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Abstract

Large language models are often expected to001
constantly adapt to new sources of knowledge002
and knowledge editing techniques aim to effi-003
ciently patch the outdated model knowledge,004
with minimal modification. Most prior works005
focus on monolingual knowledge editing in En-006
glish, even though new information can emerge007
in any language from any part of the world. We008
propose the Cross-Lingual Multi-Hop Knowl-009
edge Editing paradigm, for measuring and ana-010
lyzing the performance of various SoTA knowl-011
edge editing techniques in a cross-lingual setup.012
Specifically, we create a parallel cross-lingual013
benchmark, CROLIN-MQUAKE for measur-014
ing the knowledge editing capabilities. Our ex-015
tensive analysis over various knowledge editing016
techniques uncover significant gaps in perfor-017
mance between the cross-lingual and English-018
centric setting. Following this, we propose a019
significantly improved system for cross-lingual020
multi-hop knowledge editing, CLEVER-CKE.021
CLEVER-CKE is based on a retrieve, verify022
and generate knowledge editing framework,023
where a retriever is formulated to recall edited024
facts and support an LLM to adhere to knowl-025
edge edits. We develop language-aware and026
hard-negative based contrastive objectives for027
improving the cross-lingual and fine-grained028
fact retrieval and verification process used in029
this framework. Extensive experiments on030
three LLMs, eight languages, and two datasets031
show CLEVER-CKE’s significant gains of up032
to 30% over prior methods. 1Code and Data033

1 Introduction034

Large language models (LLMs) are seeing an in-035

creasing adoption across users having different cul-036

tural and linguistic background, and need to be up037

to date about the ever-changing knowledge in the038

world for maintaining their utility and reliability039

in various applications. Due to the ever increasing040

1Link removed for maintaining anonymity

Figure 1: The Cross-lingual Multi-hop knowledge edit-
ing problem. New fact(s) are provided in different lan-
guages (e.g. Hindi). An LLM should adapt to these facts
for answering complex, multi-hop questions correctly
in different languages (e.g. English).

compute and data requirements to train these mod- 041

els, there has been a surge in the development of 042

knowledge editing techniques to modify the lan- 043

guage models in an efficient way, such that they 044

adhere to the world dynamics. 045

Prior work on knowledge editing has largely fo- 046

cused on editing LLMs in a monolingual setting 047

(Zhong et al., 2023; Gu et al., 2024), where both 048

user queries and edited facts are expressed in the 049

form of English. These works can be grouped into 050

two categories: parameter-update and parameter- 051

preserving methods. The former directly updates 052

the parameters within LLMs for updating knowl- 053

edge about the edited facts through meta-learning, 054

fine-tuning, or knowledge locating (De Cao et al., 055

2021; Dai et al., 2022; Mitchell et al., 2022a; Meng 056

et al., 2022a,b). The later approach freezes the pa- 057

rameters and explicitly stores the edited facts in an 058

external memory and retrieves them for answering 059

user queries (Zhong et al., 2023; Gu et al., 2024; 060

Mitchell et al., 2022c; Hartvigsen et al., 2023). Ex- 061

isting monolingual knowledge editing techniques 062

aren’t broadly applicable since new knowledge can 063

emerge in different languages. Some works have 064

made progress in this direction (Beniwal et al., 065

2024; Xu et al., 2023a; Si et al., 2024), but they 066
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have considered a simplistic setting of assuming067

the edited facts as independent without any multi-068

hop rippling consequences on entailed reasoning069

process, and are primarily focused on parameter-070

modifying based editing methods.071

There has only been a limited focus on the re-072

alistic case of cross-lingual multi-hop knowledge073

editing (see Fig 1), where the edited knowledge074

can come in through users who communicate in075

different languages. Further, much of edited knowl-076

edge often has a rippling effect on other facts of077

the world. For example, the club change of Messi078

affects deduction process of question “indicating a079

superficial word matching rather than a contextual080

grasp of the entities involved." This knowledge edit-081

ing setting, which we argue is important to study,082

is challenging since the model needs to transfer083

knowledge about fact edits between different lan-084

guages, while also reasoning about the facts which085

are modified as a consequence to the given edit.086

Poor knowledge transfer between languages can087

lead to error propagation across reasoning steps088

which can increase failure cases of model editing.089

In this work, we formulate the notion of cross-090

lingual multi-hop knowledge-editing and analyze091

existing approaches for their editing ability in dif-092

ferent languages, following which a simple yet093

highly effective approach is designed. Specifically,094

① We create one of the first benchmark datasets for095

measuring cross-lingual multi-hop knowledge edit-096

ing capabilities of knowledge editing methods. Be-097

sides parameter-update based approaches, we con-098

tribute strong retrieval-based baselines for knowl-099

edge editing and provide a comprehensive analysis.100

② We provide a detailed analysis and find signifi-101

cant gaps in the performance of methods for cross-102

lingual knowledge editing. The gaps are mainly103

due to challenges in accurately recalling fact edits104

made in language other than input query.105

③ To bridge such gap, we design a competitive106

method, termed as Contrastive Language-aware107

Verification for Cross-lingual Knowledge Editing108

(CLEVER-CKE), for improving performance of109

cross-lingual multi-hop knowledge editing. Our ap-110

proach is based on decomposing a multi-hop ques-111

tion in a particular language into sub-questions and112

retrieving fact edits (if any) from memory using113

a cross-lingual retriever, which is integrated for114

answering sub-questions. In particular, the cross-115

lingual retriever is regularized by novel language-116

guided and hard-negative based contrastive losses,117

which leads to improved language and fine-grained 118

sentence understanding of the edits, leading to high 119

quality cross-lingual retrievals. CLEVER-CKE im- 120

proves over previous SoTA by up-to 30% increase 121

in knowledge editing accuracy when tested on mul- 122

tiple LLMs, datasets and languages. 123

2 Cross-lingual Multi-hop Editing 124

Following prior work (Zhong et al., 2023), a fact is 125

defined as a triplet (s, r, o), where s is the subject, 126

o is the object, and r is the relation (e.g., Shake- 127

speare, author of, Hamlet). Given that a parametric 128

LLM can become outdated or incorrect, knowledge 129

editing is required to be performed on it. An edited 130

fact stores information about updated knowledge 131

of an existing fact and is denoted as e = (s, r, o∗), 132

where the object is replaced with a new one o∗. 133

Cross-Lingual Knowledge Editing. Each knowl- 134

edge fact or edit is assumed to be represented in 135

natural language. Let T : E → L be a function 136

which takes any fact e ∈ E (e.g., Shakespeare, 137

author of, Hamlet) and converts it into a natural 138

language statement, (e.g., Shakespeare is the au- 139

thor of Hamlet). All the facts and edits can be 140

represented in a variety of languages {L1, L2, . . . } 141

via functions such as {TL1 , TL2 , . . . }. For example, 142

an edit e =(Shakespeare, author of, Lolita) can be 143

written as Tde(e) = Shakespeare ist der Autor von 144

Lolita in German and Ten(e) = Shakespeare is the 145

author of Lolita in English. 146

We consider a collection of n fact edits in the 147

diverse languages: E = {eL1
1 , eL2

2 , eL2
3 , ..., eLi

n }, 148

where L1, L2, ..., Li are different languages for 149

e.g., German, Hindi, Swahili, etc. A language 150

model f is said to be edited with new knowledge 151

facts if the model generations adheres to all the 152

edits present in E . The model is required to seam- 153

lessly transfer knowledge about an edit in one lan- 154

guage to answer queries in other languages. 155

Multi-Hop Editing and Evaluation. We fol- 156

low Zhong et al. (2023) for evaluating knowl- 157

edge editing via multi-hop question answering. 158

Consider eL1 = (sL1
i , rL1

i , oL1∗
i ), an edited fact 159

in language L1. Also consider a chain of facts 160

P = ⟨(sL1
1 , rL1

1 , oL1
1 ), . . . , (sLk

n , rLk
n , oLk

n )⟩, where 161

object of a fact is the subject for the next fact. Any 162

edit to the first fact (sL1
1 , rL1

1 , oL1∗
1 ) will likely have 163

a rippling effect and change the subsequent facts 164

in the chain, and we expect a successfully edited 165

model to be aware of all such entailed changes. 166

For evaluating models in a cross-lingual multi- 167
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hop setting, we make use of multi-hop ques-168

