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ABSTRACT

Contrary to classical Federated Learning (FL) that focuses on collaborative learn-
ing of a shared global model via a central server, Personalized Federated Learning
(PFL) trains a separate model for each user in order to address data heterogeneity
and meet local demands. This paper proposes pFedGT, a method for personalized
Federated Learning based on a Game-theoretic approach, that adopts a novel for-
mulation termed “Target interpolation.” In specific, each user solves a local op-
timization problem that comprises of a weighted average of two terms: one for
the local loss (based on the user’s data) and one for the global loss (based on
all the data in the system). The latter is, of course, not accessible to the users
(due to the large data volumes and privacy concerns) and it is approximated using
second-order expansion which allows for an efficient federated implementation.
In pFedGT, the users play a game (by minimizing their local problems), and
the algorithm supports partial participation in each round. We prove existence
and uniqueness of a Nash equilibrium and establish a linear convergence rate un-
der standard assumptions. Extensive experiments on real datasets under variable
levels of statistical heterogeneity are used to portray the merits of the proposed
solution. In particular, our method achieves on average 2.6% and 3.0% higher
accuracy on CIFAR-10 and CIFAR-100 datasets, and 3.17% on HAR dataset than
leading baselines.

1 INTRODUCTION

The proliferation of mobile phones, wearable devices, and autonomous vehicles has resulted in a
substantial surge in the generation of distributed data. Distributed machine learning (ML) tech-
niques (Bottou, 2010; Dean et al., 2012) facilitate the seamless integration of artificial intelligence
into the Internet of Things (IoT). In this setting, Federated Learning (FL) (Konečnỳ et al., 2016;
McMahan et al., 2017) has emerged as a novel paradigm enabling model training on edge devices
using local data and communication with a server, while simultaneously prioritizing data privacy
and minimizing communication overhead. Numerous FL methodologies, such as FedDyn (Dur-
mus et al., 2021), FedVARP (Jhunjhunwala et al., 2022), and FedExP (Jhunjhunwala et al., 2023),
as well as primal-dual methods like FedPD (Zhang et al., 2021), FedADMM (Gong et al., 2022;
Wang et al., 2022), and FedHybrid (Niu & Wei, 2023), have been proposed to tackle challenges
associated with non-independently and non-identically distributed (non-IID) data.

With the growing emphasis on personalized services, personalization is emerging as a prominent
technique aimed at training models customized to fulfill the specific needs of individual users. To
that end, a key challenge is the possibly limited data volume on the user side, which may result
in poor generalization of locally trained models. This can be remedied by transfer learning, i.e.,
intend to boost personal models through federated communication exchanges. However, all the
aforementioned methods aim to learn a single global model, which can not suffice to explain the
data of individual users and meet their personalized demands.

Personalized Federated Learning (PFL) differs from conventional FL in that it seeks to train multiple
models tailored to meet the particular demands of individual users. This approach (Kulkarni et al.,
2020; Tan et al., 2022) proves particularly beneficial when dealing with users who exhibit varying
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levels of data distribution across the system. There has been an increasing number of methods
developed to address the challenges associated with conventional FL, and to further improve the
accuracy, efficiency, and data privacy protection of personalized models (see Sec. 2).

In this paper, we propose a game-theoretic-based approach method for PFL, termed pFedGT. To
address statistical heterogeneity and accommodate diverse user demands, we introduce a novel
domain-based approach called “target interpolation.” This enables users to capture both local and
global preferences by reformulating the user’s objective function as a weighted average of local and
global loss. Given stringent privacy concerns and communication overhead, it is impractical for
users to compute the global loss (since data exchanges are out of the question). To tackle this issue,
we employ a quadratic approximation based on the second-order Taylor expansion with respect to
their local models. Furthermore, to reduce communication overhead, we combine communication
messages on the user side. Consequently, we formulate the PFL framework into a scenario where
users engage in a non-cooperative game since they are selfish in solving their local reformulated
problems without any consideration of the impact they have on others. We allow partial user partic-
ipation in the operation of the algorithm, and rigorously establish its convergence.

Contributions:
• We propose a new domain-based approach, termed “target interpolation,” to model user

collaboration on the domain field. This is accomplished by reformulating the user’s local
objective function to a weighted average of local and global loss.

• We propose a novel game-theoretic-based PFL method, termed pFedGT. Based on “target
interpolation,” pFedGT approximates the global loss by using a second-order expansion
centered at the user model (in consideration of communication overhead and privacy con-
cerns). Afterwards, users interact with each other selfishly, prioritizing the minimization of
their individually reformulated loss without considering the impact on others. Furthermore,
the server employs a tracking average of all users’ updated messages, enabling any partial
participation schemes in deploying our method.

• We demonstrate the existence and uniqueness of a Nash equilibrium under standard as-
sumptions. Additionally, we establish a linear convergence rate for our proposed algorithm
in a general nonconvex setting.

• We have conducted numerous experiments on federated neural network training on real
datasets in various non-IID settings. Our experiments demonstrate that pFedGT outper-
forms state-of-the-art methods, achieving an average accuracy improvement of 2.6% on
CIFAR-10, 3.0% on CIFAR-100, and 3.17% on the HAR dataset.

2 RELATED WORK

2.1 PERSONALIZED FEDERATED LEARNING

Numerous techniques have been proposed for PFL. (Smith et al., 2017) proposed MOCHA, a multi-
task method that allows discovering commonalities with other users using alternating minimization
(on regularized loss and weights of regularization); however, the proposed primal-dual method is
limited in the convex setting. Another popular approach is inspired by model agnostic meta-learning
(MAML) (Finn et al., 2017), which builds the global model based on multiple tasks. Subsequently,
users personalize their local models based on the global model. Nevertheless, the MAML framework
requires high computation and storage costs since it involves second-order information (Hessian
matrix); this was handled in (Nichol et al., 2018) via approximation only using first-order deriva-
tives. Another line of methodology combines the global and local models via weighted averaging
(Grimberg et al., 2021; Deng et al., 2020; Hanzely & Richtárik, 2020).

There have also been methods that leverage the neural network architecture, as inspired by the
concept of representation learning (Bengio et al., 2013). (Arivazhagan et al., 2019; Collins et al.,
2021; Oh et al., 2022) proposed to train the base layers of the network using standard FL, while
users update their top layers (personalization layers) by means of local training. Other approaches to
training global and local models involve using different regularization techniques, as in (Huang et al.,
2021) and (T Dinh et al., 2020). The regularization terms can help to decouple personalized and
global models by combining a coefficient to control the difference between them. Another approach
involves clustering methods, where a separate model is trained for each user cluster, assuming that
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the local data of each client may share the same context. This allows a group of users to learn a
group model, as shown in (Mansour et al., 2017; Ghosh et al., 2020; Sattler et al., 2020).

Unlike previous approaches that utilize weighted averaging of global and local models, pFedGT
interpolates the local objective function with the global loss, which enables a more direct incorpora-
tion of both local and global preferences. Moreover, pFedGT is model-agnostic, in that it does not
require specific modifications for different layers of the network.

2.2 GAME-THEORETIC APPROACHES IN FEDERATED LEARNING

Research efforts have been dedicated to developing incentive mechanisms (Tu et al., 2022; Zeng
et al., 2022; Wang et al., 2023) aimed at consistently enhancing the performance of the global model.
(Pandey et al., 2020) model federated learning as a Stackelberg game, subsequently, they reformu-
late the FL problem as a utility maximization problem. Additionally, (Song et al., 2019) utilize the
Shapley value (SV) to quantify each user’s data contribution and use this to proportionally compen-
sate users so as to continually attract high-quality participants. Similar to (Song et al., 2019), (Wu
et al., 2022) also utilize the SV to quantify users’ marginal contribution while they also capture the
effect of collaboration in achieving personalization.

