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Abstract

Synthetic data is emerging as a powerful tool in com-001
puter vision, offering advantages in privacy and security.002
As generative AI models advance, they enable the creation003
of large-scale, diverse datasets that eliminate concerns re-004
lated to sensitive data sharing and costly data collection005
processes. However, fundamental questions arise: (1) can006
synthetic data replace natural data in a continual learn-007
ing (CL) setting? How much synthetic data is sufficient to008
achieve a desired performance? How well is the network009
generalizable when trained on synthetic data.010

To address these questions, we propose a sample mini-011
mization strategy for CL that enhances efficiency, general-012
ization, and robustness by selectively removing uninforma-013
tive or redundant samples during the training phase. We014
apply this method in a sequence of tasks derived from the015
GenImage dataset [35]. This setting allows us to compare016
the impact of training early tasks entirely on synthetic data017
to analyze how well they transfer knowledge for the subse-018
quent tasks or for evaluation on natural images. Further-019
more, our method allows us to investigate the impact of re-020
moving potentially incorrect, redundant, or harmful train-021
ing samples.022

We aim to maximize CL efficiency by removing uninfor-023
mative images and enhance robustness through both adver-024
sarial training and structured data removal. We experimen-025
tally study how the training order of synthetic and natu-026
ral data, and what generative models are used, significantly027
impact CL performance maximization and the natural data028
minimization. Our findings provide key insights into how029
generative examples can be leveraged for adaptive and effi-030
cient CL in evolving environments.031

1. Introduction032

In recent years, advances in generative artificial intelligence033
(Gen AI) have led to remarkable performance across a wide034
range of tasks such as object detection [17, 18], image clas-035

sification [2, 3], and natural language processing [7, 11]. 036
However, one limitation of such algorithms is their need for 037
extensive real-world data, which can be difficult to access 038
due to privacy concerns or costly data collection. To tackle 039
these problems, synthetic data, which is generated using 040
models such as Generative Adversarial Networks (GANs) 041
[28], Variational Autoencoders (VAEs) [15], and diffusion 042
models [30], has been suggested as an alternative to natural 043
data. The growth of interest in synthetic data has brought an 044
important question in computer vision: Can synthetic data 045
fully or partially substitute for natural data? While several 046
studies have shown that synthetic data can enhance perfor- 047
mance or reduce reliance on real data in standard learning 048
settings, to the best of our knowledge, there is no prior work 049
on their impact in more challenging scenarios such as con- 050
tinual learning (CL). CL refers to the setup where the model 051
learns multiple tasks sequentially without access to whole 052
previous task data, with a key challenge of catastrophic for- 053
getting of previously learned tasks [1, 33]. 054

In this paper, we aim to investigate the effective use of 055
synthetic data as a replacement for natural data in the con- 056
text of CL. Specifically, we aim to enhance the efficiency, 057
robustness, and generalizability of models trained in CL set- 058
tings by removing uninformative samples. This removal is 059
of particular interest in conjunction with the use of synthetic 060
samples, where (1) there is an increased risk of generative 061
models to make uninformative or erroneous samples com- 062
pared to the use of natural data; (2) training on synthetic 063
samples is costly. Hence, having a method in place to filter 064
such samples from the training data provides a valuable tool 065
for the efficient and robust CL when used alongside syn- 066
thetic training samples. To this end, we propose a sample 067
removal framework that identifies and removes uninforma- 068
tive examples. Our experiments further explore the trade- 069
off between data quantity and robustness across sequential 070
tasks under both natural and adversarial conditions. 071

Our contribution: In this paper, we (1) study the role 072
of synthetic data in CL and evaluate how well it can sub- 073
stitute for natural data under both standard and adversarial 074
training settings, and (2) propose a loss-based sample re- 075
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moval strategy EpochLoss to identify and eliminate redun-076
dant or uninformative examples. Our framework explores077
two knowledge transfer strategies between tasks: (i) pass-078
ing the model trained on the entire dataset of the previous079
task, and (ii) passing the model trained only on the informa-080
tive subset.081

2. Sample Removal Methodology082

2.1. Problem Formulation083

In this section, we first introduce a brief list of notations,084
followed by the loss function formula in CL setup.085

Table 1. Summary of Notation

Symbol Description

f Neural network model (classifier)
Ti ith task in the sequence of tasks
Di Data distribution associated with task Ti

