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Abstract

The relational data model was designed to facil-
itate large-scale data management and analytics.
We consider the problem of how to differentiate
computations expressed relationally. We show
experimentally that a relational engine running an
auto-differentiated relational algorithm can easily
scale to very large datasets, and is competitive
with state-of-the-art, special-purpose systems for
large-scale distributed machine learning.

1. Introduction
The relational data model (Codd, 1970) is the basis for
most modern SQL database systems. SQL can be used to
extract and transform data into formats that can be used
to train machine learning models. Furthermore, many data
management systems (MLDB, 2017; BigQuery, 2020; Agar-
wal et al., 2021; Redshift, 2021; PostgreSQL, 2021) now
support in-database machine learning (Feng et al., 2012;
Syed & Vassilvitskii, 2017), where data is stored in rela-
tional databases, and machine learning models are trained
and executed within database management system. This
can improve performance and scalability without extra data
transfer overhead. Also, it is natural to express a large
class of distributed machine learning (ML) computations
relationally. Consider matrix multiplication which is the
workhorse of modern ML, assume two matrices A and B
which have been partitioned into smaller sub-matrices and
stored as relations (Luo et al., 2018; Jankov et al., 2021):

1 A(row INT, col INT, mat MATRIX[][])
2 B(row INT, col INT, mat MATRIX[][])

A simple SQL code specifies a distributed matrix multiply:
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1 SELECT A.row, B.col,
2 SUM (matrix_multiply (A.mat, B.mat))
3 FROM A, B WHERE A.col = B.row
4 GROUP BY A.row, B.col

In addition to scalability, executing such a code on a re-
lational engine has the advantage that the database query
optimizer will automatically distribute the computation, tak-
ing into account the sizes of the two matrices. If A and B are
both large matrices, a database optimizer will consider the
hardware constraints on each compute node (e.g. memory
size) and choose to co-partition both A and B using the join
predicate A.col = B.row. If one of the matrices is rela-
tively small (A, for example) and the other matrix is already
partitioned across nodes, the database will simply broadcast
the smaller matrix. Effectively, the database system is auto-
matically choosing between various distribution paradigms.
The first plan is often referred to as mixed data/model paral-
lelism or tensor parallelism (Shazeer et al., 2018; Jia et al.,
2019; Shoeybi et al., 2019; Lepikhin et al., 2020; Xu et al.,
2021; Zheng et al., 2022; Barham et al., 2022) in the dis-
tributed machine learning literature, and the second plan is
data parallel (Dean et al., 2012; Li et al., 2014), if A is a
model matrix.

Relational systems can run a wide variety of ML compu-
tations (Yuan et al., 2020; Jankov et al., 2021). For exam-
ple, consider graph-based convolution operation (Kipf &
Welling, 2016), which is really a three-way join, followed
by an aggregation. Assume data is stored in two relations:

1 Node(ID INT, vec VECTOR[2048])
2 Edge(srcID INT, dstID INT)

Here, vec is the current embedding of a node. Then a graph
convolution operation can be written as:

1 SELECT n1.ID as n.ID, ReLU(MAT_MUL(AVG (
Normalize(n2.vec)))) as n.vec

2 FROM Node as n1, Edge as e, Node as n2
3 WHERE n1.ID = e.srcID and n2.ID = e.dstID
4 GROUP BY n1.ID

Consider a massive, billion-node, 10-billion-edge graph.
Propagating 2048-dimensional embeddings over 10 billion
edges will require moving 163 TB of data, which a scalable,
distributed database can handle, but will cause problems for
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Figure 1. RX as a function from a key set {0, 1} × {0, 1} to R2×2.

most ML systems.

While a relational database may be an excellent platform
for executing a large ML computation, ML systems like
TensorFlow and PyTorch have at least one key advantage:
automatic differentiation (Maclaurin et al., 2015; Seeger
et al., 2017; Van Merriënboer et al., 2018; Sheldon et al.,
2018; Baydin et al., 2018; Bolte & Pauwels, 2020; Ablin
et al., 2020; Lee et al., 2020; Oktay et al., 2021; Krieken
et al., 2021; Bolte et al., 2022; Arya et al., 2022; Ament &
Gomes, 2022). We argue that without adding an auto-diff
capability to relational engines, such compute platforms
are unlikely to capture much market share in ML, even for
applications to which they are uniquely suited (Woznica
et al., 2005; Moseley et al., 2020; Jayaram et al., 2021;
Sahni et al., 2021; Agarwal et al., 2021).

In this paper, we describe an auto-diff framework that takes
a computation specified in relational algebra (RA) as in-
put and automatically produces a second RA computation
that evaluates the gradient of input computation, taken with
respect to one or more database tables. A standard SQL
compiler and optimizer can further optimize the generated
auto-diff’ed SQL programs. There are several specific con-
tributions of this work:

• The gradient operation ∇ is a function-to-function
transformation: it takes as input a function F , and
returns a new function∇F that returns the direction of
the fastest increase in F from location x. Classically,
RA is defined operationally (each RA operation takes
one or more relations as input and returns a relation).
As such, we define a functional version of the RA, as
well as gradients of RA functions.

• We propose an algorithm for automatically generating
a functional RA expression that evaluates the gradient
of an input functional RA expression.

• We use our RA auto-diff algorithm to automatically
produce distributed ML computations and show exper-
imentally that computations generated by RA auto-diff
algorithm can easily handle very large-scale ML tasks.

Roadmap. All modern relational database engines are RA
engines, executing relational operations (joins, aggregations,

and so on) over relations (tables). Even if a relational com-
putation is expressed in another language (such as SQL),
it is compiled into RA. Thus, in Section 2, we define a
functional version of RA that is amenable to auto-diff. In
Section 3 we re-define partial derivatives, Jacobians, gradi-
ents, and vector-Jacobian products in the relational domain.
In Section 4, we define efficient, relational implementation
of relation-Jacobian products for table scan, selection, aggre-
gation, and join. Finally, in Section 5, we give a relational
version of the reverse-mode auto-diff algorithm.

2. A Functional Relational Algebra
2.1. Relations

Consider a mathematical computation over a set of binary
relations R0,R1,R2, .... Each relation Ri contains tuples:

(key, value)

and is a function from some key set K to a value set V . The
corresponding function is defined for every key ∈ K. In a
sparse representation, a tuple of the form (key, value)
may not be present in the underlying implementation of R
for each key ∈ K; in such a case, the value associated
with a missing key is zero or its equivalent.