The application of game theory in FL is quite natural, as users interact with each other to obtain
benefits rather than engaging solely in local training with a limited amount of private data. How-
ever, existing game-theoretic FL approaches have introduced a significant level of complexity (i.e.,
compute the SV) compared to classical FL algorithms.

3 ALGORITHM

3.1 PROBLEM FORMULATION

To accommodate statistical heterogeneity, PFL strives to harness the private training datasets of
individual users for the collaborative training of personalized models (w1, . . . , wm), where m rep-
resents the total number of users. These personalized models are engineered to deliver superior local
performance compared to both the global model and models trained independently.

In this paper, we propose a domain-based approach to address personalization in FL, which we term
“target interpolation.” This method involves directly interpolating the local objective with the global
target, which is accomplished by formulating the local problem as minimizing a weighted average
of the local loss and global loss. In specific, the local problem for user i is as follows:

minimize
wi∈Rd

γifi(wi) + (1− γi)
1

m

m∑
j=1

fj(wi), (1)

where γi ∈ [0, 1] is the personalization coefficient. Note that when γi = 1, this corresponds to a
local training paradigm that solely relies on local data. On the other hand, when γi = 0, it represents
conventional FL with no personalization.

(a) N = 2 (b) α = 0.1

Figure 1: The effect of the personalization hyperparame-
ter γi for a single user based on the formulation presented
in (1). The experiments were performed on the CIFAR-10
dataset, with N and α representing the level of statistical
heterogeneity (see Sec. 5). In both cases, target interpo-
lation attains higher accuracy than both local training and
classical FL.

To ascertain the feasibility of our proposed
methodology, we conducted a battery of
preliminary experiments on a single user
based on formulation (1). The exchange
of data between users would be a neces-
sary step for solving (1), which is not fea-
sible and or permissible in FL. The influ-
ence of varying degrees of personalization
on model performance can be explicitly ob-
served in Fig. 1. Our experimental results
illustrate the feasibility of the proposed for-
mulation while shedding light on the impact
of statistical heterogeneity on the choice of
personalization hyperparameter γi.
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To tackle the issue of unavailability of the second sum-term in (1) at the user side, we use a quadratic
approximation as:

fj(wi) ≈ fj(wj) +∇fj(wj)>(wi − wj) +
µ

2
‖wi − wj‖2.

This is an approximate second-order Taylor expansion that ignores the specific Hessian dependency,
due to the large model size and communication overhead.

Furthermore, we introduce a regularization term into the local problem aiming at reducing model
complexity and mitigating the risk of overfitting. In the end, the local problem for user i is to

minimize
wi∈Rd

Gi(wi;w−i) := Fi(wi;w−i) +
ρ

2
‖wi‖2,

where Fi(wi;w−i) := γifi(wi) +
1− γi
m

m∑
j=1

(
fj(wj) +∇fj(wj)>(wi − wj) +

µ

2
‖wi − wj‖2

)
,

w−i := (w1, . . . , wi−1, wi+1, . . . , wm). (2)

Each user in the system is selfish, solely dedicated to maximizing its local model fidelity. Con-
sequently, the PFL problem is cast into a non-cooperative game, where each user solves problem
(2) (using information obtained through server aggregation) so that the system converges to a Nash
equilibrium defined as:

Gi(w
?
i ;w?−i) ≤ Gi(wi;w?−i),∀wi,∀i. (3)

3.2 PROPOSED ALGORITHM: PFEDGT

In pFedFT, each participating user within the system solves its corresponding (2) (in parallel and
inexactly). We employ stochastic gradient descent (SGD) (for ease of notation we show the full
gradient here) to solve the corresponding minimization problem. At the global round t ∈ {1, . . . , T}
and local epoch e ∈ {1, . . . E}, the gradient of Gi(·) over local model wi is as follows:

∇wiGi(w
t,e
i ;wt

−i) = γi∇fi(wt,e
i ) +

1− γi
m
∇fi(wt,e

i ) +
1− γi
m

m∑
j 6=i

(
∇fj(wt

j) + µ(wt,e
i − w

t
j)

)
+ ρwt,e

i

= γi∇fi(wt,e
i ) +

1−γi
m
∇fi(wt,e

i ) +
(1−γi)(m−1)

m
µwt,e

i +ρwt,e
i +

1−γi
m

m∑
j 6=i

(
∇fj(wt

j)−µwt
j

)
. (4)

It is important to emphasize that in the augmented local problem (2), user i only updates wt,ei , while
terms related to the model/gradients of other users (wtj) reflect previous values. This is amenable
to a federated implementation by noting that these can be grouped into a sum term in the equation
above; this can be obtained by server aggregation (since the missing term in the sum, i.e., j = i is
locally available).

To reduce the communication overhead, users exchange ci := ∇fi(wi)−µwi,∀i, which is updated
as Alg. 2, step 6. In view of partial participation (St represents the set of participants at round t),
the aggregation can be carried (see Alg. 1 step 7), by tracking average as:

ct+1 = ct + λ
|St|

∑
i∈St

(ct+1
i − cti). (5)

It is not hard to verify that if λ = |St|/m this computes the true average 1
m

∑m
i=1 ci (since for

non-participating users ct+1
i ≡ cti) (see Lemma 1 in Appendix B). However, in the proposed method

we allow for a more general choice of λ (i.e., a generalized step size parameter), which serves to
balance the influence of past information and information pertaining to the current round, in order
to robustify the algorithm in a practical setting (e.g., reduce oscillations due to heterogeneity).

In practical scenarios, it is valuable for the cloud server to uphold a global model as a meta-model. In
our proposed algorithm, alongside the average of local combined messages, the server also maintains
a server model denoted as θ, which is updated using tracking aggregation:

θt+1 = θt + ηs
|St|

∑
i∈St

(wt+1
i − wti), (6)
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Algorithm 1 pFedGT
Input: Total number of rounds T , aggrega-
tion step size λ, and server model step size
ηs.

1: for t = 0, 1, . . . , T − 1 do
2: Server selects St ⊂ [m]

Clients: // In parallel
3: for i ∈ St do
4: download θt, ct from the server
5: (wt+1

i , ct+1
i )← ClientUpdate(θt, ct)

6: end for
Server:

7: ct+1 = ct + λ
|St|

∑
i∈St(c

t+1
i − cti)

8: θt+1 = θt + ηs
|St|

∑
i∈St(w

t+1
i − wti)

9: end for

Figure 2: Architecture of pFedGT. At global round
t, active user i downloads the aggregated messages
of all users ct from the cloud server. Following this,
user i solves (2) using its local private data. Subse-
quently, user i uploads the difference of combined
messages ct+1

i − cti to the cloud server, which ag-
gregates them.

Algorithm 2 ClientUpdate(θt, ct)

Input: Local epoch number E, client learning rate η, hyperparameters γi, µ, ρ.

1: Initialize wi, ci
2: for e = 0, 1, . . . , E − 1 do
3: for each batch b do
4: Compute batch gradient∇fi(wi; b)
5: wi ← wi − η

(
∇fi(wi; b) + (1− γi)(ct − ci) + (1− γi) 1

m (ci − cti) + ρwi
)

6: ci ← ∇fi(wi; b)− µwi
7: end for
8: end for
9: Return wi, ci

where ηs is the server model step size. Given that we can establish strong convexity of problem (2)
under Assumption 1 (despite the non-convexity of the loss functions), we employ this server model
as the initialization in (modified) local training (line 1 in Alg. 2). Our experimental results (Fig. 5
and Fig. 6) demonstrate that this server model θ can not only serve as a good choice for warmstarting
the client update process (Alg. 2) but also as a well-suited pre-trained model at the system-level.
Besides, we choose to initialize the local ci with c before local training to avoid oscillations in Alg.
2, line 1 (see Fig. 9 in the appendix for more information).

