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ABSTRACT

Federated learning has been predominantly concerned with collaborative training
of deep networks from scratch, and especially the many challenges that arise, such
as communication cost, robustness to heterogeneous data, and support for diverse
device capabilities. However, there is no unified framework that addresses all
these problems together. This paper studies the challenges and opportunities of
exploiting pre-trained Transformer models in FL. In particular, we propose to effi-
ciently adapt such pre-trained models by injecting a novel attention-based adapter
module at each transformer block that both modulates the forward pass and makes
an early prediction. Training only the lightweight adapter by FL leads to fast and
communication-efficient learning even in the presence of heterogeneous data and
devices. Extensive experiments on standard FL benchmarks, including CIFAR-
100, FEMNIST and SpeechCommandsv2 demonstrate that this simple framework
provides fast and accurate FL while supporting heterogenous device capabilities,
efficient personalization, and scalable-cost anytime inference. Our anonymous
code for reviewing can be found here.

1 INTRODUCTION

Federated learning (FL) was proposed by McMahan et al. (2017) as a new paradigm for distributed
learning in which user data privacy is protected. Following the introduction of the FL setting, subse-
quent work focused on addressing the emerging challenges that arise due to FL constraints, such as
communication cost Mishchenko et al. (2022), data heterogeneity Li et al. (2020) and supporting di-
verse device hardware Horvath et al. (2021); Rapp et al. (2022). For example, to reduce the commu-
nication cost, ideas borrowed from model compression, such as quantization Alistarh et al. (2017);
Fu et al. (2020), sparsification Stich et al. (2018) and pruning Yu et al. (2021); Jiang et al. (2022)
have been successfully applied; to mitigate the non-IID issue of data heterogeneity, different model
training recipes for optimization Li et al. (2020); Wang et al. (2020b), model initialization Nguyen
et al. (2022) and architecture design Qu et al. (2022) have also been proposed.

A new question has now emerged for FL community: Can we benefit from the recent success of
large-scale centralized pre-training of foundation models Bommasani et al. (2021)? Although con-
temporary federated learning has predominantly been concerned with collaborative training of deep
models from scratch McMahan et al. (2017); Li et al. (2020), neglecting publicly available pre-
trained models, it has been observed by Qu et al. (2022) that fine-tuning pretrained vision transform-
ers (ViT) significantly improves FL performance for various image recognition tasks and enables
great robustness to the data heterogeneity among clients. Despite being an important step forward,
fine-tuning the whole pre-trained ViT can be problematic due to the heavy communication cost of
exchanging large numbers of model parameters and the weak capabilities of on-device training for
many client devices. In this paper, we address this problem by reframing FL as a parameter-efficient
(PE) downstream learning task. This is in line with the recent PE-based adaptation developments in
centralized vision and natural language processing methods. This line of parameter-efficient adap-
tation research includes adapters Rebuffi et al. (2017); Houlsby et al. (2019); Tomanek et al. (2021),
prompt tuning Li and Liang (2021); Lester et al. (2021), bias-only fine-tuning Zaken et al. (2021)
and so on. We contribute a new adaptor suited for FL under the foundation model regime, which is
designed for the requirements of adaptation to fit client devices at anytime (under different compute
and memory budgets) and anywhere (under severe data heterogeneity).
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(a) Non-IID case: α = 0.1
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(b) Near-IID case: α = 1000

Figure 1: The effectiveness of Accumulator-based federated FM adaptation under anytime and any-
where setting in terms of communication cost and classification performance. The experiments are
conducted on CIFAR-100. Full details can be found in Section 5. Each point corresponds to an
evaluation during FL, where the cumulative communication cost measures the communication of
gradients w.r.t. model parameters between clients and the server. We would like to emphasize that
our Accumulator a) converges faster (less communication cost) than the baselines regardless of the
data heterogenity condition and b) performs as well as the upper bound – full-model fine-tuning.

