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Abstract

Recent major milestones have successfully de-001
coded non-invasive brain signals (e.g. func-002
tional Magnetic Resonance Imaging (fMRI)003
and electroencephalogram (EEG)) into natu-004
ral language. Despite the progress in model005
design, how to split the datasets for training,006
validating, and testing still remains a matter of007
debate. Most of the prior researches applied008
subject-specific data splitting, where the de-009
coding model is trained and evaluated per sub-010
ject. Such splitting method poses challenges011
to the utilization efficiency of dataset as well012
as the generalization of models. In this study,013
we propose a cross-subject data splitting cri-014
terion for brain-to-text decoding on various015
types of cognitive dataset (fMRI, EEG), aiming016
to maximize dataset utilization and improve017
model generalization. We undertake a com-018
prehensive analysis on existing cross-subject019
data splitting strategies and prove that all these020
methods suffer from data leakage, namely the021
leakage of test data to training set, which sig-022
nificantly leads to overfitting and overestima-023
tion of decoding models. The proposed cross-024
subject splitting method successfully addresses025
the data leakage problem and we re-evaluate026
some SOTA brain-to-text decoding models as027
baselines for further research.028

1 Introduction029

Brain-to-text decoding aims to recover natural lan-030

guage from brain signals stimulated by correspond-031

ing speech. Recent studies (Makin et al., 2020;032

Wang and Ji, 2022; Xi et al., 2023; Tang et al.,033

2023; Duan et al., 2024) have successfully decoded034

non-invasive brain signals (e.g. fMRI, EEG) to035

text by applying deep computational neural net-036

works. However, no consensus has reached on how037

to split the cognitive dataset for training, validat-038

ing, and testing. Most of the prior work (Ye et al.,039

2023; Tang et al., 2023) performed subject-specific040

data splitting for training and evaluating decoding041

models. Under this splitting rule, data for training,042
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Notation

Figure 1: Illustration of naturalistic language com-
prehension dataset for brain-to-text decoding. Path
with the same color indicates one sample for train-
ing/validating/testing.

validating, and testing all comes from one specific 043

subject from the cognitive dataset. For example, 044

Tang et al. (2023) picked three subjects out of seven 045

and conducted model training and evaluation on the 046

three subjects respectively. This subject-specific 047

splitting method causes two main problems. First, 048

it only utilizes a tiny part of the whole dataset. 049

Since the collection of brain signals is costly and 050

time-consuming, such splitting method results in 051

significant waste of data resources. Second, it leads 052

to the poor generalization of decoding models. As 053

every subject’s brain has unique functional and 054

anatomical structures, subject-specific models may 055

exhibit considerable variability across individuals 056

and fail to generalize to other subjects. Moreover, 057

decoding models trained from scratch on limited 058

data are prone to facing the overfitting problem. 059

Some studies (Wang and Ji, 2022; Xi et al., 2023) 060

began to shed light on cross-subject data splitting, 061

which views all the subjects’ data as a whole and 062

performs splitting according to a given ratio (e.g. 063

8:1:1 for the training set, validation set, and test 064

set). Cross-subject data splitting effectively com- 065

pensates for the shortcomings of subject-specific 066

splitting and has been widely applied in brain-to- 067

image decoding (Wang et al., 2024; Liu et al., 068

2024). However, unlike datasets for brain-to-image 069

decoding, where subjects are guided to see different 070

and unrepeated pictures, different subjects will hear 071
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the same story in the naturalistic language compre-072