In view of the definitions for c, ci, the local gradient (4) can be re-written as:

∇Gi(wt,ei ;wt−i) = ∇fi(wt,ei ) + (1− γi)(ct − ct,ei ) + (1− γi)
1

m
(ct,ei − c

t
i) + ρwt,ei . (7)

The derivation is provided in Appendix A. Consequently, at the beginning of the t-th global round
of pFedGT, the server selects a subset of users (referred to as St), which subsequently download
ct and θt from the server. Local training based on problem (2) is subsequently performed to update
the personalized model using SGD steps as in (7) (Alg. 2, lines 2-8). Following the local training
phase, active users upload the difference between successive combined messages as well as the
differences in their personalized models which are aggregated by the server (Alg. 1, lines 7-8). The
full description of pFedGT is shown in Alg. 1 and Alg. 2, and the architecture is shown in Fig. 2.

4 ANALYSIS

In this section, we present the convergence analysis for our proposed method. Our analysis requires
the following two standard assumptions (the first is about the loss function and the second about the
accuracy of solving the local problems).
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Assumption 1. Each local loss function fi(·) has an L-Lipschitz continuous gradient, i.e.,
∀wi, w′i ∈ Rd, the following inequality holds:

‖∇fi(wi)−∇fi(w′i)‖ ≤ L‖wi − w′i‖, ∀i ∈ [m].

In practical scenarios, problem (2) is not solved exactly, but is rather approximated by running
several epochs based on local data. This fact, together with allowing variability of local work across
the users (i.e., in view of system heterogeneity) is captured by the next assumption.

Assumption 2. At round t, each participating user solves problem (2) so that:∥∥∇wiGi(wt+1
i ;wt−i)

∥∥2 ≤ εi.

Assumption 1 is a standard and widely used assumption in optimization, and this is the only as-
sumption we need for our analysis. Assumption 2 is non-restrictive because we can establish strong-
convexity of (2) in view of Assumption 1, for suitable parameter choices (see Lemma 2 in Appendix
B). This, in turn, implies a certain monotonicity of the local gradient for (2) with the local effort.
Assumption 2 is only needed to capture the amount of local work: a smaller εi means larger training
effort (this is because we can establish strong convexity for the local problems – as a consequence
of Lemma 2 in Appendix B – which means that increasing the local work can decrease the gradient
∇wiGi(wi;w−i)).

Theorem 1. Under Assumption 1, for any γi ∈ (0, 1), and ρ >max{L,maxiLFi}, where LFi =
(m−1)γi+1

m L+ (1−γi)(m−1)
m µ, there exists a unique Nash equilibrium, denoted by w?.

Theorem 2. Let Assumptions 1 and 2 hold. For any γi ∈ (0, 1), λ = |St|/m, ρ >
max{L,maxiLFi}, and assume each client has a probability of being selected at each round that is
lower bounded by a positive constant pmin > 0, then the following holds:

E
[
||wt − w?||2

]
≤ at

pmin
||w0 − w?||2 +

1− at

1− a

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

,

where a = 1− pmin(1− (1 + ξ−1)a2
1) ∈ (0, 1), ξ is an any constant that satisfies ξ ≥ a1/(1− a1),

and a1 = maxi
(1−γi)(m−1)(µ+L)

(1−γi)(m−1)µ−(γi(m−1)+1)L+mρ , LFi = (m−1)γi+1
m L+ (1−γi)(m−1)

m µ.

The detailed proofs are provided in Appendix B.

In addition to the Assumptions 1-2, the following assumption has been imposed when analyzing
existing state-of-the-art methods to capture the level of statistical heterogeneity. Our analysis does
not require this condition.

(Bounded diversity) The variance of local gradients to global gradient is bounded, i.e.,
1
m

∑m
i=1 ||∇fi(w)−∇f(w)||2 ≤ σ2, where f(w) := 1

m

∑m
i=1 fi(w).

Remark 1. Our analysis requires no assumption on the level of statistical heterogeneity (i.e.,
bounded diversity, in contrast to several methods in the FL literature (T Dinh et al., 2020; Fallah
et al., 2020; Li et al., 2021). Theorem 1 and 2 are established under any selection of γi ∈ (0, 1),
our problem formulation guarantees the existence uniqueness of Nash equilibrium. Further, our
algorithm converges linearly to the equilibrium. Moreover, the convergence rate a = O(1) as a
function of the system size m, which supports the scalability of the proposed algorithm. Theorem
2 is established with a simple activation scheme of each user is active with probability lower bound
by pmin > 0. In practice, this assumption is necessary otherwise the user will never participate.

5 EXPERIMENTS

All our experiments are conducted on a system with 2 Intelr Xeonr Gold 6330 CPUs and 8
NVIDIAr GeForce RTXTM 3090 GPUs. We compare pFedGT against a variety of PFL methods,
including PerFedAvg (Fallah et al., 2020), Ditto (Li et al., 2021), pFedMe (T Dinh et al., 2020),
APFL (Deng et al., 2020), FedRep (Collins et al., 2021), FedBABU (Oh et al., 2022). For a com-
prehensive evaluation, we also perform experiments by testing the global model on local test data
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Table 1: Average test accuracies for various degrees of non-IID data distributions on CIFAR-10, CIFAR-100
and HAR datasets with participation rate 0.25. α represents the degree of Dirichlet distribution, while N
represents the degree of the pathological distribution. The smaller the values of both α and N , the greater
the heterogeneity in the distribution. All experiments are conducted in the same setting (local epoch number
is 5 and batch size is 128). Local only refers to a scenario where training is performed solely on local
data without any communication or collaboration with the server. The underlined numbers represent the best
accuracy across the baseline methods, and the improvement is computed over the best baseline.

CIFAR-10 CIFAR-100 HAR
(degree of non-IID) α = 0.1 α = 1 α = 10 N = 20 N = 50 N = 100 –
Local only 87.79% 61.19% 48.15% 53.65% 38.67% 29.76% 62.85%
FedAvg 82.16% 67.28% 75.01% 55.46% 43.69% 48.64% 88.74%
FedAvg+FT 91.26% 78.34% 75.39% 64.48% 51.89% 48.73% 89.59%
PerFedAvg 80.51% 57.82% 49.71% 28.61% 25.99% 18.73% 25.70%
Ditto 88.78% 73.48% 75.23% 57.69% 48.53% 49.24% 86.61%
pFedMe 88.32% 69.54% 62.69% 52.12% 33.29% 28.08% 39.03%
APFL 91.72% 79.04% 76.53% 63.80% 52.38% 47.78% 92.34%
FedRep 91.56% 80.36% 76.30% 65.93% 54.52% 44.93% 78.87%
FedBABU 91.45% 78.61% 74.34% 66.24% 58.09% 49.19% 42.49%
pFedGT 92.64% 83.55% 80.22% 70.57% 60.50% 51.52% 95.51%
Improvement 0.92% 3.19% 3.69% 4.33% 2.41% 2.28% 3.17%

using both FedAvg (McMahan et al., 2017) and its fine-tuning (FT) method (Wang et al., 2019).1
In brief, our experiments unravel three main findings: (i) pFedGT achieves higher average test ac-
curacies across various levels of non-IID data distributions; (ii) pFedGT consistently outperforms
both local training and conventional FL, thus corroborating the urge for personalization on accounts
for statistical heterogeneity; (iii) pFedGT users can enhance the local accuracy by increasing the
local workload, without hurting the convergence of the algorithm.

