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ABSTRACT

Computational methods for predicting the interface contacts between proteins
come highly sought after for drug discovery as they can significantly advance
the accuracy of alternative approaches, such as protein-protein docking, protein
function analysis tools, and other computational methods for protein bioinfor-
matics. In this work, we present the Geometric Transformer, a novel geometry-
evolving graph transformer for rotation and translation-invariant protein inter-
face contact prediction, packaged within DeepInteract, an end-to-end prediction
pipeline. DeepInteract predicts partner-specific protein interface contacts (i.e.,
inter-protein residue-residue contacts) given the 3D tertiary structures of two pro-
teins as input. In rigorous benchmarks, DeepInteract, on challenging protein com-
plex targets from the 13th and 14th CASP-CAPRI experiments as well as Docking
Benchmark 5, achieves 14% and 1.1% top L/5 precision (L: length of a protein
unit in a complex), respectively. In doing so, DeepInteract, with the Geomet-
ric Transformer as its graph-based backbone, outperforms existing methods for
interface contact prediction in addition to other graph-based neural network back-
bones compatible with DeepInteract, thereby validating the effectiveness of the
Geometric Transformer for learning rich relational-geometric features for down-
stream tasks on 3D protein structures.1

1 INTRODUCTION

Interactions of proteins often reflect and directly influence their functions in molecular processes, so
understanding the relationship between protein interaction and protein function is of utmost impor-
tance to biologists and other life scientists. Here, we study the residue-residue interaction between
two protein structures that bind together to form a binary protein complex (i.e., dimer), to better
understand how these coupled proteins will function in vivo. Predicting where two proteins will
interface in silico has become an appealing method for measuring the interactions between proteins
since a computational approach saves time, energy, and resources compared to traditional methods
for experimentally measuring such interfaces (Wells & McClendon (2007)). A key motivation for
determining these interface contacts is to decrease the time required to discover new drugs and to
advance the study of newly designed proteins (Murakami et al. (2017)).

Existing approaches to interface contact prediction include classical machine learning and deep
learning-based methods. These methods traditionally use hand-crafted features to predict which
inter-chain pairs of amino acid residues will interact with one another upon the binding of the two
protein chains, treating each of their residue pairs as being independent of one another. Recent
work on interface prediction (Liu et al. (2020)), however, considers the biological insight that the
interaction between two inter-chain residue pairs depends not only on the pairs’ features themselves
but also on other residue pairs ordinally nearby in terms of the protein complex’s sequence. As
such, the problem of interface contact prediction became framed as one akin to image segmentation

1Training and inference code as well as pre-trained models are available at
https://github.com/BioinfoMachineLearning/DeepInteract
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Figure 1: A Mol* (Sehnal et al. (2021)) visualization of interacting protein chains (PDB ID: 3H11).

or object detection, opening the door to innovations in interface contact prediction by incorporating
the latest techniques from computer vision.

Nonetheless, up to now, no works on partner-specific protein interface contact prediction have lever-
aged two recent innovations to better capture geometric shapes of protein structures and long-range
interactions between amino acids important for accurate prediction of protein-protein interface con-
tacts: (1) geometric deep learning for evolving proteins’ geometric representations and (2) graph-
based self-attention similar to that of Vaswani et al. (2017). Towards this end, we introduce Deep-
Interact, an end-to-end deep learning pipeline for protein interface prediction. DeepInteract houses
the Geometric Transformer, a new graph transformer designed to exploit protein structure-specific
geometric properties, as well as a dilated convolution-based interaction module adapted from Chen
et al. (2021) to predict which inter-chain residue pairs comprise the interface between the two protein
chains. In response to the exponential rate of progress being made in predicting protein structures
in silico, we trained DeepInteract end-to-end using DIPS-Plus (Morehead et al. (2021)), to date the
largest feature-rich dataset of protein complex structures for machine learning of protein interfaces,
to close the gap on a proper solution to this fundamental problem in structural biology.