hension dataset for brain-to-text decoding, which073

challenges cross-subject data splitting. As shown074

in Figure 1, such dataset is usually formatted in075

subject-task-text-signal (S-M -T -F ) pair, indicat-076

ing the brain signal F of subject S stimulated by077

hearing text T from task M . Current cross-subject078

data splitting methods (Wang and Ji, 2022; Xi et al.,079

2023) can be summarized as five categories: (1)080

split by subjects S, (2) split by tasks M , (3) split081

by randomly picking signal frames F , (4) split by082

randomly picking signal frames under certain task083

F -M , (5) split by randomly picking consecutive084

signal frames under certain task F -M . However,085

based on our observations, all these splitting meth-086

ods suffer from data leakage problem, namely part087

of the test data is mixed into the training set, which088

leads to overfitting in model training and overesti-089

mation in model evaluation.090

Specifically, modern brain-to-text decoding mod-091

els follow an encoder-decoder manner. We pick092

two representative models: EEG2Text (Wang and093

Ji, 2022) and UniCoRN (Xi et al., 2023) for investi-094

gating the damage of data leakage. The former is an095

end-to-end encoder-decoder framework, while the096

latter first pre-trains the encoder and then applies097

it in the decoder training. Experiments support098

that data leakage affects model training on both099

the encoder side and decoder side. For the encoder100

component, if subjects’ brain signals in the test set101

are mixed into the training set, the encoder will be-102

come overfitting and fail to well represent unseen103

subjects’ brain signals. As to the decoder, the sit-104

uation gets worse if text stimuli are leaked. Since105

the decoder follows an auto-regressive manner and106

generates token by token, data leakage will cause107

the decoder to memorize seen paragraphs during108

the teacher-forcing training stage, which leads to109

poor generalization to unseen text.110

To avoid data leakage and fairly evaluate the111

performance of brain-to-text decoding models, we112

propose a cross-subject data splitting criterion. We113

focus on fMRI and EEG signals in this study, al-114

though the proposed criterion could be applied to115

any datasets satisfying the prescribed format. In116

the proposed method, the dataset is split according117

to subject-text (S-T ) pairs with the following rules:118

(1) Brain signals collected from specific subject in119

validation set and test set will not appear in train-120

ing set, which means the trained encoder cannot121

get access to any brain information belonging to122

subjects in test set. (2) Text stimuli in validation 123

set and test set will not appear in training set. The 124

decoder learns to reconstruct language with brain 125

signals instead of memorizing seen text. 126

Our contributions can be summarized as follows: 127

• To the best of our knowledge, we propose the 128

first cross-subject data splitting criterion for 129

brain-to-text decoding. 130

• We comprehensively analyze current cross- 131

subject data splitting methods and find that 132

all existing methods suffer from data leakage 133

problem, which severely affects the training 134

and evaluation of decoding models. 135

• Some SOTA brain-to-text decoding models 136

are re-evaluated under the proposed cross- 137

subject data splitting method as baselines for 138

further research. 139

2 Related Work 140

Brain Signal Brain signals can be classified into 141

three categories: invasive, partially invasive, and 142

non-invasive according to how close electrodes get 143

to brain tissue. In this paper, we mainly focus on 144

non-invasive signals EEG and fMRI. EEG signal 145

is electrogram of the spontaneous electrical activ- 146

ity of the brain, with frequencies ranging from 1 147

Hz to 30 Hz. EEG is of high temporal resolution 148

and relatively tolerant of subject movement, but its 149

spatial resolution is low and it can’t display active 150

areas of the brain directly. fMRI measures brain 151

activity by detecting changes of blood flow. Blood 152

flow of a specific region increases when this brain 153

area is in use. The spatial resolution of fMRI is 154

measured by the size of voxel, which is a three- 155

dimensional rectangular cuboid ranging from 3mm 156

to 5mm (Vouloumanos et al., 2001; Noppeney and 157

Price, 2004). Unlike EEG which samples brain sig- 158

nals continuously, fMRI samples based on a fixed 159

time interval named TR, usually at second level. 160

Brain-to-text Decoding Previous research on 161

brain-to-text decoding (Herff et al., 2015; Anu- 162

manchipalli et al., 2019; Zou et al., 2021; Moses 163

et al., 2021; Défossez et al., 2023) mainly focused 164

on word-level decoding in a restricted vocabulary 165

with hundreds of words (Panachakel and Ramakr- 166

ishnan, 2021). These models typically apply re- 167

current neural network or long short-term memory 168

(Hochreiter and Schmidhuber, 1997) network to 169

build mapping between brain signals and words 170

in vocabulary. Despite relatively good accuracy, 171

these methods fail to generalize to unseen words. 172
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(a) Split by subjects (b) Split by tasks (c) Split by picking signals

(d) Split by picking signals under certain task (e) Split by picking consecutive signals (f) Our method
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Figure 2: Different splitting methods for cognitive dataset. (Color printing is preferred.)

