.

Data. We use three public benchmarks: TikTok, QK-Video, and KuaiRand1k, with preprocessing
steps and priority definitions described in the Section 4.1.
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A APPENDIX: THEORETICAL ANALYSIS AND PROOFS

A.1 PRELIMINARIES AND DEFINITIONS

We begin by formalizing the setting and recalling key mathematical concepts that underpin our
analysis.

Tasks and Losses. We consider N task losses {Li : Θ → R}Ni=1, ordered by priority from highest
(i = 1) to lowest (i = N ).

Self-Calibrated Thresholds and Residuals. For each task i at step t, we define:

εi(t) =
1

t

t∑
s=1

Li(θs), ri(θ) = Li(θ)− εi(t). (8)

A task is considered feasible when ri(θ) ≤ 0.

Soft Gating (Yosida-Style Smoothing). We approximate hard feasibility constraints using smooth
functions:

pi(θ) = σ

(
ri(θ)

α

)
, g1(θ) = 1, gi(θ) =

i−1∏
j=1

σ

(
−rj(θ)

α

)
, (9)

where σ(x) = 1/(1+ e−x) is the sigmoid function and α > 0 controls the sharpness of approxima-
tion.

Operator Form and Composite Loss. The Yosida-regularized operator and practical loss function
are:

F (θ) =

N∑
i=1

gi(θ)pi(θ)∇Li(θ), (10)

LSCD-VIO(θ) =

N∑
i=1

gi(θ) (1 + softplus (ri(θ)/α))Li(θ). (11)
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Definition 1 (Monotone Operator). An operator F : Rd → 2R
d

is monotone if for all θ, θ′ ∈ Rd,
and all u ∈ F (θ), v ∈ F (θ′):

⟨u− v, θ − θ′⟩ ≥ 0. (12)

If F is single-valued, this reduces to ⟨F (θ)− F (θ′), θ − θ′⟩ ≥ 0.

Definition 2 (Cocoercive Operator). A single-valued operator F is β-cocoercive if for all θ, θ′ ∈
Rd:

⟨F (θ)− F (θ′), θ − θ′⟩ ≥ β∥F (θ)− F (θ′)∥2. (13)

A β-cocoercive operator is 1
β -Lipschitz continuous.

Definition 3 (Averaged Operator). An operator T : Rd → Rd is α-averaged (α ∈ (0, 1)) if there
exists a nonexpansive operator R such that T = (1− α)I + αR.

Assumptions. We make the following technical assumptions:

(A1) Each Li is Li-smooth and bounded below. Let Lmax = maxi Li.

(A2) There exist constants G,B > 0 such that ∥∇Li(θ)∥ ≤ G and |Li(θ)| ≤ B along the
optimization trajectory.

(A3) Thresholds εi(t) are updated as online means with bounded drift: |εi(t + 1) − εi(t)| =
O(1/t).

(A4) The combined gradient operator G(θ) =
∑N

i=1∇Li(θ) is µ-strongly monotone.

A.2 BASIC PROPERTIES AND BOUNDS

Lemma 1 (Online Mean Drift). For any task i and t ≥ 1:

|εi(t+ 1)− εi(t)| ≤
2B

t+ 1
= O(1/t), (14)

hence
∑∞

t=1 |εi(t+ 1)− εi(t)| <∞.

Proof. By the definition of online mean update:

|εi(t+ 1)− εi(t)| =
∣∣∣∣ tεi(t) + Li(θt+1)

t+ 1
− εi(t)

∣∣∣∣ = |Li(θt+1)− εi(t)|
t+ 1

≤ 2B

t+ 1
, (15)

where the inequality follows from (A2). The summability follows from the convergence of the
harmonic series.

Lemma 2 (Gate Range and Lipschitzness). For any θ, pi(θ) ∈ (0, 1) and gi(θ) ∈ (0, 1]. Moreover:∣∣∣∣ ∂∂rσ(±r/α)
∣∣∣∣ ≤ 1

4α
. (16)

Thus, under (A2), pi and gi are Lipschitz continuous in θ.

