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Abstract

Synthetic data is emerging as a powerful tool in com-
puter vision, offering advantages in privacy and security.
As generative AI models advance, they enable the creation
of large-scale, diverse datasets that eliminate concerns re-
lated to sensitive data sharing and costly data collection
processes. However, fundamental questions arise: (1) can
synthetic data replace natural data in a continual learn-
ing (CL) setting? How much synthetic data is sufficient to
achieve a desired performance? How well is the network
generalizable when trained on synthetic data.

To address these questions, we propose a sample mini-
mization strategy for CL that enhances efficiency, general-
ization, and robustness by selectively removing uninforma-
tive or redundant samples during the training phase. We
apply this method in a sequence of tasks derived from the
GenImage dataset [35]. This setting allows us to compare
the impact of training early tasks entirely on synthetic data
to analyze how well they transfer knowledge to subsequent
tasks or for evaluation on natural images. Furthermore, our
method allows us to investigate the impact of removing po-
tentially incorrect, redundant, or harmful training samples.

We aim to maximize CL efficiency by removing uninfor-
mative images and enhance robustness through adversarial
training and data removal. We study how the training order
of synthetic and natural data, and what generative models
are used, impact CL performance maximization and the nat-
ural data minimization. Our findings provide key insights
into how generative examples can be used for adaptive, ef-
ficient CL in evolving environments.

*Equal contribution.

1. Introduction

In recent years, advances in generative artificial intelligence
(Gen AI) have led to remarkable performance across a wide
range of tasks such as object detection [17, 18], image clas-
sification [2, 3], and natural language processing [7, 11].
However, one limitation of such algorithms is their need for
extensive real-world data, which can be difficult to access
due to privacy concerns or costly data collection. To tackle
these problems, synthetic data, which is generated using
models such as Generative Adversarial Networks (GANs)
[28], Variational Autoencoders (VAEs) [15], and diffusion
models [30], has been suggested as an alternative to natural
data. The growth of interest in synthetic data has brought an
important question in computer vision: Can synthetic data
fully or partially substitute for natural data? While several
studies have shown that synthetic data can enhance perfor-
mance or reduce reliance on real data in standard learning
settings, to the best of our knowledge, there is no prior work
on their impact in more challenging scenarios such as con-
tinual learning (CL). CL refers to the setup where the model
learns multiple tasks sequentially without access to whole
previous task data, with a key challenge of catastrophic for-
getting of previously learned tasks [1, 33].

In this paper, we aim to investigate the effective use of
synthetic data as a replacement for natural data in the con-
text of CL. Specifically, we aim to enhance the efficiency,
robustness, and generalizability of models trained in CL set-
tings by removing uninformative samples. This removal is
of particular interest in conjunction with the use of synthetic
samples, where (1) there is an increased risk of generative
models to make uninformative or erroneous samples com-
pared to the use of natural data; (2) training on synthetic
samples is costly. Hence, having a method in place to filter



such samples from the training data provides a valuable tool
for the efficient and robust CL when used alongside syn-
thetic training samples. To this end, we propose a sample
removal framework that identifies and removes uninforma-
tive examples. Our experiments further explore the trade-
off between data quantity and robustness across sequential
tasks under both natural and adversarial conditions.

Our contribution: In this paper, we (1) study the role
of synthetic data in CL and evaluate how well it can substi-
tute for natural data under standard and adversarial training
settings, and (2) propose a loss-based sample removal strat-
egy EpochLoss1 to identify and eliminate redundant or un-
informative examples. We explore two knowledge transfer
strategies between tasks: (i) passing the model trained on
the entire dataset of the previous task, and (ii) passing the
model trained only on the informative subset.

2. Sample Removal Methodology
2.1. Problem Formulation
In this section, we first introduce a brief list of notations,
followed by the loss function formula in CL setup.