2 RELATED WORK

Over the past several years, geometric deep learning has become an effective means of automati-
cally learning useful feature representations from structured data (Bronstein et al. (2021)). Previ-
ously, geometric learning algorithms like convolutional neural networks (CNNs) and graph neural
networks (GNNs) have been used to model molecules and to predict protein interface contacts.
Schütt et al. (2017) introduced a deep tensor neural network designed for molecular tasks in quan-
tum chemistry. Fout et al. (2017) designed a siamese GNN architecture to learn weight-tied feature
representations of residue pairs. This approach, in essence, processes subgraphs for each residue in
each complex and aggregates node-level features locally using a nearest-neighbors approach. Since
this partner-specific method derives its training dataset from Docking Benchmark 5 (DB5) (Vreven
et al. (2015)), it is ultimately data-limited. Townshend et al. (2019) represent interacting protein
complexes by voxelizing each residue into a 3D grid and encoding in each grid entry the presence
and type of the residue’s underlying atoms. This partner-specific encoding scheme captures static
geometric features of interacting complexes, but it is not able to scale well due to its requiring a
computationally-expensive spatial resolution of the residue voxels to achieve good results.

Continuing the trend of applying geometric learning to protein structures, Gainza et al. (2020)
developed MaSIF to perform partner-independent interface region prediction. Likewise, Dai &
Bailey-Kellogg (2021) do so with an attention-based GNN. These methods learn to perform binary
classification of the residues in both complex structures to identify regions where residues from
both complexes are likely to interact with one another. However, because these approaches pre-
dict partner-independent interface regions, they are less likely to be useful in helping solve related
tasks such as drug-protein interaction prediction and protein-protein docking (Ahmad & Mizuguchi
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(2011)). Liu et al. (2021a) created a graph neural network for predicting the effects of mutations
on protein-protein binding affinities, and, more recently, Costa et al. (2021) introduced a Euclidean
equivariant transformer for protein docking. Both of these methods may benefit from the availability
of precise interface predictors by using them to generate contact maps as input features.

To date, one of the best result sets obtained by any model for protein interface contact prediction
comes from Liu et al. (2020) where high-order (i.e. sequential and coevolution-based) interactions
between residues are learned and preserved throughout the network in addition to static geomet-
ric features initially embedded in the protein complexes. However, this work, like many of those
preceding it, undesirably maintains the trend of reporting model performance in terms of the me-
dian area under the receiver operating characteristic which is not robust to extreme class imbalances
as often occur in interface contact prediction. In addition, this approach is data-limited as it uses
the DB5 dataset and its predecessors to derive both its training data and makes use of only each
residue’s carbon-alpha (Cα) atom in deriving its geometric features, ignoring important geometric
details provided by an all-atom view of protein structures.

Our work builds on top of prior works by making the following contributions:

• We provide the first example of graph self-attention applied to protein interface contact
prediction, showcasing its effective use in learning representations of protein geometries to
be exploited in downstream tasks.

• We propose the new Geometric Transformer which can be used for tasks on 3D protein
structures and similar biomolecules. For the problem of interface contact prediction, we
train the Geometric Transformer to evolve a geometric representation of protein structures
simultaneously with protein sequence and coevolutionary features for the prediction of
inter-chain residue-residue contacts. In doing so, we also demonstrate the merit of the
recently-released Enhanced Database of Interacting Protein Structures (DIPS-Plus) for in-
terface prediction (Morehead et al. (2021)).

• Our experiments on challenging protein complex targets demonstrate that our proposed
method, DeepInteract, achieves state-of-the-art results for interface contact prediction.

3 DATASETS

The current opinion in the bioinformatics community is that protein sequence features still carry
important higher-order information concerning residue-residue interactions (Liu et al. (2020)). In
particular, the residue-residue coevolution and residue conservation information obtained through
multiple sequence alignments (MSAs) has been shown to contain powerful information concerning
intra-chain and even inter-chain residue-residue interactions as they yield a compact representation
of residues’ coevolutionary relationships (Jumper et al. (2021)).