D̄i Data distribution associated with the pruned (se-
lected) subset of task i after sample removal

T Number of epochs used to compute average loss for
sample ranking

r Percentage of samples to be removed
l Cross entropy loss function
θ Full set of network parameters
L(θ) Loss function parameterized by the model weights
θi Trainable parameters specific to task Ti

SFrozen
1,...,i Frozen sub-network for tasks T1, . . . , Ti

SFree
i Free sub-network for task Ti

s̄i Average loss value of sample xi across T epochs
s
(e)
i Loss value of sample xi at epoch e

DA
i Distribution of adversarially perturbed samples for

task Ti

ACCA Adversarial test accuracy of the network

Suppose that we are given a sequence of086
tasks T1, T2, . . . , Tt, each associated with dataset087

{(x(k)
i , y

(k)
i )| i = 1, . . . , Nk} coming from distribu-088

tion Dk. let D̄k be the distribution of the remaining samples089
after removing the most uninformative examples from Tk.090
Let DA

k and D̄A
k denote the adversarially perturbed versions091

of the full and pruned datasets, respectively.092
In CL setting, at each step, the model is trained on one093

task at a time without access to the full data from previous094
tasks. The goal is to minimize the loss on the current task095
while preserving performance on all previous learned tasks.096
Let us define the loss function in CL: let f denote a neural097
network with parameter set θ, trained sequentially on tasks098
T1, . . . , Tk−1. Following Algorithm 1 (Steps 13 and 14), af-099
ter training the network on each task, we prune the network100

and fine-tune it. This approach freezes some important fil- 101
ters and parameters for the current task to not update them 102
during learning a new task. This pruning results in splitting 103
the network into two sub-networks: 104

• Sfrozen
1,...,k−1: The frozen sub-network retaining knowledge 105

from previous tasks, with parameters θ1,...,k−1. 106

• Sfree
k : The free trainable sub-network for the next task 107

Tk, with parameters θk. 108

Thus, the full model is represented as f = Sfrozen
1,...,k−1 ∪ 109

Sfree
k , and only θk is updated during training on task Tk. 110

By considering ℓ(·, ·) as cross-entropy loss, the loss func- 111
tion for task Tk is defined as: 112

Lk(θk) = E(x,y)∼Dk
[ℓ(fθk(x), y)] , (1) 113

where the optimal parameters are given by: 114

θ∗k = argmin
θk

Lk(θk). (2) 115

To preserve performance on all tasks, the total loss across 116
tasks T1, . . . , Tt is: 117

L(θ) =

t∑
k=1

Lk(θk). (3) 118

In addition to standard training, we incorporate adversarial 119
training (Step 12 in Algorithm 1), which is applied either on 120
the entire adversarially perturbed dataset of the current task 121
k with distribution DA

k , or a subset of Tk after removing 122
uninformative samples drawn from distribution D̄A

k . The 123
total loss (adversarial training objectives) over all sequential 124
tasks is defined by: 125

L(θ) =

t∑
k=1

E(x,y)∼DA
k
[ℓ(fθk(x), y)] . (4) 126

For the subset adversarial dataset, we have: 127

L(θ) =

t∑
k=1

E(x,y)∼D̄A
k
[ℓ(fθk(x), y)] . (5) 128

In the following part, we propose our sample removal 129
framework, which is inspired by CAPER [8]. CAPER pro- 130
poses a sample removal strategy to improve performance, 131
efficiency, and robustness in a standard setting, by remov- 132
ing samples that are highly susceptible to noises. However, 133
based on our experiments, by extending their strategy to 134
a CL setup, CAPER still under-performs in both accuracy 135
and robustness compared to our loss-based sample removal 136
method. A detailed explanation of CAPER for CL is pro- 137
vided in the supplementary material. 138
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2.2. Epoch-Accuracy Strategy for CL139

In this paper, we propose a sample removal approach, de-140
signed to identify and remove uninformative samples in a141
CL setup. Our method uses average loss of samples over142
a fixed number of training epochs T to select informative143
samples and improve model robustness and generalization.144
Our approach not only enhances learning efficiency but also145
ensures resilience against adversarial attacks. When train-146
ing on synthetic data, it additionally provides a filter by147
which we can remove malformed samples that may be pro-148
duced by the generative model. Our framework consists of149
two main components: (1) adversarial baseline training and150
(2) selective sample removal.151