Table 1. Summary of Notation

Symbol Description

f Neural network model (classifier)
Ti ith task in the sequence of tasks
Di Data distribution associated with task Ti

D̄i Data distribution associated with the pruned (se-
lected) subset of task i after sample removal

T Number of epochs used to compute average loss for
sample ranking

r Percentage of samples to be removed
l Cross entropy loss function
θ Full set of network parameters
L(θ) Loss function parameterized by the model weights
θi Trainable parameters specific to task Ti

SFrozen
1,...,i Frozen sub-network for tasks T1, . . . , Ti

SFree
i Free sub-network for task Ti

s̄i Average loss value of sample xi across T epochs
s
(e)
i Loss value of sample xi at epoch e

DA
i Distribution of adversarial samples for task Ti

ACCA Adversarial test accuracy of the network

Suppose that we are given a sequence of
tasks T1, T2, . . . , Tt, each associated with dataset
{(x(k)

i , y
(k)
i )| i = 1, . . . , Nk} coming from distribu-

tion Dk. let D̄k be the distribution of the remaining samples

1https://github.com/Sekeh-Lab/EpochLoss_CL

after removing the most uninformative examples from Tk.
Let DA

k and D̄A
k denote the adversarially perturbed versions

of the full and pruned datasets, respectively.
In CL setting, at each step, the model is trained on one

task at a time without access to the full data from previous
tasks. The goal is to minimize the loss on the current task
while preserving performance on all previous learned tasks.
Let us define the loss function in CL: let f denote a neural
network with parameter set θ, trained sequentially on tasks
T1, . . . , Tk−1. Following Algorithm 1 (Steps 18 and 19),
after training the network on each task, we prune the net-
work and fine-tune it. We apply unstructured, magnitude-
based pruning to all unfrozen weights, removing the lowest-
magnitude weights in each layer to meet a predefined spar-
sity level of unfrozen weights. The remaining unpruned
weights are then fine-tuned for a fixed number of epochs
and subsequently frozen, preserving task-specific knowl-
edge. The pruned (zeroed) weights remain unfrozen and
are reused as the trainable parameters for the next task. This
approach freezes some important filters and parameters for
the current task to not update them during later tasks. This
results in splitting the network into two sub-networks:
• Sfrozen

1,...,k−1: The frozen sub-network retaining knowledge
from previous tasks, with parameters θ1,...,k−1.

• Sfree
k : The free trainable sub-network for the next task

Tk, with parameters θk.
Thus, the full model is represented as f = Sfrozen

1,...,k−1 ∪
Sfree
k , and only θk is updated during training on task Tk.

By considering ℓ(·, ·) as cross-entropy loss, the loss func-
tion for task Tk is defined as:

Lk(θk) = E(x,y)∼Dk
[ℓ(fθk(x), y)] , (1)

where the optimal parameters are given by:

θ∗k = argmin
θk

Lk(θk). (2)

To preserve performance on all tasks, the total loss across
tasks T1, . . . , Tt is:

L(θ) =

t∑
k=1

Lk(θk). (3)

We perform adversarial training (Step 18 in Algorithm 1),
using either the entire adversarially perturbed dataset of the
current task Tk with distribution DA

k , or a subset of Tk with
distribution D̄A

k after removing uninformative samples. The
total loss over all sequential tasks is defined by:

L(θ) =

t∑
k=1

E(x,y)∼DA
k
[ℓ(fθk(x), y)] . (4)

For the subset adversarial dataset, we have:

L(θ) =

t∑
k=1

E(x,y)∼D̄A
k
[ℓ(fθk(x), y)] . (5)

https://github.com/Sekeh-Lab/EpochLoss_CL


In the following part, we propose our sample removal
framework inspired by CAPER [8]. CAPER aimed to im-
prove performance, efficiency, and robustness in a standard
setting by removing samples that are highly susceptible to
noise. Our experiments show that, when their strategy is ex-
tended to a CL setup, CAPER still under-performs in both
accuracy and robustness compared to our loss-based sample
removal method. A detailed explanation of CAPER for CL
is provided in the supplementary material.