Given a pre-trained Transformer model, e.g. ViT Dosovitskiy et al. (2020), DeiT Touvron et al.
(2021) and AST Gong et al. (2021), we re-wire its feature extraction pathway to tackle the anytime
and anywhere challenges. Specifically, we keep track of the CLS tokens after each self-attention
transformation and make use of the history of previous CLS tokens to revise the current CLS to-
ken by a lightweight Transformer, which is termed Accumulator. Our Accumulator has an order
of magnitude fewer parameters than a pre-trained Transformer model and is the only module train-
able during the local forward and backward propagations; therefore, the training and communication
efficiencies can be both significantly improved. To show this, we make a comparison between Accu-
mulator and a standard early-exit (Laskaridis et al., 2020) model (Layer-wise MLP, by inserting for
each self-attention block a MLP classification head) and the full-model fine-tuning (Qu et al., 2022;
Nguyen et al., 2022). The comparisons for non-IID, and IID cases are presented in Figure 1, which
clearly show that our method is more efficient in reaching a certain target performance in both cases.
In addition, due to the efficient optimization enabled by our Accumulator, user personalization for
a particular client can be conducted efficiently with even better performance than fine-tuning the
whole model.

The contributions of our work are the follows:

• We take a different perspective to the existing FL literature and propose a parameter-
efficient learning method to adapt the pre-trained Transformer FMs in FL scenarios.

• We propose a novel parameter-efficient adapter, which modulates all layers of a pre-trained
Transformer FM and allows flexible early predictions (anytime inference).

• Extensive experiments on standard FL benchmarks, including CIFAR-100, FEMNIST and
SpeechCommandsv2, show our method can improve global accuracy, personalization and
communication efficiency with excellent robustness to data and compute heterogeneities.

2 RELATED WORK

2.1 FEDERATED LEARNING

Though federated learning is still an emerging topic, there are already many works published in
the literature. There exist two general FL settings, cross-device McMahan et al. (2017) and cross-
silo Heikkilä et al. (2020) FL. In this paper, we focus on the former. The main research focuses in
this setting are designing systems to solve communication efficiency, data and system heterogeneity
problems. Researchers have proposed different techniques to improve communication efficiency.
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E.g. Alistarh et al. (2017); Fu et al. (2020) proposed to use the quantized model parameters or
gradients during the FL communication. Similarly, Stich et al. (2018) sparsified, and Yu et al.
(2021); Jiang et al. (2022) pruned the training model into smaller cardinality to reduce communi-
cation cost. And some researchers tried to address this by progressive model training Wang et al.
(2022). Another main focus is on data heterogeneity. In contrast to centralized training where the
learner has access to the whole distribution, each worker having access to a biased distribution in
non-i.i.d. FL negatively affects convergence and final model accuracy. In attempts to alleviate this,
people proposed to add proximal regularization in the local training termed FedProx Li et al. (2020).
Alternatively, some normalized averaging technique to mitigate the inconsistency between different
clients is proposed in Wang et al. (2020b). Interestingly, more recently, researchers found that model
initialization (pre-trained v.s. random) plays an important role in reducing the detrimental impact
of heterogenienty Nguyen et al. (2022), and so does model architecture (Transfomer v.s. CNN) Qu
et al. (2022). System heterogeneity is also a concern in cross-device FL, where different participants
may have different hardware resources and thus be unable to perform the same amount of learn-
ing. Some researchers used nested-dropout Rippel et al. (2014) as a nicely fit method to address
the varied of computational constraints between different clients Horvath et al. (2021), as a different
dimension from considering early-exit networks Laskaridis et al. (2020).

Our work differs from the existing literature. Rather than training from scratch, we focus on the
challenges and opportunities of adapting a pre-trained Transfomer FM by FL. While this might
seem to exacerbate communication bottlenecks and system heterogeneity issues above, we show
that with our novel adapter module we can simultaneously ameliorate all the above challenges of
communication cost, heterogeneous device capabilities, and difficulty of federated learning on non-
i.i.d. data. Our work goes substantially beyond Qu et al. (2022) and (Nguyen et al., 2022), who just
focus on conventional federated fine-tuning (which we treat as a baseline), to support communication
efficient federated fine-tuning with support for heterogeneous device capabilities – thanks to our
novel adaptation module.

2.2 PARAMETER-EFFICIENT LEARNING

The idea of parameter-efficient learning of adapters was first proposed in Rebuffi et al. (2017) for
adapting a single model into multiple datasets. It has since been extended into various problems,
including few-shot learning Li et al. (2022) and ASR Tomanek et al. (2021). Especially as the pre-
trained large-scale FMs’ model sizes are soaring significantly, parameter-efficient (transfer) learning
has become important in NLP. Instead of fine-tuning the full pre-trained model, people lean toward
designing different small set modules for adapting the pre-trained FMs into downstream tasks Li and
Liang (2021); Lester et al. (2021); Houlsby et al. (2019). Li and Liang (2021) found that tuning the
prompt input of the pre-trained language model enables excellent performance on downstream tasks.
While Houlsby et al. (2019) found that fine-tuning some injected adapters can be more effective
than fine-tuning the top layers of a pre-trained NLP model. In this work, we make the first attempt
at parameter-efficient adaptation in an FL context, developing a novel transformer-based adaptation
module specifically customized for this task.

