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Abstract: Transferring robotic policies from simulation to the real world often
faces perceptual challenges, where visual differences degrade performance. Poli-
cies relying on 6D pose state estimation, require task-specific scaffolding, while
raw sensor-based policies lack robustness and efficiency. We propose using 2D
keypoints—spatially consistent features in the image frame—as a state represen-
tation for effective sim-to-real transfer. Our method, ATK, automatically selects
minimal set of task-relevant keypoints that predict optimal behavior. By distilling a
teacher policy trained in simulation into a student policy operating on RGB images
while tracking the selected keypoints, our system effectively tracks keypoints and
transfers policies to the real world, even under perceptual challenges like trans-
parent objects or fine-grained manipulation. We validate ATK across various
tasks, showing the minimal set of task-relevant keypoint representations improved
robustness to visual and environmental variations.
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1 Introduction

Simulation has become an essential tool in modern robotics, offering low-cost data for developing
policies in domains like manipulation. However, transferring these policies to real-world hardware is
challenging due to the sim-to-real gap, caused by discrepancies in physics and perception. In this
work, we focus on bridging the perceptual gap between simulation and reality - to perceive and
represent the state of the world.

Prior works have studied this by varying the input modality from depth images [1, 2], 3D point clouds
[3], learned latent spaces [4, 5] to pose-based estimation [6, 7]. While promising, these methods
would require specialized sensors, environment-specific engineering or task-specific setup. Moreover,
they may still struggle with sensor noise, transparent surfaces, and deformable or small objects. To
achieve robust sim-to-real transfer, we propose using keypoints—2D pixel points in RGB images that
can be tracked over time—as a versatile state representation for robotic policies. Keypoints, widely
used in computer vision [8, 9] for object tracking, offer resilience to occlusion, lighting changes, and
scale variations. Keypoints do not rely on rigid structures, making them more suitable for tracking
articulated and non-rigid objects. Additionally, keypoints naturally generalize to transparent and
fine-grained objects better than depth-based approaches. Recent advances in keypoint tracking, driven
by models trained on large-scale web data [8, 10], have made keypoint tracking surprisingly robust
across diverse visual domains, making it a promising candidate for bridging the sim-to-real perceptual
gap and rendering policies robust to visual variations.

The critical question then becomes: What is the minimal set of task-relevant keypoints that can
serve as an effective state representation for decision-making? Simply using all keypoints in a scene
introduces redundancy, increasing computational burden and complicating the tracking problem
because of occlusion and point interferences. Random sampling points or selecting too few points
may fail to include critical task-relevant information. The ideal set is task-specific, as different tasks



focus on different scene elements. For example, a robot pressing a clock button or rotating a clock
hand focuses on different scene parts (shown in Fig 2), suggesting that the minimal set of keypoints
must be inherently task-driven. A task-driven representation also ignores irrelevant elements, like
distractors or background changes, enhancing policy robustness.

Our key insight is that task objectives can guide the selection of a compact representation and
optimal policy. The minimal set of task-relevant keypoints should predict the optimal policy, but
this creates a challenge: the optimal policy requires a good state representation, and vice versa. To
solve this, we leverage simulation’s privileged information, such as Lagrangian state variables. We
propose ATK, a distillation-based algorithm that selects minimal keypoints in simulation, trains
a policy using these keypoints, and transfers it to the real world. Specifically, a teacher policy
trained with privileged data in simulation is distilled into a student policy using only RGB images,
tracking a minimal set of keypoints. This approach retains the necessary task-relevant information
and ensures robust sim-to-real transfer without dedicated sensors and handles real-world visual
disturbances during deployment. We validate our approach across various real-world manipulation
tasks, including cluttered environments, transparent objects, and fine manipulation. Our keypoint-
based representation improves performance by 60% over other perceptual representations in both the
transfer and robustness capabilities of these representations in real-world environments.
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Figure 1: An overview of ATK framework. In simulation, ATK selects minimal task-relevant information
through student-teacher policy distillation and selection mask optimization. The selected keypoints are transferred
to the real world via the correspondence function hC . Finally, the student policy is transferred to the real world
taking in RGB images while tracking the transferred keypoints.