2.2. Epoch-Accuracy Strategy for CL
In this paper, we propose a sample removal approach, de-
signed to identify and remove uninformative samples in a
CL setup. Our method uses average loss of samples over
a fixed number of training epochs T to select informative
samples and improve model robustness and generalization.
Our approach not only enhances learning efficiency but also
ensures resilience against adversarial attacks. When train-
ing on synthetic data, it additionally provides a filter by
which we can remove malformed samples that may be pro-
duced by the generative model.
Sample Selection and Removal: Our method identifies
and removes uninformative samples based on their aver-
age loss over multiple training epochs. Starting from the
fine-tuned model obtained from the previous task (trained
on the whole task’s dataset or what remains after removal),
we train the network non-adversarially on the current task
for a specific number of epochs. During this phase, we ana-
lyze the model’s response to unperturbed training data, aim-
ing to identify susceptible samples—those that may hinder
adversarial training due to being vulnerable to attacks. Our
methodology supports both standard and adversarial train-
ing, making it adaptable to different robustness goals. For
the explanation of the method given in this section and Al-
gorithm 1 we refer to the adversarial setting specifically. To
apply the method to standard training, non-perturbed data
would be used for any adversarial step.

To be more specific, starting from the fine-tuned model
obtained from the previous tasks T1, . . . , Tk−1 (either
trained on the full dataset or a subset after removal), we
train the network on the current task Tk for a fixed num-
ber of epochs (T ), using clean (unperturbed) data in a stan-
dard (non-adversarial) training setting. During this T -epoch
training phase on unperturbed data, we monitor the per-
sample loss at each epoch and compute the average loss,
as a measure of sample informativeness, for every training
example in Dk. Specifically, for a sample (xi, yi) ∈ Dk, let
s
(e)
i = L(fθ(xi), yi), denote its loss at epoch e. We define

the informativeness score s̄i of sample i as its average loss
across the T epochs:

s̄i =
1

T

T∑
e=1

s
(e)
i . (6)

Algorithm 1 Removing Uninformative Samples
Input: Network f with parameter set θ, Tasks {T1, . . . , Tt}; E:

Total # of training epochs; E1: Total # of fine-tuning
epochs; T : Epochs for loss averaging, r: Sample removal
percentage

1 for Tk ∈ {T1, . . . , Tt} do
2 Initialization:
3 if k = 1 then
4 Load the pretrained weights

5 else
6 Load the trained model on the previous task with two

sub-networks Sfrozen
1,...,k−1 and Sfree

k

7 Loss-Based Scoring:
8 Train the sub-network Sfree

k non-adversarially on exam-
ples from Dk for T epochs

9 for each epoch e ∈ {1, ..., T } do
10 for each sample (xi, yi) ∈ Dk do
11 Compute per-sample loss s

(e)
i = L(fθ(xi), yi)

Accumulate per-sample loss si+ = s
(e)
i

12 for each sample (xi, yi) ∈ Dk do
13 Compute average loss over T epochs for sample xi:

s̄i =
si
T

14 Removal Rank training samples in descending order by their
average loss s̄i. Remove the top r% samples with the highest
s̄i values, resulting in the pruned dataset D̄k.

15 Adv. Attacked For each sample (xi, yi) ∈ D̄k, apply an ad-
versarial attack to obtain x̃i = xi+ϵ, resulting in a perturbed
dataset with distribution D̄A

k .
16 Re-initialize the model: load pretrained weights if k = 1.

Otherwise, load the trained model from task k − 1.
17 Training
18 Train sub-network Sfree

k adversarially on D̄A
k for E

epochs. Report ACCA on adversarial test data DA
k .

19 Prune the network and fine-tune it for E1 epochs. This
results in two new sub-networks Sfrozen

1,...,k and Sfree
k+1 .

Once all s̄i values are computed for samples in Dk, we
rank them in descending order, and remove the top r% of
high-loss examples as uninformative or potentially detri-
mental. These samples are then removed from the dataset,
resulting in a subset with a distribution D̄k, which retains
only the most informative and stable examples for learning.