Some progress (Sun et al., 2019) has been made173

by expanding word-level decoding to sentence-174

level through encoder-decoder framework or using175

less noisy ECoG data (Burle et al., 2015; Anu-176

manchipalli et al., 2019). However, these models177

struggle to generate accurate and fluent sentences178

limited by decoder ability. Wang and Ji (2022)179

introduced the first open vocabulary EEG-to-text180

decoding model by leveraging the power of pre-181

trained language models. Xi et al. (2023) improved182

the model design and proposed a unified framework183

for decoding both fMRI and EEG signals.184

3 Methodology185

In this section, we will first introduce the formal186

definition of brain-to-text decoding and the general187

description of dataset format. Then we systemat-188

ically analyze current cross-subject data splitting189

methods and point out that all existing methods190

suffer from two kinds of data leakage issues: brain191

signal leakage and text stimuli leakage. Finally, a192

cross-subject splitting criterion is proposed which193

avoids the above-mentioned data leakage problems.194

3.1 Task Definition195

Given the brain signal Fij stimulated by i-th sub-196

ject Si hearing or reading certain text Tj , brain-to-197

text decoding aims to decode Fij back to text T ′
j198

and make T ′
j as similar as possible to Tj . The com-199

position of Fij and Tj is different as to fMRI and200

EEG. The former samples brain information dis- 201

cretely with a fixed time interval TR, while the lat- 202

ter samples continuously. To fMRI, consistent text 203

segments sj with corresponding fMRI frames fij 204

are concatenated to form a sample pair ⟨Fij , Tj⟩, 205

where Tj = concat(sj , sj+1, . . . , sj+L−1) and 206

Fij = concat(fij , fi,j+1, . . . , fi,j+L−1), and 207

|Tj | = |Fij | = L. To EEG, since signals corre- 208

sponding to complete text stimuli are available and 209

they are continuous, we bond text Tj (i.e. text stim- 210

uli) and EEG signal Fij together to form a sample 211

pair ⟨Fij , Tj⟩. Under most scenarios, each text 212

stimulus Tj belongs to one certain task Mk. So the 213

signal-text pair ⟨Fij , Tj⟩ can be further split into 214

⟨Fij ,Mk⟩ and ⟨Mk, Tkj⟩. 215

One of the purposes of cross-subject splitting is 216

to endow models the ability to decode unseen sub- 217

ject’s brain signal. As a result, if brain signal Fij 218

appears in test set Stest, any signal Fi∗ belonging 219

to subject i should not appear in training set Strain. 220

Similarly, text stimuli Tkj in Stest should not ap- 221

pear in Strain. The above splitting rules for training 222

set can be formulated by Cartesian product: 223

Strain = Ftrain × Ttrain, (1) 224

where 225

Ftrain = {Fij |i ∈ I}, (2) 226
227

I = {i|Fij /∈ Sval, Stest,∀j}, (3) 228

and 229

Ttrain = {Tkj |Tkj /∈ Sval, Stest}. (4) 230
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Figure 3: The process of our proposed cross-subject data splitting method. (Color printing is preferred.)

