
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

I-LORA: ITERATIVE MERGING OF ROUTING-TUNED
LOW-RANK ADAPTERS FOR MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancement of vision-language models has significantly boosted the perfor-
mance of embodied and game AI, endowing them with stronger general visual
understanding capabilities and logical abilities for action planning. However, the
substantial computational cost of model training and the performance degrada-
tion during fine-tuning limit the models’ ability to learn emerging new tasks con-
tinually. Creating a versatile and dynamically updatable vision-language model
is an essential area of research. To this end, we propose a Low-Rank Adapter-
based fine-tuning approach called I-LoRA, which enables iterative and indepen-
dent learning of new tasks while preserving the logical capabilities of the previ-
ously trained model. Specifically, we first design the routing-tuning method to
minimize the impact of original capabilities from the new task by minimizing ac-
tivation values of LoRA matrices as low as possible in the general task. Secondly,
we propose a novel approach to iteratively merge new adapters, allowing for con-
tinuous integration of adapters trained on new tasks without being influenced by
task order, thereby reducing interference between them. Finally, we conducted
extensive experiments on public datasets with significant behavioral and logical
differences between tasks. The results demonstrate that our approach achieves
excellent single-task performance, strong multi-task compatibility, and flexible
scalability without increasing the number of model parameters.

1 INTRODUCTION

The powerful logical reasoning and general visual understanding capabilities of vision-language
models (VLMs) have yielded significant progress in embodied and game AI (Wang et al., 2023a;
Driess et al., 2023). Beyond their ability to perform in-context learning directly, pre-trained models
possess extensive general knowledge that can be effectively leveraged for tuning on domain-specific
tasks. Vision-language-action (VLA) models, derived from pre-trained vision-language models,
can be further trained to learn and adapt to the behavioral logic of agents Kim et al. (2024); Ma
et al. (2024). Fine-tuning these pre-trained models showcases the potential of VLMs to acquire new
behavioral logic. However, in practical applications, the range of tasks continues to grow, and the
substantial computational cost of model training, coupled with performance degradation during fine-
tuning, poses significant challenges to their ability to continually learn new tasks. Thus, creating an
approach to versatilely and dynamically update the vision-language model to efficiently adapt new
tasks is important.

In the literature, the focus of building general embodied and game AI using large language models
has been on constructing general agents. For example, some work attempts to build a lifelong
learning agent power by LLM, (Wang et al., 2023a) proposed an iterative prompting mechanism
and an increasing database for LLM to retrieve. In contrast, (Fan et al., 2022) utilized an Internet-
scale knowledge base, with both conducting experiments in Minecraft. Their commonality lies
in expanding the model’s knowledge base, using LLM’s reasoning capabilities to execute action
planning. However, this approach is limited in adapting to new task logic and requires high costs
in inferencing and decision-making. While fine-tuning allows the model to adapt to different tasks
based on new data and can significantly improve decision efficiency, it often comes at the expense
of the model’s original task capabilities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Mastering a particular skill often requires fine-tuning the model. LoRA (Low-Rank Adaptation)
adapters, used by merging into the base model when inference, can naturally become modular for
LLM, which is inherently convenient for model fusion. So, we used LoRA matrices to fine-tune
the model for each task. Current approaches to combine LoRA adapters usually involve setting up
a router to perform weighted sum over the adapters, (Dou et al., 2023) tries to combine mixture-
of-experts(MOE) with LoRA adapters fusion. Still, this method introduces additional parameters
and requires further tuning to create new routing mechanisms for each new task adapter, which is
nearly impossible for iterative fusion. Additionally, some works have proposed methods for directly
combining models without additional training. (Yu et al., 2024) performs random drop and rescale
of learned parameters to combine different learned parameters. However, none of these approaches
consider how to mitigate the interference between model parameters across different tasks. This
issue becomes particularly pronounced when the gap between functions is significant, as directly
merging the trained parameter matrices does not yield satisfactory results.

To this end, this paper focuses on enabling the model to learn new tasks while maintaining perfor-
mance on other tasks. Specifically, we aim to minimize the impact of learning new tasks on the base
model parameters, thereby ensuring the composability of learned parameters. To achieve this, we
propose a method: Routing Tuning. We redesign the loss function during fine-tuning by injecting
some general-purpose data into the training data. When routing from general data, we encourage the
model’s activation values on this general data to approach 0 using KL-divergence loss and L2-norm
of LoRA layer output. This ensures minimal interference with the model’s performance on other
tasks. Thus, the LoRA adopter can be merged into the base model and retain the routing ability
without increasing the parameters.