We make no assumptions about the form of the key; it may
be complex, itself consisting of multiple attributes. In the
general case, V corresponds to all multi-dimensional arrays
whose shape is defined by the vector n, so V = Rn1×n2×....

Viewed in this way, relations can easily represent the stan-
dard data structures in linear algebra (vectors, matrices, and
higher-dimensional tensors) by decomposing the original
data structure into tuples holding “chunks” or “blocks”. For
example:

X =


1 4 1 2
1 2 4 3
3 1 2 1
2 2 2 2


can be decomposed into a relation

RX(⟨rowID,colID⟩,value)

as depicted in Figure 1.

In the remainder of this section, we make the simplifying
assumption that V = R (so values are all scalars), and
define F(K) to be the set of all functions from key set K
to R; hence, each relation R with key set K is in F(K).
However, due to performance considerations, large-scale
ML computations implemented relationally should typically
be implemented using chunks rather than scalars (Luo et al.,
2018). Performing computations on a relational engine
over a relation storing sub-matrices will give much better
performance than over a relation storing a massive number
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of scalars. Fortunately, it is straightforward to extend to
arrays stored in relations, rather than scalars (as we discuss
in Section A).

Constant relations vs. queries. RX is an example of a
relation or a simple function; given any value in the key
set, a corresponding real number (or a multi-dimensional
tensor in the general case) is produced. However, to build
queries, we also need some notion of a higher-order function
over relations: a function from one or more input relations
to a output relation. It is over such higher-order functions
that the gradient operation will itself operate. Thus, we
introduce a query, which, given n input key sets K1, ...,Kn

and output key set Ko, is a function from relations to a
relation:

Q : F(K1)× F(K2)× ...× F(Kn)→ F(Ko)

In the remainder of the paper, we use the simplified notation:

Q : F(K1,K2, ...,Kn)→ F(Ko)

Thus, all queries are higher-order functions. A query repre-
sents a “variable relation” because while the key set is fixed
at Ko, the actual value from F(Ko) taken by the relation
depends upon n different input relations given as arguments.

2.2. Operations in RA

Operations such as joins and aggregations in our variant of
RA are higher-order functions used to build up queries. We
now go through each of the operations, defining each.

(1) TableScan (denoted using “τ”) is a higher-order func-
tion that accepts a key set K and returns a query that it-
self accepts a relation in F(K) and simply returns exactly
that relation. Formally, τ has type signature τ : K →
(F(K)→ F(K)) and is defined as: τ(K) 7→ ((R) 7→ R) .

(2) Aggregation (denoted using “Σ”) accepts a query, a
grouping function grp, and a commutative, associative
kernel function ⊕ defined over the real numbers and returns
a new query that aggregates the result of the original query.
The function grp : Ki → Ko accepts a key value and
maps it to a new key value; when the result of a query is
aggregated, two tuples t1 and t2 are put into the same group
if grp(t1) = grp(t2) and then aggregated using ⊕. More
precisely, aggregation has type signature:(
(Ki → Ko)× (R→ R)× (F(K1, ...,Kn)→ F(Ki))

)
→

(
F(K1, ...,Kn)→ F(Ko)

)
And the semantics of aggregation is as follows:

Σ (grp,⊕, Q) 7→
(
(R1, R2, ..., Rn) 7→

{
(key,value)

s.t. for key ∈ Ko and Q′ = Q(R1, R2, ..., Rn),

value = ⊕{Q′(keyIn) s.t. grp (keyIn) = key}
})

A constant grouping function (one that always returns the
same value key) aggregates the result of query Q down to
a single tuple (for example, holding a scalar loss value).

Imagine that we wish to represent a four-by-four matrix X
relationally, and aggregate its contents down to a single two-
by-two matrix. Let KX denote the key set {0, 1} × {0, 1}.
We can build up a function F that does exactly this as F ≡

Σ((key) 7→ ⟨⟩, (v1,v2) 7→ MatAdd(v1,v2), τ(KX))

The resulting function F can be applied to any relation in
F(KX). For example, F ({(⟨0, 0⟩, [ 1 4

1 2 ]), (⟨0, 1⟩, [ 1 2
4 3 ]),

(⟨1, 0⟩, [ 3 1
2 2 ]), (⟨1, 1⟩, [ 2 1

2 2 ])}) evaluates to {(⟨⟩, [ 7 8
9 9 ])}.

(3) Join (denoted using “1”) accepts two queries Ql and
Qr (with output key sets Kl and Kr, respectively) and
produces a new query that composes Ql and Qr together,
with output key set Ko. In addition to the two queries to
compose, 1 accepts three functions: (1) a boolean predicate
pred : Kl × Kr → {true, false} that takes a key from
the key set for Ql and a key from the key set for Qr and
determines if the two keys match; (2) a projection function
proj : Kl × Kr → Ko that accepts a key from the key
set for Ql and a key from the key set for Qr and composes
them; and (3) a kernel function⊗ : R×R→ R that accepts
two real-valued values and composes them.

Formally, the type signature for 1 is:

1:
(
(Kl ×Kr → {true, false})
× (Kl ×Kr → Ko)× (R× R→ R)
×
(
F(Kl1 ,Kl2 , ...,Kln)

)
→ F(Kl)

)
× (F(Kr1 ,Kr2 , ...,Krm)

)
→ F(Kr))

)
→

(
F(Kl1 , ...,Kln ,Kr1 , ...,Krm)→ F(Ko)

)
And we can define the semantics of 1 as follows:

1(pred,proj,⊗, Ql, Qr) 7→(
(Rl1 , ..., Rln , Rr1 , ..., Rrm) 7→

{
(key,val)

s.t. for key ∈ Ko and Q′
l = Ql(Rl1 , ..., Rln)

and Q′
r = Qr(Rr1 , ..., Rrm),

val = ⊗ (Q′
l(keyL), Q

′
r(keyR))

s.t. pred(keyL,keyR) = true

∧ proj(keyL,keyR) = key
})

We are creating a function that executes queries Ql and Qr,
and then creates a new relation by finding tuples of the form
(key,val) where key is created by applying proj to the
keys from two tuples, one from each query result, and val
is created by applying ⊗ to the values from the same tuples.