Keeping this in mind, for our training and validation datasets, we chose to use DIPS-Plus (Morehead
et al. (2021)), to our knowledge the largest feature-rich dataset of protein complexes for protein in-
terface contact prediction to date. In total, DIPS-Plus contains 42,112 binary protein complexes with
positive labels (i.e., 1) for each inter-chain residue pair that are found within 6 Å of each other in the
complex’s bound (i.e., structurally-conformed) state. The dataset contains a variety of rich residue-
level features: (1) an 8-state one-hot encoding of the secondary structure in which the residue is
found; (2) a scalar solvent accessibility; (3) a scalar residue depth; (4) a 1 × 6 vector detailing each
residue’s protrusion concerning its side chain; (5) a 1 × 42 vector describing the composition of
amino acids towards and away from each residue’s side chain; (6) each residue’s coordinate number
conveying how many residues to which the residue meets a significance threshold, (7) a 1 × 27 vec-
tor giving residues’ emission and transition probabilities derived from HH-suite3 (Steinegger et al.
(2019)) profile hidden Markov models constructed using MSAs; and (8) amide plane normal vectors
for downstream calculation of the angle between each intra-chain residue pair’s amide planes.

To compare the performance of DeepInteract with that of state-of-the-art methods, we select 32
homodimers and heterodimers from the test partition of DIPS-Plus to assess each method’s compe-
tency in predicting interface contacts. We also evaluate each method on 14 homodimers and 5 het-
erodimers with PDB structures publicly available from the 13th and 14th sessions of CASP-CAPRI
(Lensink et al. (2019), Lensink et al. (2021)) as these targets are considered by the bioinformatics
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Figure 2: DeepInteract overview. Our proposed pipeline separates interface contact prediction into
two tasks: (1) learning new node representations hA and hB for pairs of residue protein graphs and
(2) convolving over hA and hB interleaved together to predict pairwise contact probabilities.

community to be challenging for existing interface predictors. For any CASP-CAPRI test complexes
derived from multimers (i.e., protein complexes that can contain more than two chains), to represent
the complex we chose the pair of chains with the largest number of interface contacts. Finally, we
use the traditional 55 test complexes from the DB5 dataset (Fout et al. (2017); Townshend et al.
(2019); Liu et al. (2020)) to benchmark each heteromer-compatible method.

To expedite training and validation and to constrain memory usage, beginning with all remaining
complexes not chosen for testing, we filtered out all complexes where either chain contains fewer
than 20 residues and where the number of possible interface contacts is more than 2562, leaving us
with an intermediate total of 26,504 complexes for training and validation. In DIPS-Plus, binary
protein complexes are grouped into shared directories according to whether they are derived from
the same parent complex. As such, using a per-directory strategy, we randomly designate 80% of
these complexes for training and 20% for validation to restrict overlap between our cross-validation
datasets. After choosing these targets for testing, we then filter out complexes from our training and
validation partitions of DIPS-Plus that contain any chain with over 30% sequence identity to any
chain in any complex in our test datasets. This threshold of 30% sequence identity is commonly used
in the bioinformatics literature (Jordan et al. (2012), Yang et al. (2013)) to prevent large evolutionary
overlap between a dataset’s cross-validation partitions. However, most existing works for interface
contact prediction do not employ such filtering criteria, so the results reported in these works may
be over-optimistic by nature. In performing such sequence-based filtering, we are left with 15,618
and 3,548 binary complexes for training and validation, respectively.

4 METHODS

4.1 PROBLEM FORMULATION

Summarized in Figure 2, we designed DeepInteract, our proposed pipeline for interface contact pre-
diction, to frame the problem of predicting interface contacts in silico as a two-part task: The first
part is to use attentive graph representation learning to inductively learn new node-level represen-
tations hA ∈ RA×C and hB ∈ RB×C for a pair of graphs representing two protein chains. The
second part is to channel-wise interleave hA and hB into an interaction tensor I ∈ RA×B×2C, where
A ∈ R and B ∈ R are the numbers of amino acid residues in the first and second input protein
chains, respectively, and C ∈ R is the number of hidden channels in both hA and hB. We use in-
teraction tensors such as I as input to our interaction module, a convolution-based dense predictor
of inter-graph node-node interactions. We denote each protein chain in an input complex as a graph
G with edges E between the k-nearest neighbors of its nodes N, with nodes corresponding to the
chain’s amino acid residues represented by their Cα atoms. In this setting, we let k = 20 as we ob-
served favorable cross entropy loss on our validation dataset with this level of connectivity. We note
that this level of graph connectivity has also proven to be advantageous for prior works developing

4



Published as a conference paper at ICLR 2022

Figure 3: Geometric Transformer overview. Notably, our final layer of the Geometric Transformer
removes the edge update path since, in our formulation of interface prediction, only graph pairs’
node representations hA and hB are directly used for the final interface contact prediction.

deep learning approaches for graph-based protein representations (Fout et al. (2017); Ingraham et al.
(2019)).