Subsequently, we propose a novel iterative fusion method to reduce parameter interference during
fusion. By employing Singular Value Decomposition (SVD), we further reduce the number of re-
dundant parameters and then select the components with the most significant influence on parameter
interference to ensure task performance. We list the properties needed to achieve iterative fusion for
LoRA adapters, and then, followed by the properties, we choose the Maximize function to merge pa-
rameters in different models. Our merging approach ensures the equality, associativity, and saliency
of different tasks, thereby guaranteeing the effectiveness and iterability of task integration. Finally,
we conducted extensive experiments in the Atari environment, which included many tasks with sig-
nificant logical differences. We performed both single-task performance experiments and multi-task
fused experiments. The experimental results clearly validate the effectiveness of I-Lora in single-
task training as well as its capability for multi-task integration compared with various baselines.

In summary, the contributions of this article can be summarized as follows:

• We have developed a new fine-tuning method called Routing Tuning. This method involves
directing the task data and general data to different losses during fine-tuning. As a result,
the model is able to learn the specific task while still maintaining its general performance.
This approach helps to reduce the interference caused by varying model parameters.

• We have developed a new method to fuse different LoRA adapters into a single entity using
SVD and a maximization function, merging them into the base model to maintain perfor-
mance on specific tasks while preserving general performance. Our approach introduces
no additional parameters for the iterative merging of LoRA adapters.

• We collected Atari data for vision-language model training. Using vision-language models,
we perform LoRA routing-tuning on a vision-language model for each game, followed by
LoRA adapters’ composition to validate the iterative merging methods’ effectiveness.

2 RELATED WORK

Our research focuses on multimodal large language models for gaming and embodied AI, as well
as multitask learning and knowledge fusion using low-rank adaptation methods. The most pertinent
studies are outlined below.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 VISION-LANGUAGE MODELS ON GAME AND EMBODIED AI

LLMs have excellent learning and reasoning abilities (Achiam et al., 2023), and vision-language
models(VLMs) have shown remarkable capabilities in multiple multimodal tasks such as visual
question answering and image captioning (Liu et al., 2024a). Some works have explored the ap-
plication of vision-language models in games (Wang et al., 2023b). In the literature, VLMs are
extended to act as agents to plan complex actions for intricate tasks(, FAIR). (Hu et al., 2024) builds
an LLM-embodied agent accessing external knowledge for in-context learning to play Pokemon bat-
tles. VLMs for games input images and text-like game rules to obtain the corresponding plan and
action. Unlike games, embodied AI must control physical entities and interact with the environment.
Vision-language-action models(VLAs) handle multi-modal inputs and generate actions for robots to
complete embodied tasks. VIMA (Jiang et al., 2022) introduces different multi-modal prompts com-
pared to traditional pure text prompts to generalize the model to multiple tasks. RT-2 (Brohan et al.,
2023) utilizes large multimodal models for robotics tasks, introduces the co-fine-tuning technique,
and reserves the model’s general ability while learning robotics data.

Building a model that handles multiple embodied tasks and continues to explore and develop new
skills is crucial for achieving general AI models. (Reed et al., 2022) propose unifying the form of
inputs and outputs of multiple tasks by designing tokenization and embedding methods. Then, they
use autoregressive training to build a general agent. But it’s still hard to continue learning because
training on new tasks will cause catastrophic forgetting of previous tasks. Building agents with
an expandable knowledge base is feasible because large language models have robust retrieval and
reasoning abilities. VOYAGER(Wang et al., 2023a) proposes a lifelong learning agent for Minecraft
with GPT models. They utilize LLMs to discover diverse tasks, update the task libraries, and prompt
using in-context learning. However, they all depend on human-labeled data, do not introduce any
updates to the capabilities of the LLMs.

Inspired by previous work, we employ vision-language models to address multiple game tasks,
which avoids the need for designing complex rules and expert knowledge required by agent-based
methods. By leveraging the model’s inherent knowledge and optimization capabilities and based
on the knowledge fusion capability of LLM, we can build a continuous learning model for multiple
tasks.