We can now build up computations such as matrix multipli-
cation. Given the key set KX, let:
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• ⊕(val1,val2) 7→ MatAdd(val1,val2)

• grp(key) 7→ ⟨key[0],key[2]⟩
• ⊗(valL,valR) 7→ MatMul(valL,valR)

• pred(keyL,keyR) 7→ keyL[1] = keyR[0]

• proj(keyL,keyR)
7→ ⟨keyL[0],keyL[1],keyR[1]⟩

If K = {0, 1}×{0, 1}, then the following RA builds a func-
tion that multiplies two decomposed four-by-four matrices:

FMatMul ≡ Σ(grp,⊕,1 (pred,proj,⊗, τ(K), τ(K)))

(4) Join with one constant input (denoted using “1const”).
This is similar to the prior operation, except that one of
the inputs to the join is a constant relation, as opposed to a
query. Generally, we will not perform gradient descent with
respect to all relations; some relations must be constant.

1const accepts the same three functions as 1: pred, proj,
and ⊗, as well as the query and the constant relation to be
joined. The semantics are defined as follows:

1const(pred,proj,⊗, Q,R) 7→
(
(Rl1 , ..., Rln)

7→
{
(key,value)

s.t. for key ∈ Ko and Q′ = Ql(Rl1 , ..., Rln),

value = ⊗ (Q′(keyInL), R(keyInR))

s.t. pred(keyInL,keyInR) = true

∧ proj(keyInL,keyInR) = key
})

(5) Selection (denoted using “σ”) builds a function that
filters tuples from the output of another query Q, but more
importantly, the resulting function can modify the values
in the tuples. σ accepts three functions: (1) a selection
predicate pred : Ki → {true, false} that takes a key from
the input key set for Q and accepts or rejects the key; (2)
a projection proj : Ki → Ko that modifies the key, (3) a
kernel function ⊙ : R→ R that can be used to modify the
value in a tuple. Given this, the type signature for σ is:

σ :
(
(Ki → {true, false})× (Ki → Ko)× (R→ R)
× (F(K1,K2, ...,Kn)→ F(Ki))

)
→ (F(K1,K2, ...,Kn)→ F(Ko))

And the semantics for σ is:

σ(pred,proj,⊙, Q)

7→
(
(R1, ..., Rn) 7→

{
(proj(key),value)

s.t. pred(key) = true)

∧ for Q′ = Q(R1, ..., Rn),value = ⊙ (Q′(key))
})

2.3. Example: Logistic Regression

For a simple application, we can easily implement logis-
tic regression with cross-entropy loss. Consider the sets:
rowID = {0, 1, ..., n−1} and colID = {0, 1, ...,m−1}.
That is, we have n feature vectors identified by the num-
bers in rowID, each of which has m features identified
by the numbers in colID. Now consider the training set,
which consists of feature values for each data point, stored
in the relation Rx ∈ F(rowID× colID), and the set of
labels, stored in the relation Ry ∈ F(rowID). The goal is to
learn the set of regression coefficients, stored in the relation
RΘ ∈ F(colID). Then the forward pass is:

FMatMul ≡Σ(grpMatMul,⊕,1const (predMatMul,

projMatMul,⊗MatMul,Rx, τ(colID))

FPredict ≡σ(predPredict,projPredict,⊙, FMatMul)
FLoss ≡Σ(grpLoss,⊕,1const (predLoss,projLoss,

⊗Loss, FPredict,Ry))

The matrix multiplication uses functions:

• ⊕(val1,val2) 7→ val1+ val2

• grpMatMul(key) 7→ ⟨key[0]⟩

• ⊗MatMul(valL,valR) 7→ valL× valR

• predMatMul(keyL,keyR) 7→ keyL[1] = keyR[0]

• projMatMul(keyL,keyR) 7→ ⟨keyL[0],keyL[1]⟩

The selection utilizes a logistic function to make predictions:

• predPredict(key) 7→ true

• projPredict(key) 7→ key

• ⊙(val) 7→ logistic(val)

And a cross-entropy loss computes the quality of the model:

• grploss(key) 7→ ⟨⟩

• ⊗Loss(yhat,y) 7→ −y log yhat + (y − 1) log(1 −
yhat)

• predLoss(keyL,keyR) 7→ keyL[0] = keyR[0]

• projLoss(keyL,keyR) 7→ ⟨keyL[0]⟩

Now, FLoss is a function from F(colID) to F({⟨⟩}). That
is, executing the query FLoss on a relation that contains all
of the regression coefficients will return a simple tuple with
empty key ⟨⟩ and whose value contains the loss. Figure 5
(in appendix) shows this example on the left part.
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3. Auto-Diffing RA: Preliminaries
3.1. Relational Partial Derivatives and Jacobians

Our goal is ultimately to perform auto-differentiation on
functions such as FLoss to power standard optimization
algorithms such as gradient descent. To do this it is first
necessary to re-define standard concepts such as partial-
derivatives and Jacobians in the relational domain.

Relational partial derivatives. Consider any query Q :
F(Ki) → F(Ko).1 We denote the partial derivative of Q
with respect to a tuple (k, v) with k ∈ Ki by ∂Q

∂k . This
partial derivative is itself a function with type signature
F(Ki)→ F(Ko).

To formally define this concept—which is analogous to the
partial derivative of a multi-variate function F with respect
to a particular input, consider the relation Rh in F(Ki) where
Rh[k] is h, and Rh[k

′] is 0 for k′ ̸= k. Now, let:

• ⊗1(valL,valR) 7→ valL+ valR

• ⊗2(valL,valR) 7→ valR−valL
h

• pred(keyL,keyR) 7→ keyL = keyR

• proj(keyL,keyR) 7→ keyL

Now, we can define ∂Q
∂k as the function:

(R) 7→ lim
h→0

1

(
pred,proj,⊗2, Q,

Q
(
1const (pred,proj,⊗1,Rh, τ(Ki))

))
(R,R)

This is the query that we obtain by creating a “slightly”
perturbed version of Q that adds h to the value associated
with key k. We run Q on input relation R as well as the
perturbed version of Q on R, and then join the output of the
two versions of Q to compute how much each output tuple
varies.