We aim to provide a representation that can enable policy generalization and robustness in bridging
the sim-to-real observation gap. To this end, we propose the use of 2D keypoints as the perceptual
representation for sim-to-real transfer (Sec. 2.1). The crux of our proposal lies in transferring
task-relevant parts of the observation by automatically selecting a set of task-relevant keypoints.
We propose ATK that integrates keypoint selection with policy training with a distillation process
(Sec. 2.2). We then describe (Sec. 2.3) how to transfer the keypoints and policies proposed in
simulation to the real world for robot deployment.

2.1 Keypoints as Policy Representations

Keypoints, commonly used in computer vision, are distinct points kit = (xi
t, y

i
t) in the 2D image

plane at time t. A set of N keypoints, {kit}Ni=1, provides a compact representation of the scene.
The number and selection of keypoints can be dynamically adjusted based on task complexity and
requirements, making it computationally efficient for robotic tasks. Keypoints do not require explicit
knowledge of object and are thus highly versatile and applicable even to deformable or fine-grained
materials. To track keypoints over time, we initialize keypoints at t = 0 and use tracking methods
(track-anything [11], co-tracker [9] and TAPIR [8]), which maintain robust semantic correspondence
across time steps. The tracking process can be formalized as a correspondence function hC , which
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updates the keypoints {kit}Ni=1 at each time step while providing correspondence measurement scores.
A key challenge in leveraging keypoint is to select and track them. Different tasks require focusing
on distinct elements in the scene, the primary challenge then becomes: (1) selecting keypoints in
simulation and (2) robustly tracking and transferring these keypoints and resulting keypoint-based
policies from simulation to the real world.

2.2 Task-Driven Distillation

Randomly sampling or using too many keypoints adds unnecessary complexity and can reduce
policy robustness due to interference, mismatches, and tracking failures. Instead, we select a
minimal, task-driven set of keypoints by leveraging the task objective to evaluate the performance
of candidate keypoint-based policies. This ensures that only the most relevant and useful points
are tracked, optimizing both computational efficiency and transfer performance. The key criteria
for minimal keypoint selection include: (1) Realizability of the Optimal Policy: The selected
keypoints must capture all necessary information to learn an effective policy for the task. (2)
Trackability: The chosen keypoints must be reliably trackable using the correspondence function
hC . We leverage privileged information in simulation to guide the keypoint selection through a
student-teacher policy distillation process. The optimal policy π∗(at|st) is derived from Lagrangian
state-based representations in the simulation, and DAgger [12] is used to train a keypoint-based policy
πk
θ (at | {kit}Ni=1), ensuring that the selected keypoints are predictive of the optimal actions a∗t . The

learning objective is then formulated and solved using gradient descent, as detailed in the appendix
5.3.

2.3 Transfer from Simulation to Reality

Once the keypoints proposal are finalized in the simulation, the next step is to transfer them to the
real world by establishing correspondence with their real-world counterparts. Sim-to-real perceptual
gaps may exist when using other representations. However, following our proposal, once keypoints
are identified at the start of the task, subsequent tracking remains unaffected by the visual gap. This
allows us to focus solely on transferring the initial set of keypoints. Be leveraging the simulator, we
sample transformed or jittered views to better align the simulated view with the real world. Using
the correspondence function with confidence scores for keypoint pairs, we select the simulation and
real-world keypoint pair with the highest score, ensuring accurate keypoint matching for real-world
policy execution. The sampling process, utilizing diffusion-model-based features [10, 13] trained on
large-scale web data, ensures confident and robust semantic correspondence matching, even under
visual disturbances, across different real-world configurations.

3 Experiments

Our evaluation aims to answer the following questions: (1) Sim-to-real transfer: How well do
keypoints and policies transfer to the real world, based on policy success rates? (2) Keypoint
Selection Effectiveness: Does the selection method keep policies robust and generalizable to
changes like object placement, appearance, and distractors? (3) Representation Sufficiency: Does
the representation capture enough information for high task success rates? (4) Interpretability
and Task-Relevant Features: Are the selected keypoints interpretable and relevant to different
task objectives in complex environments? In Appendix 5.4, we provide detailed explanations of the
task motivations, experimental design, baseline methods, and evaluation procedures under various
conditions.