2.2 MODEL MERGING AND LORA ADAPTERS FUSION

In the literature, there have been many attempts at model merging in academia, (Yang et al., 2024)
provides a detailed survey of the current model merging methods. (Yang et al., 2023) learns a
distinct merging coefficient layer-wise or task-wise to merge task parameters. (Zhang et al., 2024)
and (Ilharco et al., 2022) address knowledge composition and model editing through task vectors,
which can also be applied to model merging.

To adapt LLM to different tasks, continual pre-training, and fine-tuning are essential. VLMs are
extremely large, and fully finetuning is quite computationally expensive. In addition to that, using
parameter-efficient methods like LoRA(Hu et al., 2021) can make fine-tuning more feasible. Dif-
ferent fine-tuned adapters can be combined with different weights to solve intricate tasks. Some
research attempts to combine LoRA with a mixture of experts(MoE)(Dou et al., 2023) to generate
a combination of different weights for different tasks. Most of the research(Huang et al., 2023) is
focused on improving weight combination ways, which introduces extra parameters and computa-
tional consumption. Some research also focuses on combining different task matrices into a single
matrix. DARE(Yu et al., 2024) randomly drops fine-tuned parameters and rescales the remaining
ones, then a different matrix is added together. Merging methods like DARE are implemented in the
PEFT(Mangrulkar et al., 2022) (Zhang et al., 2023)library.

Based on previous research, we propose a new way to merge LoRA weights. The method needs to
introduce no extra parameters and reserve general capabilities. Also we need the model to iterative
merge new parameters which can be further expand to new tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview framework of I-LoRA. For each game, we use routing tuning to get a LoRA
adapters as shown in the left part. Then we merge a new LoRA adapter to the previous fused adapters
to achieve iterative fusion.

3 METHODS

3.1 PROBLEM FORMULATION AND NOTATION

Given a set of tasks τ = {t1, . . . , tT }, each task has a set of examples Di =
{(x1,y1) , . . . , (xn,yn)}. Multitask data are the union of the training set of given tasks. We also
sample a general dataset DG that contains the general training set of vision language models like
LLaVA (Liu et al., 2024a) and general game data sampled from publicly available datasets from the
Internet.

For each task, we train a LoRA adapter {Ai, Bi} to ensure good performance on the corresponding
task when inference as follows:

h = Wx+ s ·AiB
⊤
i x. (1)

Subsequently, we incorporate general purpose data to obtain a composable LoRA adapter
{
AG

i , B
G
i

}
,

enabling it to perform well in the specific task without degrading general performance. Finally, we
attempt to combine adapters from multiple tasks, aiming to maintain the performance of individual
tasks without significant degradation while retaining strong generalization capabilities.

3.2 OVERVIEW

Our approach aims to develop a general-purpose model that can handle multiple tasks and iteratively
update. To achieve this goal, we often encounter fine-tuned models and a set of task-specific training
data. Our methods consist of two parts:

• Routing Tunning: This method aims to enhance the generalization capability of the fine-
tuned model, ensuring that the fine-tuned LoRA adapter is only adequate for the current
task. At the same time, its activation is constrained to zero when dealing with general
or other tasks. This is achieved by routing different data to different losses and learning
separately.

• Iterative Merging: We design a method to integrate the newly fine-tuned adapter, derived
from the additional training data, with previously integrated adapters. This integration aims
to maintain performance across multiple tasks without compromising the model’s general
capabilities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The following introduction to our methodology will be divided into two parts. First, we will explain
our Routing tuning method to minimize the impact of fine-tuning on the model’s generalization
abilities. Next, we will describe how to efficiently and iteratively integrate multiple task-specific
fine-tuned LoRA adapters, thereby preserving performance on individual tasks while maintaining
the model’s general capabilities.

3.3 RESERVE GENERAL CAPABILITIES WITH ROUTING TUNNING

For the given task and the data set Di = {(x1,y1) , . . . , (xn,yn)}, we fine-tuned the model using
LoRA, getting a set of adapters A = {(A1, B1) , · · · , (An, Bn)} achieving improved performance.
However, we observed a significant degradation in the generalizability of the model. Due to the
additive property of LoRA matrices, we attempted to merge the LoRA adapters from multiple tasks
by summing them. We want the sum of adapters that achieve (A1B1 + · · ·+AnBn)◦Xi ≃ AiBi ◦
Xi.