3 PRELIMINARIES

3.1 FEDERATED LEARNING

Let us consider a typical setting of FL with K devices, where a local device i has Ni private training
examples denoted by {(xj , yj)}Ni

j=1 with xj the input image and yj the target label. The learning
objective following McMahan et al. (2017) aims at finding a model parameter w that minimizes the
weighted average loss over all local devices:

w = argmin
w

K∑
i=1

αiLi(w), Li(w) =
1

Ni

Ni∑
j=1

ℓ(Fw(xj), yj), (1)

where αi = Ni/
∑K
i=1Ni, ℓ(Fw(xj), yj) is the task-specific loss function and Fw() is the formed

model. The main difference that renders the problem difficult is we can only compute Li(w) on
device i to protect the privacy for the user. The common setup (see more details in Beutel et al.
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(2020)) introduces a server to receive gradients sent from each client device, and therefore brings
two major challenges: communication cost and data heterogeneity.

Personalization. Minimizing Eq. 1 explicitly optimizes the generalization of the shared global
model w∗ across all clients. However, the model performance on individual clients might still be
sub-optimal, especially under client data heterogeneity. Clients often care more about personalized
performance (i.e., overfitting to client data). Therefore, given the outcome of global federated model
learning in Eq. 1 denoted by w∗, each client i can then further fine-tune the parameters locally to
obtain personalized parameter wi

wi = argmin
w∗

1

Ni

Ni∑
j=1

ℓ(Fw∗(xj), yj), (2)

3.2 PARAMETER-EFFICIENT LEARNING

Parameter-efficient learning is a typical strategy for adapting pre-trained FMs to downstream tasks.
The full model size of an FM is often much larger than the size of downstream task data making the
fine-tuning prone to overfitting. Not mentioning the back-propagation over the full FM is extremely
expensive. To this end, multiple PE learning methods Houlsby et al. (2019); Rebuffi et al. (2017);
Tomanek et al. (2021); Li and Liang (2021); Lester et al. (2021); Zaken et al. (2021) have been
proposed for fast adaptation of FMs, in which the learning objective is typically formulated as

wPE = argmin
wPE

1

M

M∑
j=1

ℓ(FwFM,wPE(xj), yj), (3)

where wFM corresponds to the frozen pre-trained foundation model, wPE is the weight associated to
the introduced parameter-efficient module and {(x, y)}M are theM data pairs from the downstream
task of interest. Our goal in this paper is to design such a lightweight module for Transformer-based
FMs in the context of FL.

4 ADAPTING TRANSFORMER FMS INTO FEDERATED LEARNING

The motivation of our work is to treat federated learning as a downstream task for adapting a pre-
trained Transformer FM. In the following sections, we will introduce the two main modules, includ-
ing a pre-trained Transformer and our attention-based adapter Accumulator, and how Accumulator
modulates the outputs of a Transformer to support the early predictions. The overview of our model
architecture is depicted in Figure 2.

4.1 TRANSFORMER MODEL

A Transformer model typically consists of a sequence of residual blocks of multi-head self-attention
(MSA), each followed by a residual block of feed-forward multilayer perceptron (MLP) with Layer-
Norm (LN) applied to both MSA and MLP blocks. Denote by x the input, p the positional encoding,
and zl := [zlcls, z

l
1, . . . , z

l
N ] the intermediate tokens, the feed-forward pass of a Transformer can be

formalized as

z0 = Tokenizer(x) + p, (4)

zl = MSA(LN(zl−1)) + zl−1, l = 1 · · ·L, (5)

zl = MLP(LN(zl)) + zl, l = 1 · · ·L. (6)

4.2 ACCUMULATOR

To adapt a pre-trained Transformer model, we inject our Accumulator into each1 self-attention block
followed by a shared MLP head to enable early predictions. Formally, by collecting the history of