5.1 EXPERIMENTAL SETUP

Three real datasets are used in our experiments, namely CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
and Human Activity Recognition (HAR)2. We use ResNet-18 for both CIFAR-10 and CIFAR-100,
and a CNN model with two convolutional layers for HAR. In all cases, we set the total number of
users equal to 20 (m = 20) for CIFAR datasets and 30 (m = 30) for HAR dataset. We adopt the
random initialization for the personalized models and c0 =

∑m
i=1 c

0
i . At each round, we fix the

selection ratio equal to 0.25, that is, 5 users are selected uniformly at random in CIFAR experiments
and 7 in the HAR experiments. We calculate the average of all the users’ test accuracy as the
comparison metric.

Hyperparameters: Drawing inspiration from the experimental results presented in Fig. 1, we
conducted a grid search to determine the optimal value for the hyperparameter γi, ranging from 0.1
to 0.9. Subsequently, we selected a fixed value of γi = 0.8,∀i (empirically fixed) for all experiments
conducted. We tuned the other hyperparameters used in pFedGT to choose the empirically best one,
e.g., we set ηs = 1, λ = 0.7, µ = 0.05, and ρ = 0 (we give more explanations for hyperparameter
selection in Appendix D). We stop all the algorithms when the number of global rounds reaches 100.
By default, we let the local training epoch be fixed to 5, and the batch size equal to 128. We first tune
the learning rate of the local SGD solver for FedAvg from a candidate set {0.01, 0.05, 0.1, 0.5} for
best performance, then keep it fixed for all algorithms.

Data Distribution: We explore different levels of statistical heterogeneity across the system in two
different ways. Note that both of these further yield unequal data volumes across the users. For
CIFAR-10 and CIFAR-100 datasets, we adopt the following data partition strategies.

1We give the detailed description of baseline methods in Appendix C.
2https://archive.ics.uci.edu/ml/datasets/
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(a) CIFAR-10, α = 1 (b) CIFAR-10, α = 10 (c) CIFAR-100, α = 1 (d) CIFAR-100, α = 10

Figure 3: By increasing the number of local epochsE, our proposed method pFedGT achieves higher accuracy
and faster convergence. Moreover, pFedGT maintains stability and robustness in all test scenarios.

1. Pathological distribution: We sort all the training data by labels and divide them evenly into
N ×m shards, and then assign to each user N of these shards. We obtain different levels of non-IID
by varying the value of N , i.e., a smaller N leads to a higher degree of statistical heterogeneity.

2. Dirichlet distribution: We use the Dirichlet distribution as in (Hsu et al., 2019) to create disjoint
non-IID client data. We let each user draw training examples independently, and the class labels fol-
low a distribution which is parameterized by a vector q where qi ≥ 0 for i ∈ [1, N ] and ‖q‖1 = 1.
We sample q from a Dirichlet distribution q ∼ Dir(αp), where p characterizes a prior class dis-
tribution over the N classes, and α > 0 is a parameter controlling the degree of similarity between
users. A smaller α leads to a higher degree of statistical heterogeneity. To provide a visual repre-
sentation of the effects of varying α, Fig. 7 in Appendix C presents how the samples are distributed
among 20 users for different values of α on the CIFAR-10 dataset.

Regarding the HAR dataset, we implement a partitioning strategy in which all data instances pro-
duced by a single individual are assigned to a distinct user. This strategy intentionally generates an
inherently diverse data distribution. Our code is available at: anonymous.4open.science/
r/pFedGT.

5.2 EXPERIMENTAL RESULTS

We first demonstrate the algorithm performance using the averaged test accuracy after 100 global
rounds. The results are summarized in Table 1. We note that pFedGT consistently outperforms
all baseline methods in all cases tested. Specifically, it achieves on average 2.6% and 3.0% higher
accuracy compared to the second based baseline in CIFAR-10 and in CIFAR-100, respectively, and
3.17% higher in the HAR dataset.

(a) CIFAR-10, α = 1 (b) CIFAR-100, α = 1

Figure 4: Test accuracy for variable number of local epochs.
pFedGT showcased a consistent improvement for increased E,
while this is not the case for FedAvg+FT.

Increasing Local Work. We investi-
gate the effect of local computation on
the performance of pFedGT by increas-
ing the local epoch number E. As
shown in Fig. 3, we observe that in-
creasing the amount of local training
leads to faster convergence and higher
accuracy, indicating the effectiveness
of the personalized approach. Ad-
ditionally, we compare pFedGT with
FedAvg+FT when varying the local
epoch number: Fig. 4 demonstrates that
the performance of FedAvg+FT may
decrease with an increased workload,
while pFedGT consistently maintains good performance by increasing the local workload.

Local Initialization. We conducted a series of experiments to investigate the impact of different lo-
cal initialization approaches on the performance of pFedGT. Given that the local sub-optimization
problem (2) is an unconstrained problem (which is further shown to be strongly convex—see Ap-
pendix B), users have the flexibility to choose various starting points for their local training. Specif-
ically, we examined three initialization strategies: (i) θ initialization, as proposed in our algorithm,
(ii) wi initialization, corresponding to initializing with the personalized model wi, and (iii) random
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(a) CIFAR-10 (b) CIFAR-100

Figure 5: Different approaches on local initialization
for personalized training in the α = 0.1 level of non-
IID. Among these approaches, θ initialization provides
the best warm start for users and yields the best overall
performance.

(a) CIFAR-10 (b) CIFAR-100

Figure 6: Experiments are conducted in a level ofα = 1
non-IID. PM stands for accuracy tested using person-
alized models, while GM stands for the server model
θ. Results demonstrate that our server model achieves
better results than the global model trained through
FedAvg.

initialization. The experimental results, depicted in Fig. 5, are in support of our choice to maintain
a global model (albeit not necessary for the operation of the algorithm, which we discuss next).

The Server Model θ. Holding a global model is not mandatory for pFedGT and we can obtain
two variants: one with minimal communication cost (no global model, orange line in Fig. 5) and
one with superior accuracy at the cost of communicating model parameters and maintaining a global
model (Alg. 1, blue line in Fig. 5). In addition to the experiments conducted on initialization, we
have also investigated the utility of the server model in pFedGT for local tasks. Specifically, we have
evaluated the server model θ on the local dataset and compared it with the standard FedAvg algo-
rithm. The results are presented in Fig. 6, where (GM) denotes the global (server) model in pFedGT
and (PM) represents the personalized models. The notable observation is that pFedGT(GM) can
obtain superior accuracy compared to the conventional FedAvg. Combined with the results of the
local initialization experiments, it suggests that a new user can rapidly catch up with the federated
system to achieve personalization.

Table 2: Experiments conducted on a system of 100 users.
The results consistently demonstrate that pFedGT outperforms
other PFL methods in terms of accuracy.

CIFAR-10 CIFAR-100
(degree of non-IID) N = 2 N = 5 N = 5 N = 20

PerFedAvg 84.01% 82.83% 78.60% 61.74%
Ditto 87.44% 82.88% 79.48% 56.34%
pFedMe 77.76% 68.08% 70.32% 40.37%
APFL 90.05% 84.56% 79.72% 58.66%
FedRep 90.30% 85.50% 80.34% 60.35%
FedBABU 89.88% 85.40% 81.93% 63.22%
pFedGT 90.55% 85.58% 82.97% 66.22%

Scalability. To exhibit the robustness
and scalability of pFedGT, we per-
formed experiments for both CIFAR-10
and CIFAR-100 datasets in a larger sys-
tem comprising of 100 users. Table 2
presents the experimental results in dif-
ferent pathological data distribution sce-
narios. In each communication round,
25 users are selected uniformly at ran-
dom. Empirical results reveal that the
proposed pFedGT consistently outper-
forms the existing state-of-the-art meth-
ods in terms of averaged accuracy, par-
ticularly in the more challenging dataset
(CIFAR-100). This performance differential validates the efficacy and robustness of pFedGT in
large-scale FL systems, underscoring its potential as a formidable tool in advancing the performance
and scalability of FL applications.