We experimented with LoRA fusion methods provided by the PEFT (Mangrulkar et al., 2022) li-
brary, including DARE (Yu et al., 2024) and TIES (Yadav et al., 2024). In all cases, we observed
a considerable decrease in performance, suggesting interference between parameters from different
tasks. This led us to consider strategies to mitigate such interference.

Inspired by model-unlearning(Yao et al., 2023; Liu et al., 2024b) techniques, we naturally consid-
ered incorporating some general datasets into the training set. These datasets encompass multiple
tasks, and by constraining the activation of the LoRA matrices on these tasks, we can alleviate
the degradation in generalization performance while mitigating the interference between parameters
across different tasks. Consequently, we designed two loss functions.

During training, we first identify the data in the batch that does not belong to the target task and
exclude it from the loss calculation of the language modeling. Then we design LKL and Lnorm . The
LKL computes the KL divergence between the outputs of the base model and the model augmented
with LoRA to ensure that they remain as consistent as possible, preventing the model updates from
affecting their original outputs. Furthermore, Lnorm captures the output of the LoRA B layer during
inference on general datasets, ensuring that LoRA activations in general tasks approach zero, thus
preserving the performance of the original model. The parameter updating process is summarized
by:

θt+1 ← θt − ϵ1 · ∇θtLlm︸ ︷︷ ︸
Finetune Loss

− ϵ2 · ∇θtLKL︸ ︷︷ ︸
KL loss

− ϵ3 · ∇θtLnorm︸ ︷︷ ︸
L2 norm of LoRA output

, (2)

LKL :=
∑

(xG ,yG)∈DG

|yG|∑
i=1

KL
(
hθ◦

(
xG , yG<i

)
∥hθt

(
xG , yG<i

))
, (3)

Lnorm =
∑

(xG ,yG)∈DG

|LoRALayers|∑
i=1

Avg
(
∥OutputLora B∥2

)
, (4)

where θt indicates the parameters of LoRA adapters at the t-th step, Llm is the language modeling
loss during fine-tuning, we use the compute loss function from huggingface training pipeline, the
process is shown in Figure 1.

3.4 ITERATIVE MERGING LORA ADAPTERS

After Routing Tunning, we get a variety of LoRA adapters for different tasks. We endeavored
to integrate them by minimizing the interference of parameters. We first propose to reduce the
redundant LoRA parameters further. Based on (Yadav et al., 2024), we can use SVD to reduce
parameter interference. So our initial approach involved conducting Singular Value Decomposition
(SVD) on the LoRA parameters to mitigate interference between the different adapters. This process
is represented in fig 2. Our experiments revealed that the proportion of singular values retained did

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Workflow of iterative merging method.

not significantly impact the performance. We decided to maintain 80% of the singular values based
on our findings to construct the new parameter matrix. The process is described as follows:

A = UΣV ⊤,

Σ = diag (σ1, σ2, . . . , σr) ,

p = ⌈0.8× r⌉,
Σ′ = diag (σ1, σ2, . . . , σp, 0, . . . , 0) ,

A′ = UΣ′V ⊤,

(5)

Where A is the multiply of LoRA A and LoRA B layers’ parameters, we decompose it using SVD
and discard the last 20% of singular values by setting them to 0.

The first merging of adapter parameters from two single-task adapters will be decomposed using
SVD, and the rank corresponding to the 0.8 quantiles of the singular values will be used. For
iterative updates, i.e., when merging an adapter that has already integrated multiple adapters with
a new adapter from Routing Tuning, to ensure that the previously fused task parameters are not
significantly affected, we retain all singular values in the merged adapter that are larger than the 0.8
quantiles of the singular values in the new adapter.

In the previous section, we used Singular Value Decomposition (SVD) to reduce redundancy and
minimize interference between different LoRA adapters. Next, we considered how to achieve itera-
tive fusion. We first discuss the desired properties of dynamic fusion:

1. Equality: Each adapter should have an equal opportunity to participate in the fusion pro-
cess. Every parameter should equally consider the values provided by each adapter.

2. Associativity: The fusion should satisfy (A+B) + C = A + B + C. When merging a
new adapter with previously fused adapters, the result should be equivalent to merging all
adapters for the first time.