Q1 & Q2: ATK excels in Sim-to-real Transfer and Robustness over Baselines As shown
in Table 1, keypoint-based policies maintain high success rates in the real world compared to
alternative modalities, showcasing strong resilience against randomized object poses or background
variations. Altough extreme distractions, such as flashing light or occlusions, can disrupt tracking and
decrease the performance, our method consistently outperform RGB, depth, and point-cloud based
policies. The gap is worth-noting in tasks involving transparent objects (e.g., glass) and fine-grained
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manipulation (e.g., clock tasks). This demonstrates the effectiveness of keypoint-based policies across
a wide range of conditions.

Sushi Pick-n-Place GlassPot Lift Clock Button Press Clock Hand Turning Total

RP RB +RO + Light RP RB +RO + Light RP RB +RO + Light RP RB +RO + Light
RGB 0.30 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.04
Depth 0.25 0.20 0.00 0.00 0.05 0.00 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Pointcloud 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02
ATK 0.85 0.80 0.55 0.45 0.75 0.65 0.60 0.60 0.90 0.90 0.80 0.75 0.50 0.50 0.40 0.35 0.64

Table 1: Real-world Policy Success Rates. Varying conditions including RP (random pose), RB
(background), RO (distractor object), Light. ATK consistently outperforms baseline methods using
alternative modalities in sim-to-real transfer.

Q3: ATK selects keypoints that capture sufficient task information As shown in Table 2, ATK
could outperform RGB, depth and point cloud-based policies in terms of success rate across all
tasks in simulation. RGB-based policies perform well under standard conditions but degrades
significantly when distractions such as novel objects, different backgrounds, or lighting conditions
are introduced. Depth- and pointcloud- based policies struggle with handling distractors and varying
lighting conditions, as the testing scene falls outside the training distribution. Moreover, they lack
robustness in fine-grained manipulations, such as the clock tasks, where small parts are difficult
to capture accurately using these modalities. In contrast, ATK maintain high robustness and
generalization across all tested conditions.

Sushi Glass

RP RB +RO + Light RP RB +RO + Light

RGB 0.453±0.262 0.076±0.041 0.027±0.020 0.010±0.014 0.253±0.154 0.109±0.098 0.020±0.021 0.000±0.000
Depth 0.255±0.199 0.255±0.199 0.020±0.021 0.010±0.014 0.110±0.001 0.110±0.001 0.000±0.000 0.000±0.000

Pointcloud 0.277±0.088 0.277±0.088 0.020±0.021 0.000±0.000 0.033±0.047 0.033±0.047 0.000±0.000 0.000±0.000
ATK 0.893±0.073 0.893±0.073 0.893±0.073 0.893±0.073 0.933±0.034 0.933±0.034 0.933±0.034 0.933±0.034

Clock button Clock turning

RP RB +RO + Light RP RB +RO + Light

RGB 0.456±0.293 0.046±0.017 0.013±0.019 0.000±0.000 0.367±0.205 0.093±0.020 0.013±0.012 0.000±0.000
Depth 0.290±0.150 0.290±0.150 0.000±0.000 0.000±0.000 0.256±0.264 0.256±0.264 0.000±0.000 0.020±0.021

Pointcloud 0.107±0.056 0.107±0.056 0.010±0.014 0.000±0.000 0.077±0.056 0.077±0.056 0.010±0.014 0.010±0.014
ATK 0.970±0.024 0.970±0.024 0.970±0.024 0.970±0.024 0.903±0.028 0.903±0.028 0.903±0.028 0.903±0.028

Table 2: Simulator Policy Success Rates using different input modalities over 3 random seeds.
Keypoint-based policies are easier to distill in simulator than other baselines with alternative sensor
modalities.

Q4: ATK Chooses Interpretable and Task-Relevant Keypoints for Multifunctional Tasks.
In multifunctional tasks, such as the clock manipulation, ATK selects keypoints that focus on
task-relevant parts as shown in (Fig.2), selecting the clock hand for turning or the clock frame for
button pressing. In the Kitchen setting, ATK successfully selected relevant keypoints for microwave
closing (keypoints focusing on the microwave’s control panel) and drawer closing (keypoints focusing
on the handle). These results highlight the interpretable advantage of keypoint-based method and
demonstrate the effectiveness of our keypoint selection method in ensuring task relevance in diverse
environments.