tions such as QLn , in language Ln which169

is different from L1...k. The question asks170

about the head entity sL1
1 for which the an-171

swer is oLk
n before editing. After editing, the172

fact chain changes to P∗ = ⟨(sL1
1 , rL1

1 , oL1∗
1 )173

, (sL2
2 , rL2

2 , oL2∗
2 ), . . . , (sLk

n , rLk
n , oLk∗

n )⟩ since ed-174

its in the first fact can effect the subsequent facts175

it’s linked to. For answering QLn after editing, the176

model has to account for this rippling effect, and177

provide the final answer as oLk∗
n . For this, model178

has to transfer knowledge of the edited fact and the179

answer, between languages L1...k and Ln, while180

correctly reasoning about fact edits via P∗.181

3 CROLIN-MQUAKE Benchmark182

We develop one of the first parallel cross-lingual183

for measuring the knowledge editing capabilities184

of the existing approaches. A parallel bench-185

mark has the same test examples across all the186

languages, enabling a direct comparison between187

them. For this, we use existing datasets mea-188

suring the multi-hop model editing in English:189

MQuAKE-CF and MQuAKE-T released by Zhong190

et al. (2023), which have counterfactual edits and191

real-world temporal edits respectively. We translate192

one fact edit per example in these datasets using193

Google Translate (Google) into 7 languages with194

diverse writing scripts across medium to high re-195

sourcedness - German, Spanish, Chinese, Rissian,196

Hindi, Bengali, Swahili. This results in the bench-197

mark: Cross-Lingual Multi-Hop QnA for Knowl-198

edge Editing (CROLIN-MQUAKE). It has two199

datasets, CROLIN-MQUAKE-CF and CROLIN-200

MQUAKE-T, each having 8 languages, and 3k201

and 1.8k parallel examples (same examples in all202

languages) per language, respectively. The trans-203

lations are verified by human experts proficient in204

particular languages and evaluation of BLEU score205

(Papineni et al., 2002) using backtranslation. We206

find that the translation is highly accurate, since207

we study medium to high resource languages. See208

Section A.2 for more details.209

Concurrently, Wei et al. (2024) created a multi-210

lingual knowledge editing dataset using Wikipedia,211

offering translocalized knowledge but lacking par-212

allel multilingual examples like ours. CROLIN-213

MQUAKE enables comparing the knowledge edit-214

ing performance difference across languages di-215

rectly without being affected by the variation of216

test sets between different languages.217

4 Benchmark Analysis on Cross-Lingual 218

Multi-hop Knowledge Editing 219

LLMs. We use SoTA propriety and open-source 220

LLMs: ChatGPT (Schulman et al., 2022), LLaMa- 221

2-7B (Touvron et al., 2023b), Vicuna-1.5-7B (Chi- 222

ang et al., 2023) as backbones to evaluate cross- 223

lingual multi-hop knowledge editing. 224

Evaluation Metrics. We use multi-hop accuracy 225

proposed by Zhong et al. (2023) which measures 226

the accuracy of the final answer of a multi-hop 227

question. We also adopt hop-wise answering accu- 228

racy for checking the correctness of intermediate 229

reasoning steps, as proposed by Gu et al. (2024). 230

New Baselines. Based on existing work, we con- 231

tribute strong baselines for the new editing setup: 232

• MeLLo-CL: We modify the existing method of 233

MeLLo (Zhong et al., 2023) by replacing the 234

monolingual retriever used in their system with a 235

multilingual retriever. This minimal modification 236

allows the system to retrieve the cross-lingual ed- 237

its. MeLLo-CL is a simple retrieval-based knowl- 238

edge editing approach: LLM first breaks down 239

a multi-hop question into various sub-questions 240

and for each sub-question, the retriever then re- 241

calls the most relevant fact from an external mem- 242

ory. The LLM disambiguates if the retrieved fact 243

is useful for answering the question or not. 244

• PokeMQA-CL: PokeMQA is similar to MeLLo 245

but consists of a conflict disambiguator for re- 246

trieving as well as classifying if a fact is useful 247

to answer a sub-question. Following PokeMQA, 248

we train this disambiguator using BCE loss with 249

negative sampling for retrieving the close edits, 250

given a decomposed sub-question. However, our 251

training dataset now consists of translated version 252

of the training dataset used in PokeMQA. This 253

training set contains all 8 languages (the multi- 254

lingual setting) or English along with one of the 255

7 non-English languages (the bilingual setting). 256

Figure 2: Comparison of multi-hop accuracy of Mello-
CL and PokeMQA-CL on the CROLIN-MQUAKE-CF
across the different languages.
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CROLIN-MQUAKE-CF CROLIN-MQUAKE-T

3k (All) 100 edited 1.8k (ALL) 100 edited

Method Acc. Hop-Acc Acc. Hop-Acc Acc. Hop-Acc Acc. Hop-Acc

LLaMa-2 Size: 7B

FT 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
ROME 1.9 0.0 2.3 0.0 - - - -
MEMIT 0.4 0.3 4.2 1.0 - - - -
MeLLo-CL 10.6 1.9 14.6 2.3 26.5 3.0 28.5 0.7
PokeMQA-CL 10.6 2.3 19.7 5.9 11.1 5.8 14.6 7.8
CLEVER-CKE 13.2 7.3 19.2 11.1 40.6 30.0 42.6 31.1

Vicuna-1.5 Size: 7B

MeLLo-CL 8.8 2.8 14.5 5.5 34.1 13.5 36.9 13.0
PokeMQA-CL 9.5 2.1 17.3 5.5 11.0 6.6 13.7 8.5
CLEVER-CKE 12.7 7.1 18.1 10.7 37.9 30.6 39.9 31.8

ChatGPT (GPT-3.5-turbo-instruct) Size: Undisclosed

MeLLo-CL 14.4 5.4 20.6 8.5 39.0 17.6 41.4 17.0
PokeMQA-CL 12.9 2.9 26.8 9.3 13.5 8.2 17.4 10.7
CLEVER-CKE 18.6 10.6 30.1 18.6 42.6 32.8 45.6 35.1

Table 1: Performance of parameter update based and in-context editing based methods on the cross-lingual
multi-hop knowledge editing problem, reported for three language models, and averaged over 8 diverse languages.
Parameter-update based methods – FT, ROME, MEMIT perform significantly worse than in-context editing methods,
MeLLo-CL, PokeMQA-CL and CLEVER-CKE, significantly outperform all baselines. Evaluation is performed
over two sizes of edited fact memory – 100 and 3k/1.8k following Zhong et al. (2023). See §4 for more details.