1Note that there is only one Accumulator that handles the outputs from all layers.
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Figure 2: Model architecture of the proposed Accumulator. Given a frozen Transformer FM (in
grey), the Accumulator aggregates the information from the history of the CLS tokens through the
transformation, which yields a better feature representation for early exits at different layers. The
early exit slots are numbered (there are three exits in this example), and the corresponding path-
ways are denoted by different line types (e.g., dotted for exit 0 and dashed for exit 1). A residual
connection is introduced to each early exit between the CLS token at the exit and the output of the
Accumulator. A special CLS token (or referred to as Client token) is introduced to be the first
token of the Accumulator, which can be tuned for personalization while freezing the other parts.

CLS tokens, we replace zlcls by

zlcls ← hll+1 with hl = Accumulatorϕ([zclient, z
0
cls + p′0, . . . , z

l
cls + p′l]), (7)

where the Accumulator parameterized by ϕ is another Transformer (randomly initialized) with a
single2 self-attention block as defined by Eq. 5 and 6. hll+1 means the l + 1 element in hl. In our
Accumulator, the positional embedding p′ := [p′0, . . . , p

′
L] embeds the layer information from a pre-

trained Transformer. Note that the modified zlcls will be again used by the pre-trained Transformer,
specifically, the next self-attention block, to produce zl+1.

For early predictions, instead of taking the modified zlcls, we find it is better to make use of the client
token and the original zlcls, specifically, the task-specific prediction at exit l is given by

ŷl = MLP-headψ(hl0 + zlcls), (8)

where MLP-head parameterized by ψ is the early exits shared across all layers.

4.3 FEDERATED LEARNING OF ACCUMULATOR

Following the PE optimization in Eq 3, the learnable parameterswPE = (ϕ, ψ) reduces to the weights
of the Accumulator and the MLP head.

Learning. Now the learning problem in Eq. 3 becomes

argmin
wPE

K∑
i=1

αi
M

M∑
j=1

ℓ(ŷlij , yj), (9)

where li is the layer of an early exit for client i, which is set for each inference in client i. Assuming
the client i has the budget using up to Li layers, there are two schemes for choosing the value of
li: a) li = Li and b) li is taken uniformly at random from the range {1, . . . , Li}. We attribute
this property of our formulation as anytime to accommodate clients with different computing and
memory capacities.

2We find in Table 5 that increases from a single block to 3 blocks yields little improvement in accuracy but
a significantly heavier communication burden.
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Personalization. There are two choices: fine-tuning the whole Accumulator (ϕ, ψ) or the
Client token zclient only. Given that they are both lightweight, the personalization is less likely to
overfit even under an extremely low data regime.

Inference. Given an FL trained model in client i, it can infer labels ŷLi not only from block
Li according to its capability but also labels ŷli as long as li is smaller than the budget constraint
Li. This property can be very useful in the case when a cellphone suffers from low battery, which
enables the user to set a small budget li < Li to allow energy-efficient inference.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset Settings and Implementation. To verify the efficacy of our proposed FL frame-
work, we conduct experiments on the standard FL benchmarks with Flower codebase Beutel et al.
(2020), including CIFAR-100 Krizhevsky et al. (2009), FEMNIST Cohen et al. (2017) and Speech-
CommandV2 Warden (2018), as downstream tasks of pretrained DeiT Touvron et al. (2021) and
AST Gong et al. (2021). We use the original test set in CIFAR-100 as the global test dataset
and split 10,000 images from the original training set as the personal validation set for each client
when conducting the personalization experiments on CIFAR-100-C. We simulate three different
data partitions for CIFAR-100, including one IID-data partition (α = 1000.0), and two non-IID data
partitions(α = 1.0, 0.1) by LDA partitioning following prior works Karimireddy et al. (2020); Wang
et al. (2020a) with 100 clients. FEMNIST has a total of 80,000 images (grayscale) of 62 different
character classes (10 numeric, 26 lowercase, and 26 uppercase). For FEMNIST, we partition the
training data in two ways, one IID and one non-IID, as in Cohen et al. (2017) with 381 clients. The
Speech Commands v2 dataset consists of 105,829, 16KHz 1-second long audio clips of a spoken
word. And we conduct our experiment with the 12-classes version, with 10 classes as ”yes”, ”no”,
”up”, ”down”, ”left”, ”right”, ”on”, ”off”, ”stop”, ”go” and one class ”unknown” and a class ”si-
lence” which has no spoken word in the clip. The dataset has three disjoint sets of speakers: 2112
for training, 256 for validation and 250 for the test.