6 CONCLUSION

In this paper, we proposed pFedGT, a novel game-theoretic approach for PFL that directly inter-
polates the local and global targets in the domain field which we coined “target interpolation”. An
efficient federated implementation is obtained by second-order approximation of the global term,
thus a game is formulated where the user (selfishly) minimizes their reformulated loss without con-
sidering the impact on others. We prove existence and uniqueness of a Nash equilibrium and estab-
lish a linear convergence rate in a general nonconvex setting under standard assumptions. Extensive
comparative experiments were used to corroborate the merits of pFedGT as a well-suited candidate
solution for PFL.
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APPENDIX This appendix is composed of four parts: (i) the full derivation of equation (7)
in Section 3.2; (ii) the full proof of the theoretical results presented in Section 4; (iii) detailed
experimental settings that were omitted due to the space limitations in the main paper; (iv) additional
experiments that demonstrate various aspects of the proposed algorithm.

A DERIVATION OF LOCAL GRADIENTS (EQUATION (7))

In this section, we give the detailed derivation of equation (7). First, we elaborate on the settings for
the number of global rounds t and local epochs e ∈ [0, E − 1]. At global round t, local epoch e for
user i, we have:

∇wiGi(w
t,e
i ;wt−i) = γi∇fi(wt,ei ) +

1− γi
m
∇fi(wt,ei ) +

1− γi
m

m∑
j 6=i

(
∇fj(wtj) + µ(wt,ei − w

t
j)

)
+ ρwt,ei

= γi∇fi(wt,ei ) +
1− γi
m
∇fi(wt,ei ) +

(1− γi)(m− 1)

m
µwt,ei

+
1− γi
m

m∑
j 6=i

(
∇fi(wtj)− µwtj

)
︸ ︷︷ ︸

(i)

+ρwt,ei .

By adding and subtracting∇fi(wti)− µwti in (i) we obtain:

∇wiGi(w
t,e
i ;wt−i) = γi∇fi(wt,ei ) +

1− γi
m
∇fi(wt,ei ) +

(1− γi)(m− 1)

m
µwt,ei

+ (1− γi)
1

m

m∑
j=1

(
∇fi(wtj)− µwtj

)
− 1− γi

m

(
∇fi(wti)− µwti

)
+ ρwt,ei

= γi∇fi(wt,ei ) + (1− γi)µwt,ei +
1− γi
m
∇fi(wt,ei )− 1− γi

m
µwt,ei

+ (1− γi)
1

m

m∑
j=1

(
∇fi(wtj)− µwtj

)
− 1− γi

m

(
∇fi(wti)− µwti

)
+ ρwt,ei

= ∇fi(wt,ei )− (1− γi)
(
∇fi(wt,ei )− µwt,ei

)
+

1− γi
m

(
∇fi(wt,ei )− µwt,ei

)
+ ρwt,ei

+ (1− γi)
1

m

m∑
j=1

(
∇fi(wtj)− µwtj

)
− 1− γi

m

(
∇fi(wti)− µwti

)
+ ρwt,ei

=
(ii)
∇fi(wt,ei ) + (1− γi)(ct − ct,ei ) + (1− γi)

1

m
(ct,ei − c

t
i) + ρwt,ei ,

where we use the definitions ci := ∇fi(wi)− µwi and c := 1
m

∑m
i=1 ci in (ii).

B COMPLETE PROOF OF THE RESULTS

Before presenting the proofs of theorems 1 and 2, we introduce the following standard propositions,
which are frequently used in our analysis.

Proposition 1. If a function f(x) has an L-Lipschitz continuous gradient, then g(x) := f(x) +
k
2‖x‖

2 is (k − L)-strongly convex for any constant k > L.

Proposition 2. If a function f(x) is σ-strongly convex, then the operator T := (Id + λ∇f)−1 is
contractive with coefficient 1

1+λσ , ∀λ > 0.

Proposition 3. If a function f(x) has an L-Lipschitz continuous gradient and is σ-strongly convex,
then the following inequalities hold:

〈∇f(x)−∇f(y), x− y〉 ≥ σL

σ + L
||x− y||2 +

1

σ + L
||∇f(x)−∇f(y)||2 (8a)

||∇f(x)−∇f(y)|| ≥ σ||x− y|| (8b)
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Lemma 1. Let λ = |St|/m, then under (5), by initilizing c0 =
∑m
i=0 c

0
i , it holds that

ct =

m∑
i=1

cti,∀t.

Proof: Since λ = |St|/m, we have that ct+1 = ct + 1
m

∑
i∈St(c

t+1
i − cti). Due to the partial

participation in FL, the following holds

ct+1
i =

{
∇fi(wt+1

i )− µwt+1
i , if i ∈ St,

cti, if i /∈ St.
(9)

Equation (9) shows that if user i is active, it continues to update its communication messages; other-
wise, ci remains unchanged, retaining the value from the end of the previous active global round. We
obtain ct+1 = ct + 1

m

∑m
i=1(ct+1

i − cti). After telescoping, we obtain ct = c0 + 1
m

∑m
i=1(cti − c0i ).

Together with the initialization, c0 =
∑m
i=1 c

0
i , the desired is proved. �

Lemma 1 indicates that in every global round, under any selection strategy mechanisms, the variable
c consistently represents the precise average of all users’ ci. Supporting by lemma 1, we can estab-
lish the following theorems. For simplicity, we denote w as the concatenation of all the personalized
models wi, and w ∈ Rmd.

Lemma 2. Let assumption 1 hold, then each Fi(wi;w−i) has a LFi -Lipschitz continuous gradient
in terms of wi, where LFi = (m−1)γi+1

m L + (1−γi)(m−1)
m µ. In particular, ρ > LFi , Gi(wi;w−i) is

(ρ− LFi)-strongly convex.

Proof: From the definition of Fi(wi;w−i):

∇wiFi(wi;w−i) = γi∇fi(wi) +
1− γi
m

∑
j 6=i

(
∇fj(wj) + µ(wi − wj)

)
+

1− γi
m
∇fi(wi)

=
(m− 1)γi + 1

m
∇fi(wi) +

(1− γi)(m− 1)

m
µwi +

1− γi
m

∑
j 6=i

(
∇fj(wj)− µwj)

)
.

then ∀wi, w′i ∈ Rd, we obtain:∥∥∥∥∇wiFi(wi;w−i)−∇w′Fi(w′i;w−i)∥∥∥∥ =

∥∥∥∥( (m− 1)γi + 1

m
∇fi(wi) +

(1− γi)(m− 1)

m
µwi

)
−
(

(m− 1)γi + 1

m
∇fi(w′i) +

(1− γi)(m− 1)

m
µw′i

)∥∥∥∥
≤ (m− 1)γi + 1

m

∥∥∥∥∇fi(wi)−∇fi(w′i)∥∥∥∥+
(1− γi)(m− 1)

m
µ

∥∥∥∥wi − w′i∥∥∥∥
≤
(

(m− 1)γi + 1

m
L+

(1− γi)(m− 1)

m
µ

)∥∥∥∥wi − w′i∥∥∥∥.
We denote LFi = (m−1)γi+1

m L+ (1−γi)(m−1)
m µ, and the second claim holds by Proposition 1. �

B.1 PROOF OF THEOREM 1

Theorem 1. Under Assumption 1, for ρ > max{L,maxiLFi},where LFi =
(m−1)γi+1

m L+ (1−γi)(m−1)
m µ, there exists a unique Nash equilibrium, denoted by w?.