The first part serves as a baseline in which we train the152
network (adversarially) on the whole dataset of each task,153
and the second part focuses on the process of identifying154
and removing redundant nodes.155
Baseline Training: The baseline training phase is repre-156
sented in Algorithm 1 with a sample removal percentage157
of zero, where Steps 5–14 are skipped, as a result D̄A

k =158
DA

k . In this setup, the model undergoes adversarial training159
across a sequence of tasks in a CL fashion. Although Step160
15 in Algorithm 1 specifies adversarial training, the same161
procedure is applied under standard (non-adversarial) train-162
ing conditions. After training each task, we apply pruning163
and fine-tuning strategies to preserve useful representations164
(subnetwork learning). Specifically, a subset of the net-165
work’s weights is frozen to retain task-specific knowledge,166
while the remaining weights are updated during subsequent167
tasks. The Baseline algorithm is used in two different ways:168
• By using baseline training, we can directly evaluate the169

effect of substituting natural images with synthetic (gen-170
erative) images across tasks.171

• It is also used as a reference to compare against models172
trained after removing uninformative samples to evaluate173
the effect of removing redundant or harmful samples.174

Sample Selection and Removal: In the second stage, we175
extend the baseline by incorporating selective sample re-176
moval. Starting from the fine-tuned model obtained from177
the previous task (trained on the whole task’s dataset or178
what remains after removal), we train the network non-179
adversarially on the current task for a specific number of180
epochs. During this phase, we analyze the model’s response181
to unperturbed training data, aiming to identify susceptible182
samples—those that may hinder adversarial training due to183
being vulnerable to attacks. Our methodology supports both184
standard and adversarial training, making it adaptable to dif-185
ferent robustness goals.186

To be more specific, in the second stage, starting from187
the fine-tuned model obtained from the previous tasks188
T1, . . . , Tk−1 (either trained on the full dataset or a sub-189
set after removal), we train the network on the current task190
Tk for a fixed number of epochs (T ), using clean (unper-191

turbed) data in a standard (non-adversarial) training setting. 192
During this T -epoch training phase on unperturbed data, we 193
monitor the per-sample loss at each epoch and compute the 194
average loss, as a measure of sample informativeness, for 195
every training example in Dk. Specifically, for a sample 196

(xi, yi) ∈ Dk, let s(e)i = L(fθ(xi), yi), denote its loss at 197
epoch e. We define the informativeness score s̄i of sample 198
i as its average loss across the T epochs: 199

s̄i =
1

T

T∑
e=1

s
(e)
i . (6) 200

Algorithm 1 Removing Uninformative Samples
Input: Network f with parameter set θ, Tasks {T1, . . . , Tt}; E:

Total # of training epochs; E1: Total # of fine-tuning
epochs; T : Epochs for loss averaging, r: Sample removal
percentage

1 for Tk ∈ {T1, . . . , Tt} do
2 Initialization:
3 Initialize the network with a pretrained model on Tiny Im-

ageNet
4 if k > 1 then
5 Load the trained model on the previous task with

two sub-networks Sfrozen
1,...,k−1 and Sfree

k (The loaded
model is either trained on full or pruned dataset of
previous task)

6 Loss-Based Scoring:
7 Train the sub-network Sfree

k non-adversarially on exam-
ples from Dk for T epochs

8 for each sample (xi, yi) ∈ Dk do
9 for each epoch e ∈ {1, ..., T } do

10 Compute per-sample loss s(e)i = L(fθ(xi), yi)

11 Compute the average loss over T epochs:

s̄i =
1

T

T∑
e=1

s
(e)
i

12 Removal Rank all training samples in descending order based
on their average loss s̄i. Identify and remove the top r%
samples with the highest s̄i values, resulting in the pruned
dataset D̄k.

13 Adv. Attacked For each (xi, yi) ∈ D̄k, apply an adversarial
attack to obtain x̃i = xi + ϵ, resulting in a perturbed dataset
with distribution D̄A

k .
14 Go back to the Initialization step.
15 Training Train the sub-network Sfree

k adversarially on D̄A
k

for E epochs, and report ACCA on adversarial test exam-
ples D̄A

k .
16 Prune the network and fine-tune it for E1 epochs. This step

results in two new sub-networks Sfrozen
1,...,k and Sfree

k+1 .