3. Saliency: Given an input, the adapter with larger activation values should stand out more
prominently, ensuring the quality of the generated output.

Based on these considerations, linear addition satisfies these properties. However, when two sets of
parameters need to be merged into the base model, their combined effect will amplify the perturba-
tion on the original parameters if both share the same sign (positive or negative). Conversely, if they
have opposite signs, they will mutually weaken each other’s perturbation on the original model pa-
rameters, leading to significant performance degradation. Suppose the values of the LoRA adapter
parameters are too large or too small. In that case, it degrades the model’s generation quality on
fine-tuned tasks and significantly reduces the model’s generalization performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We introduce a property that maximizes the distance from zero to address this. Since we have lim-
ited the activation value of other tasks through routing fine-tuning on a single task, we choose the
parameter that has the most influence on the model parameter, which is the value farthest from 0,
to maximize the impact of each fine-tuned model on the base model’s parameters, thereby maxi-
mizing their effectiveness. After getting multiple parameters that can be added to the base model
{W1,W2, . . . ,Wn}, we will get the final W by:

Wij = max
(∣∣W1

ij

∣∣ , . . . , ∣∣Wn
ij

∣∣) . (6)

After getting the final W, we will add them directly to the corresponding part of the base model to
get the new model.

4 EXPERIMENTS

Our research involves conducting experiments across a variety of Atari games to assess the efficacy
of adapter fusion. Initially, we evaluate the performance of individual adapters on single games.
Subsequently, we merge several adapters to examine the resultant performance enhancement.

4.1 EXPERIMENTS SETTINGS

Datasets and Tasks. We decided on the Atari environment as our experimental setting because
Atari contains numerous games with diverse visual rules and varying skill requirements, making it
well-suited for exploring the effects of multi-task composition while also providing efficiently quan-
tifiable performance metrics. This makes it a suitable benchmark for evaluating multitask integration
capabilities. Specifically, we conducted experiments using Atari games from the Gym(Brockman
et al., 2016) environment. We found that no open-source dataset retains the original resolution of
Atari environment images. Most reinforcement learning (RL) models are trained on downsampled
grayscale images, which are even challenging for humans to interpret, bringing challenges to model
learning. Therefore, we opted to sample from checkpoints of models trained on two billons frames
on the APPO algorithm using the Sample-Factory(Petrenko et al., 2020) framework. We removed
extraneous frames at the beginning and end, which led to failures, collecting 100,000 images per
game to construct the images for the dataset.We combined the publicly available Atari challenge
dataset with the LLava model’s training data to create a general-purpose dataset that maintains the
model’s generalization ability.

We compiled game rules and corresponding actions in the Gym environment as text input for the
dataset, organizing them based on the game rules and the meaning of the action. For the model’s
ground truth output, we directed it to generate a chain-of-thought reasoning process. This involved
identifying the objects in the scene and then determining the appropriate action based on the rules.
Our experiments demonstrated that generating a chain-of-thought output resulted in better perfor-
mance than directly outputting actions.

Model. We use LLaVA-interleave-qwen-7b (Li et al., 2024) as our base model. To ensure the model
can detect moving objects in the game frame, we need to interleave images for analysis. After testing
the game dataset with multiple models, we found that llava-interleave performed the best. For LoRA
finetuning, we used 128 as lora rank and 256 as lora alpha. For easy adapter fusion, we finetune
the vision-language model on every linear module, including vision encoder, vision projector, and
language models. So, all the adapters can be added together and further merge into the base model
directly without introducing extra parameters.

Evaluation Metrics For single-game performance, we use mean and median of the human-
normalized score, which represents how well the model performs compared to human players, is
calculated by score agent − score random

score human − score random
. For multiple LoRA fusion, we use the degradation ratio to mea-

sure the performance, which is score fused
score original

.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of each single task.