Such rules are also applicable to validation and test231

set. We omit their displays here for simplicity.232

3.2 Current Splitting Methods233

Current cross-subject data splitting methods can be234

summarized as five categories according to classify-235

ing objectives Si,Mk, Tkj , Fij . More specifically,236

the five dataset splitting methods are characterised237

as (1) split by subjects Si, (2) split by tasks Mk,238

(3) split by randomly picking signal frames Fij ,239

(4) split by randomly picking signal frames under240

certain task Fij-Mk, (5) split by randomly pick-241

ing consecutive signal frames under certain task242

Fij-Mk, corresponding to (a), (b), (c), (d), (e) in243

Figure 2. Figure 2 vividly displays the differences244

between current dataset splitting methods. In this245

example, we choose 4 subjects (S1 to S4) with 3246

tasks (M1 to M3) each containing 4 (T11 to T14), 3247

(T21 to T23), 4 (T31 to T34) text stimuli respectively.248

Fij indicates the brain signal of i-th subject stim-249

ulated by j-th text under task Mk, e.g. F21 means250

brain signal of S2 hearing T11.251

The line connecting two symbols indicates they252

are related to one sample in dataset. Take path253

S1,M1, T11, F11 for example, it indicates that sub-254

ject S1 listens to text stimuli T11 belonging to task255

M1 and S1’s corresponding brain signal is recorded256

as F11. Some symbols are connected with sev-257

eral lines. For example, the four lines between258

S1 and M1 correspond to ⟨M1, T11⟩, ⟨M1, T12⟩,259

⟨M1, T13⟩, ⟨M1, T14⟩ counting from left to right.260

Similarly, the three lines between M1 and T11 cor-261

respond to ⟨S1,M1⟩, ⟨S2,M1⟩, ⟨S3,M1⟩ respec-262

tively. The same rules can be extended to other263

lines and symbols. The green lines and orange264

lines stand for training samples and testing sam-265

ples. The grey dotted line means the sample is266

abandoned, which will be introduced in our data267

splitting method. As the splitting of validation set268

is the same as test set, we only consider training269

set and test set in this section for simplicity.270

We will use method (a), (b), (c), (d), (e) to rep- 271

resent five current dataset splitting methods in the 272

rest of the paper. Method (a) splits the dataset 273

according to subjects, which can be described as 274

Strain = {⟨Fij , Tkj⟩ |Si /∈ Sval, Stest} (5) 275

for training set. Method (b) splits the dataset ac- 276

cording to tasks, which is described as 277

Strain = {⟨Fij , Tkj⟩ |Mk /∈ Sval, Stest} (6) 278

for training set. Method (c), (d), and (e) all split 279

the dataset according to brain signal frames 280

Strain = {⟨Fij , Tkj⟩ |Fij /∈ Sval, Stest}. (7) 281

However, there are slight differences between these 282

three methods. Method (c) views all the brain sig- 283

nal frames in dataset as a whole and splits accord- 284

ing to the default proportion (e.g. 8:1:1). Method 285

(d) views signal frames under certain task Mk as 286

a whole and splits proportionally, and then unions 287

all training sets under different tasks to form a 288

complete set for training. Method (e) is similar 289

to method (d). They both first split training, valida- 290

tion, and test set under certain task proportionally 291

and then union them. The difference lies in that 292

method (d) randomly picks signal frames, while 293

method (e) picks consecutive signal frames. 294

We first point out the data leakage problems 295

in current splitting methods through the analysis 296

of training set and test set composition. Specif- 297

ically, following the definition in subsection 3.1, 298

two kinds of data leakage, brain signal leakage and 299

text stimuli leakage, are defined. The data leak- 300

age situation of different methods can be reflected 301

through visualization in Figure 2. Lines between 302

Si and Mk indicate brain signal leakage situation 303

and lines between Tkj and Mk indicate text stimuli 304

leakage situation. If lines associated with Si or Tkj 305

are of different colours, data in test set leaks into 306

training set. Remind the composition of samples 307
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Type Method Narratives / ZuCo Average
seed1 seed2 seed3 seed4

BSLR(%)

(a) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
(b) 6.73 / - 6.32 / - 7.7 / - 17.93 / - 9.67 / -
(c) 12.55 / 12.52 12.52 / 12.55 12.48 / 12.48 12.44 /12.46 12.50 / 12.50
(d) 12.81 / 12.60 12.8 / 12.58 12.78 / 12.56 12.79 / 12.61 12.795 / 12.59
(e) 12.28 / - 12.27 / - 12.26 / - 12.27 / - 12.27 / -
(f) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

TSLR(%)

(a) 100.00 / 23.43 100.00 / 20.25 100.00 / 23.38 100.00 / 22.95 100.00 / 22.50
(b) 0.00 / - 0.00 / - 0.00 / - 0.00 / - 0.00 / -
(c) 100.00 / 13.21 100.00 / 13.06 100.00 / 12.91 100.00 / 13.1 100.00 / 13.07
(d) 99.93 / 0.00 99.81 / 0.00 99.54 / 0.00 99.99 / 0.00 99.82 / 0.00
(e) 9.19 / - 9.31 / - 9.36 / - 9.29 / - 9.29 / -
(f) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

Table 1: Results of Brain Signal Leakage Rate (BSLR) and Text Stimuli Leakage Rate (TSLR).