Multi-hop knowledge editing performance heav-257

ily depends on the language of edits. As can258

be seen in the Figure 2, the gaps in average ac-259

curacy between English and other language edits260

are 10% and 11.7% for methods MeLLo-CL and261

PokeMQA-CL, respectively, highlighting the sig-262

nificant drop in cross-lingual knowledge editing263

setup. Performance of MeLLo-CL varies signif-264

icantly across the different scripts. For language265

written in Latin scripts, the accuracy is ∼20%. In266

contrast, for languages written in non-Latin scripts267

such as Devanagari, Chinese, or Cyrillic, the ac-268

curacy drops to ∼11%. Another observation is269

that, in case of edits made in Swahili, despite be-270

ing a low-resource language, it outperforms more271

resource-rich languages like Chinese, Russian, and272

Hindi. This suggests that script plays a crucial role273

in cross-lingual knowledge editing and retrieval.274

The reason is intuitive, i.e., Latin script languages275

have a higher presence in most pretraining data276

which leads to better tokenization and better rep-277

resentation in LLMs; whereas the non-Latin script278

languages suffer from high tokenization fertility279

and less effective representation in the model (Ahia280

et al., 2023; Singh et al., 2024).281

Parameter-modifying based knowledge editing282

performs poorly in the cross-lingual setting. 283

Methods that update the parameters of the model, 284

such as ROME, MEMIT, FT, perform signifi- 285

cantly worse in the cross-lingual setting, achiev- 286

ing an accuracy under 5.0% (average across lan- 287

guages), as shown in Table 1. One key issue is 288

that knowledge edits may not transfer effectively 289

across different languages just via model weights, 290

leading to inconsistent and inaccurate retrievals. 291

Further, the problem is exacerbated due to cas- 292

cading error propagation in a multi-hop setting. 293

Hence the parameter-modifying methods struggle 294

to reliably edit the LLM across languages and 295

multi-hop contexts. This highlights the need for 296

memory-based approaches that rely on an exter- 297

nal edit memory, like our contributed baselines, 298

MeLLo-CL and PokeMQA-CL, which can cross- 299

lingually retrieve the relevant edits on the fly when 300

inferring from an LLM. These approaches sub- 301

stantially improve performance up to nearly 30% 302

on CROLIN-MQUAKE compared to parameter- 303

modifying based methods. 304

Knowledge editing performance based on re- 305

triever training technique. MeLLo-CL retrieves 306

the edited fact from the memory using mContriever 307

and employs an LLM to disambiguate between 308
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the generated answer and the retrieved fact and309

hence ascertains if the generated fact needs any310

update or not. On the other hand, the current311

state-of-the-art knowledge editing method in En-312

glish, PokeMQA-CL, uses a retrieve-then-verify ap-313

proach, which offloads the knowledge disambigua-314

tion to the retriever. This retriever is a light-weight315

and fine-tuned distilbert-base model trained on a316

(sub-question,edit) pair dataset using binary cross-317

entropy loss with negative sampling. It retrieves318

the closest edits (in fact memory) to a sub-question319

and scores it for whether the edit answers the ques-320

tion or not (called verification or disambiguation).321

If it does, then it uses this new knowledge as the322

answer to the sub-question in the n-th hop step and323

performs in-context editing. PokeMQA-CL outper-324

forms MeLLo-CL on in the monolingual (English)325

setting, with a much smaller retriever as shown in326

Gu et al. (2024), however, when trained with mul-327

tilingual data, we find that it significantly under-328

performs MeLLo-CL in most languages including329

English as shown in Fig. 2. MeLLo-CL under-330

performs in Hindi and Bengali – languages with331

scripts very different from Latin, even though it’s332

retriever is trained with 100+ languages.333

Qualitative analysis of errors. We examine the334

error cases of MeLLo-CL and PokeMQA-CL for335

knowledge edits made in two languages: English336

and Hindi. Our analysis identifies two primary337

types of errors made by these methods. The first338

type is a) incorrect retrieval, where the retrieved339

information is not relevant to input queries. The340

second type is b) incorrect LLM response, where a341

LLM either makes a mistake in extracting the final342

answer or errors in decomposing the question into343

subquestions. Additionally, MeLLo-CL exhibits344

c) contradiction error where the LLM makes mis-345

take at the contradiction step. Figure 7 illustrates346

the examples of these three types of errors. We347

analyzed a random subset of 30 samples for these348

methods and found the following:349

❶ MeLLo-CL: When edits are made in English,350

63.3% of the samples are correct, 29.3% have the351

contradiction error, 3.6% have Incorrect retrieval,352

and 3.6% have the incorrect LLM response. For353

edits made in Hindi, 33.3% of the samples are cor-354

rect, 60% exhibit an error combination of incorrect355

retrieval and subsequent contradiction error, where356

the model first makes an incorrect retrieval and357

then fails in the contradiction step and 6.6% of358

erroneous samples are due to the incorrect LLM re-359

sponse. In the CROLIN-MQUAKE-CF case when 360

the multilingual edited fact memory containing ed- 361

its in English and Hindi, MeLLo-CL’s retriever 362

rarely retrieves edits in Hindi, indicating a limita- 363

tion in its multilingual capabilities. The limitation 364

of MeLLo-CL lies in its retriever-then-contradict 365

mechanism which is up to the LLM. 366

❷ PokeMQA-CL: When edits are made in En- 367

glish, 53.3% of the samples are correct and 46.3% 368

have the incorrect retrieval error. When edits are 369

made in Hindi, 43.3% are correct, 51% have er- 370

rors due to the incorrect retrieval and 5.6% are due 371

to the incorrect LLM response. The limitation of 372

PokeMQA-CL lies in its reliance on a bag-of-words 373

model for retrieval. For instance, when presented 374

with the sub-question “Who is the head of state of 375

the USA?", it retrieves the fact “The head of state 376

of Mongolia is Khürelsükh Ukhnaa." This example 377

underscores that PokeMQA-CL prioritizes facts 378

with the highest word overlap, specifically “head of 379

state" indicating a superficial word matching rather 380

than a contextual grasp of the entities involved. 381

❸ When trained in a cross-lingual setting, 382

PokeMQA-CL exacerbates the issue of bag-of- 383

words retrieval. For example, for the sub-question 384

“Where was Bob Dylan born?", it correctly retrieves 385

“Bob Dylan was born in the city of Nankoku" in 386

English. However, if the same edit is made in Ger- 387

man, it retrieves “Bob Dylan spricht die Sprache 388

von Malayalam" (Bob Dylan speaks the language 389

of Malayalam). This issue is a likely a consequence 390

of high word overlap in retriever’s internal transla- 391

tion process and is a limitation of current systems. 392

Section 4 hints signficant gapS between English- 393

only and cross-lingual case, and that proper knowl- 394

edge retrieval technique is critical to the perfor- 395

mance of cross-lingual knowledge editing. 396

5 CLEVER-CKE for Knowledge Editing 397

For overcoming limitations in cross-lingual multi- 398

hop knowledge editing, we design CLEVER-CKE, 399

a cross-lingual and light-weight model editor that 400

seamlessly integrates into any backbone LLM, 401

without changing its parameters. CLEVER-CKE is 402

inspired by memory-based and retrieval-augmented 403

knowledge editing methods (Zhong et al., 2023; Gu 404

et al., 2024; Mitchell et al., 2022b) for mutlihop 405

question answering. CLEVER-CKE follows the 406

following procedure: Given an input query, it a) 407

decomposes the multi-hop question into multiple 408

sub-questions for getting to the final answer, and 409
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Figure 3: Our proposed method, CLEVER-CKE. On the left we show the LLM inference process for cross-lingual
multi-hop knowledge editing. Given a prompt (See §A.6), the LLM breaks down a multi-hop question into sub-
questions and answers them individually, utilizing a a retrieve and verify approach using the retriever. On the right,
we show new training objectives used in this work for training the retriever. See §5 for more details.