Game Name Random Human RL models Ours
SPR DreamerV3 DART

Alien 227.8 7172.7 841.9 959 962.0 586.7
Amidar 5.8 1719.5 179.7 139 125.7 57.0
Assault 222.4 742.0 565.6 706 1316.0 3580
Asterix 210.0 8503.3 962.5 932 956.2 1200
BattleZone 2360.0 37187.5 14834.1 12250 15325.0 16750.0
Boxing 0.1 12.1 35.7 78 83.0 65.0
ChopperCommand 811.0 7387.8 946.3 420 1263.8 5766.6
CrazyClimber 10780.5 35829.4 36700.5 97190 34070.6 39000
DemonAttack 152.1 1971.0 517.6 303 2452.3 28718.8
Freeway 0.0 29.6 19.3 0 32.2 26.0
Frostbite 65.2 4334.7 1170.7 909 346.8 2223.3
Gopher 257.6 2412.5 660.6 3730 1980.5 320
Hero 1027.0 30826.4 5858.6 11161 4927.0 6395
KungFuMaster 258.5 22736.3 14783.2 21420 23744.3 22900
MsPacman 307.3 6951.6 1318.4 1327 1132.7 1320
Qbert 163.9 13455.0 866.3 3405 750.9 750.0

#Superhuman(↑) 0 N/A 2 3 5 5
Mean(↑) 0.000 1.000 0.477 0.934 0.951 2.054
Median(↑) 0.000 1.000 0.194 0.221 0.252 0.459

4.2 EXPERIMENTS RESULTS

4.2.1 SINGLE MODEL PERFORMANCE

We follow the setting of an existing Atari 100k benchmark(Kaiser et al., 2019), widely used in
reinforcement learning algorithms to test sample efficiency. It consists of 26 games, each being
allowed to be trained only in 100K steps. We fine-tuned the model for each game using LoRA,
setting the LoRA rank to 128 and the LoRA alpha to 256. Each dataset underwent fine-tuning for
five epochs.

We used the mean and median of the human-normalized score to compare with human players,
with the total reward from the environment representing the score. For benchmarking, we selected
three RL algorithms - SPR (Schwarzer et al., 2020), DreamerV3 (Hafner et al., 2023), and DART
(Agarwal et al., 2024) - and obtained results after 100K sampling steps. The results are presented in
the table 1.

Based on the experimental results, our model achieved twice the performance comparable to state-
of-the-art (SOTA) RL models on the mean and medium of the human-normalized score and outper-
formed them in some games. And 5 out 16 game outperforms human level. Our findings include:

• Data quality is crucial. Our model also shows improved performance for games where the
sampled RL models perform well.

• Atari games exhibit randomness, leading to high variance in validation results. We ad-
dressed this by averaging over multiple inference runs.

• Vision-language models can learn to understand the rules of the game directly, achieving
better results than the sampled RL models.

4.2.2 ROUTING TUNNING PERFORMANCE

The preceding section demonstrates our success in constructing a dataset and the efficacy of vision-
language models in addressing Atari tasks. Subsequently, we applied our Routing Tuning method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Effectiveness of routing tunning on task data. It shows that all score are above the 0.85%
of the original score which shows that our routing tunning has few influence on task performance.

ChopperCommand Asterix BattleZone CrazyClimber Frostbite

Single Task Finetune 5766 1200 16750 39000 2223.3
Routing Tunning 5560 1370 14500 44066.7 1943
Reserve Rate 0.96 1.14 0.86 1.12 0.87

Table 3: Effectiveness of routing tuning on benchmark. SD: Spot the Difference, IE: Image Edit
Instruction, QB: Q-Bench, Math: MathVerse-mv. The benckmark of routing tunning and directly
fine-tuning shows that routing tunning retain more general capabilities.

Model SD IE NLVR2 BW QB NLVR2 M HQ-Edit MagicBrush Mantis Math

Base Model 0.3736 0.3117 0.8787 0.3736 0.6923 0.8787 0.2875 0.3359 0.5852 0.3702
Finetune Single Game 0.3582 0.2939 0.8626 0.3582 0.6923 0.8626 0.2730 0.3148 0.5668 0.2259
Routing Tunning 0.3697 0.2974 0.8557 0.3697 0.7692 0.8557 0.2755 0.3192 0.5714 0.3028

to fine-tune multiple games. We collected general data from the LLaVA training data and extracted
game data from the Atari Grand Challenge dataset(Kurin et al., 2017). The final dataset comprises
100,000 task data, 30,000 general data, and 30,000 other game data.

After Routing Tunning, we test them on task performance and general performance. We compare the
task performance with a model that finetuned on task data only by calculating the proportion of their
performance. The results are shown in the table 2. Our Routing Tuning method achieved an average
score of 99% compared to individually trained models across multiple games, demonstrating that
our Routing Tuning does not negatively affect the learning of task-specific data.