4.2 GEOMETRIC TRANSFORMER ARCHITECTURE

Hypothesizing that a self-attention mechanism that evolves proteins’ physical geometries is a key
component missing from existing interface contact predictors, we propose the Geometric Trans-
former, a graph neural network explicitly designed for capturing and iteratively evolving protein
geometric features. As shown in Figure 3, the Geometric Transformer expands upon the existing
Graph Transformer architecture (Dwivedi & Bresson (2021)) by introducing (1) an edge initializa-
tion module, (2) an edge-wise positional encoding (EPE), and (3) a geometry-evolving conformation
module employing repeated geometric feature gating (GFG) (see Sections A.6, A.7, and A.8 for ra-
tionale). Moreover, the Geometric Transformer includes subtle architectural enhancements to the
original Transformer architecture (Vaswani et al. (2017)) such as moving the network’s first nor-
malization layer to precede any affinity score computations for improved training stability (Hussain
et al. (2021)). To our knowledge, the Geometric Transformer is the first deep learning model that
applies multi-head attention to the task of partner-specific protein interface contact prediction. The
following sections serve to distinguish our new Geometric Transformer from other Transformer-like
architectures by describing its new neural network modules for geometric self-attention.

4.2.1 EDGE INITIALIZATION MODULE

To accelerate its training, the Geometric Transformer first embeds each edge e ∈ E with the initial
edge representation

cij = φ1e([p1 || p2 || φmij
e (mij || λe) || φf1e (f1) || φf2e (f2) || φf3e (f3) || φf4e (f4)]) (1)

eij = φ2e(ρ
a
e(ρ

g
e(cij))) (2)

where φie refers to the i’th edge information update function such as a multi-layer perceptron; ||
denotes channel-wise concatenation; p1 and p2, respectively, are trainable one-hot vectors indexed
by Pi and Pj , the positions of nodes i and nodes j in the chain’s underlying amino acid sequence;
mij are any user-predefined features for e (in our case the normalized Euclidean distances between
nodes i and nodes j); λe are edge-wise sinusoidal positional encodings sin(Pi−Pj) for e; f1, f2, f3,
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Figure 4: Conformation module overview. The Geometric Transformer uses a conformation module
in each layer to evolve proteins graphs’ geometric representations via repeated gating and a final
series of residual connection blocks.

and f4, in order, are the four protein-specific geometric features defined in Section A.3; and ρae and
ρge are feature addition and channel-wise gating functions, respectively.

4.2.2 CONFORMATION MODULE

The role of the Geometric Transformer’s subsequent conformation module, as illustrated in Figure
4, is for it to learn how to iteratively evolve geometric representations of protein graphs by applying
repeated gating to our initial edge geometric features f1, f2, f3, and f4. To do so, the conformation
module updates eij by introducing the notion of a geometric neighborhood of edge e, treating e as
a pseudo-node. Precisely, Ek, the edge geometric neighborhood of e, is defined as the 2n edges

Ek = {en1i, en2j | (n1, n2 ∈ Nk) and (n1, n2 6= i, j)}, (3)

where Nk ⊂ N are the source nodes for incoming edges on edge e′s source and destination nodes.
The intuition behind updating each edge according to its 2n nearest neighboring edges is that the
geometric relationship between a residue pair, described by their mutual edge’s features, can be
influenced by the physical constraints imposed by proximal residue-residue geometries. As such, we
use these nearby edges during geometric feature updates. In the conformation module, the iterative
processing of all geometric neighborhood features for edge e can be represented as