for answering each sub-question b) retrieves a rele-410

vant fact from the edit memory, c) disambiguates411

whether the retrieved new knowledge is relevant412

to answering the sub-question, and d) continues413

the model generation process based on that. In this414

work, we primarily aim at showing the importance415

of having a high-quality retriever for the retrieve-416

and-verify steps at b) and c) described as follows.417

See Fig. 3 for an overview.418

Memory of Fact Edits: CLEVER-CKE explic-419

itly stores a set of knowledge edits E in a memory420

F . Each edit triplet e = (s, r, o) ∈ E is converted421

to a natural language statement in either English or422

another language using English or translated tem-423

plates present in CROLIN-MQUAKE. This creates424

a multilingual edited fact memory.425

Sub-question Decomposition: Given a multi-426

hop question Q, LLM is prompted using in-427

context examples to decompose it into various sub-428

questions Qsub = {q1, q2, . . . }. Note that Q and429

the language model generation is assumed to be430

in English in our work whereas the edited fact431

memory can contain both English and non-English432

knowledge edits. The LLM is instructed to answer433

the generated sub-questions as follows.434

Retrieve-and-Verify: For each sub-question q,435

CLEVER-CKE retrieves the top-1 candidate r ∈436

F using cosine similarity. Verification process then437

answers the question: Does r help answer q? The438

answer to this is yes if cos(f(r), f(q)) ≥ t where439

cos(.) is the cosine similarity function, f(.) ∈ Rd440

is the retriever embedding and t is a threshold (hy-441

perparameter). In this case, r is passed to the LLM442

which uses it for generating the answer to the sub- 443

question. If cos(f(r), f(q)) < t, only the LLM’s 444

internal knowledge is used to answer the question. 445

Following this, LLM will move on to answering the 446

next sub-question. Note that here, the disambigua- 447

tion of whether r is useful or not, happens external 448

to the LLM, reducing its reasoning complexity. 449

CLEVER-CKE Retriever Training: Motivated 450

by gaps found in Section 4, we create new ob- 451

jectives for training the retriever for improving 452

fine-grained and cross-lingual representations. We 453

then show that our simple losses provide significant 454

gains in knowledge editing performance. 455

Semantic Distinction Loss: We employ a con- 456

trastive, triplet margin loss LSD for improving fine- 457

grained cross-lingual retrieval. Assuming an edits 458

e = (s, r, o), we obtain its natural language forms 459

TL1(e), TL2(e) in languages L1, L2 respectively. 460

This creates a positive pair for the triplet loss. We 461

generate hard negatives for Ten(e) in English by 462

replacing an edits’ subject, object, or both object 463

with random entities, with a probability of 0.33 464

each. This process involves extracting all relations 465

in MQUAKE dataset and prompting the GPT-3.5 466

model to suggest head/tail entities for these rela- 467

tions. We then randomly sample any generated 468

head/tail (or both) for replacement in an edit con- 469

taining the corresponding relation. Following this, 470

the hard negative example Ten(eneg) is translated 471

to L1 and hence a negative pair (TL1(e), TL1(eneg) 472

is obtained. The loss function is formulated as: 473

LSD = max(d(f(TL1(e)), f(TL2(e))

−d(f(TL1(e)), f(TL1(eneg)) + α, 0).
(1) 474

f(·) represents the retriever embedding, d(.) repre- 475
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sents the distance function, and α is a gate hyper-476

parameter. LSD promotes learning the fine-grained477

knowledge about subject, relation and object in a478

cross-lingual setting and encourages the model to479

distinguish the semantic nuances in different edits.480

This mitigates the redundant selection of edits with481

significant word overlap.482

Cross-Lingual Edit Consistency Loss: We em-483

ploy a contrastive, triplet margin loss LCLEC fo-484

cused on improving cross-lingual retrieval. Here,485

the anchor is Qen, a question in English. The edited486

fact for answering that question, TL1(e), serves as487

the positive example, and a random edit TL2(erand)488

forms the negative example:489

LCLEC = max(d(f(Qen), f(TL1(e))

−d(f(Qen), f(TL2(erand)) + α, 0).
(2)490

BCE Loss: Following (Gu et al., 2024; Mikolov491

et al., 2013) we add a binary cross-entropy loss492

in the cross-lingual setting as a baseline loss for493

training the retriever for retrieving edits in a cross-494

lingual setting. The negative BCE Loss function495

takes questions in English and their corresponding496

edited facts in one of the seven languages as input.497

We then compute the L2 norm between these edits498

and questions, and sample 20 negatives. The loss499

function L is defined similar to Gu et al. (2024):500

LBCE = − log g(TL1(e), f(Qen))

−Eqn∼Pn(q)[log(1− g(TL1(e), qn))],
(3)501

where Pn is a uniform over each mini-batch, and502

g(.) = exp(d(.)).503

LCLEC and LBCE encourage it to differentiate504

between edits in different languages and enhance505

its ability to handle multilingual knowledge editing506

tasks effectively. The total loss we use is then:507

Ltotal = LSD + LCLEC + LBCE. (4)508

5.1 Performance of CLEVER-CKE509

We train the retriever with the above losses on a510

dataset of 8 languages and measure performance511

on the CROLIN-MQUAKE. In Table 1, on aver-512

age across languages and across different LLMs,513

CLEVER-CKE improves over previous methods514

by up-to 5.7% in accuracy on CROLIN-MQUAKE-515

CF and we see a much larger increase in the hop-516

accuracy which suggests faithful reasoning. On the517

real world temporal dataset CROLIN-MQUAKE-T,518

we see a significant increase of about 30% accuracy519

and more than 25% in hop-accuracy metric. Per-520

formance gains are large and consistent or better521

Figure 4: Average accuracy of methods CLEVER-CKE,
PokeMQA-CL and MeLLo-CL reported on 2, 3, 4-hop
questions with ChatGPT as LLM with the case of all
edited on CROLIN-MQUAKE-CF.

for larger and more capable models like ChatGPT, 522

as compared to LLaMa-2/Vicuna-1.5. Refer to 523

Figure 8 which illustrates an example where other 524

methods make errors, while CLEVER-CKE cor- 525

rectly answers the question. 526

Performance across n-hops: We compare the 527

performance of MeLLo, PokeMQA and CLEVER- 528

CKE in answering n-hop questions, n ∈ 2, 3, 4 us- 529

ing CROLIN-MQUAKE-CF dataset and ChatGPT 530

as the LLM. As shown in Fig. 4, CLEVER-CKE 531

outperforms PokeMQA-CL and MeLLo-CL with 532

an average performance increase of 30.7% for 2- 533

hop questions, 22.6% for 3-hop questions, and 5% 534

for 4-hop questions. Fig. 6 presents language-wise 535

accuracies for these methods for n-hop questions, 536

showing the superior performance of CLEVER- 537

CKE compared to other methods. 538

Bilingual vs Multilingual retriever: To com- 539

pare performance differences with increasing the 540

number of languages, we trained PokeMQA-CL 541

and CLEVER-CKE’s retrievers in a bilingual set- 542

ting using English and the target language. See Fig 543

5 for results. As expected, on average the bilin- 544

gual setting has greater performance than the mul- 545

tilingual setting, potentially due to interference of 546

multiple languages in the multilingual setting. We 547

interestingly observe that this gap is minimal in the 548

case of CLEVER-CKE, compared to PokeMQA- 549

CL. This is because CLEVER-CKE’s losses lead 550

to better cross-lingual knowledge transfer leading 551

to reduced interference of languages and more gen- 552

eralization. This observation generalizes across 553

LLMs and datasets we tested on. Language-wise 554

performance comparison of the two retriever setups 555

for PokeMQA and CLEVER-CKE using ChatGPT, 556

LLaMa-2-7B and Vicuna-1.5-7B are in Tables 6-11. 557
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Also see Figs. 9 to 16 for more results.

Figure 5: Average accuracy using bilingual vs multilin-
gual retriever, on the CROLIN-MQUAKE-CF dataset
in 3k setting using ChatGPT as the LLM.