4 Conclusion and Limitations

We present ATK, a system for automatically selecting task-relevant keypoints in simulation, learning
keypoint-based policies, and transferring them to the real world. While promising, the system
faces challenges in tracking and optimization. Policies using 2D keypoints are sensitive to camera
perspective changes, and off-the-shelf trackers may lack robustness for robotic tasks. Additionally,
the method is sensitive to hyperparameters due to the non-smooth nature of the optimization problem,
making tuning difficult. Despite these issues, our work demonstrates the robustness of keypoint-
based policies and provides an effective approach for automatic keypoint selection, with room for
developing more automated and robust techniques to address these challenges.
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5 Appendix

5.1 Related Work

Visual Representations. Previous research has explored various visual representation learning for
robotics [14, 15, 16, 17, 18], using both self-supervised and supervised objectives [18, 14]. These
representations often rely on large-scale pretraining or auxiliary information-theoretic objectives [15,
17]. In contrast, this work focuses on visual representation suitable for sim-to-real transfer and
leverages privileged simulator information to identify effective visual representations.

Sim-to-real Transfer. Bridging the perceptual gap between simulation and the real world remains
a significant challenge due to discrepancies in the observation space. While simulations have
become more photorealistic [19], the direct transfer of policies across domains continues to suffer
from performance degradation. Prior works have proposed various methods to mitigate this gap,
including domain randomization [20], latent representation learning [16, 21], unsupervised image
translation [22, 23], depth-based policy [3, 2] and explicit pose estimation [6]. While promising, they
still face challenges in handling complex, precise tasks or rely on task-specific scaffolding (estimate
the pose of a certain object) or restrictive assumptions (availability of accurate depth sensors). In this
work, we emphasize on considering task-driven objectives in designing the visual representations.

Keypoints as Representations for Learning-based control. Keypoints have been utilized as robust
state representations for robotic manipulation in several prior works [24, 25, 26, 27]. These techniques
have been applied in areas including deformable object manipulation [28, 29], few-shot imitation
learning [25], model-based reinforcement learning [27], and learning from videos [24, 30]. However,
these approaches often rely on heuristic or manual keypoint selection [31, 32]. Our work differs by
focusing specifically on sim-to-real transfer and introducing a task-driven, simulation-guided method
for automatic keypoint selection.

5.2 Problem Formulation

We study decision-making in finite-horizon Markov Decision Processes (MDPs) defined by the tuple
M = (S,O,A,P, ρ0,R, γ), where S represents the Lagrangian state space (the compact, physical
state of the system), O is the observation space, A is the action space, P(s′|s, a) defines the transition
dynamics, ρ0 is the initial state distribution, R is the reward function, and γ is the discount factor.
In simulation, agents have access to the Lagrangian state S, which provides a compact, complete
description of the environment (for instance object positions, velocities and so on). However, in
the real world, agents can only access sensor observations O (e.g., RGB images) instead of the
true Lagrangian state. Although the real world might be partially observable, we assume that the
observation o ∈ O is sufficient to make optimal decisions, bypassing the need for an explicit belief
state as in Partially Observable MDPs. The observation o is produced by an invertible emission
function f , such that o = f(s).

Our goal is to derive a visuomotor policy π∗ that maximizes the expected cumulative reward in
the real world E [

∑
t γ

tr̂(st)] when acting on observations ot. In this work, we will derive such
policies in simulation using an arbitrary decision making method (which could include imitation
learning, reinforcement learning, trajectory optimization, or motion planning), and then transfer
this to the real world. The key challenge is the perceptual gap between simulation and the real
world. We formalize this with two MDPs: Msim = (Osim,S,A,P, ρ0,R, γ) for simulation, and
Mreal = (Oreal,A,P, ρ0,R, γ) for the real world. The same underlying state s goes through different
emission functions and leads to different observations in simulation, osim = fsim(s), and the real
world, oreal = freal(s). Notably, a simulation agent has access to both observation osim ∈ Osim and
privileged access to the Lagrangian state s ∈ S. In the real world, however, the agent relies solely
on sensor observations oreal ∈ Oreal, such as RGB camera images. The challenge in transferring
end-to-end visuomotor policies π∗(at|ot) from simulation to the real world lies in the distribution
mismatch between Osim and Oreal.
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TurnClock