Oij =
∑
k∈Ek

[(φne (e
n
ij,k)� φfne (fn)),∀n ∈ F] (4)

eij = 2×ResBlock2(φ5e(eij) + 2×ResBlock1(φ5e(eij) +Oij)), (5)

where F are the indices of the geometric features {f1, f2, f3, f4} defined in Section A.3;� is element-
wise multiplication; enij,k is neighboring edge ek’s representation after gating with fn−1; and 2 ×
ResBlocki represents the i’th application of two unique, successive residual blocks, each defined
as ResBlock(x) = φRes2e (φRes1e (x)) + x. Described in Section A.3, by way of their construction,
each of our selected edge geometric features is translation and rotation invariant to the network’s
input space. As discussed in Section A.5, we couple these features with our choice of node-wise
positional encodings (see Section 4.2.3) to attain canonical invariant local frames for each residue
to encode the relative poses of features in our protein graphs. In doing so, we leverage many of the
benefits of employing equivariant representations while reducing the large memory requirements
they typically induce, to yield a robust invariant representation of each input protein.

4.2.3 REMAINING TRANSFORMER INITIALIZATIONS AND OPERATIONS

For the initial node features used within the Geometric Transformer, we include each of DIPS-Plus’
residue-level features described succinctly in Section 3. Additionally, we append initial min-max
normalizations of each residue’s index in Pi to each node as node-wise positional encodings. For
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the remainder of the Geometric Transformer’s operations, the network’s order of operations closely
follows the definitions given by Dwivedi & Bresson (2021) for the Graph Transformer, with an
exception being that the first normalization layer now precedes any affinity score calculations.

4.3 INTERACTION MODULE

Upon applying multiple layers of the Geometric Transformer to each pair of input protein chains,
we then channel-wise interleave the Geometric Transformer’s learned node representations hA and
hB into I to serve as input to our interaction module, consisting of a dilated ResNet module adapted
from Chen et al. (2021). The core residual network component in this interaction module consists
of four residual blocks differing in the number of internal layers. Each residual block is comprised
of several consecutive instance normalization layers and convolutional layers with 64 kernels of size
3 × 3. The number of layers in each block represents the number of 2D convolution layers in the
corresponding component. The final values of the last convolutional layer are added to the output
of a shortcut block, which is a convolutional layer with 64 kernels of size 1 × 1. A squeeze-and-
excitation (SE) block (Hu et al. (2018)) is added at the end of each residual block to adaptively
recalibrate its channel-wise feature responses. Ultimately, the output of the interaction module is a
probability-valued A x B matrix that can be viewed as an inter-chain residue binding heatmap.

5 EXPERIMENTS

5.1 SETUP

For all experiments conducted with DeepInteract, we used 2 layers of the graph neural network
chosen for the experiment and 128 intermediate GNN and CNN channels to restrict the time required
to train each model. For the Geometric Transformer, we used an edge geometric neighborhood of
size n = 2 for each edge such that each edge’s geometric features are updated by their 4-nearest
incoming edges. In addition, we used the Adam optimizer (Kingma & Ba (2014)), a learning rate
of 1e−3, a weight decay rate of 1e−2, a dropout (i.e., forget) rate of 0.2, and a batch size of 1. We
also employed 0.5-threshold gradient value clipping and stochastic weight averaging (Izmailov et al.
(2018)). With an early-stopping patience period of 5 epochs, we observed most models converging
after approximately 30 training epochs on DIPS-Plus. For our loss function, we used weighted cross
entropy with a positive class weight of 5 to help the network overcome the large class imbalance
present in interface prediction. All DeepInteract models employed 14 layers of our dilated ResNet
architecture described in Section 4.3 and had their top-k metrics averaged over three separate runs,
each with a different random seed (standard deviation of top-k metrics in parentheses). Prior to
our experiments on the DB5 dataset’s 55 test complexes, we fine-tuned each DeepInteract model
using the held-out 140 and 35 complexes remaining in DB5 for training and validation, respectively.
Employing a similar training configuration as described above, in this context we used a lower
learning rate of 1e−5 to facilitate smoother transfer learning between DIPS-Plus and DB5.