Once all s̄i values are computed for samples in Dk, we 201
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Figure 1. The proposed framework consists of both baseline training (no removal) and the sample removal phase.

rank them in descending order, and remove the top r% of202
high-loss examples as uninformative or potentially detri-203
mental. These samples are then removed from the dataset,204
resulting in a subset with a distribution D̄k, which retains205
only the most informative and stable examples for learning.206

After this removal step, we adversarially retrain the207
model on the remaining data from task Tk, with distribu-208
tion D̄k and report the adversarial accuracy of the network209
on adversarial test examples with distribution DA

k . Finally,210
for transferring knowledge to the next task, task k+1 in the211
CL sequence, we explore two strategies: (i) transferring the212
model trained adversarially on the entire dataset of the cur-213
rent task with distribution Dk, or (ii) transferring the model214
trained adversarially on the pruned dataset (after removal)215
with distribution D̄k.216
As shown in Figure 1, we consider two transfer strategies217
moving from one task to the other. Considering the cur-218
rent task as Tk, in the first strategy, network A is trained219
adversarially on the full dataset of all previous sequential220
tasks T1, . . . , Tk−1, followed by pruning and fine-tuning,221
and then transferred to task Tk. In the second strategy, net-222
work B we train only on the remained (informative) subset223
of previous tasks, denoted by D̄1, . . . , D̄k−1.224

3. Experiments225

The experimental results section is divided into four parts:226
(1) Setup, (2) comparing removal methods on natural data,227
(3) applying substitution of natural tasks with synthetic228
data, and (4) comparing usefulness of different generative229
models for substitution of natural images. In the first part,230

the hyperparameters and all datasets are discussed. The sec- 231
ond and third parts discuss the performance and robustness 232
of removing or substitution of natural images with synthetic 233
images in standard and adversarial training scenarios within 234
a CL setup. The last part compares the usefulness of each 235
included generative model to substitute training data and 236
maintain the ability to generalize to natural data. 237

3.1. Setup 238

Here, we briefly explain the datasets, types of adversarial 239
attacks, and corruption used through our experiments, with 240
detailed hyper-parameters. 241
Datasets We conducted experiments using a variety of 242
datasets, including synthetic and real-world benchmarks. 243
Synthetic Data: For synthetic data, we derive six CL tasks 244

from the generative GenImage [35] dataset. This dataset 245
provides synthetic images of Imagenet classes derived from 246
various types of generative models, including GANs and 247
diffusion models, along with subsets of natural Imagenet 248
images. From these generators, we construct six tasks each 249
consisting of disjoint subsets of 100 classes from Imagenet. 250
For each task, we construct both a synthetic and a natural 251
copy to use for the task’s training data. We denote this task 252
sequence as GenImage-Disjoint. For tasks 1-6, the gener- 253
ators used are ADM [6], BigGAN [5], Midjourney [21], 254
Glide [22], Stable Diffusion (v1.4) [27], and VQDM [10], 255
respectively. To compare generator usefulness in data sub- 256
stitution, we additionally create copies of each task con- 257
sisting only of images generated by one of the generators. 258
In this case, a given task contains the same classes for all 259
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Effect of Removal Strategies on Networks Trained on Normal or Attacked Data

Figure 2. The test accuracy is compared for each task when removing data under different methods for a sequence of natural image tasks.
For normally trained networks (top) the normal test accuracy is given, while adversarial accuracy is reported for adversarially trained
networks (bottom). Our EpochLoss method frequently and significantly outperforms the case of not removing any training data.

Figure 3. Progressive substitution on three tasks with disjoint
classes, where the first task is composed of images generated by
ADM, the second is generated by BigGan, and the third one is nat-
ural images in ImageNet.

datasets, but those classes are generated by a different gen-260
erator. We denote these datasets by the generator used (e.g.261
GenImage-ADM).262

The different task configurations investigated in our ex-263
periments are as follows:264

• No substitution: All tasks are trained on natural images,265
giving a task string of N-N-N-N-N-N, with ’N’ denoting266
natural image tasks. Training and evaluation are both on267
natural images.268

• Mixed substitution: For the first three tasks of GenImage-269
Disjoint, we consider different combinations of substitut-270

ing natural tasks with synthetic ones (N-N-N, N-N-S, N- 271
S-N, etc) as demonstrated in Figure 3 to determine the 272
impact of substitution and the choice of which tasks in 273
the sequence get substituted. 274

• Progressive Substitution: The first t tasks use synthetic 275
training data from their corresponding generator, while 276
the subsequent tasks use natural images. We consider the 277
impact of gradually increasing the value of t. 278