Automatically Selecting Task-Driven Keypoints for the Task Objective

ButtonPress Operate Microwave Open Drawer

Figure 2: We propose ATK to select task-driven, minimal but necessary keypoints to represent the state such
that robotic policies can solve manipulation tasks in sim-to-real transfer. Given a clock and two distinct tasks
(Turn the clock hand or press the button), our proposal selects keypoints near the clock hand or on the clock body
respectively. In a kitchen environment, it automatically selects keypoints around the microwave’s control panel
for the task of pressing buttons; around the handle for the task of drawer closing. These task-driven keypoints
enable robust sim-to-real policy transfer.

To address this challenge, we aim to select a state representation that retains invariance between
simulation and real-world observations: gsim(osim) = greal(oreal). While many such choices are
feasible, this work primarily focuses on keypoint-based representations. Our proposed keypoint-
based encoder g selectively outputs task-relevant keypoints from observation oreal to transfer a policy
from sim-to-real domains.

5.3 Details for selecting Task-driven keypoint representation

Concretely, we feed the student policy with many candidate keypoints, enforcing information bot-
tleneck while optimizing the resulting policy’s performance. The student keypoint-based policy
has access to a large batch of candidate keypoints, {ki0}Mi=1, that were initially obtained via random
sampling in the image plane. We then enforce sparsity of keypoints by applying a mask, Mϕ to zero
out the information in some keypoints. Effectively, the student policy operates on the resulting subset
of keypoints. The mask is parameterized using a neural network for optimization. Since masking
is a discrete sampling operation and non-differentiable, we employ the Gumbel softmax approxi-
mation [33] for tractable gradient through categorical reparameterization. Intuitively, this method
approximates the discrete categorical distribution with a continuous and differentiable function,
ensuring that the forward pass outputs are discrete while the backward pass remains differentiable.

The resulting objective for selecting a minimal set of keypoints while learning a policy is

min−E(k,a)∼D
[
log πk

θ (a
∗
t | {kit}Ni=1)

]
+ α∥Mϕ({kit}Ni=1)∥1

where log π considers the performance of the resulting policy and α controls the sparcity penality
and ensure the selection is minimal. This training procedure filters out points that are irrelevant to
predicting the actions suggested by the optimal state-based policy π∗(at|st), while it also filters out
points that are challenging to track using hC since their representations over time ({kit}Mi=1) will be
unreliable to optimal actions prediction.

5.4 Experiment Setting

Tasks and Challenges We consider three fine manipulation tasks for quantitative analysis as
shown in Fig 3: (1) The sushi pick-and-place task requires grasping a piece of sushi in a cluttered
environment with distracting objects. (2) The glasspot tip lifting task requires precise grasp and lift of
the tip of a glass pot. This task is particularly challenging due to the pot’s reflective surface and the
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Figure 3: Depiction of various evaluation tasks: From top down - grasping sushi, lifting a glass teapot lid, clock
turning, clock button pressing. Depicted are various testing variations - different backgrounds, distractor objects
and light conditions.

small size of the tip. (3) The clock manipulation task contains two distinct tasks: turning the button
at the top of the clock or turning the clock hand on its surface, requiring task-specific representations
for manipulation of articulated objects. Each task brings in challenge from tracking difficulty, the
precision of manipulation, need of task-specific focus and variations in scene configuration. We also
consider two tasks in a multi-functional kitchen scene [34] for qualitative study: closing microwave
or closing drawer.

Simulation and Real-World Setup We test quantitative tasks in both sim and real. We create
MuJoCo [35] simulation using an iPhone app, Scaniverse, to scan and import the meshes of real-
world objects and adding joints for articulated objects. We conduct real world robotic experiments
using a 6-DOF Hebi robot arm equipped with chopsticks, following [36]. For RGB and depth
streaming, we employ Azure Kinect RGB-D cameras.