Proof. The range properties follow directly from the sigmoid function’s properties. For the deriva-
tive bound: ∣∣∣∣ ddrσ(r/α)

∣∣∣∣ = ∣∣∣∣σ(r/α)(1− σ(r/α))

α

∣∣∣∣ ≤ 1

4α
, (17)

since σ(x)(1−σ(x)) ≤ 1/4 for all x ∈ R. Lipschitz continuity follows from the bounded derivatives
and (A2).

Lemma 3 (Exponential Suppression). If some upstream task k < i has rk(θ) > 0, then:

gi(θ) ≤ e−rk(θ)/α. (18)
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Proof. Using the inequality σ(−x) ≤ e−x for x > 0:

gi(θ) =

i−1∏
j=1

σ(−rj(θ)/α) ≤ σ(−rk(θ)/α) ≤ e−rk(θ)/α. (19)

Proposition 1 (Scale Invariance). If L̃i = ciLi for ci > 0, then r̃i = ciri, so the feasibility condition
ri ≤ 0 is invariant to positive scaling.

Proof. Direct computation shows:

ε̃i(t) =
1

t

t∑
s=1

ciLi(θs) = ciεi(t), (20)

thus r̃i(θ) = ciLi(θ)− ciεi(t) = ciri(θ). The sign is preserved under positive scaling.

A.3 SMOOTHNESS AND CONVERGENCE ANALYSIS

Lemma 4 (Smoothness of Composite Loss). Under (A1)-(A2), LSCD-VIO has L∗-Lipschitz gradient
with:

L∗ =

N∑
i=1

Ci,1Li +

N∑
i=1

Ci,2G, (21)

where Ci,1, Ci,2 depend only on α and the derivatives of sigmoid/softplus functions.

Proof. We analyze the gradient of the composite loss:

∇LSCD-VIO(θ) =

N∑
i=1

[∇gi(θ)Ai(θ) + gi(θ)∇Ai(θ) + gi(θ)Ai(θ)∇Li(θ)] , (22)

where Ai(θ) = 1 + softplus(ri(θ)/α).

From Lemma 2, ∥∇gi(θ)∥ and ∥∇Ai(θ)∥ are bounded by constants depending on α and G. Since
gi and Ai are bounded, and ∇Li is Li-Lipschitz, the overall gradient is Lipschitz with constant L∗
as stated.

Theorem 1 (Descent Property). If η ∈ (0, 1/L∗], one step of gradient descent satisfies:

LSCD-VIO(θ
+) ≤ LSCD-VIO(θ)−

η

2
∥∇LSCD-VIO(θ)∥2. (23)

Thus, with fixed thresholds, the algorithm converges to a stationary point.

Proof. This follows from standard results for gradient descent on smooth functions. For L∗-smooth
functions, we have:

L(θ+) ≤ L(θ) + ⟨∇L(θ),−η∇L(θ)⟩+ L∗

2
∥η∇L(θ)∥2. (24)

With η ≤ 1/L∗, this simplifies to the desired inequality.

Theorem 2 (Quasi-Static Convergence). With online mean updates (Lemma 1), the drift terms van-
ish asymptotically (O(1/t)) and their cumulative effect is finite. Thus, SCD-VIO converges to asymp-
totic stationary points.

Proof. The threshold drift introduces an error term in the gradient evaluation. However, since:
∞∑
t=1

|εi(t+ 1)− εi(t)| <∞, (25)

the cumulative error is bounded. This satisfies the conditions of quasi-gradient methods, ensuring
convergence to stationary points.
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A.4 OPERATOR-THEORETIC ANALYSIS

We now establish stronger convergence results through the lens of operator theory.

Lemma 5 (Properties of the Regularized Operator). Under (A1)-(A4), the operator F (θ) satisfies:

1. F is Lipschitz continuous.

2. F is β-cocoercive for some β > 0.

3. The mapping T (θ) = θ − ηF (θ) is α-averaged for appropriate η.

Proof. 1. Each component of F is the product of bounded Lipschitz functions (gi, pi) and Lipschitz
functions (∇Li), hence Lipschitz.

2. The strongly monotone gradient operator G(θ) contributes to cocoercivity. The feasibility masks
modulate but preserve this property. Specifically:

⟨F (θ)− F (θ′), θ − θ′⟩ =
N∑
i=1

⟨gi(θ)pi(θ)∇Li(θ)− gi(θ
′)pi(θ

′)∇Li(θ
′), θ − θ′⟩. (26)

Using the boundedness of gi, pi and strong monotonicity of G, we can establish cocoercivity.