We evaluate synthetic tasks on their corresponding natural 279
subset to examine how well the model generalizes when 280
trained on synthetic data. 281

In addition to this synthetic-vs-natural setting, we evalu- 282
ate our method in a standard learning setting, using one task 283
including a subset of CIFAR100 [16], to show its effective- 284
ness over CAPER, and random removal. More detailed ex- 285
planation is provided in the SM. 286
CNN Architecture We use ResNet-18 to evaluate our ap- 287
proach, as well as VGG16 within the SM. 288
Adversarial Attacks and Corruption To investigate the 289
effect of sample removal on adversarial robustness, we use 290
the adversarial attack PGD, as well as the corruption effects 291
Gaussian Noise, Gaussian Blur, Saturate and Rotate [2]. We 292
used standard and adversarial accuracies over test samples 293
and perturbed test samples, respectively, in order to mea- 294
sure the performance of our algorithm. 295
Hyper-Parameters We trained both networks for up to 300 296
epochs, with an additional 150 epochs for finetuning after 297
freezing task-specific components of the model. The learn- 298
ing rate is set to 0.1 throughout training, except for VGG16 299
during finetuning, which is reduced to 0.01. For more effi- 300
cient learning in terms of time and memory, we used early 301
stopping strategy to stop the training whenever it is con- 302
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Figure 4. We report the accuracy of the first three tasks in
GenImage-Disjoint when substituting tasks with synthetic training
data. Choice of synthetic or natural data for each task is denoted,
with some sequences (e.g. N-N-N and N-N-S) sharing early task
values. For both the non-adversarially trained (top) and adversar-
ial (bottom) settings we observe that the impact of substitution on
natural test accuracy varies based on which task is substituted, but
is capable of improving accuracy in some cases.

verged. To this end, we decreased the learning rate by a fac-303
tor of 0.1 if the validation accuracy doesn’t improve for 20304
epochs. If the learning rate falls below a minimum threshold305
of 0.0001, the learning process will stop to prevent unnec-306
essary computation. We used a batch size of 128, T of 50307
for both networks, and SGD Optimizer with momentum of308
0.9 and weight decay of 0 to prevent frozen weights to be309
updated. All experiments were averaged over 3 trials.310

3.2. Comparison of Data Removal Methods311

To investigate the impact of removing training data follow-312
ing Algorithm 1, we initially train on the natural GenImage-313
Disjoint tasks with no substitution. We either train the net-314
work adversarially under PGD attack, or normally. We315
compare the accuracies when removal is done using CA-316
PER and the proposed loss-based removal method. We317
compare against no removal and random removal as con-318
trols. Figure 2 shows that for both normal and adversarial319
settings, our EpochLoss strategy significantly outperforms320
even the case of removing no training data. Although the321

accuracy eventually deteriorates as the amount of data re- 322
moved increases, even when removing approximately half 323
of the training data EpochLoss maintains or improves the 324
baseline accuracy. As the process of collecting training 325
done during loss-based scoring is non-adversarial, the over- 326
head it adds to the runtime is offset by the efficiency we 327
gain in the adversarial training when removing this training 328
data. 329

3.3. Substitution with Synthetic Training Data 330

In addition to the full removal of training samples, we con- 331
sider the impact of replacing them with synthetic samples. 332
For these experiments we limit this investigation to the case 333
where entire tasks are replaced. Figure 4 shows the impact 334
of different sequences of substitution on the first 3 tasks 335
of GenImage-Disjoint under both adversarial and normal 336
training. For these experiments, no removal is performed. 337
We see that the use of synthetic data can match or even im- 338
prove upon the accuracy of natural task data, particularly in 339
the non-adversarial setting. For adversarial tasks substitu- 340
tion with synthetic images has more mixed results but still 341
often matches or exceeds natural accuracies. 342

To extend this setting, we consider the combination of 343
both removal and substitution of training data. Here, we 344
progressively substitute more of the initial tasks in the 345
GenImage-Disjoint dataset. We report the average test ac- 346
curacy over all tasks, using the normal accuracy for nor- 347
mally trained networks and adversarial accuracy for adver- 348
sarially trained networks. The results in Figure 5 show 349
that there is initially a benefit to substitution with synthetic 350
tasks, however accuracy begins to decrease as more tasks 351
are substituted beyond the first two or three. EpochLoss 352
outperforms the alternative removal methods and often out- 353
performs no removal. This demonstrates a strong potential 354
for reducing the number of natural samples needed either 355
through removal or substitution with generative alternatives. 356