Baselines We compare our approach with two groups of six baselines. 1) Input modality: Policies
trained with different input types: RGB images, Depth images, and Point clouds. We obtain them
using similar distillation process from the same teacher policy but vary the input modality. 2) Keypoint
selection methods: We consider three more baselines: FullSet uses all sampled keypoints across the
image plane; Random Select randomly selects the same number of keypoints as our method; and
GPTSelect uses GPT-4 to select the same number of keypoints based on the image and task, please
visit the website for details.

Evaluation We evaluate each agent on 100 trajectories across 3 seeds in simulation and 20 trajecto-
ries in the real world, all with varying initial configurations. To assess robustness and generalization,
we introduce disturbances: RP (random object poses), RB (background texture shuffling), RO
(random distractor objects), and Light (altered lighting). We replicate these disturbances in both sim
and real.
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5.5 Additional experiments results

Q1: Accurate Sim-to-real Keypoints Transfer We consider two metrics: Confidence Score and
Mean Distance Error to measure the correspondence between real-world keypoints and their simulated
version. The prior measure the average cosine similarity between the points’ underlying features. The
Mean Distance Error measures the average pixel distance between manually-labeled correspondence
points and those identified by the correspondence function hC . As shown in Table 3, our method
achieves a high confidence score (0.76− 0.82), and low distance error (6 pixel coordinates, < 5% of
the object size), demonstrating accurate sim-to-real keypoints transfer.

Method Sushi Glass Clock button Clock turning

Confident Score 0.78 0.76 0.80 0.82
Mean Distance Error 3.24 5.21 2.79 6.75

Table 3: Quantitative metrics measurement for the keypoints transfer between simulation and real
world.

Q2: ATK Selects a Robust Subset of Keypoints Compared to Baselines. In Table 4, our method
demonstrates notable robustness compared to FullSet, RandomSelect and GPTSelect baselines. The
FullSet baseline preserves most information but suffers from unreliable tracking. The RandomSelect
often captures irrelevant information, causing the policy to lose critical information when the object’s
pose changes and lowering the success rates. GPT-based selection performs well in some tasks but
occasionally suffers from spatial and language mismatches, leading to incorrect selections.

Sushi Glass

RP RB +RO + Light RP RB +RO + Light

FullSet 0.122±0.057 0.053±0.036 0.010±0.008 0.013±0.012 0.311±0.150 0.069±0.056 0.013±0.012 0.013±0.012
RandomSelect 0.337±0.315 0.246±0.360 0.233±0.370 0.226±0.375 0.120±0.082 0.031±0.044 0.116±0.151 0.006±0.009

GPTSelect 0.032±0.009 0.020±0.008 0.013±0.005 0.006± 0.004 0.133±0.188 0.020±0.028 0.010±0.014 0.010±0.014
ATK 0.893±0.073 0.893±0.073 0.893±0.073 0.893±0.073 0.933±0.034 0.933±0.034 0.933±0.034 0.933±0.034

Clock button Clock turning

RP RB +RO + Light RP RB +RO + Light

FullSet 0.474±0.317 0.126±0.090 0.026±0.030 0.020±0.016 0.253±0.183 0.083±0.880 0.010±0.014 0.010±0.014
RandomSelect 0.107±0.030 0.080±0.045 0.036±0.032 0.026±0.020 0.253±0.166 0.076±0.088 0.000±0.000 0.000±0.000

GPTSelect 0.913±0.041 0.913±0.041 0.913±0.041 0.913±0.041 0.065±0.053 0.146±0.179 0.077±0.088 0.020±0.028
ATK 0.970±0.024 0.970±0.024 0.970±0.024 0.970±0.024 0.903±0.028 0.903±0.028 0.903±0.028 0.903±0.028

Table 4: Simulator Policy Success rate using different keypoint selection methods over 3 random
seeds. ATK consistently outperforms alternative keypoint selection methods using random sampling
or ChatGPT selection.

Overall, our method consistently selects task-relevant and trackable keypoints, outperforming base-
lines by 0.72 points.
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