differs as to fMRI signal and EEG signal, so the308

dataset splitting methods are different for two kinds309

of brain signal too. Since fMRI signals need to be310

sampled continuously with a certain length L, one311

sample shown in Figure 2 (e.g. S1-M1-T11-F11)312

is actually the first part of one fMRI sample, with313

L−1 continuous brain signal frames following (e.g.314

F12, F13, . . .). In this sense, brain signal leakage315

doesn’t exist in method (a) for EEG, but method (a)316

suffers from text stimuli leakage. Text stimuli leak-317

age does not exist in method (b) but brain signal318

leakage exists. Method (c) suffers from both brain319

signal leakage and text stimuli leakage. Method320

(d) and (e) are the same to EEG, with brain signal321

leakage. For fMRI, the situation of data leakage322

for different methods is similar to EEG, except for323

method (d) and (e), which are the same for EEG324

but actually different for fMRI. Method (d) suf-325

fers from both brain signal leakage and text stimuli326

leakage while in method (e) text stimuli leakage327

happens in the overlap between training samples328

and test samples.329

3.3 Cross-Subject Splitting Criterion330

To eliminate data leakage from both brain sig-331

nal leakage and text stimuli leakage, we split the332

dataset by ⟨Si, Tj⟩ pairs as shown in (f) of Figure333

2. Since EEG and fMRI are different in the compo-334

sition of dataset, we treat them separately and pro-335

pose two data splitting methods. As to EEG dataset336

where Fij and Tj form a sample, we consider a bi-337

partite graph G1 = (U ,V, E) where U = {Si}Ni=1,338

V = {Tj}Mj=1. E is the edge between node in U and339

node in V , indicating ⟨Si, Tj⟩ pair in the dataset.340

N is the total number of subjects and M is the total 341

number of unique text stimuli. We assert M > N , 342

so e = (u, v) ∈ E exists for every v ∈ V , as each 343

text stimuli is listened or read by at least one sub- 344

ject. As shown in step 2 of Figure 3, first we pick 345

one edge for each node v ∈ V and build a new 346

bipartite graph G2 = (U ,V, E ′). Then following 347

step 3, we split graph G2 by subject U with the 348

given splitting ratio and form three disjoint graphs 349

Gtrain,Gval,Gtest. In step 4, some edges satisfy- 350

ing zero data leakage condition are not included 351

in the graph. We add these edges to correspond- 352

ing graphs, extending each graph Gtrain,Gval,Gtest 353

to its maximally scalable state and finishing the 354

dataset splitting process. 355

The sample in fMRI dataset is formatted in 356

Fij = concat(fij , fi,j+1, . . . , fi,j+L−1) and Tj = 357

concat(sj , sj+1, . . . , sj+L−1). If we follow the 358

same process as EEG, text stimuli leakage will 359

occur in the overlapping part of two samples, when 360

one sample is assigned to training set and the other 361

is assigned to validation or test set. We propose a 362

simple solution that achieves the balance between 363

abandoning as little data as possible and ensuring 364

zero data leakage. Instead of ⟨Si, Tj⟩ pair, we con- 365

sider ⟨Si,Mk⟩ pair and apply the above-mentioned 366

algorithm. More details and pseudo-code are avail- 367

able in Appendix B. 368

4 Experimental Settings 369

We test some SOTA brain-to-text decoding mod- 370

els on two popular cognitive datasets Narratives 371

(Nastase et al., 2021) and ZuCo (Hollenstein et al., 372
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Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 R P F

UniCoRN

10+1e-3+(a) 49.56 30.49 21.07 15.49 44.83 50.41 40.65
10+1e-3+(b) 26.37 7.50 2.48 0.99 22.28 25.99 19.62
10+1e-3+(c) 50.24 30.83 21.23 15.60 44.68 49.44 41.01
10+1e-3+(d) 49.63 30.29 20.85 15.32 45.06 50.47 41.03
10+1e-3+(e) 28.94 9.39 4.07 1.53 21.68 24.64 19.49

UniCoRN∗

20+1e-4+(a) 50.19 34.25 25.98 21.00 46.59 50.36 43.62
30+1e-4+(a) 55.46 40.99 32.85 27.56 52.08 55.02 49.68

20+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57
30+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57

20+1e-4+(c) 72.44 60.84 53.35 47.88 70.52 74.10 67.53
30+1e-4+(c) 72.82 61.42 53.95 48.44 71.24 74.41 68.57

20+1e-4+(d) 65.31 51.02 42.54 36.72 62.76 67.09 59.29
30+1e-4+(d) 66.56 53.00 44.75 39.02 63.89 67.51 60.95

20+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35
30+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35

Table 2: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN∗

indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.

2018). Dataset details are introduced in Appendix373

A. Comprehensive experiments are conducted to374

evidence the existence of the following phenom-375

ena: (1) Brain signals and text stimuli in test set376

leak into training set in all current dataset splitting377

methods. (2) The model’s generalization ability,378

particularly that of the auto-regressive decoder, has379

been overestimated due to data leakage. Because380

the number of tasks in EEG dataset is too small and381

method (e) makes no difference to EEG as method382

(d), we only consider method (a), (c), (d) for EEG.383

4.1 Implementation384

We follow the same settings of UniCoRN (Xi et al.,385

2023) and EEG2Text (Wang and Ji, 2022), except386

all the datasets are split to the ratio of 8:1:1 for387

fair comparison. All experiments are conducted on388

NVIDIA A100-SXM4-40GB GPUs. More details389

are shown in Appendix A.390

4.2 Data Leakage Metrics391

We have analyzed two kinds of data leakage: brain392

signal leakage and text stimuli leakage in section393

3. In this part, we will quantify two kinds of data394

leakage through experiments.395

To better illustrate the extent of data leakage396

of different data splitting methods, we design397

two novel evaluation metrics named Brain Signal398

Leakage Rate (BSLR) and Text Stimuli Leakage 399

Rate (TSLR) for detecting brain signal leakage 400

and text stimuli leakage. Note that the situation for 401

validation set is the same as test set, so we only con- 402

sider test set in experiments. BSLR indicates the 403

average percentage of each subject’s brain signals 404

in test set appearing in training set, which could be 405

formulated as 406

1

N

N∑
i=1

min(1,
|{Fij |Fij ∈ Stest ∩ Strain}|
|{Fij |Fij ∈ Strain}|

) (8) 407

where N stands for the total number of subjects 408

in test set. | · | stands for the cardinality of a set. 409

Function min(·, ·) is applied to make sure for each 410

subject the data leakage rate is less than one. 411

The definition of TSLR is somewhat different 412

for EEG signal and fMRI signal. As to EEG signal 413

where brain signals are sampled continuously, it’s 414

easy to match certain text stimuli with correspond- 415

ing signals. Its TSLR is similar to BSLR, which 416

indicates the average percentage of certain text in 417

test set appearing in training set. TSLR for EEG 418

data can be calculated through 419

1

M

M∑
j=1

min(1,
|{Tij |Tij ∈ Stest ∩ Strain}|
|{Tij |Tij ∈ Strain}|

) (9) 420

where M stands for the total number of unique text 421

6



Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 R P F

UniCoRN

50+1e-4+(a) 58.09 49.23 43.23 38.43 63.88 61.12 67.50
80+1e-4+(a) 60.88 50.52 43.42 37.84 65.17 61.16 70.72