Relational Jacobians. In real analysis, a Jacobian is a ma-
trix of functions, where each function is the partial derivative
of a multivariate function with respect to a unique input/out-
put variable pair. We denote a Jacobian of query Q as
JQ : F(Ki)→ F(Ki ×Ko). Consider the functions:

• pred(key) 7→ key[0] = k

• proj(key) 7→ key[1]

• ⊙(val) 7→ val

1In the case that Q takes n > 1 arguments, all of the definitions
in this section apply to Q, given n − 1 constant relations and
partially applying Q to those n − 1 relations to obtain a one-
argument function.

JQ is the Jacobian for query Q, if for every key k ∈ Ki:

σ(pred,proj,⊙, JQ) ≡
∂Q

∂k
.

That is, the relational Jacobian is a query that performs a
relational partial derivative for every possible input key.

Relational gradients. Define the gradient of query Q :
F(Ki)→ F(Ko) with respect to k ∈ Ko in terms of the Ja-
cobian. Let: pred(key) 7→ key[1] = k, proj(key) 7→
key[0], ⊙(val) 7→ val. Then the gradient of query Q
with respect to key k is:

∇kQ ≡ σ(pred,proj,⊙, JQ)

To obtain the gradient, we restrict the Jacobian of query Q
to one of the keys in the output set, filtering out the rest.
Note that if Q has only one output tuple—if it is computing
a loss value, for example—then the Jacobian of Q and the
gradient of Q are essentially equivalent, in the sense that
evaluating either over a relation R ∈ F(Ki) will produce
singleton relations with tuples having the same values. In
this case, we drop the key k and write∇Q.

Multi-relation queries. In the case where a query Q has
multiple table scans (and hence takes multiple relations as
inputs), the notions of relational Jacobian and relational gra-
dients still apply. These are defined by picking the table scan
τi associated with the ith input relation, and partially evalu-
ating Q using given, constant relations for each table scan
τ ̸= τi. This results in a single-argument query, which we
refer to using Qi. The relational Jacobian and relational gra-
dients are then defined with respect to Qi. For an ML com-
putation encoded as a relational query with n input relations
(whose values we want to learn via some form of gradient
descent) having current values R1,R2, ...,Rn, we would typ-
ically want to evaluate ∇Q1(R1),∇Q2(R2), ...,∇Qn(Rn)
to power gradient descent. This is the topic we consider in
the next few sections of the paper.

3.2. Relation-Jacobian Products

As our goal is to build a reverse-mode, relational auto-diff
engine, we next define the analog to the vector-Jacobian
product in the relational domain, which we call the relation-
Jacobian product. Assume that we have a query Q :
F(Ki)→ F(Ko). Let:

• ⊕(val1,val2) 7→ val1+ val2

• grp(key) 7→ key[0]

• ⊗(valL,valR) 7→ valL× valR

• pred(keyL,keyR) 7→ keyL = keyR[1]

• proj(keyL,keyR) 7→ keyR
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Algorithm 1 ChainRule (vi, vj , ∂Q
∂Rj

, ⟨R1, ...,Rk⟩)

1: Input: Connected RA operations vi, vj (the result of
vi is input into vj), relation ∂Q

∂Rj
, list of all intermediate

results obtained when executing Q: ⟨R1, ...,Rk⟩
2: Output: ∂Q

∂Ri
computed via the chain rule

3: Let K(v) denote the output key set for RA operation v
4: if vj is Σ (grp,⊕, vi) then
5: ∂Q

∂Ri
← RJPΣ(grp,⊕,K(vj),K(vi))(

∂Q
∂Rj

,Ri)

6: else if vj is σ (pred,proj,⊙, vi) then
7: ∂Q

∂Ri
← RJPσ(pred,proj,⊙,

K(vj),K(vi))(
∂Q
∂Rj

,Ri)

8: else if vj is τ (K) then
9: ∂Q

∂Ri
← RJPτ (K)( ∂Q

∂Rj
,Ri)

10: else if vj is 1 (pred,proj,⊗, vi, vk) then
11: ∂Q

∂Ri
← RJP1(pred,proj,⊗,

K(vj),K(vi),Rk)(
∂Q
∂Rj

,Ri)

12: else if vj is 1 (pred,proj,⊗, vk, vi) then
13: ∂Q

∂Ri
← RJP1(pred,proj,⊗,

K(vj),Rk,K(vi))(
∂Q
∂Rj

,Ri)

14: else if vj is 1const (pred,proj,⊗, vi,R) then
15: ∂Q

∂Ri
← RJP1(pred,proj,⊗,

K(vj),K(vi),R)(
∂Q
∂Rj

,Ri)

16: end if
17: Return ∂Q

∂Ri

Then the relation-Jacobian product for query Q, denoted
RJPQ : F(Ko,Ki)→ F(Ki) is defined as:

RJPQ ≡ Σ(grp,⊕,1 (pred,proj,⊗, τ(Ko), JQ))

4. RJPs for Relational Operations
Many auto-diff engines work by first executing the under-
lying computation, collecting intermediate results, during
a forward pass. Then those results are used to evaluate
the desired gradient(s) in a backward pass, via a series of
vector-Jacobian products.

Thus, there are two key parts of any classical reverse-mode
auto-diff system: (1) the overall algorithmic framework
that runs the forward and backward passes, and (2) vector-
Jacobian product implementations for each RA operation.

To support auto-diff for RA, we need something analogous
to both of these parts. In this section of the paper, we
describe relation-Jacobian product (RJP) implementations
for each of the higher-order RA functions we have defined.

RJP for Table Scan. Consider query Q ≡ τ(K), for a
key set K. The RJP for this query, denoted as RJPτ (K) :

Algorithm 2 RAAutoDiff (Q, ⟨In1,In2, ...⟩)
1: Input: Query Q computing a one-tuple loss, list of

input relations ⟨In1,In2, ...⟩
2: Output: ∇Q1(In1),∇Q2(In2), ...
3: Topologically sort RA operations in Q into a list of

operations ⟨v1, . . . , vn⟩
4: Let E be the list of edges in Q, where (vi, vj) ∈ E if

the output of vi us used by vj
5: Execute Q(In1,In2, ...)
6: Let Ri denote the intermediate relation produced by Vi

for each i ∈ {1...n} during execution
7: Set ∂Q

∂Rn
to {(keyOut, 1)} where keyOut is the key

in the output tuple from Q
8: for i = n− 1 down to 1 do
9: % Compute ∂Q

∂Ri

10: Let I = ⟨id1, id2, .., idm⟩ be a list of vertex identi-
fiers s.t. idj ∈ I if (vi, vidj

) ∈ V

11: P1← ChainRule (vi, vid1
, ∂Q
∂Rid1

, ⟨R1, ...,Rk⟩)
12: Let K be the key set for Ri

13: Q′ ← τ(K)
14: for j = 2 to m do
15: Pj ← ChainRule (vi, vidj , ∂Q

∂Ri
, ⟨R1, ...,Rk⟩)

16: Q′ ← add(Q′, τ(K))
17: end for
18: ∂Q

∂Ri
← Q′(P1,P2, ...,Pm)

19: end for
20: For the ith input to Q, find the vj that processed Ini as

input. Return the associated ∂Q
∂Rj

as∇Qi(Ini).