For each round in FL, we sample 10% of clients for training on CIFAR100 and FEMNIST, and 1%
on SpeechCmdv2. We use a pretrained DEiT-small Touvron et al. (2021) model with 16×16 patches
on ILSVRC-2012 Fei-Fei et al. (2010) as the foundation model, which can be used for both image
and speech recognition – i.e. the backbone of AST Gong et al. (2021).

All experiments are conducted with Pytorch on a single Nvidia Tesla V100 GPU with results re-
peated three times and reporting the mean and std. All models are trained using an SGD optimizer
with a cosine annealing learning rate schedule. The detailed recipe can be found in the Appendix A.

Early Exits. Each client has its own computing capability. According to their capability, they
can support a certain amount of FLOPs for one inference, or one FL round. For example, given
a pretrained Transformer, some clients may be able to pass the input data through all layers of
the Transformer to train a classifier. Some could only pass through half of them to the same end.
Specifically, how many layers of a pre-trained transformer can be passed through during the local
model training for a client depends on the client’s computing capability. One can train a classifier
head to make predictions for each layer to support the different compute capabilities among clients.
These layer-wise classifier heads are often called early exits Laskaridis et al. (2021); Leontiadis et al.
(2021). For example, we can straightforwardly train 12 early exit classifiers for a given pretrained
DeiT-small, which has 12 layers. And then, those exits can be used for different clients accordingly.
Briefly, we can treat 12 exits corresponding to 12-tiers of client compute capability – namely, the
different levels of computing budgets in terms of anytime inference.

Baselines. We run all our FL experiments with the FedAvg McMahan et al. (2017) strategy. We
compare with all the baselines, namely, i) Fine-tuning Qu et al. (2022), where the whole pretrained
vision transformer is finetuned end-to-end in FL; ii) Layer-wise Linear (L.W. Linear), where we
append a learnable linear head after each transformer block3 to be learned by FL, while keeping the
rest frozen; iii) Layer-wise MLP (L.W. MLP), where we append a two-layer MLP with GELU and
Random Dropout after each transformer block, with the rest frozen. iv) Our Accumulator, where

3We also tried with shared linear head among layers, but it achieved worse results.
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Table 1: Conventional FL performance.

Method CIFAR-100 FEMNIST SpeechCmdV2
IID (1000.0) Non-IID (1.0) Non-IID (0.1) IID Non-IID

Fine-tuning 85.05±0.55 84.91±0.98 84.25±1.14 86.87±0.74 85.28±1.45 98.22

Linear head 74.37±0.42 73.85±0.74 72.79±0.83 74.02±1.33 72.35±0.52 69.47
+ PA 83.28±0.67 82.57±1.12 81.41±1.28 82.34±1.56 81.60±0.66 94.74

MLP head 76.49±0.43 75.69±0.81 74.44±0.95 74.26±1.69 72.87±0.69 74.33
+ PA 84.55±0.69 83.87±1.25 82.33±1.24 82.49±1.88 81.54±0.78 95.63
Accumulator 84.90±0.75 84.34±1.33 83.31±1.54 79.12±1.64 78.05±0.75 93.24
+ PA 85.35±0.49 85.11±1.28 84.02±1.32 83.68±1.75 82.24±0.84 95.27

Table 2: Anytime FL performance.

Method CIFAR100 FEMNIST SpeechCmdV2
IID (1000.0) Non-IID (1.0) Non-IID (0.1) IID Non-IID

Fine-tuning 67.24±1.13 66.95±1.93 60.05±2.51 76.43±1.45 75.82±2.42 93.71

L.W. Linear 36.42±0.80 36.06±1.35 34.00±1.77 35.92±1.23 35.49±1.74 65.10
+ PA 47.33±0.95 47.94±1.53 47.11±1.92 57.36±1.45 56.78±1.89 84.16

L.W. MLP 37.62±0.76 37.84±0.98 38.22±1.34 35.27±1.29 34.54±1.78 64.57
+ PA 48.65±0.89 48.39±1.02 47.94±1.21 55.21±1.48 54.42±2.01 83.19

Accumulator 64.28±1.01 63.02±1.79 57.34±2.23 75.47±1.41 75.12±1.86 84.66
+ PA 65.23±1.26 64.28±1.84 58.40±1.67 76.55±1.63 76.03±2.13 88.30

we append one shared Accumulator and one shared MLP into each transformer block, with the rest
frozen. We also compare the variants of L.W. Linear, MLP, and Accumulator with Parallel Adapters
(PA), as proposed in He et al. (2021), injected into the feed-forward MLP networks of the pretrained
Transformer as their efficient and effective adaptation He et al. (2021).