To test the general performance, we first run our experiments on the LLaVA-Interleave-Benchmark
(Li et al., 2024) provided by the model; then, we compare them on the routing finetuned models. The
results are shown in Table 3. Compared to the base model, both single-task fine-tuning and Routing
Tuning reduce the model’s performance on general datasets. However, compared to directly fine-
tuning on individual tasks, Routing Tuning achieves better or comparable results on the eight tasks,
indicating that our Routing Tuning method has a positive effect on maintaining the generalization
performance of the model.

4.2.3 MODEL MERGING PERFORMANCE

In the PEFT library, several adapter fusion methods are available, including CAT, Linear, SVD,
TIES(Yadav et al., 2024), and Dare(Yu et al., 2024). TIES and Dare have different implementa-
tions using SVD or linear. CAT and linear concatenate or add LoRA adapters directly. SVD also
decompses the LoRA matrices using SVD to further merge. Ties(Yadav et al., 2024) propose the
TRIM, ELECT SIGN and MERGE procedure. It first randomly drops some parameters then using
task vector sings to merge the paramters with the same signs to alleviate parameter collision. And
the merging process will use SVD methods. DARE(Yu et al., 2024) drops some parameters at a drop
rate p, then uses linear or SVD methods. We choose the remaining performance as the performance
matrix, calculated by new score divided by original score. If the model refuses to generate anything
or reaches the max frame limit of 30 minutes of gameplay, the final score will be 0. We do not
consider randomness in gym environments. We choose the default or recommand parameters for
svd clamp or density.

We choose four games to merge: ChopperCommand, Asterix, Battlezone, and CrazyClimber. The
model concatenates or adds the adapters directly for CAT and Linear methods. The model generates
nothing for all games in our scenario, so the final score is 0. The best performance is magni-
tude prune on BattleZone, which achieves 0.203 remaining on the best game. However, our merge
method achieved better performance retention, with a retention rate of 0.552 on the best-performing
game.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Overall performance of LoRA merging methods. Fine-tunning means mixing the dataset
of 4 games and fine-tune one model together.

Methods GAME1 GAME2 GAME3 GAME4

CAT 0 0 0 0
Linear 0 0 0 0
SVD 0.132 0 0 0
Ties 0.098 0 0 0
Ties svd 0.086 0 0 0
Dare ties 0 0 0 0
Dare linear 0.173 0 0 0
Dare ties svd 0.109 0.013 0 0.036
Dare linear svd 0.069 0.022 0.05 0.013
Magnitude prune 0.081 0.034 0.203 0
Magnitude prune svd 0 0 0 0
Ours 0.328 0.179 0.552 0.182

Fien-tuning 0.693 0.162 0.828 0.454

Table 5: Results of iterative merging different tasks LoRA. We first merge two games to get a new
model. Then we add one game at a time iteratively.

Number of Merged GAME1 GAME2 GAME3 GAME4

2 0.620 0.144 N/A N/A
3 0.328 0.216 0.586 N/A
4 0.328 0.179 0.552 0.182

We then tested our iterative merging method by selecting five games for gradual merging: Asterix,
ChopperCommand, BattleZone, CrazyClimber, and DemonAttack, where one game was merged at
a time. The results are shown in Table 5. The newly formed model was subjected to multiple single-
task evaluations after each merge. Compared to previous methods in the PEFT library, our merging
approach demonstrated significant performance improvements. Our method alleviates the catas-
trophic degradation in single-task performance. Compared to the fusion methods provided in the
PEFT library, our approach balances the performance on both new and previous tasks. Additionally,
our outputs are less prone to disruption, avoiding empty or garbled content.