Proof: Following Lemma 2, for ρ > maxiLFi , each Gi(wi;w−i) is (ρ−LFi)-strongly convex with
repect to wi. We define the operator Ri(w) : Rmd → Rd as:

Ri(w) = arg min
wi

Gi(wi;w−i),

i.e., the set of minimizers of (2). In view of Lemma 2, this is single-valued, i.e., a function (the
strong convexity implies uniqueness of solution), we further define R(w) : Rmd → Rmd to be the
concatenation of all Ri(w). The proof will be carried by establishing that R is contractive.
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The optimality condition for (2) is given by:

∇wiGi(wi;w−i) = γi∇fi(wi) +
1− γi
m
∇fi(wi) +

(1− γi)(m− 1)

m
µwi + ρwi

+
1− γi
m

m∑
j 6=i

(
∇fi(wj)− µwj

)

=
(m− 1)γi + 1

m
∇fi(wi) +

(1− γi)(m− 1)

m
µwi + ρwi

+
1− γi
m

∑
j 6=i

(
∇fj(wj)− µwj)

)
= 0,

For ease of exposition, we define γ̃i = (m−1)γi+1
m , γ̃i ∈ ( 1

m , 1), then (1−γi)(m−1)
m = 1 − γ̃i, and

denote gi(xi) := fi(xi) + ρ
2γ̃i
||xi||2. Since we select ρ > L⇒ ρ

γ̃i
> L. By Proposition 1, gi(x) is

( ργ̃i − L)-strongly convex. Then we obtain:

γ̃i∇fi(wi) + (1− γ̃i)µwi + ρwi +
1− γ̃i
m− 1

m∑
j 6=i

(∇fj(wj)− µwj) = 0

⇒ (1− γ̃i)µ
(
Id +

γ̃i
(1− γ̃i)µ

∇gi
)

(wi) =
1− γ̃i
m− 1

m∑
j 6=i

(µId −∇fj)(wj),

Here, Id represents the identity operator (Idx = x). The resolvent operator is defined as:

Ti :=

(
Id +

γ̃i
(1− γ̃i)µ

∇gi
)−1

,

which is contractive with coefficient ρ1 := 1

1+
γ̃i

(1−γ̃i)µ
( ργ̃i
−L)

< 1 by Proposition 2.

This implies that

Ri(w) = Ti ·
1

µ(m− 1)

m∑
j 6=i

(µId −∇fj)(wj),

where w is the concatenation of wi. Then ∀w,w′ ∈ Rmd, we obtain:

‖Ri(w)−Ri(w′)‖2 =

∥∥∥∥Ti · 1

µ(m− 1)

m∑
j 6=i

(µId −∇fj)(wj)− Ti ·
1

µ(m− 1)

m∑
j 6=i

(µId −∇fj)(w′j)
∥∥∥∥2

≤
(i)
ρ2

1

∥∥∥∥ 1

µ(m− 1)

m∑
j 6=i

(µId −∇fj)(wj)−
1

µ(m− 1)

m∑
j 6=i

(µId −∇fj)(w′j)
∥∥∥∥2

=
ρ2

1

µ2(m− 1)2

∥∥∥∥ m∑
j 6=i

(
(µId −∇fj)(wj)− (µId −∇fj)(w′j)

)∥∥∥∥2

. (10)

The inequality (i) follows from the fact that Ti is a contraction with coefficient ρ1 =
1

1+
γ̃i

(1−γ̃i)µ
( ργ̃i
−L)

.

We further define the operator Pj(wj) := (µId −∇fj)(wj) and hj(wj) := fj(wj) + k
2‖wj‖

2,∀j,
where k is any constant that satisfies k > L. By Proposition 1, hj(wj) is (k − L)-strongly convex,
and its gradient is Lipschitz continuous with parameter k + L. We adopt the following equivalent
expression for Pj :

Pj = µId −∇fj = (µ+ k)Id − (∇fj + kId)

= (µ+ k)Id −∇hj

= (µ+ k)(Id −
∇hj
µ+ k

).
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Consequently, it holds that:

||Pj(wj)− Pj(w′j)||2 = (µ+ k)2||(Id −
∇hj
µ+ k

)(wj)− (Id −
∇hj
µ+ k

)(w′j)||2

= (µ+ k)2||(wj − w′j)−
1

µ+ k
(∇hj(wj)−∇hj(w′j))||2

= (µ+ k)2

(
||wj − w′j ||2 +

1

(µ+ k)2
||∇hj(wj)−∇hj(w′j)||2

− 2

µ+ k
〈∇hj(wj)−∇hj(w′j), wj − w′j〉

)
≤
(i)

(µ+ k)2

(
||wj − w′j ||2 +

1

(µ+ k)2
||∇hj(wj)−∇hj(w′j)||2

− k2 − L2

(µ+ k)k
||wj − w′j ||2 −

1

(µ+ k)k
||∇hj(wj)−∇hj(w′j)||2

)
≤ (µ+ k)2

((
1− k2 − L2

(µ+ k)k

)
||wj − w′j ||2 −

µ

(µ+ k)2k
||∇hj(wj)−∇hj(w′j)||2

)
≤
(ii)

(µ+ k)2

((
1− k2 − L2

(µ+ k)k
− µ(k − L)2

(µ+ k)2k

)
||wj − w′j ||2

)
= (µ+ L)2||wj − w′j ||2. (11)

Inequalities (i) and (ii) follow from Proposition 3, i.e., (8a) and (8b), respectively.

In turn, it follows that:

||Ri(w)−Ri(w′)||2 ≤
ρ2

1

µ2(m− 1)2

∥∥∥∥ m∑
j 6=i

(
(µId −∇fj)(wj)− (µId −∇fj)(w′j)

)∥∥∥∥2

.

≤
(i)

ρ2
1

µ2(m− 1)

m∑
j 6=i

||Pj(wj)− Pj(w′j)||2

≤
(ii)

ρ2
1

µ2
· (µ+ L)2 1

m− 1

m∑
j 6=i

||wj − w′j ||2

=
(iii)

(1− γ̃i)2µ2(
(1− γ̃i)µ+ γ̃i(

ρ
γ̃i
− L)

)2 (µ+ L)2

µ2

1

m− 1

m∑
j 6=i

||wj − w′j ||2

=
(1− γ̃i)2(µ+ L)2(

(1− γ̃i)µ+ γ̃i(
ρ
γ̃i
− L)

)2 1

m− 1

m∑
j 6=i

||wj − w′j ||2,

where (i) is by an application of Jensen’s inequality ‖
∑n
i=1 wi‖2 ≤ n

∑n
i=1 ‖wi‖2, and (ii) follows

from (11); Substituting ρ1 = 1

1+
γ̃i

(1−γ̃i)µ
( ργ̃i
−L)

, we get (iii).

By selecting ρ > L, we obtain:

(1− γ̃i)2(µ+ L)2(
(1− γ̃i)µ+ γ̃i(

ρ
γ̃i
− L)

)2 < (1− γ̃i)2(µ+ L)2(
(1− γ̃i)µ+ γ̃i(

L
γ̃i
− L)

)2 =
(1− γ̃i)2(µ+ L)2(

(1− γ̃i)µ+ (1− γ̃i)L
)2 = 1.