Evaluation Settings. We evaluate all the methods in four different settings, including (1) Con-
ventional FL – Clients train the local models by using only the final exit of a pretrained transformer,
and the trained global model will be evaluated at a test set using only the final exit. (2) Anytime FL –
Clients train the local models by using a random exit at each iteration, and the trained global model
will be tested at each exit. (3) multi-tier FL – Clients train the local models by using a specific early
exit determined by the tier of each client. The trained global model will be tested at each exit, and
(4) Personalization, where the FL-trained model from setting (3) will be further finetuned using the
local data in each client.

5.2 EXPERIMENTAL RESULTS

Conventional Federated Learning. Results in Table 1 show the comparison between all com-
petitors. The results show that fine-tuning works the best among all methods. This is unsurprising, as
it has access to the large combined dataset of all clients and can use this to tune the whole model, but
it incurs the most local training and communication costs. Among the other competitors, we can see
that our Accumulator achieves the best results already when used alone. Parallel adapters are quite
effective in enabling federated adaptation of the pretrained Transfomer, boosting the performance
of base methods L.W. Linear and MLP significantly in all settings, especially on SpeechCmdv2.
Nevertheless, our Accumulator is complementary with parallel adapters, achieving the best result in
all cases, with some results even surpassing the Fine-tuning method, such as on CIFAR-100 with
IID and Non-IID (1.0). The results demonstrate the efficacy of our proposed Accumulator to adapt
a pretrained Transformer model into FL at anywhere under any type of data heterogeneity.

Anytime Federated Learning. In this setting, we will consider the early exit situations. For
each layer of a pretrained DeiT, we train an early exit, such as a linear head, an MLP head and our
Accumulator. At each local training iteration, an exit layer index l ∈ [0, · · · , 11] will be sampled
randomly, and only that exit (and accumulator where relevant) will be trained. For fine-tuning, we
append the layer-wise MLP heads and train all parameters during the FL training. After training,
the global model will be evaluated on the test set at all exits. The results in Table 2 and Figure 3
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Figure 3: Test accuracy of each exit trained on CIFAR-100 with anytime federated learning (Top)
and multi-tier constraint (Bottom). The memory and FLOPs cost of each exit is given in Table 7.

Table 3: Multi-tier based FL performance.

Method CIFAR100 FEMNIST SpeechCmdV2
IID (1000.0) Non-IID (1.0) Non-IID (0.1) IID Non-IID

Fine-tuning 58.17±0.52 56.70±0.83 42.47±1.41 74.79±0.75 74.36±1.36 93.03

L.W. Linear 32.43±0.34 30.98±0.60 21.33±0.97 35.68±0.54 35.17±1.01 65.14
+ PA 46.96±0.41 45.14±0.68 33.94±1.03 57.06±0.60 54.67±1.15 83.23

L.W. MLP 36.57±0.32 34.38±0.58 24.37±0.93 33.12±0.59 32.88±1.13 64.84
+ PA 51.33±0.47 49.29±0.66 36.29±1.07 51.88±0.67 51.39±1.27 82.28

Accumulator 58.27±0.56 57.32±0.88 47.26±1.18 72.14±0.72 71.33±1.39 85.21
+ PA 59.33±0.72 58.48±0.96 48.55±1.30 72.67±0.81 72.05±1.57 87.42

top show the average and budget-wise performance over all exits. Without surprise, we can see that
global fine-tuning achieves the best at substantial comms cost. Among the more efficient competi-
tors, we can see that our Accumulator outperforms L.W. Linear and MLP significantly when no
extra adapters are used. With parallel adapters, all methods enjoy a performance boost, leading our
Accumulator to the best performance in all cases, outperforming fine-tuning in a few situations.