F(K,K)→ F(K), can be computed as:

RJPτ (K) 7→ ((Ro,Ri) 7→ Ro)

This RJP is simple because the table scan returns its input
relation; (JQ (Ri)) (⟨k1, k2⟩) then is one for any k1, k2 ∈ K
where k1 = k2, and zero when k1 ̸= k2; taking the left
product with Ro as defined in Section 3.2 simply returns Ro,
no matter the value of Ri.

RJP for Selection. Consider the query
Q ≡ σ(pred,proj,⊙, τ(Ki)), with type sig-
nature Q : F(Ki) → F(Ko). The RJP for Q,
RJPσ(pred,proj,⊙,Ko,Ki) : F(Ko,Ki) → F(Ki),
is:

1 (pred′,proj′,⊗′, τ(Ko), τ(Ki))

where:

• pred′(keyL,keyR) 7→ keyL = proj(keyR)

• proj′(keyL,keyR) 7→ keyR

• ⊗′(valL,valR) 7→ ∂⊙(valR)
∂valR × valL

6
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Here, ∂⊙(valR)
∂valR is the derivative of ⊙(valR) w.r.t. input

valR. Note that σ will discard some tuples if they cannot
meet the boolean condition specified in pred. Those tuples
tuples cannot contribute to a gradient computation, and the
gradient evaluated at a key value that has been filtered from
the relation will implicitly be zero.

RJP for Aggregation. Consider the query
Q ≡ Σ(grp,⊕, τ(Ki)), with type signature
Q : F(Ki) → F(Ko). The RJP for this query, de-
noted as RJPΣ(grp,⊕,Ko,Ki) : F(Ko,Ki) → F(Ki)
is:

1 (pred,proj,⊗, τ(Ko), τ(Ki))

where: pred(keyL,keyR) 7→ keyL = grp(keyR),
proj(keyL,keyR) 7→ keyR, ⊗(valL,valR) 7→
∂⊕(valR)
∂valR × valL. Here, ∂⊕(valR)

∂valR is the derivative func-
tion of ⊕(valR) w.r.t. input valR. If grp is a constant
function, the RJP can be simplified to:

RJPΣ(grp,⊕,Ko,Ki)

7→ ((Ro,Ri) 7→ σ(pred,proj,⊙, τ(Ki))(Ri))

where: pred(key) 7→ true, proj(key) 7→ key,
⊙(val) 7→ ∂⊕(val)

∂val .

RJP for Join. Consider the query Q that computes

1 (pred,proj,⊗, τ(Kl), τ(Kr))

with type signature Q : F(Kl,Kr) → F(Ko). Since this
query has two inputs, we first consider computing the RJP
for query Ql. That can be obtained by partially evaluating Q
with the constant relation Rr, so that Ql : F(Kl)→ F(Ko).

RJP1(pred,proj,⊗,Ko,Kl,Rr) ≡
Σ(grp,⊕(1 (pred1,proj1,⊗1, τ(Ko),

1const (pred2,proj2,⊗2, τ(Kl),Rr))))

where:

• grp(key) 7→ ⟨key⟩
• ⊕(v1,v2) 7→ v1+ v2

• pred1(keyL,keyR) 7→ keyL = keyR[1]

• proj1(keyL,keyR) 7→ keyR[0]

• ⊗1(valL,valR) 7→ valL× valR
• pred2(keyL,keyR) 7→ pred(keyL,keyR)

• proj2(keyL,keyR)
7→ ⟨keyL,proj(keyL,keyR)⟩

• ⊗2(valL,valR) 7→ ∂⊗(valL,valR)
∂valL

If the query Q ≡ 1const (pred,proj,⊗, τ(Kl),Rr)
so that the right-hand relation is a constant, then the
RJP is exactly the same; the RJP for this query is
also RJP1(pred,proj,⊗,Ko,Kl,Rr). If the goal
is to compute the RJP of Qr (that is, where the left-
hand relation is constant) things are symmetric and de-
fined similarly, we denote the RJP in this case using
RJP1(pred,proj,⊗,Ko,Rl,Kr).

There are some further optimization opportunities for
RJP1:

• The first 1const operation can often be optimized out
since most ML workloads fix ⊗ to be × (or MatMul).
For the RJP of Ql and Qr, the result of 1const can be
replaced by Rr and Rl, respectively.

• The final Σ operation can be optimized out based on
different join cardinality relationships (one-to-one, one-
to-many). If 1 is 11−1, the Σ for RJP of Ql and Qr

can be directly removed. If 1 is 11−n or 1n−1: for
the n side, Σ can be optimized in the same way, while
for the 1 side, the Σ must be kept since each tuple’s
partial gradients needed to be aggregated.

• When a join-agg-tree structure (Jankov et al., 2021)
(a join followed by an aggregation) appears in query
graph, differentiating the aggregation operator is un-
necessary.

5. Relational Auto-Differentiation
We are now ready to give the final algorithm for relational
auto-diff. To give the formal algorithm, we first define the
relational add operation, that takes two relations Ql, Qr ∈
F(K) and is defined as add(Ql, Qr) 7→(

(Rl1 , ..., Rln , Rr1 , ..., Rrm) 7→
{
(key,value)

s.t. for key ∈ K and Q′
l = Ql(Rl1 , ..., Rln) and

Q′
r = Qr(Rr1 , ..., Rrm),

value = Q′
l(key) +Q′

r(key)
})

add takes two queries with the same key set and returns a
new query that adds the values with matching keys across
queries. add is necessary to implement the total derivative.