558

Ablations: We conducted an ablation on the loss559

functions we use, with results presented in Ta-560

ble 2. We selected five languages for this study561

and used the validation set of CROLIN-MQUAKE-562

CF. LSD and LCLEC significantly improve per-563

formance over LBCE , showing their importance564

in inducing fine-grained understanding and cross-565

lingual awareness in the retriever. Combining both566

all three losses leads to a 75.3% and 109.5% in-567

crease in average accuracy and hop-accuracy.568

Loss ↓ Lang. → EN DE HI SW RU

LBCE 26.0 28.0 16.0 20.0 16.0
+ LSD 44.0 34.0 12.0 38.0 16.0
+ LCLEC 44.0 36.0 18.0 30.0 18.0
+ LSD + LCLEC 76.0 62.0 12.0 58.0 26.0

Table 2: Ablation results of different loss functions used
to train the retriever. Results on the validation set from
CROLIN-MQUAKE-CF.

Error analysis We performed an error analysis569

of our method similar to the error analysis con-570

ducted for PokeMQA-CL and Mello-CL. We an-571

alyzed 30 samples each for edits made in En-572

glish and Hindi. For English, based on ran-573

dom subset, we found that 70% of the sam-574

ples were correct, 8.1% had Incorrect Retrieval er-575

ror, and 21.9% had Incorrect LLM Response er-576

ror. In the case of Hindi, 46.6% of the sam-577

ples were correct. Of the remaining samples,578

26.6% had Incorrect Retrieval error, 16% had both579

Incorrect LLM Response and Incorrect Retrieval580

errors, and 10.6% had an Incorrect LLM Response581

error. Refer Section A.8 for more details.582

6 Related Works583

Cross-lingual knowledge editing. Recent stud-584

ies have shifted focus to the multilingual capabil-585

ities of SoTA LLMs like LLaMA (Touvron et al., 586

2023a), ChatGPT (Schulman et al., 2022), and 587

GPT-4 (OpenAI, 2023). Wang et al. (2023a) inves- 588

tigated cross-lingual knowledge editing and its im- 589

pact on different target languages using a synthetic 590

dataset. (Si et al., 2024) introduced Multilingual 591

Patch Neuron (MPN) for efficient cross-lingual 592

knowledge synchronization, showing enhanced 593

performance on single-hop XNLI and XFEVER 594

datasets. (Xu et al., 2023b) proposed a frame- 595

work for language anisotropic editing, facilitating 596

simultaneous cross-lingual model editing. (Beni- 597

wal et al., 2024) explored the cross-lingual model 598

editing (XME) paradigm, revealing performance 599

limitations in multilingual LLMs for hypernetwrok 600

based parameter-modifying methods. (Wang et al., 601

2023b) presented Retrieval-augmented Multilin- 602

gual Knowledge Editing (ReMaKE), a model- 603

agnostic knowledge editing method designed for 604

multilingual settings. ReMaKE retrieves new 605

knowledge from a multilingual knowledge base 606

and concatenates it with prompts to update LLMs. 607

Most works assume edited facts are independent 608

without any multi-hop consequences of these ed- 609

its, and focus on parameter update based methods. 610

We focus on parameter-preserving methods, and 611

the more complex setting of multi-hop editing in a 612

cross-lingual setup. See A.1 for more. 613

7 Conclusion 614

In this paper, we contributed a benchmark hav- 615

ing parallel multilingual examples for evaluating 616

cross-lingual multi-hop knowledge editing. We 617

provide new baselines and a detailed analysis of 618

SoTA knowledge editing methods and find vari- 619

ous gaps in existing methods, particularly in the 620

cross-lingual setting. Motivated by this, we pro- 621

pose a generic, simple and highly effective method, 622

CLEVER-CKE, for improving the knowledge edit- 623

ing capabilities of parameter-preserving, retrieval 624

augmented editing methods. CLEVER-CKE im- 625

proves cross-lingual and fine-grained retrieval in 626

the case of knowledge editing, by introducing lan- 627

guage aware and hard-negative mining based con- 628

trastive losses to train retrievers. Improved retrieval 629

leads to precise knowledge retrieval and reduced 630

error propagation in the multi-hop reasoning set- 631

ting. CLEVER-CKE is parameter-preserving in 632

terms of the LLM weights, and uses a lightweight 633

retriever with low latency as compared to methods 634

like Zhong et al. (2023). 635
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8 Limitations636

Our analysis and methods has some limitations.637

Firstly, although CROLIN-MQUAKE is a parallel638

cross-lingual benchmark, it predominantly contains639

fact edits related to English-speaking knowledge640

changes, while the edits could be localized to any641

part of the world in practice. This reliance on trans-642

lation rather than trans-localization may lead to643

gaps in accurately understanding regional and local644

fact edits. However, having parallel data in all lan-645

guages is advantageous to accurately measure per-646

language performance without confounding factors.647

Secondly, our method is primarily focused on the648

retriever component and does not address the inher-649

ent inaccuracies of the LLMs. This includes issues650

such as understanding and generation capabilities651

of LLMs in different languages, correctly breaking652

down multi-hop questions into sub-questions, ac-653

curately extracting the final answer in the desired654

language. Lastly, our analysis is currently limited655

to a broad range of medium to high-resource lan-656

guages. Extending this analysis to low-resource657

languages presents a significant challenge due to658

the inaccuracies in translation, which can hinder the659

proper representation and understanding of facts660

in low resource languages. Improving translation661

accuracy and extending our work to low-resource662

languages is part of our future work.663
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A Appendix996