Multi-tier based Federated Learning. More realistically, there is a certain level of system het-
erogeneity among client devices. Individual devices in FL training have a certain level of computing
capability and their associated early exit should be persistently fixed in both training and testing.
Results in the setting are evaluated and reported in Table 3, where we can see that most results
dropped to some extent compared with Table 2. This is expected due to the existence of system het-
erogeneity among clients. And most observations in Table 3 are similar to the previous tables. One
interesting observation is that in this harder scenario, our Accumulator outperforms the fine-tuning
baseline consistently in all situations in CIFAR-100. Figure 3 bottom shows the corresponding
results for clients of different tiers on CIFAR-100 after training by different algorithms. The accu-
mulator+adapter architecture performs most favourably. This again shows our Accumulator works
for anytime inference in a harder and more practical scenario. We also provide communication
efficency in Appendix B.

Personalization. Since clients’ class and data distributions are typically different and diverse,
adapting the globally trained model through per-client personalization is an interesting task for FL.
Based on the pertained model of multi-tier federated learning as the most practical scenario, we can
adapt the model to the local data of each client efficiently. Specifically, the multi-tier FL pretrained
model is fine-tuned for ten epochs for each client. We use noisy data for personalization and the final
test to simulate personal data distributions. For the corrupted CIFAR-100, we simply use CIFAR-
C (Hendrycks and Dietterich, 2019). To corrupt SpeechCmdv2 dataset, we add 60% background
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Table 4: Personalized performance on CIFAR-100-C and corrupted SpeechCmdv2 with multi-tier
constraints after FL training on clean data (figures in bracket show relative improvement to perfor-
mance before personalization).

Update part for CIFAR-100-C SpeechCmdV2

personalization IID (1000.0) Non-IID (1.0) Non-IID (0.1) Bkg. Noise (0.6)

Full Model 34.30±1.85(+32.19) 37.75±2.21(+36.36) 26.94±3.14(+25.85) 90.21(+8.59)

L.W. Linear +PA 34.67±1.21(+32.10) 37.55±1.79(+35.21) 26.63±2.21(+24.46) 80.82(+6.40)

PA Only 34.06±1.01(+31.49) 37.02±1.27(+34.68) 25.96±1.58(+23.79) 81.40(+6.98)

L.W. MLP + PA 31.69±1.42(+29.46) 36.95±2.05(+34.80) 22.30±2.96(+20.26) 80.59(+6.42)

PA Only 33.01±1.18(+31.73) 37.38±1.34(+35.23) 26.59±1.62(+24.55) 80.82(+6.65)

Accumulator + PA 38.23±1.72(+34.78) 40.05±2.34(+36.90) 31.26±2.98(+28.30) 85.46(+6.47)

PA Only 37.33±1.37(+33.88) 39.45±1.48(+36.30) 30.24±1.69(+28.20) 85.40(+6.41)

Client Token Only 45.38±0.96(+41.93) 47.02±1.13(+43.87) 38.25±1.30(+35.29) 85.24(+6.25)

Table 5: Left: parameter number of different methods. Right: Ablation study of Accumulator.

Method Parameter Num

Full Fine-tuning 30.62M

Parallel Adapter 0.60M

Layer-wise Linear 0.46M

Layer-wise MLP 8.95M

Accumulator 3.17M
Client Token 0.38K

Mean performance

Full Accumulator 48.55

#self-attn blocks=3 48.86 (+0.31)

No Replace 45.81 (-2.74)

No Residual 43.34 (-5.21)

No Parallel Adapter 47.93 (-0.62)

Linear Head 44.6 (-3.95)

noise into each validation speaker and split them into two sets for personalization and the final test.
From the results in Table 4, we can see that when tested on the corrupted data, the performances
of all methods degraded. Now, our Accumulator shows outstanding performance among all com-
petitors, including updating the full model during personalization. More interestingly, updating the
Client token, which has an extremely small set of parameters, i.e. 0.38K parameters according
to Table 5 (Left), in our Accumulator, works overall the best among all situations. And also, when
comparing the test accuracy gains after personalization, we can see our Accumulator produces the
most, especially when the Client token is solely used for personalization fine-tuning.