The final algorithm is given as the subroutine Algorithm
1 and the main procedure Algorithm 2. Algorithm 1 im-
plements the chain rule for each of the various relational
operations using RJPs. Algorithm 2 performs the actual
reverse-mode auto-diff, first running the query and then go-
ing through the various relational operations in the query
in reverse topological order. For each RA operation, the
chain rule is used to compute ∂Q

∂Ri
, via the appropriate RJP.
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Dataset name (|V |, |E|) Num feat Num labels
ogbn-arxiv (0.2M, 1.1M) 128 40
ogbn-products (0.1M, 39M) 100 47
ogbn-papers100M (0.1B, 1.6B) 128 172
friendster (65.6M, 3.6B) 128 100

Table 1. Data used for graph convolutional network training.

Figure 4 (in appendix) shows the difference between vector-
jacobian product and relational-jacobian product for a sin-
gle matrix multiplication operation. Figure 5 (in appendix)
shows Algorithm 2 in the right part.

6. Evaluation
One potential benefit of relational auto-diff is that a rela-
tional system, equipped with this technology, could show
better scalability than other systems. Hence we turn our
attention to the question: Can relational auto-diff be used
to produce computations that are competitive with special-
purpose ML systems meant to support large-scale machine
learning?

Our evaluation focuses on three distributed ML computa-
tions over big data: graph convolutional neural networks
(Kipf & Welling, 2016; Liu et al., 2022; 2021; Zhou et al.,
2020), knowledge graph embedding (Hogan et al., 2020),
and non-negative matrix factorization (Lee & Seung, 2000)
(the latter two are relegated to the Appendix). We imple-
mented RA auto-diff in Python, accepting SQL input.

Experiments are run on AWS, using m5.4xlarge in-
stances with 20 cores, 64GB DDR4 memory, and 1TB
general SSD. We run our experiments using 1 to 16 nodes
connected by 10Gbps Ethernet. We build our relational
computations on top of a relational engine (Zou et al., 2018).
It is worth to mention here all the RA operators, RJP rules,
and related implementation in this paper can easily be in-
corporated into any relational system that supports array
types.

Task Evaluated. We benchmark a two-layer, graph con-
volutional neural network (GCN) for a node classification
task. A graph convolutional layer can be easily written as
a relational computation over two relations Edge (storing
all the edges including self-loops, each having a normalized
weight) and Node (storing all the node embeddings in the
graph). Message passing across nodes is implemented as
a three-way join among nodes, edges, and nodes, followed
by an aggregation. This join extracts the ID from both
source node and destination nodes, and matches them with
the sourceID and destID of the edges. This GCN is
benchmarked using the datasets in Table 1.

Experiments. We compare against two other state-of-the-
art open-source graph systems: DistDGL (Wang et al.,
2020) and AliGraph (Zhu et al., 2019). RA-GCN is our

RA-based implementation. The Adam optimizer is used
with learning rate η = 0.1; the dropout rate γ = 0.5; the
hidden layer dimension D = 256; batch size B = 1024.
DGL is built from the latest version 0.9 from scratch. We
use PyTorch (Paszke et al., 2017) distributed as the backend
for AliGraph. All of the systems are running the same
learning computations over the same input data, using the
same batch size, the same initial data partitioning scheme,
and the same model.

As a scalable, RA-based system, RA-GCN is able to handle
arbitrary-size batches and can even perform full graph train-
ing, while the other systems can only support “data-parallel”
graph training, partitioning large graphs into sub-graphs
and sampling neighbors to form mini-batches. We also in-
clude full-graph training on RA-GCN. For each of the four
datasets and four methods tested, per-epoch running times
are shown in Tables 2 and 3. “OOM” denotes the case that
a system failed due to out-of-memory errors.

Discussion. Our experiments generally showed that exe-
cuting the RA-based auto-diff output consistently results in
a computation that is as fast as the state-of-the-art alterna-
tives. The only exceptions were for the GCN runs over the
smallest data sets (ogbn-arxin and ogbn-products),
where the RA-based solution was somewhat slower than its
competitors. This is perhaps not surprising: one might not
expect the benefit of a scalable, RA-based solution to be ap-
parent over a very small data set, compared to a custom-built
ML solution.

However, there were some clear advantages of the auto-
diffed RA solution. As the auto-diffed RA is running on
what is essentially a high-performance database system, it
avoided all out-of-memory errors. RA-GCN was able to
scale to the largest data set (friendster), even for full
graph training–thus avoiding the potential pitfalls of cutting
important edges during training. In fact, the RA-based
solution was the only solution able to scale to full-graph
training. Further, RA-GCN was able to do this on only one
machine—automatically adapting to the limited memory
as required (a hallmark of scalable database engines). The
other solutions failed even to perform mini-batch training
on fewer than eight machines for this data set.

The ability to scale in terms of model and data size is very
important, given the growing evidence that far more often
than not, “bigger is better” in modern ML. Getting a ML
system to work as embedding sizes are increased (that is, as
we use ever-higher-dimensional hidden layer activations) is
difficult, as this has a significant effect on memory usage.
This is strong motivation for having a distributed ML system
that scales with little or no human effort.

We also point out that getting these other systems to scale—
even to the extent shown in the experimental results reported
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ogbn-arxiv ogbn-products
Cluster Size 1 2 4 8 16 1 2 4 8 16
DistDGL 1.664s 1.407s 0.731s 0.483s 0.321s 14.827s 9.270s 4.980s 2.889s 1.799s
AliGraph 13.734s 5.488s 3.603s 1.744s 1.564s 87.299s 55.193s 31.128s 17.303s 11.734s
RA-GCN 9.957s 5.125s 2.741s 1.604s 0.957s 31.347s 16.409s 10.713s 6.873s 4.591s

RA-GCN(full) 20.196s 11.739s 7.338s 4.331s 3.196s 54.424s 33.185s 19.028s 13.572s 9.897s

Table 2. Distributed graph convolutional network runtime per epoch on ogbn-arxiv and ogbn-products. RA-GCN (full) is the
experiment results for full graph training while others are mini-batch based training.

ogbn-papers100M friendster
Cluster Size 1 2 4 8 16 1 2 4 8 16
DistDGL OOM OOM 71.842s 56.517s 39.824s OOM OOM OOM 92.741 71.826s
AliGraph OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
RA-GCN 295.184s 154.94s 78.091s 52.937s 36.409s 371.572s 194.212s 125.405s 87.913s 63.354s

RA-GCN(full) 1161.553s 614.121s 327.609s 218.339s 133.581s 1492.142s 781.102s 485.247s 317.087s 279.763s

Table 3. Distributed graph convolutional network runtime per epoch on ogbn-papers100M and friendster.

here—can be an arduous task. AliGraph requires the user
to load whole graph into memory and manually partition
it for distributed training (AliGraph plans to support the
METIS (Karypis & Kumar, 1995) graph partitioning algo-
rithm in the near future). DistDGL can partition relatively
small graphs in both automatic and distributed fashion us-
ing its API dgl.distributed.partition graph.
However, for large graph partitioning, a user needs to run
an external tool - ParMETIS (Par), which involves a lot of
graph format conversions. ParMETIS loads the graph into
the memory of a single node and then sends the edges to
other nodes. Arguably, the relational solution is turnkey:
simply load the graph into relational tables, auto-diff the
SQL, and begin training.