50+1e-4+(c) 52.30 42.89 36.80 32.17 57.39 51.09 67.29
80+1e-4+(c) 60.78 55.92 53.18 51.10 84.64 63.16 71.50

50+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33
80+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33

EEG2Text

50+1e-4+(a) 51.22 33.83 22.99 16.05 46.40 46.85 46.58
80+1e-4+(a) 63.32 52.52 45.19 39.50 65.96 64.74 68.01

50+1e-4+(c) 53.83 38.99 29.57 23.01 53.64 54.19 53.56
80+1e-4+(c) 65.42 57.56 52.56 48.60 73.00 69.99 77.01

50+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89

Table 3: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.

periods in test set and Tij stands for j-th period of422

text stimuli received by i-th subject.423

The fMRI signal is sampled discretely with a424

deterministic interval TR, making it hard to acquire425

signals corresponding to text. Previous methods426

instead concatenated continuous fMRI frames of427

certain length with their corresponding text seg-428

ments as training samples. As a result, we consider429

the average percentage of the same text segments430

in test set appearing in training set as TSLR for431

fMRI signal. It can be formulated as432

1

M

M∑
j=1

τ
|{Tij |Tij ∈ Stest ∩ Strain}|

|Stest| × L
(10)433

where τ = 0 if {Tij |Tij ∈ Stest ∩Strain} = ∅ else434

τ = min(1,
|{Tij |Tij ∈ Strain}|

|{Tij |Tij ∈ Stest ∩ Strain}|
). (11)435

5 Results and Analysis436

5.1 Verification for Data Leakage437

We test current data splitting methods and our438

method on fMRI dataset “Narratives” and EEG439

dataset ZuCo. Considering the influence of ran-440

domness in splitting, we randomly select four seeds441

for experiments. The results are shown in Table442

1, and are consistent with theoretical analysis. For443

fMRI, current methods apart from method (a) suf-444

fer from brain signal leakage, while method (a)445

has serious text stimuli leakage. Method (b) gets446

no text stimuli leakage but has slight brain signal 447

leakage. The situation for EEG is similar to that of 448

fMRI. Apart from our proposed method (f), there 449

is no way to achieve zero brain signal leakage and 450

text stimuli leakage at the same time. 451

5.2 Damage of Data Leakage 452

Brain signal leakage and text stimuli leakage will 453

damage brain-to-text decoding models from both 454

the encoder side and decoder side. 455

Effect on Encoder The encoder of current brain- 456

to-text decoding models can be trained in two ways: 457

either jointly with the decoder or solely pre-trained 458

through a reconstruction task. In the former end-to- 459

end training scenario, it is hard to evaluate encoder 460

performance separately. So we mainly focus on 461

the latter, in which case the encoder is pre-trained 462

through an encoder-decoder framework to recon- 463

struct input brain signals. The decoder here does 464

not refer to the decoder for text generation. It is 465

similar to the structure of the encoder and will be 466

abandoned once the encoder is pre-trained. Since a 467

proper evaluation index of the encoder’s represen- 468

tation ability is missing, validation loss is applied 469

to measure the effect of data leakage. 470

We test different splitting methods on two cog- 471

nitive datasets. The validation loss of encoder is 472

shown in Figure 4. For fMRI, influenced by leak- 473

age of brain signals, the validation loss of method 474

(b), (c), (d), (e) keeps dropping even with long train- 475

ing epochs. The encoder is actually overfitting and 476
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Dataset Model BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 R P F

Narratives UniCoRN 22.83 5.69 1.43 0.48 15.55 24.80 19.04

ZuCo
UniCoRN 23.32 7.78 3.01 1.09 18.47 20.00 17.92
EEG2Text 24.49 7.49 2.28 0.62 23.98 23.95 25.74

Table 4: A fair benchmark for evaluating brain-to-text decoding.
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Figure 4: Validation loss of encoder under different
dataset splitting methods in two datasets.