Ablation Study. In order to verify the contributions of different components proposed in our
Accumulator, ablation studies were conducted based on the multi-tier based FL setup on CIFAR-
100 (α = 0.1), the hardest scenario. In Table 5 (right), the full accumulator indicates a transformer
with depth=1, class token parallel connection, token replace mechanism, parallel adapter, and an
MLP classification head. Among them, we find that parallel connection influences performance the
most. This is mainly because DeiT’s original class tokens are well learned on ImageNet, which
are directly beneficial for model predictions in the downstream tasks. Removing token replacing
reduces the effect of modulating the extracted features from DeiT. Thus the performance drops
noticeably. And we also tried larger depth, i.e. 3, in the Accumulator, but it seemed not to produce
much performance gain. Our Accumulator works complementarily with parallel adapters used but
apparently does not rely on them to have excellent performance.

6 CONCLUSIONS

We explored the challenges and opportunities of leveraging pre-trained models for downstream fed-
erated learning tasks. While this might appear to raise communication costs and preclude diverse
device capabilities from participating, we show that after introducing a novel parameter-efficient
adapter module we can simultaneously capture the benefits of communication efficient adaptation,
non-IID robustness, support for diverse device capabilities, and robust personalization.
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Table 6: Transmitted message size (# communication round×# model parameters (M)) required to
reach a target performance with multi-tier FL on CIFAR-100 and FEMNIST (best and second best).

Fine-tuning L.W. Linear L.W. Linear L.W. MLP L.W. MLP Accumulator Accumulator
+Adapter +Adapter +Adapter

CIFAR-100 90×30.62 1500×0.46 140×1.06 610×8.95 165×9.55 40×3.17 100×3.77

FEMNIST 60×30.44 1500×0.28 160×0.88 1500×8.77 240×9.37 40×2.99 80×3.59

Table 7: The computational and memory budgets across all exit layers with Deit-S as the foundation
model. The memory and compute footprint increases linearly with the layer at which the early exit
is triggered. During training, the memory peak can be largely reduced if the base model is kept
frozen, allowing in this way the participation of more constrained devices.

Early Exit Layer 0 1 2 3 4 5 6 7 8 9 10 11

FLOPs(GB) 0.21 0.40 0.57 0.67 0.95 1.13 1.31 1.50 1.69 1.88 2.07 2.67

Params(MB) 2.54 4.34 6.15 7.96 9.77 11.57 13.38 15.19 16.99 18.80 20.60 22.41

Mem. Peak(MB) 67 123 179 236 293 350 407 464 522 580 638 670

Mem. Peak(MB)frozen 47 62 98 134 170 206 242 279 315 352 389 426

A IMPLEMENTATION DETAILS

Hyperparameter Settings The base setup is the same for all experiments, and we basically did
not include any extra training tricks to be able to demonstrate that our proposed framework can be
successfully adapted with Anytime and Anywhere. For all datasets, the initial learning rate for
the SGD optimizer is set to 5e-3, and the batch size and training epoch on the client is set to 10
and 1, respectively. The RandomResizedCrop with scale=(0.05, 1.0) is used in training. The
FedAvg McMahan et al. (2017) is the default aggregation algorithm.

Conventional Federated Learning In this setting, the last layer of the foundation model is set
as the only exit. The full foundation model can be used for training the additional parameters,
e.g., L.W. MLP, and Accumulator, etc. The baseline Fine-tuning indicates all parameters of the
foundation model with an extra MLP head are free for tuning. The total training round is set to 500.

Anytime Federated Learning The major difference from the conventional FL is that the exit
layer l ∈ [1, 12] for each client is randomly sampled from a uniform distribution for each training
iteration. The total training round is set to 1500.

Multi-tier based Federated Learning Exit layer is no longer produced by random sampling, but
a fixed value that represents the current computing power of the client. In other words, each client
will be assigned a permanent l during the anytime FL. The distribution of clients’ exit layer l is
balanced. The total training round is set to 1500.

Personalization Following the data corruption methods in Hendrycks and Dietterich (2019), we
apply a corruption policy with different severity s ∈ [0, 5] as unique style for each client’s local data.
Then, we fine-tune the pre-trained multi-tier model with a predefined exit layer on these data for 10
local epochs.

B ADDITIONAL EXPERIMENTS

Communication Cost of Different Methods. Table 6 shows the communication cost of different
methods to reach a target test accuracy, which is set as the best performance of the L.W. Linear
head here. We can see from the results that our Accumulator as such achieves the lowest cost to
reach the target by only cost 40 ∗ 3.17 and 40 ∗ 2.99 message size for CIFAR-100 (α = 0.1) and
FEMNIST(Non-IID).
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