After this removal step, we adversarially retrain the
model on the remaining data from task Tk, with distribution
D̄k and report the adversarial accuracy of the network on
adversarial test examples with distribution D̄A

k . For trans-
ferring knowledge to the next task k+1 in the CL sequence,
we consider: (i) transferring the model trained on the en-
tire dataset of the current task with distribution DA

k (when
r = 0), or (ii) transferring the model trained on the pruned



Figure 1. The proposed framework consists of loss collection (steps 1-2), sample removal (step 3), and subnetwork training (steps 4-6).

dataset (after removal) with distribution D̄A
k .

We note that when the removal ratio is set to r = 0, no
samples are removed, and the model is trained on the full
dataset. We refer to this case as the baseline setting, in
which Steps 7-14 in Algorithm 1 are skipped, as a result
D̄A

k = DA
k . This special case is used in our experiments for

investigative purposes, such as:
• Evaluating the effect of substituting natural images with

synthetic (generative) images across tasks.
• Using as a reference to compare against models trained

after removing uninformative samples to evaluate the ef-
fect of removing redundant or harmful samples.

3. Experiments
The experimental results section is divided into four parts:
(1) Setup, (2) comparing removal methods on natural data,
(3) applying substitution of natural tasks with synthetic
data, and (4) comparing usefulness of different generative
models for substitution of natural images. In the first part,
the hyperparameters and all datasets are discussed. The sec-
ond and third parts discuss the performance and robustness
of removing or substitution of natural images with synthetic
images in standard and adversarial training scenarios within
a CL setup. The last part compares the usefulness of each
included generative model to substitute training data and
maintain the ability to generalize to natural data.

3.1. Setup
Here, we briefly explain the datasets, types of adversarial at-
tacks, and corruptions used through our experiments, with

detailed hyper-parameters.
Datasets We conducted experiments using a variety of
datasets, including synthetic and real-world benchmarks.

Synthetic Data: For synthetic data, we derive six CL
tasks from the generative GenImage [35] dataset. This
dataset provides synthetic images of Imagenet classes de-
rived from various generative models, including GANs and
diffusion models, along with subsets of natural Imagenet
images. From these generators, we construct six tasks each
consisting of disjoint subsets of 100 classes from Imagenet.
For each task, we construct both a synthetic and a natural
copy to use for the task’s training data. We denote this task
sequence as GenImage-Disjoint. For tasks 1-6, the gener-
ators used are ADM [6], BigGAN [5], Midjourney [21],
Glide [22], Stable Diffusion (v1.4) [27], and VQDM [10],
respectively. To compare generator usefulness in data sub-
stitution, we additionally create copies of the GenImage-
Disjoint dataset for each generator, where synthetic versions
of all tasks are made with a single generator. We denote
these datasets by the generator used (e.g. GenImage-ADM).

The different task configurations investigated in our ex-
periments are as follows:

• No substitution: Tasks only use natural images, giving a
task string of N-N-N-N-N-N (’N’ denoting natural image
tasks). Training and evaluation are on natural images.

• Mixed substitution: For the first three tasks of GenImage-
Disjoint, we consider different combinations of substitut-
ing natural tasks with synthetic ones (N-N-N, N-N-S, N-
S-N, etc) as demonstrated in Figure 3 to determine the
impact of substitution and the choice of which tasks in
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Figure 2. The test accuracy is compared for each task when removing data under different methods for a sequence of natural image tasks.
For normally trained networks (top) the normal test accuracy is given, while adversarial accuracy is reported for adversarially trained
networks (bottom). Our EpochLoss method frequently and significantly outperforms the case of not removing any training data.

Figure 3. Progressive substitution on three tasks with disjoint
classes, where the first task is composed of images generated by
ADM, the second is generated by BigGan, and the third one is nat-
ural images in ImageNet.

the sequence get substituted.
• Progressive Substitution: The first t tasks use synthetic

training data from their corresponding generator, while
the subsequent tasks use natural images. We consider the
impact of gradually increasing the value of t.