3.4. Comparison of Generative Models 357

While we have shown that substitution of natural tasks with 358
synthetic samples can outperform the use of natural data, 359
this was not shown to always be the case, and we observe 360
in Figures 4 and 5 that there are settings where it can sig- 361
nificantly worsen performance. This is complicated by the 362
sequential training of CL, making it less clear if this is due 363
to the use of generative task data for multiple sequential 364
tasks, or due to the specific generators chosen for the later 365
tasks. To address this we consider comparisons between 366
versions of GenImage-Disjoint where all six tasks are made 367
by a given generator. Each task uses the same classes as in 368
the original dataset, and is evaluated on the same set of nat- 369
ural images. This allows us to directly compare each gener- 370
ative model’s usefulness in substituting natural images. We 371
report the results without removal, and consider the impact 372
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Figure 5. The average accuracy is reported over all tasks when the network is non-adversarially trained (top) or adversarially trained
(bottom). We compare between the settings of using no removal against using EpochLoss, CAPER, random removal. EpochLoss frequently
matches or outperforms the baseline accuracy when removing up to 40% or more of the training data.

of using EpochLoss for this comparison within the SM. Fig-373
ure 6 shows that for both non-adversarial training (top) and374
adversarial training (bottom), there are clear cases where375
some generators better prepare the network to generalize to376
the natural data when used for training. We see that ADM377
consistently matches or exceeds the natural data when used378
for training, as evaluated on natural test data. Furthermore379
Midjourney and Glide give the worst accuracies on natural380
test data. This may partially explain why we observe the381
accuracy increase when substituting task 1 in Figure 5, but382
subsequently see it begin to deteriorate after substituting the383
3rd and 4th tasks.384

4. Related Work385

Continual Learning Continual learning (CL) aims to train386
models on sequential tasks while preventing catastrophic387
forgetting. Existing approaches to CL fall into three main388
categories: replay-based methods, which store or regener-389
ate past data [28], regularization-based techniques, which390
constrain weight updates to preserve previous knowledge391
[25], and architectural modifications, such as expanding the392
network dynamically [4]. Among these, freezing a sub-393
set of the model’s parameters has been widely studied as a394
way to balance knowledge retention with adaptability [26].395
However, while these approaches focus on preserving past396
knowledge, they do not explicitly address whether all train-397
ing samples are beneficial, particularly in the presence of398
adversarial noise, label noise, and data corruption. No-399
tably, many replay methods use generative models to gen-400
erate samples from previously learned tasks, enabling the401
network to remember that task [19, 28, 34]. By contrast, we402
are interested in how well such synthetic samples can help403
the model learn the task initially.404

Synthetic Data The use of synthetic data has gained405
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Figure 6. For each single-generator variant of GenImage-Disjoint,
we compare the natural test accuracy. We compare training on
synthetic data for all tasks against training on the natural tasks of
GenImage-Disjoint. In both the non-adversarial (top) and adver-
sarial (bottom) settings, certain generators such as ADM perform
significantly better than others in enabling the network to general-
ize to natural images, even outperforming natural training data.

much interest in computer vision and deep learning, where 406
real-world data is scarce, sensitive, or costly to collect. Gen- 407
erative models such as GANs [28], VAEs [15], and diffu- 408
sion models [30] have been widely used to create synthetic 409
datasets that supplement or replace real-world data in train- 410
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ing deep networks. These methods have demonstrated ef-411
fectiveness in various tasks such as classification, detection,412
and segmentation. For instance, [9] showed that synthetic413
data could bridge the domain gap in object detection tasks,414
while [32] demonstrated that models trained on synthetic415
data can generalize well when designed with sufficient di-416
versity and realism. We instead look to answer how effec-417
tive synthetic data is for learning tasks in the CL setting.418

Sample Selection and Sample Removal Beyond data419
generation, sample selection plays a critical role in robust420
learning under data noise, adversarial attacks, and natu-421
ral corruption. Recent work in adversarial robustness [20]422
demonstrates that deep networks are highly sensitive to423
small perturbations, leading to misclassifications. Natural424
corruptions, such as blur, noise, and contrast shifts, sig-425
nificantly degrade model performance. [12] systematically426
benchmarked these effects and demonstrated that deep net-427
works struggle under such perturbations.428