3. For a β-cocoercive operator F , the operator T (θ) = θ − ηF (θ) is η
2β -averaged for 0 < η <

2β.

Theorem 3 (Convergence of Ideal Iteration). Under (A1)-(A4), for step size 0 < η < 2β, the
iteration θt+1 = θt − ηF (θt) converges to a fixed point θ∗ satisfying F (θ∗) = 0.

Proof. From Lemma 5(3), T (θ) is averaged. By the Krasnosel’skii-Mann theorem, iterates of an
averaged operator converge to a fixed point of T , which satisfies T (θ∗) = θ∗, or equivalently
F (θ∗) = 0.

Lemma 6 (Gradient Approximation Error). The gradient of the composite loss satisfies:

∇LSCD-VIO(θ) = F (θ) + E(θ), (27)

where the approximation error ∥E(θ)∥ ≤ Cα for some constant C > 0 independent of θ.

Proof. Applying the product rule toLSCD-VIO reveals additional terms involving derivatives of gi and
the softplus function. These terms are proportional to α due to the scaling in the sigmoid derivatives,
leading to the stated bound.

Theorem 4 (Convergence of Practical Algorithm). Under (A1)-(A4), with sufficiently small step size
η > 0 and smoothing parameter α > 0, SCD-VIO converges to a neighborhood of the ideal solution
θ∗ of radius O(α).

Proof. The practical algorithm performs:

θt+1 = θt − η∇LSCD-VIO(θt) = θt − η(F (θt) + E(θt)). (28)

This is a perturbed version of the ideal iteration. Using Lemma 6 and cocoercivity, there exists a
constant K > 0 such that:

∥θt+1 − θ∗∥ ≤ ρ∥θt − θ∗∥+ ηKα, (29)

where ρ ∈ (0, 1) depends on the cocoercivity constant and step size.
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A.5 MECHANISM GUARANTEES

Theorem 5 (Priority-Respecting Suppression). If some upstream task k < i has rk(θ) > 0, then:

∥gi(θ)pi(θ)∇Li(θ)∥ ≤ e−rk(θ)/α∥∇Li(θ)∥. (30)

Proof. From Lemma 3, gi(θ) ≤ e−rk(θ)/α. Since pi(θ) ≤ 1, the result follows.

Proposition 2 (Graceful Deactivation). If all upstream tasks j < i satisfy rj(θ) ≤ −m with margin
m > 0, then: ∣∣∣∣∣LSCD-VIO(θ)−

N∑
i=1

Li(θ)

∣∣∣∣∣ ≤ Ce−m/α. (31)

Thus, SCD-VIO reduces to vanilla MTL when all tasks are feasible with margin.

Proof. When rj(θ) ≤ −m for all j < i, we have gi(θ) ≥
∏i−1

j=1 σ(m/α) → 1 as m/α → ∞.
Similarly, 1 + softplus(ri(θ)/α) → 1 when ri(θ) ≤ 0. The bound follows from the exponential
convergence of sigmoid functions to their limits.

A.6 INTERPRETATION AS VARIATIONAL INEQUALITY

SCD-VIO approximates the solution of the stratified variational inequality:

0 ∈ G(θ) +

N∑
i=2

NCi(θ), G(θ) =

N∑
i=1

∇Li(θ), (32)

where NCi
= ∂ιCi

is the normal cone operator of Ci = {θ : rj(θ) ≤ 0, ∀j < i}.
The non-differentiable normal cones are replaced by smooth surrogates derived from Yosida regu-
larization:

NCi(θ) ≈ pi(θ)∇Li(θ) and ιCi(θ) ≈ gi(θ)Li(θ), (33)

where ιCi
is the indicator function of Ci.

A.7 SUMMARY OF THEORETICAL PROPERTIES

SCD-VIO provides the following formal guarantees:

• Exponential Suppression: Downstream tasks are exponentially suppressed when up-
stream tasks are infeasible (Theorem 5).

• Scale Invariance: Feasibility criteria are unaffected by positive scaling of losses (Proposi-
tion 1).