We evaluate synthetic tasks on their corresponding natural
subset to examine how well the model generalizes when
trained on synthetic data.

In addition to this synthetic-vs-natural setting we evalu-
ate our method in a standard learning setting, using a one-
task subset of CIFAR-100 [16], to show its effectiveness

over CAPER and random removal. More detailed explana-
tion is provided in the SM.
CNN Architecture We use ResNet-18 to evaluate our ap-
proach, as well as VGG16 within the SM.
Adversarial Attacks and Corruption To investigate the
effect of sample removal on adversarial robustness, we use
the adversarial attack PGD, as well as the corruption effects
Gaussian Noise, Gaussian Blur, Saturate and Rotate [2]. We
used standard and adversarial accuracies over test samples
and perturbed test samples, respectively, in order to mea-
sure the performance of our algorithm.
Hyper-Parameters We trained both networks for up to 300
epochs, with an additional 150 epochs for finetuning after
pruning 65% of the unfrozen weights followed by freezing
the remaining unpruned weights. The learning rate is set to
0.1 throughout training, except for VGG16 during finetun-
ing, which is reduced to 0.01. For more efficient learning
in terms of time and memory, we used early stopping strat-
egy to stop the training whenever it is converged. To this
end, we decreased the learning rate by a factor of 0.1 if the
validation accuracy doesn’t improve for 20 epochs. If the
learning rate falls below a minimum threshold of 0.0001,
the learning process will stop to prevent unnecessary com-
putation. We used a batch size of 128, T of 50 for both
networks, and SGD Optimizer with momentum of 0.9 and
weight decay of 0 to prevent frozen weights to be updated.
All experiments were averaged over 3 trials.

3.2. Comparison of Data Removal Methods

To investigate the impact of removing training data follow-
ing Algorithm 1, we initially train on the natural GenImage-
Disjoint tasks with no substitution. We either train the net-
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task values. For both the non-adversarially trained (top) and ad-
versarial (bottom) settings we observe that replacing task 1 with
synthetic data is capable of outperforming accuracy compared to
natural data, while replacing tasks 2 or 3 worsens accuracy.

work adversarially under PGD attack, or normally. We
compare the accuracies when removal is done using CA-
PER and the proposed EpochLoss method. We compare
against no removal and random removal. Figure 2 shows
that for both normal and adversarial settings, our EpochLoss
strategy significantly outperforms even the case of remov-
ing no training data. Although the accuracy eventually de-
teriorates as the amount of data removed increases, even
when removing approximately half of the training data
EpochLoss maintains or improves the baseline accuracy. As
the process of collecting training done during loss-based
scoring is non-adversarial, the overhead it adds to the run-
time is offset by the efficiency we gain in the adversarial
training when removing this training data.

3.3. Substitution with Synthetic Training Data

In addition to the removal of training samples, we consider
the impact of replacing them with synthetic samples. For
these experiments we limit this investigation to the case
where entire tasks are replaced. Figure 4 shows the impact

of different sequences of substitution on the first 3 tasks
of GenImage-Disjoint under both adversarial and normal
training. For a given sequence, some combination of the
included tasks are entirely replaced with synthetic training
data. For example sequences N-N-N and N-N-S use nat-
ural training data for tasks 1 and 2, but N-N-S substitutes
synthetic training data for task 3. No sample removal is
performed. We see that the use of synthetic data can match
or even improve upon the accuracy of natural task data, in
this case on the first task using the generator ADM.

To extend this setting, we consider the combination of
both removal and substitution of training data. Here, we
progressively substitute more of the initial tasks in the
GenImage-Disjoint dataset. We report the average test ac-
curacy over all tasks, using the normal accuracy for nor-
mally trained networks and adversarial accuracy for adver-
sarially trained networks. The results in Figure 5 show
that there is initially a benefit to substitution with synthetic
tasks, however accuracy begins to decrease as more tasks
are substituted beyond the first two or three. EpochLoss
outperforms the alternative removal methods and often out-
performs no removal. This demonstrates a strong potential
for reducing the number of natural samples needed either
through removal or substitution with generative alternatives.