5.2 HYPERPARAMETER SEARCH

To identify our optimal set of model hyperparameters, we performed a manual hyperparameter
search over the ranges of [1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6] and [1e−1, 1e−2, 1e−3, 1e−4] for the
learning rate and weight decay rate, respectively. In doing so, we found a learning rate of 1e−3 and a
weight decay rate of 1e−2 to provide the lowest loss and the highest metric values on our DIPS-Plus
validation dataset. We restricted our hyperparameter search to the learning rate and weight decay
rate of our models due to the large computational and environmental costs associated with training
each model. However, this suggests further improvements to our models could be found with a more
extensive hyperparameter search over, for example, the models’ dropout rate.

5.3 SELECTION OF BASELINES

We considered the reproducibility and accessibility of a method to be the most important factors for
its inclusion in our following benchmarks to encourage the adoption of accessible and transparent
benchmarks for future works. As such, we have included the methods BIPSPI (an XGBoost-based
algorithm) (Sanchez-Garcia et al. (2018)), DeepHomo (a CNN for homodimers) (Yan & Huang
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Table 1: The average top-k precision on two types of DIPS-Plus test targets.
16 (Homo) 16 (Hetero)

Method 10 L/10 L/5 10 L/10 L/5

BI 0 0 0 0.02 0.02 0.02
DH 0.13 0.12 0.09
CC 0.17 0.16 0.15
DI (GCN) 0.22 (0.06) 0.20 (0.07) 0.18 (0.04) 0.08 (0.01) 0.08 (0.01) 0.07 (0.02)
DI (GT) 0.27 (0.06) 0.24 (0.04) 0.21 (0.04) 0.10 (0.04) 0.09 (0.04) 0.08 (0.04)
DI (GeoT w/o EPE) 0.28 (0.05) 0.24 (0.01) 0.23 (0.03) 0.11 (0.05) 0.10 (0.04) 0.09 (0.03)
DI (GeoT w/o GFG) 0.27 (0.08) 0.24 (0.08) 0.21 (0.08) 0.10 (0.02) 0.09 (0.02) 0.09 (0.01)
DI (GeoT) 0.25 (0.03) 0.25 (0.03) 0.23 (0.02) 0.15 (0.04) 0.14 (0.05) 0.11 (0.04)

Table 2: The average top-k precision and recall on DIPS-Plus test targets of both types.
32 (Both Types)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0.01 0.01 0.01 0.01 0.004 0.003
DI (GCN) 0.15 (0.03) 0.16 (0.01) 0.12 (0.02) 0.10 (0.02) 0.06 (0.01) 0.03 (0.003)
DI (GT) 0.18 (0.05) 0.16 (0.04) 0.15 (0.04) 0.13 (0.02) 0.07 (0.01) 0.04 (0.01)
DI (GeoT w/o EPE) 0.19 (0.04) 0.18 (0.03) 0.16 (0.03) 0.14 (0.02) 0.08 (0.02) 0.04 (0.02)
DI (GeoT w/o GFG) 0.18 (0.05) 0.16 (0.04) 0.15 (0.04) 0.14 (0.02) 0.08 (0.02) 0.04 (0.01)
DI (GeoT) 0.20 (0.01) 0.19 (0.01) 0.17 (0.02) 0.15 (0.003) 0.09 (0.004) 0.04 (0.002)

(2021)), and ComplexContact (a CNN for heterodimers) (Zeng et al. (2018)) since they are either
easy to reproduce or simple for the general public to use to make predictions. Each method predicts
interfacing residue pairs subject to the (on average) 1:1000 positive-negative class imbalance im-
posed by the biological sparsity of true interface contacts. We note that we also considered adding
more recent baseline methods such as those of Townshend et al. (2019) and Liu et al. (2020). How-
ever, for both of these methods, we were not able to locate any provided source code or web server
predictors facilitating the prediction of inter-protein residue-residue contacts for provided FASTA or
PDB targets, so they ultimately did not meet our baseline selection criterion of reproducibility (e.g.,
an ability to make new predictions). We also include two ablation studies (e.g., DI (GeoT w/o GFG))
to showcase the effect of including network components unique to the Geometric Transformer.