7. Related Work
Auto-differentiation has been integrated into many program-
ming systems, including machine learning systems (Chen
et al., 2015; Abadi, 2016; Paszke et al., 2017; Frostig et al.,
2018; van Merriënboer et al., 2018; Tokui et al., 2019),
scientific computing systems (Bischof et al., 2003; Has-
coet & Pascual, 2013; Sluşanschi & Dumitrel, 2016; Revels
et al., 2016; Innes, 2020) and physical simulation systems
(de Avila Belbute-Peres et al., 2018; Hu et al., 2019; Jakob,
2019; Degrave et al., 2019; Heiden et al., 2021). Some of
the closest work to our own involves auto-diff for functional
programming languages. (Shaikhha et al., 2019) shows how
to differentiate a higher-order functional array-processing
language. (Abadi & Plotkin, 2019) proposes a first-order
language with reverse-mode differentiation. (Baydin et al.,
2015) adds auto-differentiation support to .NET ecosys-
tem. (Pearlmutter & Siskind, 2008) incorporates auto-diff
into lambda calculus. (Schule et al., 2021) considers auto-
differentiation of the numerical kernel functions used in
RA/SQL.

Some previous work has unified RA with machine learning
computations (Geerts et al., 2021; Zhang et al., 2021; Xu
et al., 2022; Zhou et al., 2022; Fegaras et al., 2022; Guan
et al., 2023; Rusu et al., 2023). (Koutsoukos et al., 2021; He
et al., 2022; Park et al., 2022; Asada et al., 2022) build foun-
dation for fusing relational operations into tensor runtime.
(KOVACH et al., 2023) defines an intermediate representa-
tion of contraction expression for both tensor and relational
computations.

One of the contributions of this work was the definition of
a functional RA that can be used to form database com-
putations on which the gradient operation can be applied.
Relations in our functional RA are related to K-relations
(Green et al., 2007). K-relations are used to build up po-
tentially complicated computations over some set K, in the
same way that we use RA to build computations over tensors.
However, the RA defined over K-relations is not functional
in the sense that it does not actually build functions over
relations, it directly operates on them. Hence it does not
directly address the need for a functional RA.

8. Conclusions
We have considered the problem of automatic differentiation
in relational algebra. We have demonstrated experimentally
that a relational engine running an auto-diff computation
can execute various “big data” ML tasks as fast as special-
purpose distributed ML systems. We have shown that the
relational approach has the benefit that it naturally scales to
very large problems, even when limited memory is available.
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van Merriënboer, B., Moldovan, D., and Wiltschko, A. B.
Tangent: Automatic differentiation using source-code
transformation for dynamically typed array programming,
2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,

G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works, 2020.

Woznica, A., Kalousis, A., and Hilario, M. Kernels over
relational algebra structures. In PAKDD, volume 3518,
pp. 588–598. Springer, 2005.

Xu, L., Qiu, S., Yuan, B., Jiang, J., Renggli, C., Gan,
S., Kara, K., Li, G., Liu, J., Wu, W., Ye, J., and
Zhang, C. In-database machine learning with corgip-
ile: Stochastic gradient descent without full data shuf-
fle. In Proceedings of the 2022 International Con-
ference on Management of Data, SIGMOD ’22, pp.
1286–1300, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392495. doi: 10.
1145/3514221.3526150. URL https://doi.org/
10.1145/3514221.3526150.

Xu, Y., Lee, H., Chen, D., Hechtman, B., Huang, Y., Joshi,
R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M., et al.
Gspmd: general and scalable parallelization for ml com-
putation graphs. arXiv preprint arXiv:2105.04663, 2021.

Yoon, H., Nang, J. H., and Maeng, S. A distributed back-
propagation algorithm of neural networks on distributed-
memory multiprocessors. In 3rd Symposium on the Fron-
tiers of Massively Parallel Computation-Frontiers’ 90, pp.
358–363, 1990.

Yuan, B., Jankov, D., Zou, J., Tang, Y., Bourgeois, D.,
and Jermaine, C. Tensor relational algebra for machine
learning system design. arXiv preprint arXiv:2009.00524,
2020.

Zhang, Y., Mcquillan, F., Jayaram, N., Kak, N., Khanna,
E., Kislal, O., Valdano, D., and Kumar, A. Distributed
deep learning on data systems: a comparative analysis of
approaches. Proceedings of the VLDB Endowment, 14
(10), 2021.

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J.,
Xiong, H., Zhang, Z., and Karypis, G. Dgl-ke: Training
knowledge graph embeddings at scale. In Proceedings
of the 43rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR
’20, pp. 739–748, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z.,
Huang, Y., Wang, Y., Xu, Y., Zhuo, D., Xing,
E. P., Gonzalez, J. E., and Stoica, I. Alpa: Au-
tomating inter- and Intra-Operator parallelism for dis-
tributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 22), pp. 559–578, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1.

13

https://doi.org/10.1145/3341701
https://doi.org/10.1145/3127479.3132746
https://doi.org/10.1145/3127479.3132746
https://doi.org/10.1145/3514221.3526150
https://doi.org/10.1145/3514221.3526150


Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

URL https://www.usenix.org/conference/
osdi22/presentation/zheng-lianmin.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. Advances in neural information
processing systems, 33:4917–4928, 2020.

Zhou, L., Chen, J., Das, A., Min, H., Yu, L., Zhao,
M., and Zou, J. Serving deep learning models with
deduplication from relational databases. arXiv preprint
arXiv:2201.10442, 2022.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai,
B., Li, Y., and Zhou, J. Aligraph: A comprehen-
sive graph neural network platform. Proc. VLDB En-
dow., 12(12):2094–2105, aug 2019. ISSN 2150-8097.
doi: 10.14778/3352063.3352127. URL https://doi.
org/10.14778/3352063.3352127.