3.4. Comparison of Generative Models

While we have shown that substitution of natural tasks with
synthetic samples can outperform the use of natural data,
this was not shown to always be the case, and we observe
in Figures 4 and 5 that there are settings where it can sig-
nificantly worsen performance. This is complicated by the
sequential training of CL, making it less clear if this is due
to the use of generative task data for multiple sequential
tasks, or due to the specific generators chosen for the later
tasks. To address this we consider comparisons between
versions of GenImage-Disjoint where all six tasks are made
by a given generator. Each task uses the same classes as in
the original dataset, and is evaluated on the same set of nat-
ural images. This allows us to directly compare each gener-
ative model’s usefulness in substituting natural images. We
report the results without removal, and consider the impact
of using EpochLoss for this comparison within the SM. Fig-
ure 6 shows that for both non-adversarial training (top) and
adversarial training (bottom), there are clear cases where
some generators better prepare the network to generalize to
natural data when used for training. We see that ADM con-
sistently matches or exceeds the natural data when used for
training, as evaluated on natural test data. Midjourney and
Glide give the worst accuracies on natural test data, partially
explaining why we observe the accuracy increase when sub-
stituting task 1 in Figure 5, but subsequently see it begin to
deteriorate after substituting the 3rd and 4th tasks.
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Figure 6. For each single-generator variant of GenImage-Disjoint,
we compare the natural test accuracy. We compare training on
synthetic data for all tasks against training on the natural tasks of
GenImage-Disjoint. In both the non-adversarial (top) and adver-
sarial (bottom) settings, certain generators such as ADM perform
significantly better than others in enabling the network to general-
ize to natural images, even outperforming natural training data.

4. Related Work

Continual Learning Continual learning (CL) aims to train
models on sequential tasks while preventing catastrophic
forgetting. Existing approaches to CL fall into three main
categories: replay methods, which store or regenerate past
data [28], regularization-based techniques, which constrain

weight updates to preserve previous knowledge [25], and
architectural modifications, such as expanding the network
dynamically [4]. Among these, freezing a subset of the
model’s parameters has been widely studied as a way to
balance knowledge retention with adaptability [26]. While
these approaches focus on preserving past knowledge, they
do not explicitly address whether all training samples are
beneficial, particularly in the presence of adversarial noise
and data corruption. Notably, many replay methods use
generative models to generate samples from previously
learned tasks, enabling the network to remember that task
[19, 28, 34]. By contrast, we are interested in how such
synthetic samples can help the model learn the task initially.

Synthetic Data The use of synthetic data has gained
much interest in computer vision and deep learning, where
real-world data is scarce, sensitive, or costly to collect. Gen-
erative models such as GANs [28], VAEs [15], and diffu-
sion models [30] have been widely used to create synthetic
datasets that supplement or replace real-world data in train-
ing deep networks. These methods have demonstrated ef-
fectiveness in various tasks such as classification, detection,
and segmentation. For instance, [9] showed that synthetic
data could bridge the domain gap in object detection tasks,
while [32] demonstrated that models trained on synthetic
data can generalize well when designed with sufficient di-
versity and realism. We instead look to answer how effec-
tive synthetic data is for learning tasks in the CL setting.

Sample Selection and Sample Removal Beyond data
generation, sample selection plays a critical role in robust
learning under data noise, adversarial attacks, and natu-
ral corruption. Recent work in adversarial robustness [20]
demonstrates that deep networks are highly sensitive to
small perturbations, leading to misclassifications. Natural
corruptions, such as blur, noise, and contrast shifts, sig-
nificantly degrade model performance. [12] systematically



benchmarked these effects and demonstrated that deep net-
works struggle under such perturbations.