A.1 Related Work997

Knowledge editing methods: Knowledge edit-998

ing can be broadly classified intro two groups. 1)999

Parameter-modifying based editing which locates1000

the parameters related to factual knowledge and1001

subsequently modify them (De Cao et al., 2021;1002

Dai et al., 2022; Mitchell et al., 2022a; Meng et al.,1003

2022a,b). These method requires an error-prone1004

analytic step to identify parameters, which might1005

be model-specific and not efficient. 2) Parameter-1006

preserving based editing keeps the model parame-1007

ters frozen and explicitly stores the fact edits in an1008

external memory, for retrieval and external valida-1009

tion (Zhong et al., 2023; Gu et al., 2024; Mitchell1010

et al., 2022c; Hartvigsen et al., 2023). some recent1011

works like that of (Hernandez et al., 2023) have1012

also explored a decoding time approach for editing1013

knowledge.1014

Cross-lingual knowledge editing. Recent stud-1015

ies have shifted focus to the multilingual capabil-1016

ities of SoTA LLMs like LLaMA (Touvron et al.,1017

2023a), ChatGPT (Schulman et al., 2022), and1018

GPT-4 (OpenAI, 2023). Wang et al. (2023a) inves-1019

tigated cross-lingual knowledge editing and its im-1020

pact on different target languages using a synthetic1021

dataset. (Si et al., 2024) introduced Multilingual1022

Patch Neuron (MPN) for efficient cross-lingual1023

knowledge synchronization, showing enhanced1024

performance on single-hop XNLI and XFEVER1025

datasets. (Xu et al., 2023b) proposed a frame-1026

work for language anisotropic editing, facilitating1027

simultaneous cross-lingual model editing. (Beni-1028

wal et al., 2024) explored the cross-lingual model1029

editing (XME) paradigm, revealing performance 1030

limitations in multilingual LLMs for hypernetwrok 1031

based parameter-modifying methods. (Wang et al., 1032

2023b) presented Retrieval-augmented Multilin- 1033

gual Knowledge Editing (ReMaKE), a model- 1034

agnostic knowledge editing method designed for 1035

multilingual settings. ReMaKE retrieves new 1036

knowledge from a multilingual knowledge base 1037

and concatenates it with prompts to update LLMs. 1038

Most of the above works have considered a sim- 1039

plistic setting of assuming the edited facts as in- 1040

dependent without any multi-hop consequences of 1041

these edits, and are primarily focused on parameter 1042

updating based methods. We focus on parameter- 1043

preserving methods, and the more complex setting 1044

of multi-hop editing in a cross-lingual setup. 1045

Multi-Hop QA and prompting methods: With 1046

the advances in generative language technolo- 1047

gies powered by Large Language Models (LLMs; 1048

Brown et al., 2020; Rae et al., 2021; Chowdhery 1049

et al., 2022; OpenAI et al., 2023; Tay et al., 2023; 1050

Google, 2023), complex and multi-hop QA tasks 1051

are often handled by a prompt based and retrieval 1052

augmented approach (Press et al., 2022; Yao et al., 1053

2023; Khattab et al., 2022). Works that tackle multi- 1054

hope knowledge editing have started to use this 1055

retrieve-then-generate framework to effeciently pe- 1056

form knowledge editing in an in-context setting, 1057

without changing the parameters of the base LLM, 1058

and have achieved SoTA performance on knowl- 1059

edge editing. Given their success, we use a similar 1060

retrieve, verify and generate strategy for knowledge 1061

editing with CLEVER-CKE, while explicitly fo- 1062

cussing on the retriever for enhanced knowledge 1063

editing performance. 1064

A.2 Verification of Translated Data in 1065

CROLIN-MQUAKE 1066

A.2.1 Human Verification of Translation 1067

We randomly selected 50 edits in four lan- 1068

guages—German, Chinese, Hindi, and Ben- 1069

gali—and had the translations verified by expert 1070

human annotators to ensure accuracy. For each 1071

sample, we provided two sentences: one in English 1072

and its translation in the respective language. The 1073

annotators were asked to verify whether the seman- 1074

tic information was consistent between the two sen- 1075

tences. Given the brevity of the edit sentences, the 1076

potential for translation errors was minimal. Only 1077

one sample from Hindi in the CROLIN-MQUAKE- 1078

CF dataset encountered an issue during transla- 1079
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tion due to a special character error; the remaining1080

samples were successfully processed. The expert1081

human annotators suggested only minor stylistic1082

changes for 1-2 words out of all 50 edit sentences1083

in one language.1084

A.2.2 Verification of Translations via1085

Backtranslation1086

To ensure the quality of translations, we employed1087

back-translation, converting the translations from1088

other languages back into English, and then calcu-1089

lated the average BLEU scores for 50 samples with1090

the original English sentence as the ground truth.1091

Table 3 presents these BLEU scores, indicating that1092

six out of seven languages exhibit translations of1093

very high quality, adequacy, and fluency 2. For1094

Chinese, the BLEU score suggests that the gist is1095

clear, although there are some grammatical errors.1096

However, with the addition of human verification1097

(an expert gave a 100% score to the translations1098

in terms of preserving semantic content), we can1099

conclude that the semantic information is preserved1100

in the data translated to Chinese.1101

Language BLEU Score

de 70.6
hi 59.2
bn 49.7
es 71.7
sw 65.9
ru 40.0
zh 23.0

Table 3: BLEU Scores for back-translation to English
for different languages.

A.3 Training Details1102

We employ the training dataset to train the retriever1103

component of the CLEVER-CKE framework, us-1104

ing the same training set as utilized in training1105

PokeMQA-CL (Gu et al., 2024). Subsequently, we1106

translate this dataset into seven other languages1107

and generate hard negatives following the method1108

outlined in Section 5. The training dataset contains1109

6688 samples along with translations into 8 langu-1110

gaes and hard-negative pairs for each edit in the1111

dataset, both of which is created by us for training1112

CLEVER-CKE’s retriever. For training the multi-1113

lingual retriever, we utilize data from all languages,1114

2https://cloud.google.com/translate/automl/
docs/evaluate#interpretation

while for training the bilingual retriever, we focus 1115

on English and the target language data. To opti- 1116

mize our method’s performance, we conduct hyper- 1117

parameter tuning on a validation set derived from 1118

CROLIN-MQUAKE-CF, comprising 50 samples 1119

exclusively for this purpose without involvement 1120

in inferencing tasks. The hyperparameters used for 1121

tuning are mentioned in Table 4. Our experiments 1122

are expensive (See Appendix A.7) and we do not 1123

perform experiments on multiple seeds. 1124

A.4 Method Details 1125

We finetuned distilbert-base-multilingual-cased 1126

(Sanh et al., 2019) with approximately 130.7M 1127

parameters from the HuggingFace transformers li- 1128

brary on the training data we created by translation 1129

and hard negative mining for the edits as described 1130

in Section 5 using our designed training objectives 1131

for the retriever. We used held out 20% of the sam- 1132

ples for the validation set and used Adam optimizer 1133

to update the parameters during training.

Hyperparameter Value

Learning Rate 5.00× 10−5

Batch Size {1024, 2048}
Epoch 200
Margin 1
Threshold {0.5 , 0.7}

Table 4: Hyperparameter values searched for tuning
the multilingual retriever in and CLEVER-CKE and
PokeMQA-CL.

1134

A.5 CROLIN-MQUAKE Benchmark 1135

Statistics 1136

See Table 5 for the dataset statistics of our bench- 1137

mark CROLIN-MQUAKE, which we create in this 1138

work and use it for evaluating the cross-lingual 1139

multi-hop knowledge editing capabilities of vari- 1140

ous model editing techniques. Languages studied 1141

in this work and supported by CROLIN-MQUAKE 1142

are English, German, Spanish, Hindi, Swahili, Ben- 1143

gali, Russian, Chinese. 1144

A.6 Prompts for LLM inference 1145

To help the LLM break down questions into sub- 1146

questions, generate answers for the subquestions, 1147

and extract the final answer, we provide four in- 1148

context example demonstrations. These examples 1149

include edits from different languages based on the 1150

edits made. We include a mix of 2, 3, and 4-hop 1151
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#Edits Hop-Wise Stats (per-language/total) #Languages

2-hop 3-hop 4-hop Total

CROLIN-MQUAKE-CF

1 513 / 4k 356 / 2.8k 224 / 1.8k 1093 / 8.7k 8
2 487 / 3.9k 334 / 2.7k 246 / 2k 1067 / 8.5k 8
3 - 310 / 2.5k 262 / 2.1k 572 / 4.6k 8
4 - - 268 / 2.1k 268 / 2.1k 8

All 1000 / 8k 1000 / 8k 1000 / 8k 3000 / 24k 8

CROLIN-MQUAKE-T 1 (All) 1421 / 11368 445 / 3560 2 / 16 1868 / 14944 8

Table 5: Statistics of CROLIN-MQUAKE created and used in our experiments. Statistics per language are same as
those reported in Zhong et al. (2023).