We conclude:

‖R(w)−R(w′)‖2 =

m∑
i=1

‖Ri(w)−Ri(w′)‖2 ≤
m∑
i=1

(1− γ̃i)2(µ+ L)2(
(1− γ̃i)µ+ γ̃i(

ρ
γ̃i
− L)

)2 1

m− 1

m∑
j 6=i

‖wj − w′j‖2

≤ a2
1

m∑
i=1

1

m− 1

m∑
j 6=i

‖wj − w′j‖2 ≤ α2‖w − w′‖2.
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where a1 = maxi
(1−γ̃i)(µ+L)(

(1−γ̃i)µ−γ̃iL+ρ
) = maxi

(1−γi)(m−1)(µ+L)
(1−γi)(m−1)µ−(γi(m−1)+1)L+mρ < 1, by selecting

ρ > max{L,maxi{ (m−1)γi+1
m L+ (1−γi)(m−1)

m µ}}.
This is equivalent to

‖R(x)−R(y)‖ ≤ a1‖x− y‖,∀x, y, (12)
which shows that the operator R is contractive. From Banach fixed-point theorem, it follows that
there exists a unique fixed point w?, which is the unique Nash equilibrium. �

B.2 PROOF OF THEOREM 2

Before we present our analysis for our algorithm, we first introduce some notations used to present
partial participation. First, we define ‖x‖A :=

√
x>Ax, for any positive definite matrix A � 0.

Λt ∈ Rmd×md is a diagonal random matrix, which denotes the activation matrix with subblocks
Λii ∈ Rd×d, i ∈ m, taking values Id or the zero matrix.

Theorem 2. Let Assumptions 1 and 2 hold. For any γi ∈ (0, 1), λ = |St|/m, ρ >
max{L,maxiLFi}, and assume each client has a probability of being selected at each round that is
lower bounded by a positive constant pmin > 0, then the following holds:

E
[
||wt − w?||2

]
≤ at

pmin
||w0 − w?||2 +

1− at

1− a

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

,

where a = 1− pmin(1− (1 + ξ−1)a2
1) ∈ (0, 1), ξ is an any constant that satisfies ξ ≥ a1/(1− a1),

and a1 = maxi
(1−γi)(m−1)(µ+L)

(1−γi)(m−1)µ−(γi(m−1)+1)L+mρ , LFi = (m−1)γi+1
m L+ (1−γi)(m−1)

m µ.

Proof: We define the error term at global round t as the following:
et := wt+1 −R(wt).

Then we have∥∥et∥∥2
=
∥∥wt+1 −R(wt)

∥∥2
= ‖wt+1 − wt+1,?‖2 =

m∑
i=1

‖wt+1
i − wt+1,?

i ‖2

≤
(i)

m∑
i=1

1

(ρ− LFi)2

∥∥∇wiGi(wt+1
i ;wti)

∥∥2 ≤
(ii)

m∑
i=1

εi
(ρ− LFi)2

,

where wt+1,? is the unique solution of (2) at global round t. Inequality (i) follows from Proposition
3, inequality (8b) by selecting ρ > LFi so that Gi(wi;w−i) is (ρ − LFi)-strongly convex with
respect to wi; (ii) follows from Assumption 2.

First, we denote the partial participation update rule as the following:
wt+1 = wt + Λt(R(wt) + et − wt),

Under any activation scheme such that Et[Λt+1] = Λ � 0, then we have

‖wt+1 − w?‖2Λ−1 = ‖wt + Λt(R(wt) + et − wt)− w?‖2Λ−1

= ‖wt − w?‖2Λ−1 + 2(wt − w?)>Λ−1Λt(R(wt) + et − wt)
+ (R(wt) + et − wt)>ΛtΛ−1Λt(R(wt) + et − wt).

Since Λ−1,Λt are diagonal matrices, they commute with each other. From the definition of Λt, we
can get that ΛtΛt = Λt. After taking conditional expectations on both sides, we obtain:

Et
[
||wt+1 − w?||2Λ−1

]
= ||wt − w?||2Λ−1 + ||R(wt) + et − wt||2 + 2(wt − w?)>(R(wt) + et − wt)
=
(i)
‖wt − w?‖2Λ−1 + ‖R(wt) + et − w?‖2 − ‖wt − w?‖2

≤
(ii)
||wt − w?||2Λ−1 − (1− (1 + ξ−1)a2

1)||wt − w?||2 + (1 + ξ)‖et‖2 (13)

≤ (1− pmin(1− (1 + ξ−1)a2
1))||wt − w?||2Λ−1 + (1 + ξ)‖et‖2

≤ (1− pmin(1− (1 + ξ−1)a2
1))||wt − w?||2Λ−1 +

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

,
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Where (i) is directly obtained by completing squares; (ii) follows from the inequality ||x + y||2 ≤
(1+ξ−1)||x||2 +(1+ξ)||y||2,∀ξ > 0 and (12), and Et[Λt+1] = piId, here Id ∈ Rd×d is an identity
matrix, and ξ is any positive number, pmin = min

i
pi, which is the minimal active probability across

all the users. For ease of exposition, we denote a = (1 − pmin(1 − (1 + ξ−1)a2
1)). Finally taking

the expectation of all randomness and by induction, we get

E
[
||wt − w?||2Λ−1

]
≤ aE||wt−1 − w?||2Λ−1 +

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

≤ a
(
aE||wt−2 − w?||2Λ−1 +

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

)
+

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

≤ . . . ≤ atE||w0 − w?||2Λ−1 + (at−1 + at−2 + . . .+ 1)

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

= at||w0 − w?||2Λ−1 +
1− at

1− a

m∑
i=1

(1 + ξ)εi
(ρ− LFi)2

Here, ξ is an any positive number that satisfy 1 + ξ−1 ≤ a−1
1 , which is ξ ≥ a1/(1 − a1), we have

a = 1− pmin(1− (1 + ξ−1)a2
1) ∈ (0, 1),∀pmin.

Thus, Theorem 2 can be directly obtained by ||wt−w?||2 ≤ ||wt−w?||2Λ−1 ≤ 1
pmin
||wt−w?||2. �

The constant ξ here is only needed in our proof, it follows from the inequality ‖x + y‖2 ≤ (1 +
ξ−1)‖x‖2 + (1 + ξ)‖y‖2,∀ξ > 0 where we used in inequality (13). Our theorems provide the
guarantees of the effectiveness of our method under a large enough ρ. However, the analysis is
conservative, in that it does not exclude the other choices of ρ.

Table 3: Comparison of theoretical results. LC and Heterogeneity rep-
resent whether need to assume Lipschitz continuity and the level of sta-
tistical heterogeneity, respectively, while CR represents the convergence
rate (a < 1).

Algorithm LC Heterogeneity CR
ditto X X O( 1

T )

pFedMe X X O( 1
T )

PerFedAvg X X O( 1
T )

pFedGT X - O(aT ), α ∈ (0, 1)

Discussions. The Lipschitz con-
tinuity is the only assumption we
need to prove the existence and
uniqueness of the solution un-
der suitable selection of the hy-
perparameter ρ (as in Theorem
1). Furthermore, our algorithm
converges linearly to that solu-
tion while the other PFL meth-
ods demonstrate a sublinear con-
vergence rate (ditto (Li et al.,
2021), pFedMe (T Dinh et al.,
2020), PerFedAvg (Fallah et al., 2020)). There is no need for assumptions on the level of
statistical heterogeneity (i.e., bounded diversity, 1

m

∑m
i=1 ||∇fi(w) − ∇f(w)|| ≤ σ2, where

f(w) := 1
m

∑m
i=1 fi(w)), which is commonly used in many PFL methods like Ditto, pFedMe,

PerFedAvg. In contrast to other papers, which first prove their global model converges, and then
prove that their personalized models stay close to their global model, our method directly proves all
the personalized models converge linearly (to a unique Nash equilibrium that depends only on the
selection of γi by the users). We summarize the comparison in Table 3.
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(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 7: Visulization of different levels of non-IID data distributions on the CIFAR-10 dataset, for different
values of α of the Dirichlet distribution.