degrading. For method (a) and (f) without brain477

signal leakage, the validation loss quickly rises af-478

ter reaching the lowest point with a few epochs,479

satisfying the basic rule of machine learning. For480

EEG, we find validation loss keeps dropping for481

all methods even with very long training epochs,482

regardless of brain signal leakage or not. We think483

the poor spatial resolution of EEG signal might484

lead to this phenomenon.485

Effect on Decoder All SOTA models choose the486

pre-trained language model BART (Lewis et al.,487

2020) as decoder. The powerful model is able488

to achieve fluent open vocabulary text generation.489

However, if data leakage occurs, due to the auto-490

regressive generation that calculates the probability491

of current token based on all previous tokens, the492

decoder will generate seen text given the first few493

words, and fail to generalize to unseen text.494

The influence of text stimuli leakage on decoder495

is detected through BLEU scores (Papineni et al.,496

2002) and ROUGE-1 scores (Lin, 2004), which497

measure text similarity between generated text and498

ground truth. If evaluation indicators keep improv-499

ing as training epochs increase, we believe part of500

the test set is leaked into training set and the model501

is overfitting. For fMRI signal, we test five current502

dataset splitting methods under different training503

settings. As shown in Table 2, we test two kinds504

of UniCoRN models. One is UniCoRN with finely505

tuned hyper-parameters claimed in the original pa-506

per, and the other is UniCoRN∗ with a randomly507

initialized encoder. Empirically, the former will 508

perform much better than the latter. However, in 509

method (a), (c), (d), due to text stimuli leakage, 510

if we reduce the learning rate and extend training 511

epochs, UniCoRN∗ performs much better than Uni- 512

CoRN and its performance keeps rising with longer 513

training epochs. As to method (b) and (e) with 514

no text stimuli leakage, changing training epochs 515

or learning rates makes no obvious difference to 516

model performance. For EEG signal, the conclu- 517

sion is similar as shown in Table 3. For method 518

(a) and (c) with text stimuli leakage, model per- 519

formance keeps rising with longer training epochs. 520

For method (d) without text stimuli leakage, both 521

models reach optimal performance after the first 522

few rounds of training epochs. 523

5.3 A Fair Benchmark 524

We re-evaluate current SOTA models for brain-to- 525

text decoding under our cross-subject data split- 526

ting method and release a fair benchmark. Uni- 527

CoRN is tested for both fMRI and EEG decoding, 528

EEG2Text model is tested for EEG decoding. The 529

results are listed in Table 4. For EEG dataset, Uni- 530

CoRN achieves higher results in BLEU-2,3,4 while 531

EEG2Text is better in BLEU-1 and ROUGE-1. 532

6 Conclusion 533

In this paper, we conduct a comprehensive study 534

on existing cross-subject data splitting methods, 535

and evidence that all these methods suffer from 536

data leakage problem. Such data leakage largely 537

exaggerates model performance and leads to poor 538

generalization. To fix this issue, we propose a cross- 539

subject data splitting criterion for brain-to-text de- 540

coding, aiming to improve the utilization efficiency 541

of cognitive dataset and the generalization ability 542

of decoding models. Experiments are conducted 543

on fMRI and EEG dataset respectively. Current 544

SOTA models are re-evaluated under this proposed 545

splitting method and a fair benchmark is released 546

for further research in this domain. 547
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Limitations548

The “Narratives” dataset and the ZuCo dataset pro-549

vide researchers with precise brain signal resources550

stimulated by text or voice. However, in the brain-551

to-text decoding task, both subject’s brain signals552

and text stimuli in the validation and test set need553

to be invisible to the training set, which makes split-554

ting these public datasets difficult. Our proposed555

dataset splitting method meets the above require-556

ments at the expense of discarding some data in557

the dataset. We recommend future datasets in this558

domain follow these guidelines. The division of559

the training set, validation set, and test set should560

be provided when the dataset is released. Besides,561

we suggest hiring new subjects with unique stimuli562

for the validation set and test set, which is good for563

testing the generalization ability of models without564

loss of data. What’s more, we find existing models565

rely more on a strong auto-regressive decoder to566

achieve good generation quality. The encoder is of567

limited use in all SOTA models. And we also notice568

in experiments that the encoder of EEG2Text keeps569

overfitting whether with or without brain signal570

leakage. We leave it to research in the future.571

Ethics Statement572

In this paper, we introduce a new dataset splitting573

method to avoid data leakage for decoding brain574

signals to text task. Experiments are conducted575

on the publicly accessible cognitive datasets “Nar-576

ratives” and ZuCo1.0 with the authorization from577

their respective maintainers. Both datasets have578

been de-identified by dataset providers and used579

for researches only.580
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A Implementation Details697