Zou, J., Barnett, R. M., Lorido-Botran, T., Luo, S., Mon-
roy, C., Sikdar, S., Teymourian, K., Yuan, B., and
Jermaine, C. Plinycompute: A platform for high-
performance, distributed, data-intensive tool develop-
ment. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD ’18, pp.
1189–1204, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450347037. doi: 10.
1145/3183713.3196933. URL https://doi.org/
10.1145/3183713.3196933.

14

https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.1145/3183713.3196933
https://doi.org/10.1145/3183713.3196933


Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

A. Extensions To Arrays
In this paper, we have assumed that the value in each relation is a single real number. Effectively, this assumes that the
data is stored sparsely. For example, if we wish to store a matrix A relationally, the sparse relational representation is:

1 A(row INT, col INT, value DOUBLE)

Any missing value is assumed to be zero. However, as mentioned previously, this can have performance degradation if a
relation is used to store a vector, matrix, or higher-dimensional tensor that is not sparse. There is a small, fixed-size cost
associated with pushing each tuple through the system so a large dense computation may be problematic. In this case, it may
make more sense to store the data densely as “chunks”:

1 A(row INT, col INT, value MATRIX[][])

A dense matrix stored in this fashion, along with well-implemented, high-performance CPU or GPU kernels to operate over
them, can result in excellent performance.

Fortunately, the ideas in this paper are easily extended to such “tensor-relational” computations, simply by extending
the kernel functions so that they operate over tensors rather than scalars. This only requires being able to differentiate
the kernel functions, which can be done by a conventional auto-diff framework such as JAX (Bradbury et al., 2018). By
storing tensors in relations, RA auto-diff provides an automatic and efficient method to automatically generate distributed
backpropagation algorithms. We provide a simple python tool can be used for RA auto-differentiation: https://github.
com/anonymous-repo-33/relation-algebra-autodiff

B. Experiment: Non-Negative Matrix Factorization
Task evaluated. We first benchmark a large-scale non-negative matrix factorization (NNMF). We are given the relation
Node with schema (ID INT, vec VECTOR[LEN]), storing node identifiers and embeddings of the nodes in the graph,
and Edge, which is a relation storing all the edges in a graph. The total number of nodes is N . The dimensionality of the
node embedding is D. We run experiments with the following four cases: (1) N = 40k, D = 40k; (2) N = 50k, D = 40k;
(3) N = 60k, D = 10k; (4) N = 10k, D = 60k.

Experiments. We benchmark the RA implementation (RA-NNMF) against Dask (Rocklin, 2015), a popular parallel
computation framework, and a careful “by-hand” implementation on top of MPI. All three implementations are using
stochastic gradient descent (SGD) with learning rate η = 0.1. Node embeddings are randomly initialized.

Results. We record per-epoch running time of three implementations in different cluster sizes: 2, 4, 8, and 16. The results
are shown in Figure 2. Dask heavily relies on the large memory capacity of the clusters and runs out of memory (OOM)
during backward propagation for the case N = 60k, D = 10k.

C. Experiment: Knowledge Graph Embedding
Task Evaluated. Finally, we implement two common knowledge graph embedding (KGE) algorithms: TransE-L2 (Bordes
et al., 2013) and TransR (Lin et al., 2015).
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Figure 2. NNMF per-epoch running times.
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Figure 3. 100-iteration time for knowledge-graph-embedding training on Freebase; batch size is 1K.

Experiments. We train our KGE model on the Freebase data set. Freebase (Chah, 2017) contains 1.9 billion
triples in RDF format; it is a knowledge graph with 86M nodes, 339M edges, and 14,824 relations. We refer to our
PlinyCompute-based RA implementation (auto-generated via our relational auto-diff) as RA-KGE. We compare against
the distributed knowledge graph embedding training framework DGL-KE (Zheng et al., 2020). We split the dataset into a
training set (90%), a validation set (5%), and a testing set (5%). For each positive sample, 200 corrupted negative samples
are used. We pick the entity embedding size D = 50, 100, 200; For TransE, we choose the same embedding size for both
relations and entities. For TransR, we choose the double entity embedding size for relations. The optimizer is SGD with
learning rate η = 0.5. We consider three different cluster sizes: 4, 8, and 16 nodes. For DGL-KE, the dataset is manually
partitioned into 4, 8, and 16 parts using METIS.

Results. We observe and compare the time to perform 100 forward and back-prop iterations for each of the various
experimental settings. The results are shown in Figure 3. For DGL-KE the number after the per-iteration running time is the
maximum per-node memory usage. OOM is reported if the system failed due to lack of memory.
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D. Example for RJPs

Matrix Multiplication:

Vector-Jacobian Product: Optimized Relation-Jacobian Product:

Distributed Matrix Multiplication:

SELECT X.row AS Z.row, W.col AS Z.col
   SUM (matrix_multiply (X.mat, W.mat))
FROM X, W
WHERE X.col = W.row
GROUP BY X.row, W.col

SELECT X.row AS W_gradient.row, 
       Z_gradient.col AS W_gradient.col

   SUM (matrix_multiply (X.mat, Z_gradient.mat))
FROM X, Z_gradient
WHERE X.col = Z_gradient.row
GROUP BY X.row, Z_gradient.col

Linear Algebra: Relational Algebra:

Z = MatMul (X, W)

W_gradient 
= MatMul (X_transpose, Z_gradient)

Forward Pass:

Backward Pass:

Figure 4. Correspondence between the same computation in linear algebra (left) and relational algebra/SQL (right) in forward pass for
computing Z and backward pass for computing gradients of W. The input matrices X and W are stored into relations by decomposing
matrices into chunks or blocks and operated over using high-performance kernels (such as matrix multiply). The RA-based computation
generated via auto-diff executed on a high-performance database engine provides an easy way to run a distributed backpropagation
algorithm (Yoon et al., 1990).
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Figure 5. The left part is the logistic regression. The right part is the generated query by RJPs for differentiating parameters in logistic
regression. The top 1const is a 11−1 while the bottom 1const is a 11−n. We apply all RJP optimizations for Σ and 1 mentioned in
Section 4.
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