Recent advancements have also explored intelligent sam-429
ple selection and removal techniques to further enhance430
model robustness under adversarial attacks and natural cor-431
ruptions. Such techniques may aim to retain samples that432
provide easy and diverse training data [13], are fair and433
low-loss [23], or are otherwise deemed important for the434
task [14, 24, 26]. Others have considered removal of easily-435
forgotten data [31] or trivial samples that don’t contribute436
to challenging or informing the gradient updates in the net-437
work [29]. These approaches demonstrate that careful sam-438
ple selection—even in synthetic CL—can reduce computa-439
tional cost, enhance robustness, and maintain accuracy in440
the face of noise and distributional shifts. Additional works441
have aimed to remove samples most susceptible to noise442

In the adversarial setting, Q-TART [8] notably intro-443
duces a fast and robust training pipeline by selecting high-444
quality adversarial examples that improve both robustness445
and transferability across tasks. By excluding low-quality446
adversarial examples, Q-TART achieves faster convergence447
and better performance under adversarial conditions.448

In contrast to these works, our study proposes a system-449
atic sample removal framework specifically designed for450
adversarial CL using synthetic datasets. Unlike prior meth-451
ods focusing on label noise or reweighting heuristics, we452
directly address the core challenge of identifying and re-453
moving harmful samples during sequential training.454

5. Discussion and Conclusion455

In this study, we investigate the effectiveness of substituting456
natural images with synthetic data in CL, and we introduce457
a sample removal framework for CL designed to improve458
efficiency, generalization, and robustness by removing un-459
informative samples during the training phase.460

While previous works have demonstrated the use of syn-461
thetic data instead of natural images in terms of improving462

performance and reducing reliance on real data in standard 463
learning settings, there remains a gap in understanding how 464
such data performs in CL scenarios and how much data is 465
enough. Some contexts such as replay methods have made 466
use of synthetic images, such as those generated by GAN 467
models trained on a given task, to avoid forgetting. By con- 468
trast we show here the ability of such generative training 469
data to allow a network to learn a new task as well. 470

Our experimental findings clearly illustrate that regard- 471
less of using natural images or synthetic images as subse- 472
quent tasks, our proposed EpochLoss strategy outperforms 473
other removal methods and often even the baseline scenario, 474
where no data is removed, under either normal and adver- 475
sarial training. In addition, in the absence of sample re- 476
moval, we observe that, in some cases, substituting natu- 477
ral tasks with synthetic samples can lead to better perfor- 478
mance than using only natural images, particularly in the 479
non-adversarial setting. These results highlight the poten- 480
tial to reduce the number of natural samples needed either 481
through removal or substitution with generative alternatives. 482

The ability to attain better natural test accuracy when 483
generalizing from synthetic data may initially be unintu- 484
itive, however there are some potential causes which may 485
explain this result. If we consider that the features present 486
in the synthetic images are those that a generative model 487
strongly associates with a class, then we can view the sub- 488
stitution process as a form of knowledge transfer from an 489
expert model. Here the generator is an expert on the features 490
of each class, and is ideally passing images that were gener- 491
ated to contain important information for the model to learn 492
those classes. In this way, a useful generator could avoid 493
incidental features present in natural images which may be 494
unassociated with the class label. Furthermore, by apply- 495
ing our removal approach EpochLoss, we can help mitigate 496
the cases where the generator produces erroneous samples, 497
such as by misinterpreting the prompt used to generate an 498
image and effectively creating a mislabeled sample. 499

We observe in our experiments that the combination of 500
removal and substitution of training data, as in Figure 5 can 501
improve upon the accuracy obtained by only substituting 502
the data. As we also see improvements when removing in 503
the natural image tasks, it is difficult to discern how much 504
of this improvement may be due to this filtering role, but it 505
is a relationship between this substitution and removal set- 506
tings that remains an avenue of interest for further investiga- 507
tion. There is also a potential that the removal of incidental 508
features through substitution, or the removal of challeng- 509
ing samples through loss-based removal may lead to issues 510
with the network in terms of overfitting or generalization as 511
we may be removing rare or challenging features from the 512
data. Despite this, we do not observe significant cases of 513
such issues in our experiments. It still remains an important 514
point to investigate in subsequent works to better consider 515
the impact of synthetic data on CL. 516
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