Our selection criterion for each baseline method consequently determined the number of complexes
against which we could feasibly test each method, thereby restricting the size of our test datasets to
106 complexes in total. In addition, not all baselines chosen were originally trained for both types
of protein complexes (i.e., homodimers and heterodimers), so for these baselines we do not include
their results for the type of complex for which they are not respectively designed.

For brevity, in all experiments, we refer to BIPSPI, DeepHomo, ComplexContact, and DeepInteract
as BI, DH, CC, and DI, respectively. Further, we refer to the Graph Convolutional Network of
Kipf & Welling (2016), the Graph Transformer of Dwivedi & Bresson (2021), and the Geometric
Transformer as GCN, GT, and GeoT, respectively. To assess models’ ability to correctly select
residue pairs in interaction upon binding of two given chains, all methods are scored using the
top-k precision and recall metrics (defined in Section A.2) commonly used for intra-chain contact
prediction (Chen et al. (2021)) as well as recommender systems (Jiang et al. (2020)), where k ∈
{10, L/10, L/5, L/2} with L being the length of the shortest chain in a given complex.

5.4 DISCUSSION

Table 1 demonstrates that DeepInteract outperforms or achieves competitive results compared to ex-
isting state-of-the-art methods for interface contact prediction on DIPS-Plus with both types of pro-
tein complexes, homodimers (homo) where the two chains are of the same protein and heterodimers
(hetero) where the two chains are of different proteins. Table 2 shows that, when taking both types
of complexes into account, DeepInteract outperforms all other methods’ predictions on DIPS-Plus.
Since future users of DeepInteract may want to predict interface contacts for either type of complex,
we consider a method’s type-averaged top-k metrics as important metrics for which to optimize.

Likewise, Tables 3 and 4 present the average top-k metrics of DeepInteract on 19 challenging protein
complexes (14 homodimers and 5 heterodimers) from the 13th and 14th rounds of the joint CASP-
CAPRI meeting. In them, we once again see DeepInteract exceed the precision of state-of-the-art in-
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Table 3: The average top-k precision on dimers from CASP-CAPRI 13 & 14.
14 (Homo) 5 (Hetero)

Method 10 L/10 L/5 10 L/10 L/5

BI 0 0 0 0.04 0 0.03
DH 0.02 0.02 0.02
CC 0.06 0.08 0.05
DI (GCN) 0.12 (0.04) 0.11 (0.03) 0.13 (0.02) 0.10 (0.07) 0.11 (0.08) 0.09 (0.04)
DI (GT) 0.08 (0.03) 0.09 (0.05) 0.08 (0.03) 0.14 (0.02) 0.14 (0.02) 0.12 (0.03)
DI (GeoT w/o EPE) 0.11 (0.01) 0.12 (0.02) 0.11 (0.01) 0.18 (0.07) 0.20 (0.09) 0.18 (0.04)
DI (GeoT w/o GFG) 0.10 (0.02) 0.10 (0.02) 0.09 (0.02) 0.14 (0.03) 0.17 (0.03) 0.14 (0.02)
DI (GeoT) 0.18 (0.05) 0.13 (0.03) 0.11 (0.02) 0.30 (0.09) 0.31 (0.07) 0.24 (0.04)

Table 4: The average top-k precision and recall across all targets from CASP-CAPRI 13 & 14.
19 (Both Types)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0.01 0 0.01 0.02 0.01 0.001
DI (GCN) 0.12 (0.04) 0.10 (0.05) 0.09 (0.04) 0.11 (0.001) 0.06 (0.01) 0.02 (0.01)
DI (GT) 0.10 (0.03) 0.09 (0.03) 0.08 (0.02) 0.11 (0.02) 0.06 (0.01) 0.02 (0.01)
DI (GeoT w/o EPE) 0.13 (0.02) 0.14 (0.03) 0.13 (0.02) 0.12 (0.01) 0.07 (0.01) 0.03 (0.01)
DI (GeoT w/o GFG) 0.11 (0.01) 0.12 (0.02) 0.10 (0.02) 0.11 (0.01) 0.06 (0.01) 0.03 (0.01)
DI (GeoT) 0.21 (0.01) 0.19 (0.01) 0.14 (0.01) 0.13 (0.02) 0.08 (0.01) 0.04 (0.003)