• Smooth Optimization: The composite loss is smooth under mild conditions (Lemma 4).

• Convergence Guarantees: Both the ideal operator iteration and practical algorithm con-
verge (Theorems 3 and 4).

• Graceful Deactivation: The method reduces to vanilla MTL when all constraints are sat-
isfied (Proposition 2).

• Theoretical Foundation: The approach is grounded in variational inequality theory and
operator splitting methods.

These properties collectively justify SCD-VIO’s design and provide theoretical support for its em-
pirical effectiveness demonstrated in the main paper.
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B APPENDIX B: SENSITIVITY OF THE SMOOTHING SCALE α

B.1 INTRODUCTION

The smoothing parameter α controls how sharply SCD-VIO relaxes hard feasibility constraints into
soft, differentiable gates. A natural concern is whether performance hinges on a finely tuned α,
which would hurt practicality. We show that SCD-VIO is robust across a wide range of α on mul-
tiple datasets and backbones: while α slightly affects training dynamics, the method consistently
outperforms baselines across nearly two orders of magnitude, and a simple default α = 1.0 yields
robust, near-optimal results.

B.2 EXPERIMENTAL SETUP

We evaluate TikTok (STEM) and KuaiRand1k (MMoE), sweeping α ∈
{0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}. All other hyperparameters (optimizer, batch size, learn-
ing rate, training budget) are fixed to isolate the effect of α. Each configuration is run with three
random seeds; we report the mean test performance.

B.3 METRICS

We track: (i) Primary AUC (e.g., Like on TikTok), (ii) Average AUC across tasks, and (iii) a Fea-
sibility Gap defined as the end-of-training average of max(0, ri(θ)) for all i > 1, which measures
residual violations of the hierarchical schedule (lower is better).

B.4 RESULTS

α
Like AUC ↑ Avg. AUC ↑

% Improv. Feasibility Gap ↓ % Improv. Feasibility Gap ↓
0.01 +1.45% 0.0012 +2.12% 0.0015
0.10 +1.43% 0.0020 +2.18% 0.0027
0.50 +1.47% 0.0032 +2.23% 0.0039
1.00 +1.49% 0.0038 +2.26% 0.0046
2.00 +1.47% 0.0044 +2.24% 0.0054
5.00 +1.48% 0.0065 +2.19% 0.0079
10.0 +1.47% 0.0090 +2.14% 0.0106

Table 6: Sensitivity to α on TikTok–STEM. Numbers are relative improvements over vanilla STEM
(Like AUC = 0.8861, Avg. AUC = 0.8124). Tight spread indicates robustness to α.

α
Avg. AUC ↑ Feasibility Gap ↓
% Improv.

0.01 +1.54% 0.0017
0.10 +1.53% 0.0024
0.50 +1.56% 0.0034
1.00 +1.60% 0.0041
2.00 +1.58% 0.0048
5.00 +1.59% 0.0068
10.0 +1.57% 0.0092

Table 7: Sensitivity to α on KuaiRand1k–MMoE. Numbers are relative improvements over vanilla
MMoE (Avg. AUC = 0.9388). Variation across α remains within ≈ 0.12%.

Across both datasets, we find that SCD-VIO remains highly robust to the choice of α. In particular,
within the range α ∈ [0.5, 2.0], both the primary and average AUC fluctuate by less than 0.1% from
their maxima, indicating that the method is practically insensitive to the smoothing scale. At the
extremes, the behavior matches intuition: very small α enforces sharper gating, leading to slightly
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delayed activation of lower-priority tasks, while very large α over-smooths the gating functions
and mildly dilutes prioritization. The feasibility gap metric captures this trade-off, decreasing for
small α (stricter enforcement) and increasing for large α (softer enforcement). The best empirical
performance coincides with a moderate gap.

B.5 CONCLUSION

Overall, our analysis demonstrates that SCD-VIO is not overly sensitive to its only hyperparameter.
The algorithm delivers reliable gains over strong MTL baselines across nearly two orders of mag-
nitude of α, with a simple and effective default that makes the method both principled and easy to
deploy.

C USE OF LLMS

Large language models (LLMs) were used solely for language polishing; all technical content, meth-
ods, and experiments were developed and validated by the authors.
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