example demonstrations in the prompt. Below, we1152

present an example demonstration for a prompt1153

used for edits in German and Swahili. In these1154

demonstrations, the text written in blue represents1155

the updated fact from the edited fact memory, and1156

the text written in teal indicates the answer extrac-1157

tion.1158

Here is the 3-hop question example demonstra-1159

tion used in the prompt when edits are made in1160

German:1161

1162

Question: What is the capital city of the country of1163

citizenship of Ivanka Trump’s spouse?1164

Subquestion: Who is Ivanka Trump’s spouse?1165

Generated answer: Der Ehemann von Ivanka1166

Trump ist Jared Kushner.1167

According to Generated answer, the entity of1168

Subquestion in English is: Jared Kushner1169

Subquestion: What is the country of citizenship of1170

Jared Kushner?1171

Generated answer: Jared Kushner ist kanadischer1172

Staatsbürger.1173

According to Generated answer, the entity of1174

Subquestion in English is: Canada1175

Subquestion: What is the capital city of Canada?1176

Generated answer: Die Hauptstadt Kanadas ist1177

Ottawa.1178

According to Generated answer, the entity of1179

Subquestion in English is: Ottawa.1180

Final answer: Ottawa1181

1182

Following is the 2-Hop example demonstration1183

when edits are made in Swahili:1184

1185

Question: Who is the head of state of the country1186

where Rainn Wilson holds a citizenship?1187

Subquestion: What is the country of citizenship of1188

Rainn Wilson?1189

Generated answer: Rainn Wilson ni raia wa1190

Kroatia. 1191

According to Generated answer, the entity of 1192

Subquestion in English is: Croatia 1193

Subquestion: What is the name of the current head 1194

of state in Croatia? 1195

Generated answer: Jina la mkuu wa sasa wa nchi 1196

nchini Kroatia ni Kolinda Grabar-Kitarović. 1197

According to Generated answer, the entity of Sub- 1198

question in English is: Kolinda Grabar-Kitarović 1199

Final answer: Kolinda Grabar-Kitarović 1200

1201

A.7 Compute Resources 1202

We performed all experiments using 8 NVIDIA 1203

A100 80 GB GPUs. The training duration for the 1204

retriever, including both bilingual and multilingual 1205

retrievers for both PokeMQA-CL and CLEVER- 1206

CKE, was approximately 2 hours per run. Infer- 1207

ence tasks took between 4 to 6 hours to complete 1208

when using ChatGPT as the LLM in the case of 1209

CLEVER-CKE, and between 10 to 24 hours with 1210

Llama-2-7b and Vicuna-1.5. Each MeLLo baseline 1211

run varied in duration from 8 to 24 hours, depend- 1212

ing on the language and the LLM used. 1213

A.8 Error Analysis 1214

Figure 7 presents real examples of errors made by 1215

different methods. The first column displays er- 1216

rors related to incorrect retrieval, where the model 1217

fails to understand the context of the subquestion 1218

and either retrieves a fact with some word overlap 1219

with the subquestion or a random edit. The second 1220

column shows instances where the LLM makes 1221

mistakes in breaking down the subquestion. In the 1222

first example, it deviates from the question, asking 1223

when Giles Gilbert Scott died, and then in the third 1224

hop, it just repeats the original question. The sec- 1225

ond example of this column contains an example 1226

where the LLM fails to adhere to the strict pattern 1227

14



of the prompt, misunderstands the context, and gen-1228

erates incorrect information, causing a cascading1229

effect of errors. The third column highlights er-1230

rors specific to the MeLLomethod, where the LLM1231

struggles to disambiguate between the generated1232

answer and the retrieved fact. In the first example1233

of this column, the retrieved fact contradicts the1234

generated answer, but the LLM fails to identify the1235

correct entity from the generated answer/retrieved1236

fact after resolving the contradiction, leading to a1237

wrong answer. In the second example, although1238

the retrieved fact does not contradict the generated1239

answer, the LLM incorrectly perceives it as a con-1240

tradiction, resulting in a mistake.1241

Our method, CLEVER-CKE, addresses and1242

improves upon these errors, as demonstrated in1243

Figure 8. In the same question scenario, where1244

MeLLo-CL exhibits a contradiction error high-1245

lighted in yellow and red, and PokeMQA-CL1246

makes a retrieval error based on word overlap, our1247

method follows all the correct steps, leading to the1248

accurate final answer.1249

A.9 Licensing1250

The baseline methods ROME, MEMIT, FT,1251

MeLLo, and PokeMQA are distributed under the1252

MIT License. Similarly, the datasets MQUAKE-1253

CF and MQUAKE-T are available under the MIT1254

License. The models Vicuna-1.5-7B (v1.5) and1255

distilbert-base-multilingual-cased are released un-1256

der the Apache License 2.0, while LLaMa-2-7B is1257

licensed under the LLAMA 2 Community License.1258
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Figure 6: Accuracy of methods CLEVER-CKE, PokeMQA-CL and MeLLo-CL reported on 2, 3, 4-hop questions
in CROLIN-MQUAKE-CF with ChatGPT as LLM for all languages. We take the 3k edit case using CROLIN-
MQUAKE-CF.

Figure 7: Examples of types of errors made by different methods such as MeLLo-CL, PokeMQA-CL and CLEVER-
CKE. Text in red highlights the step at which the error is made. Text highlighted in yellow means the steps that are
correct but lead to error in contradiction. Examples are provided in English and Hindi.
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Figure 8: Sample of data showing how CLEVER-CKE doesn’t make the errors of MeLLo-CL and PokeMQA-
CL-CL. Text in red highlights the step at which the error is made. Text highlighted in yellow means the steps that
are correct but lead to error in contradiction. Text highlighted in green means the correct final answer achieved by
taking all correct steps.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 39.1 30.7 17.0 7.3 55.9 47.2 35.9 19.5
de 25.1 14.5 15.7 3.7 29.3 16.6 33.0 12.5
es 20.6 9.4 12.8 2.8 29.7 13.5 28.2 9.2
hi 6.8 0.2 10.9 1.0 16.0 1.3 21.4 4.0
sw 17.0 9.2 14.4 4.0 22.3 13.4 30.7 11.5
bn 11.1 0.3 10.5 1.2 15.9 1.5 21.6 4.4
ru 7.9 0.7 10.4 1.5 20.2 4.3 23.2 7.7
zh 7.1 0.6 11.5 1.5 16.3 3.0 20.5 5.4

PokeMQA-CL 16.8 8.2 12.9 2.9 25.7 12.6 26.8 9.3

C
L

E
V

E
R

-C
K

E

en 36.2 28.7 33.1 25.0 57.5 48.8 54.8 43.8
de 29.2 16.0 24.3 14.3 38.1 23.9 39.2 24.3
es 21.4 11.3 19.1 10.0 34.2 18.4 31.6 17.6
hi 10.5 4.9 10.5 4.4 22.8 10.6 17.3 8.2
sw 21.9 14.3 22.0 13.6 34.7 24.6 37.9 24.6
bn 12.0 4.5 12.3 4.3 16.8 7.8 16.8 7.1
ru 13.0 7.1 15.2 7.9 25.7 14.7 24.4 14.1
zh 8.6 3.1 12.3 5.4 16.5 6.8 19.2 9.5

CLEVER-CKE 19.1 11.2 18.6 10.6 30.8 19.5 30.1 18.6

Table 6: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using ChatGPT Backbone: Bilingual and Multilingual Training of the Retriever with All
and 100 Edits.
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Figure 9: Knowledge Editing accuracy of
PokeMQA-CL using LLaMa-2 as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 10: Knowledge Editing accuracy of
PokeMQA-CL using ChatGPT as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 11: Knowledge Editing accuracy of
CLEVER-CKE using LLaMa-2 as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 12: Knowledge Editing accuracy of
CLEVER-CKE using ChatGPT as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 13: Hop-Accuracy of PokeMQA-CL using
LLaMa-2 as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 14: Hop-Accuracy of PokeMQA-CL using
ChatGPT as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 15: Hop-Accuracy of CLEVER-CKE using
LLaMa-2 as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 16: Hop-Accuracy of CLEVER-CKE using
ChatGPT as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc
Po

ke
M

Q
A

-C
L

en 79.1 69.1 23.7 17.6 79.3 69.5 30.0 22.5
de 45.1 32.3 13.7 08.9 46.5 33.5 17.7 11.1
es 41.0 28.2 06.7 03.6 45.2 31.2 13.3 8.0
hi 13.4 6.4 8.6 4.8 15.7 8.6 12.4 7.0
sw 54.8 41.9 15.5 9.4 58.7 44.3 19.3 11.6
bn 11.7 5.7 13.8 6.0 12.8 6.4 14.2 7.2
ru 12.5 7.5 14.9 10.0 14.2 9.4 16.9 10.9
zh 10.8 5.9 11.0 5.6 14.2 8.4 15.1 7.4