5 CONCLUSION

This paper presents a method for multitask learning using LoRA adapter fusion methods. In contrast
to traditional model fusion approaches, we have developed a pipeline from fine-tuning to model
merging. Through Routing Tuning, the model learns based on different losses for different data,
reducing interference between the model’s capabilities and new tasks. Subsequently, multiple LoRA
adapters can be combined to represent modifications to the base model, and more importantly, new
task adapters can be iteratively added. A general model capable of handling various tasks can be
constructed by directly merging models and fused adapters. We run the experiments in Atari game
scenarios because each game can be seen as a separate task, unlike general tasks. The experiment
results have shown the remarkable performance of our methods and demonstrate the potential of
using LoRA adapters for fusion to enable lifelong learning capabilities in models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pranav Agarwal, Sheldon Andrews, and Samira Ebrahimi Kahou. Learning to play atari in a world
of tokens. arXiv preprint arXiv:2406.01361, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, et al. Loramoe: Revolutionizing mixture of experts for maintaining
world knowledge in language model alignment. arXiv preprint arXiv:2312.09979, 4(7), 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan
Hu, et al. Human-level play in the game of diplomacy by combining language models with
strategic reasoning. Science, 378(6624):1067–1074, 2022.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Sihao Hu, Tiansheng Huang, and Ling Liu. Pok\’ellmon: A human-parity agent for pok\’emon
battles with large language models. arXiv preprint arXiv:2402.01118, 2024.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, and Bastian Leibe. The atari grand
challenge dataset. arXiv preprint arXiv:1705.10998, 2017.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, 2024a.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Machine unlearning in
generative ai: A survey. arXiv preprint arXiv:2407.20516, 2024b.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
language-action models for embodied ai. arXiv preprint arXiv:2405.14093, 2024.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023b.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint
arXiv:2310.10683, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Frederic Z Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, and Ehsan Ab-
basnejad. Knowledge composition using task vectors with learned anisotropic scaling. arXiv
preprint arXiv:2407.02880, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

12

https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 6: The average norm of the activation values of the LoRA layers across different tasks.

GAME1 GAME2 GAME3 GAME4 GAME5 Average

Game Data 0.187 0.191 0.19 0.179 0.185 0.186
General Data 0.137 0.149 0.152 0.131 0.154 0.142

Figure 3: Visual and text input of VLM. Visual inputs are two frames sampled using APPO algo-
rithm. And text inputs are the description of game rules and action meanings. Output will add a
inference process, then we will use exactly match to get final action sent to gym environment.

A APPENDIX

A.1 DATASET DETAILS

Our experiment uses game frames rendered from Atari environments as image input. To capture the
character’s movement direction and speed in the game, we selected two frames with skip frame =
4. The model needs to output the action to be taken in the latter frame. We extracted key game
rules from the Atari official website’s game descriptions, including the game background, character
settings, rules, and gameplay. Additionally, since Atari games use the Atari hardware platform,
mapping them to the OpenAI Gym environment involves predefined actions. Initial experiments
showed that the model struggled to map action names to actual operations effectively. Therefore, we
include specific actions in the prompt for each game. For output, we want the model to provide its
reasoning about the game scenes and rules and then output an action. This approach achieved better
results in our experiments. Details are shown in 3. We will make this dataset publicly available.

We sample data from LLaVA pretrianed data and Atari chanllenge data which is publicly available.
For each game, we use 100K data we record using APPO checkpoint follow the baselines. For
Atari challenge dataset, we have 4 games and each game we sample 5K image-action pairs. For
LLaVA pretrained dataset, we sample 30K samples. Finally, we have 100K fine-tunning data and
50K general datato be unlearned.

A.2 HYPERPARAMETER DETAILS

• Proportion of SVD rank: After testing on several games, we average the score to get the
best performance. We find that, in some games, the portion saved of the SVD rank has few

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: The proportion of rank retained by SVD across different tasks does not show a clear pattern
of influence on the results. We selected 0.8, which yielded the highest average result.

Figure 5: The heatmap of activation values for LoRA B in the same layer across different data types
shows that the proportion of higher values on general data is lower than that on game data. The
specific numerical details are reflected in the table6.

influence on the model performance. But we still choose the highest average score which
is 0.8. The results are shown in 4

• ϵ: We observe the output value of each component when losses are stable, then we choose
to set the KL-divergence and norm on the same amount of fine-tuning loss, the final value
is ϵ1 = 1, ϵ2 = 0.01, ϵ3 = 2

14

	Introduction
	Related Work
	Vision-language Models on Game and Embodied AI
	Model Merging and Lora Adapters Fusion

	Methods
	Problem Formulation and Notation
	Overview
	Reserve General Capabilities with Routing Tunning
	Iterative Merging Lora Adapters

	Experiments
	Experiments Settings
	Experiments Results
	Single Model Performance
	Routing Tunning Performance
	Model Merging Performance

	Conclusion
	Appendix
	Dataset Details
	Hyperparameter Details