C EXPERIMENT DETAILS

Table 4: Description of models and datasets in our experiments.

Model Dataset # of labels # of data

ResNet-18
CIFAR-10 10

60,000
CIFAR-100 100

CNN HAR 6 10.299

In this section, we present the de-
tails of our experiment implementa-
tion and used datasets. All our ex-
periments were conducted on a system
with 2 Intelr Xeonr Gold 6330 CPUs
and 8 NVIDIAr GeForce RTX 3090
GPUs. We used three real datasets
in this paper: CIFAR-10, CIFAR-100
(Krizhevsky, 2009), and Human Activity Recognition (HAR). For CIFAR-10 and CIFAR-100, we
employed ResNet-18 as the model architecture, while for HAR, a CNN model with two convolu-
tional layers was utilized. Table 4 describes the models and datasets, along with their total number
of labels and data points used in our experiments.

Table 5: Statistics of imbalanced datasets associated with exper-
iments in Table 1. Mean and Stdev list the mean and standard
deviation of local data sizes.

Dataset levels of non-IID Mean Stdev

CIFAR-10
α = 0.1 3,000 1,434.73
α = 1 3,000 563.97
α = 10 3,000 233.21

CIFAR-100
N = 20 3,000 2,371.36
N = 50 3,000 4,140.07
N = 100 3,000 6,096.31

HAR - 343.3 35.71

Data Distribution: We explore dif-
ferent levels of statistical heterogeneity
(represented by varying values of pa-
rameters α and N , which are defined on
page 8) across the network in two differ-
ent ways. Note that both of these further
yield unequal data volumes across the
users. For each user, we randomly al-
locate 75% of the total data to the train-
ing dataset and the remaining 25% to the
test dataset. The setting is summarized
in Table 5.

Baselines: We compare pFedGT
against a variety of existing PFL methods such as Ditto (Li et al., 2021) and pFedMe (T Dinh
et al., 2020), which learn personalized models that are maintained close to the global model by
regularization. APFL (Deng et al., 2020) achieves personalization through model interplolation,
i.e., a weighted average of the local and global models. PerFedAvg (Fallah et al., 2020) uses a
meta-learning approach to learn local models based on each user task. In addition to evaluating our
proposed pFedGT method, we also conducted comparisons with two established state-of-the-art
representation learning methods, namely FedRep (Collins et al., 2021) and FedBABU (Oh et al.,
2022). Both of these methods utilize a similar initialization technique, where the body of the neural
network is initialized with the global model. However, the two methods differ in their initialization
of the head layers. Specifically, FedBABU randomly initializes the head layers while FedRep ini-
tializes the head from the global model and then performs fine-tuning on the head while freezing
the body. Additionally, we also conducted experiments on testing the global model on local test
data through FedAvg (McMahan et al., 2017), as well as its fine-tuning (FT) method (Wang et al.,
2019).
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D ADDITIONAL EXPERIMENTS

(a) α = 0.1 (b) α = 1

Figure 8: Results are shown over 3 runs on CIFAR-10 dataset.

In our main paper, the experimental re-
sults are conducted on the same fixed
random seed. For completeness of
presentation, we have done 3 runs of
our experiments in CIFAR-10 dataset
on different random seeds, and the re-
sults are shown in Figure 8. The re-
sults demonstrate pFedGT consistently
yields better results than baselines (in
fact the lower bar always lies above the
upper bar of all baselines).

Effect of hyperparamter µ. We tune µ in a candidate set {0.01, 0.05, 0.1, 0.5}, then we fix µ =
0.05 in all the experiments we conducted. The following table presents the ablation study for varying
µ while fixing all other parameters (the level of heterogeneity is α = 0.1 of Dirichlet distribution).
The results indicate somehow that our algorithm is robust to a relatively small µ between 0.01 and
0.1.

Table 6: ablation study for µ.

Dataset µ = 0.01 µ = 0.05 µ = 0.1 µ = 0.5

CIFAR-10 92.14% 92.64% 91.58% 80.11%

CIFAR-100 60.10% 59.84% 58.70% 23.91%

Ablation on local initialization. We explore more on the local initialization of wi, ci (line 1 of Alg.
2). Fig. 9 presents the results of these experiments. Notably, we observed that initializing local mod-
els with the server model θ provides an effective warm start for local personalization. Additionally,
initializing users’ local combined messages ci with the averaged value c aids in stabilizing pFedGT,
reducing oscillations, and achieving robust convergence. Consequently, these choices were adopted
by default in the experiments for our proposed method.

(a) CIFAR-10 (b) CIFAR-100

Figure 9: Initialization strategies involve using the
server model θ or the previous local model wi for ini-
tializing the local model and either the global average
c or the prior local value ci for initializing ci. Optimal
results are achieved when θ and c are used, as detailed
in the main paper.

(a) CIFAR-10 (b) CIFAR-100

Figure 10: Accuracy comparison of a specific user for
different values of personalization hyperparameter γi
in pFedGT while fixing the others. The optimal value
of γi varies depending on the specific data distribu-
tion, demonstrating the flexibility and adaptability of
the proposed method in real-world scenarios.

Personalization coefficient γi. Through the use of the personalization coefficient γi, users can find
a balance between the local and global information used in personalization. To investigate the effect
of the personalization hyperparameter γi on the performance of individual users, we conduct exper-
iments by varying its value while keeping the other users fixed to 0.8 (empirically set as the default
value throughout the paper). Fig. 10 shows the performance comparison results for a specific user,
highlighting that the optimal value of the personalization hyperparameter γi varies with different
data distributions, consistent with our initial design intention, as illustrated in Fig. 1. Besides, we
conduct experiments on varying only for the MAX user and the MIN user (where the MAX user
holds the largest data volume (5,994 data points), and the MIN user represents the opposite (1,164
data points)) while fixing the values (0.8) for all users in CIFAR-10 α = 0.1 scenario. The results
are shown in Table 7.
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Table 7: Accuracies of the MAX and MIN user for different values of γi in CIFAR-10 (α = 0.1) while fixing
the values (0.8) for all users.

User 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MAX 86.59% 87.73% 92.26% 92.60% 93.66% 92.46% 93.46% 93.00% 93.33%

MIN 71.82% 86.23% 86.94% 90.03% 88.66% 89.00% 89.35% 90.38% 89.69%

(a) CIFAR-10, α = 0.1 (b) CIFAR-10, α = 1 (c) CIFAR-100, α = 0.1 (d) CIFAR-100, α = 1

Figure 11: Our experiments indicate that when ρ = 0, the algorithm consistently achieves the best or second-
best results across the scenarios we tested. In scenarios with a higher degree of non-IID data distribution, the
performance gap does not significantly widen.

Effect of hyperparamter ρ. In our analysis, ρ has to be sufficiently large to ensure the existence
and uniqueness of the Nash equilibrium and the convergence of our algorithm. We would like to
emphasize that the analysis is conservative, i.e., it provides a rigorous guarantee without excluding
other choices for the operation of the algorithm (which we test experimentally). Subsequantly, we
conducted experiments by using various values ({0, 0.001, 0.005, 0.01}) for the hyperparameter ρ.
Fig. 11 shows that ρ = 0 (which we use by default in our experiments in the main paper) achieves the
best or the second best results. Additionally, the performance gap in highly heterogeneous scenarios
is not significant compared with that in more IID scenarios. This provides greater flexibility in ad-
justing the parameter ρ during the implementation of pFedGT, beyond the lower bound established
in our theorem.
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