Recent advancements have also explored intelligent sam-
ple selection and removal techniques to further enhance
model robustness under adversarial attacks and natural cor-
ruptions. Such techniques may aim to retain samples that
provide easy and diverse training data [13], are fair and
low-loss [23], or are otherwise deemed important for the
task [14, 24, 26]. Others have considered removal of easily-
forgotten data [31] or trivial samples that don’t contribute
to challenging or informing the gradient updates in the net-
work [29]. These approaches demonstrate that careful sam-
ple selection—even in synthetic CL—can reduce computa-
tional cost, enhance robustness, and maintain accuracy in
the face of noise and distributional shifts. Additional works
have aimed to remove samples most susceptible to noise

In the adversarial setting, Q-TART [8] notably intro-
duces a fast and robust training pipeline by selecting high-
quality adversarial examples that improve both robustness
and transferability across tasks. By excluding low-quality
adversarial examples, Q-TART achieves faster convergence
and better performance under adversarial conditions.

In contrast to these works, our study proposes a system-
atic sample removal framework specifically designed for
adversarial CL using synthetic datasets. Unlike prior meth-
ods focusing on label noise or reweighting heuristics, we
directly address the core challenge of identifying and re-
moving harmful samples during sequential training.
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5. Discussion and Conclusion
In this study, we investigate the effectiveness of substituting
natural images with synthetic data in CL, and we introduce
a sample removal framework for CL designed to improve
efficiency, generalization, and robustness by removing un-
informative samples during the training phase.

While previous works have demonstrated the use of syn-
thetic data instead of natural images in terms of improving
performance and reducing reliance on real data in standard
learning settings, there remains a gap in understanding how
such data performs in CL scenarios and how much data is
enough. Some contexts such as replay methods have made
use of synthetic images, such as those generated by GAN
models trained on a given task, to avoid forgetting. By con-

trast we show here the ability of such generative training
data to allow a network to learn a new task as well.

Our experimental findings clearly illustrate that regard-
less of using natural images or synthetic images as subse-
quent tasks, our proposed EpochLoss strategy outperforms
other removal methods and often even the baseline scenario,
where no data is removed, under either normal and adver-
sarial training. In addition, in the absence of sample re-
moval, we observe that, in some cases, substituting natu-
ral tasks with synthetic samples can lead to better perfor-
mance than using only natural images, particularly in the
non-adversarial setting. These results highlight the poten-
tial to reduce the number of natural samples needed either
through removal or substitution with generative alternatives.

The ability to attain better natural test accuracy when
generalizing from synthetic data may seem unintuitive,
however there are some potential causes which may explain
this result. If we consider that the features present in the
synthetic images are those that a generative model strongly
associates with a class, then we can view the substitution
process as a form of knowledge transfer from an expert
model. Here the generator is an expert on the features of
each class, and is ideally passing images that were gener-
ated to contain important information for the model to learn
those classes. In this way, a useful generator could avoid in-
cidental features present in natural images which are unas-
sociated with the class label. Furthermore, applying our re-
moval approach EpochLoss may mitigate the cases where
the generator produces erroneous samples, such as by mis-
interpreting the prompt used to generate an image. We show
in Figure 6 that ADM consistently provides the most per-
formant synthetic samples. One compelling question for
further investigation is what characteristics of ADM enable
this performance compared to other included generators.

We observe in our experiments that the combination of
removal and substitution of training data, as in Figure 5 can
improve upon the accuracy obtained by only substituting the
data. As we also see improvements when removing in the
natural image tasks, it is difficult to discern how much of
this improvement may be due to this filtering role, but it is
this relationship between the substitution and removal set-
tings that remains an avenue of interest for further investiga-
tion. There is also a potential that the removal of incidental
features through substitution, or the removal of challenging
samples through loss-based removal may lead to issues with
the network in terms of overfitting or generalization as we
may be removing rare or challenging features from the data.
Despite this, we see an overall increase in accuracy with
EpochLoss. It still remains an important point to investigate
in subsequent works to better consider the impact of substi-
tution and removal of samples in CL. Ideally such insights
would inform adjustments to the sample removal process in
Algorithm 1 to protect any informative samples that may
have higher loss values.
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