PokeMQA-CL 33.5 24.6 13.5 8.2 35.8 26.4 17.4 10.7

C
L

E
V

E
R

-C
K

E

en 80.6 69.9 66.6 54.7 81.0 70.3 67.4 55.4
de 63.6 50.2 59.3 46.5 64.1 50.6 59.7 46.6
es 45.7 32.2 28.7 19.9 46.3 32.9 29.3 20.2
hi 39.3 25.6 17.0 9.6 42.0 27.2 16.8 9.5
sw 47.7 37.3 51.8 37.6 50.1 39.1 52.1 37.8
bn 20.7 14.1 14.3 8.3 20.9 14.2 14.5 8.5
ru 58.0 45.2 31.4 22.2 62.5 50.2 32.0 22.5
zh 46.6 34.3 35.7 23.3 49.0 35.7 35.6 23.2

CLEVER-CKE 50.3 38.6 38.1 27.7 52.0 40.0 38.4 28.0

Table 7: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using ChatGPT Backbone: Bilingual and Multilingual Training of the Retriever with All and
100 Edits.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 31.5 23.3 13.1 5.4 41.8 31.8 27.7 12.6
de 16.8 9.2 11.8 3.4 24.1 13.5 23.8 9.3
es 18.5 8.9 10.8 2.9 25.4 12.1 22.0 7.2
hi 7.0 0.1 9.8 1.1 12.7 0.8 14.7 2.7
sw 11.8 5.7 11.9 2.3 14.9 8.2 21.9 5.0
bn 7.0 0.2 8.0 0.5 14.0 0.5 12.0 1.6
ru 8.0 0.6 10.7 1.4 17.4 2.9 18.6 5.0
zh 8.4 0.5 9.1 1.2 15.0 2.4 16.7 3.5

Average 13.6 6.1 10.6 2.3 20.7 9.0 19.7 5.9

C
L

E
V

E
R

-C
K

E

en 27.8 21.0 23.6 17.1 41.5 31.9 37.3 28.3
de 23.5 13.7 19.7 12.1 29.5 18.6 26.4 17.4
es 20.0 10.6 8.4 8.4 27.8 16.2 23.6 13.0
hi 9.6 3.3 10.3 3.3 13.4 5.8 10.8 4.2
sw 15.5 9.1 14.8 7.7 21.3 13.6 20.1 11.7
bn 7.2 2.2 6.9 1.7 7.9 2.3 7.3 2.1
ru 10.0 4.4 12.0 5.2 17.7 9.4 15.8 8.0
zh 7.6 1.4 9.9 3.4 12.1 3.7 12.1 4.3

Average 15.1 8.2 13.2 7.3 21.4 12.7 19.2 11.1

Table 8: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using LLaMa-2-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc
Po

ke
M

Q
A

-C
L

en 73.1 58.1 25.6 16.6 73.4 58.2 30.7 19.8
de 44.0 33.6 11.6 7.8 63.8 51.6 15.0 10.7
es 52.9 38.5 11.6 5.7 63.3 47.1 18.6 9.2
hi 10.3 3.2 8.0 3.9 12.7 3.9 10.5 4.6
sw 45.4 33.8 13.5 4.7 47.6 35.0 16.3 6.8
bn 5.6 1.0 5.0 2.1 7.0 1.6 7.3 3.3
ru 10.5 5.1 8.7 3.6 13.4 7.2 12.2 6.2
zh 4.1 1.9 5.1 2.1 6.4 3.3 6.2 2.4

Average 30.7 21.9 11.1 5.8 36.0 26.0 14.6 7.8

C
L

E
V

E
R

-C
K

E

en 71.8 57.9 71.5 57.2 72.1 58.1 72.0 57.5
de 63.2 50.4 59.6 48.1 63.5 50.5 62.2 50.1
es 57.9 45.0 51.6 40.0 58.0 45.1 52.7 40.8
hi 33.2 19.0 25.4 15.0 34.9 20.1 27.9 16.2
sw 43.1 33.1 45.3 33.7 44.0 33.6 46.7 34.6
bn 10.3 5.8 7.8 4.6 10.5 5.8 9.6 5.2
ru 58.5 37.2 30.3 18.6 62.4 40.5 34.3 21.1
zh 40.5 29.0 33.7 22.8 42.0 30.1 35.0 23.6

Average 47.3 34.7 40.6 30.0 48.4 35.5 42.6 31.1

Table 9: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using LLaMa-2-7B Backbone: Bilingual and Multilingual Training of the Retriever with All
and 100 Edits.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 28.6 21.8 13.5 5.4 37.5 29.5 25.5 13.0
de 13.6 7.5 11.2 3.3 21.8 12.4 21.5 8.9
es 18.2 9.5 10.5 2.7 23.1 12.7 19.6 7.2
hi 6.8 0.2 7.9 0.8 11.9 0.7 13.3 2.0
sw 11.4 6.3 10.3 2.5 14.5 8.3 17.5 5.3
bn 6.1 0.2 6.2 0.4 13.4 0.3 9.7 1.0
ru 7.4 0.6 7.8 1.0 14.4 2.6 16.1 4.2
zh 8.0 0.3 8.7 0.7 13.3 2.0 15.0 2.6

Average 12.5 5.8 9.5 2.1 18.7 8.6 17.3 5.5

C
L

E
V

E
R

-C
K

E

en 27.5 21.4 22.7 17.7 38.5 31.0 36.0 28.1
de 19.6 12.8 17.5 12.0 27.2 17.8 25.9 17.6
es 19.3 11.9 15.5 8.7 25.8 16.6 22.4 13.5
hi 8.5 2.7 8.2 02.2 12.2 4.6 9.7 3.2
sw 13.0 8.2 12.6 7.7 19.5 12.3 19.2 11.7
bn 5.5 1.2 5.9 1.4 5.9 1.1 5.8 1.2
ru 8.6 3.6 10.0 3.8 15.5 7.0 14.0 6.5
zh 7.2 1.7 8.8 2.9 11.3 2.9 11.5 3.5

Average 13.6 7.9 12.7 7.1 19.5 11.7 18.1 10.7

Table 10: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using Vicuna-1.5-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 68.5 56.4 22.6 15.7 68.6 56.6 27.0 18.5
de 59.1 47.5 10.3 7.2 59.4 47.7 13.6 9.6
es 59.5 50.0 11.3 6.8 60.1 50.1 16.8 11.0
hi 11.4 5.5 6.8 4.1 13.5 5.9 10.9 5.8
sw 49.1 39.3 12.4 4.8 49.7 39.9 13.9 7.5
bn 6.5 1.3 7.9 4.5 7.7 2.1 8.1 4.5
ru 8.0 6.3 8.1 5.1 10.4 8.4 10.2 6.3
zh 11.4 6.6 8.8 4.8 12.4 7.1 9.4 4.8

Average 34.2 26.6 11.0 6.6 35.2 27.2 13.7 8.5

C
L

E
V

E
R

-C
K

E

en 69.0 57.3 68.0 56.5 69.2 57.5 68.8 57.0
de 60.9 48.7 52.1 41.7 61.3 49.0 54.5 43.8
es 56.9 47.3 49.6 41.8 57.0 47.3 51.0 42.7
hi 23.4 14.8 24.1 16.9 26.0 16.9 27.1 19.0
sw 44.4 36.6 47.3 39.9 45.3 37.5 48.7 41.0
bn 11.3 08.0 11.4 08.5 11.1 08.0 13.2 09.3
ru 51.9 40.5 26.4 20.7 55.5 44.3 28.9 22.9
zh 32.5 24.5 24.7 19.0 34.5 26.3 27.1 19.0

Average 43.8 34.7 37.9 30.6 45.0 35.8 39.9 31.8

Table 11: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using Vicuna-1.5-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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