We apply the “Narratives” (Nastase et al., 2021)698

dataset for fMRI-to-text decoding and the ZuCo699

(Hollenstein et al., 2018) dataset for EEG-to-text700

decoding in experiments. The “Narratives” dataset701

contains fMRI data from 345 subjects listening to702

27 diverse stories. Since the data collection pro-703

cess involves different machines, we only consider704

fMRI data with 64 × 64 × 27 voxels. The ZuCo705

dataset includes 12 healthy adult native English 706

speakers reading English text for 4 to 6 hours. It 707

contains simultaneous EEG and Eye-tracking data. 708

The reading tasks include Normal Reading (NR) 709

and Task-specific Reading (TSR) extracted from 710

movie views and Wikipedia. Both datasets are split 711

into training, validation, and test set with a ratio of 712

80%, 10%, 10% in all experiments. 713

More details in experiments are supplemented in 714

this section. We perform the same filtering steps to 715

“Narratives” dataset as UniCoRN paper (Xi et al., 716

2023) and the same filtering steps to ZuCo1.0 as 717

EEG2Text paper (Wang and Ji, 2022). In BSLR 718

and TSLR calculation, the number of four differ- 719

ent seeds are set as 1, 2, 3, 4 respectively. In signal 720

reconstruction task for encoder of UniCoRN, the 721

batch size of EEG and fMRI data is 512 and 320 722

respectively. The learning rate is set as 1e-4 and 723

1e-3 separately as the author claimed in the original 724

paper. In the fair benchmark, for fMRI data, en- 725

coder of UniCoRN is trained through 1e-4 learning 726

rate and decaying to 1e-6 finally for 30 training 727

epochs. Decoder is trained through 1e-4 learning 728

rate and decaying to 1e-6 finally for 10 training 729

epochs with 90 batch size. Sample length L is set 730

as 10 for all experiments related to fMRI. For EEG 731

data, EEG2Text model is trained with 1e-6 learning 732

rate for 80 epochs. UniCoRN model is trained with 733

the same settings as fMRI data. 734

B Details of Cross-Subject Splitting 735

For fMRI dataset, we consider a bipartite graph 736

G1 = (U ,V, E) where U = {Si}Ni=1, V = 737

{Mk}Mk=1. E is the edge between node in U and 738

node in V , indicating ⟨Si,Mk⟩ pair in the dataset. 739

N is the total number of subjects and M is the 740

total number of tasks. We assert M < N , so 741

e = (u, v) ∈ E exists for every v ∈ V , as each 742

text stimuli is listened or read by at least one sub- 743

ject. As shown in step 2 of Figure 3, first we pick 744

one edge for each node v ∈ V and build a new 745

bipartite graph G2 = (U ,V, E ′). Then following 746

step 3, we split graph G2 by subject U with the 747

given splitting ratio and form three disjoint graphs 748

Gtrain,Gval,Gtest. In step 4, some edges satisfy- 749

ing zero data leakage condition are not included 750

in the graph. We add these edges to correspond- 751

ing graphs, extending each graph Gtrain,Gval,Gtest 752

to its maximally scalable state and finishing the 753

dataset splitting process. 754

We also release the pseudo-code of two dataset 755
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splitting methods for EEG and fMRI signal. As756

shown in Figure 3, our proposed dataset splitting757

method consists of four steps. The blue lines stand758

for the situation of original dataset. The main dif-759

ference between two methods lies in the how G2 is760

generated. We always choose the side with fewer761

nodes in bipartite graph G1 to perform G2 genera-762

tion. For example, in Algorithm 1 where we assert763

|U| < |V|, the adjacency matrix is initialized as764

M ×N . In Algorithm 2 where |V| < |U|, the adja-765

cency matrix is initialized as N×K. All assertions766

are based on analysis of cognitive datasets.767

One more thing to notice is that in Line 14 of768

both pseudo-code, the loop indicates extending769

training set, validation set, and test set respectively.770

So the names of variable should be alternated in the771

repeat loop and the displayed part in pseudo-cod is772

a case example of extending training set. We write773

it in this way for simplicity of expression.774
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Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1 and V = {Tj}Mj=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(U) and C[i] = 0;

2 for u← U1 to UN do
3 Ccopy ← C;
4 for v ← A1[u][0] to A1[u][M ] do
5 if v = 0 then
6 Ccopy[v.index]←∞;

7 Minimum = min(Ccopy);
8 A2[u][Minimum.index]← 1;
9 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

10 Split by subjects U according to default ratio;
11 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
12 repeat // To three sets respectively, below is for training set
13 for u in U do
14 for v in V do
15 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and u /∈ Uval ∪ Utest then
16 E ′train ← E ′train ∪ {e};

17 until Gtrain,Gval,Gtest are all extended;
18 return Gtrain,Gval,Gtest;

Algorithm 2: Dataset splitting method for fMRI signal

19 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1, V = {Mk}Kk=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(V) and C[i] = 0;

20 for v ← V1 to VK do
21 Ccopy ← C;
22 for u← A1[v][0] to A1[v][K] do
23 if u = 0 then
24 Ccopy[u.index]←∞;

25 Minimum = min(Ccopy);
26 A2[v][Minimum.index]← 1;
27 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
30 repeat // To three sets respectively, below is for training set
31 for v in V do
32 for u in U do
33 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and v /∈ Vval ∪ Vtest then
34 E ′train ← E ′train ∪ {e};

35 until Gtrain,Gval,Gtest are all extended;
36 return Gtrain,Gval,Gtest;
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