Table 5: The average top-k precision and recall on DB5 test targets.
55 (Hetero)

Method P@10 P@L/10 P@L/5 R@L R@L/2 R@L/5

BI 0 0.002 0.001 0.003 0.001 0.0004
CC 0.002 0.003 0.003 0.007 0.003 0.001
DI (GCN) 0.005 (0.002) 0.006 (0.001) 0.007 (0.001) 0.013 (0.002) 0.008 (0.001) 0.003 (0.001)
DI (GT) 0.008 (0.004) 0.008 (0.005) 0.008 (0.004) 0.010 (0.005) 0.006 (0.003) 0.003 (0.002)
DI (GeoT w/o EPE) 0.011 (0.004) 0.009 (0.004) 0.011 (0.002) 0.018 (0.01) 0.010 (0.004) 0.0034 (0.002)
DI (GeoT w/o GFG) 0.008 (0.001) 0.008 (0.001) 0.009 (0.002) 0.014 (0.01) 0.006 (0.002) 0.003 (0.001)
DI (GeoT) 0.013 (0.001) 0.009 (0.003) 0.011 (0.001) 0.018 (0.001) 0.010 (0.001) 0.0034 (0.001)

terface contact predictors for both complex types. In particular, we see that combining DeepInteract
with the Geometric Transformer offers improvements to the majority of our top-k metrics for both
homodimers and heterodimers compared to using either a GCN or a Graph Transformer-based GNN
backbone, notably for heteromeric complexes with largely asymmetric inter-chain geometries. Such
a result supports our hypothesis that the Geometric Transformer’s geometric self-attention mecha-
nism can enable enhanced prediction performance for downstream tasks on geometrically-intricate
3D objects such as protein structures, using interface contact prediction as a case study.

Finally, in Table 5, we observe that, in predicting the interface contacts between unbound protein
chains in the DB5 test dataset, the Geometric Transformer enables enhanced top-k precision and
recall (definition in A.2) compared to all other baseline methods, including GCNs and Graph Trans-
formers paired with DeepInteract. Such as result confirms, to a degree, the Geometric Transformer’s
ability to predict how the structural conformations occurring upon the binding of two protein chains
influence which inter-chain residue pairs will interact with one another in the complex’s bound state.

6 CONCLUSION

We presented DeepInteract which introduces the geometry-evolving Geometric Transformer for pro-
tein structures and demonstrates its effectiveness in predicting residue-residue interactions in protein
complexes. We foresee several other uses of the Geometric Transformer in protein deep learning
such as quaternary structure quality assessment and residue disorder prediction, to name a few. One
limitation of the Geometric Transformer’s current design is the high computational complexity as-
sociated with its dot product self-attention mechanism, which we hope to overcome using efficient
alternatives to self-attention like that of the Nyströmformer (Xiong et al. (2021)).
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Figure 5: The network’s softmax contact probabilities (leftmost column), 0.5 positive probability-
thresholded predictions (middle column), and ground-truth labels (rightmost column), respectively,
for PDB ID: 4HEQ (first row) and 6TRI (second row), two of the complexes in our test datasets.

A APPENDIX

A.1 SAMPLE INTERFACE CONTACT PREDICTIONS

In the first row of Figure 5, we see predictions made by DeepInteract for a homodimer complex from
our test partition of DIPS-Plus (i.e., PDB ID: 4HEQ). The leftmost image represents the softmax
contact probability map. The center image corresponds to the same contact map after having a 0.5
probability threshold applied to it such that residue pairs with at least a 50% probability of being
in interaction with each other have their interaction probabilities rounded up to 1.0. The rightmost
image is the ground-truth contact map. Similarly, in the second row of Figure 5, we are shown
the cropped predictions made by DeepInteract for a CASP-CAPRI test heterodimer (i.e., PDB ID:
6TRI).

A.2 TOP-K TEST PRECISION AND RECALL OF BOTH COMPLEX TYPES IN DIPS-PLUS AND
CASP-CAPRI

Formally, our definitions of a model’s top-k precision preck and recall reck, where Tposk represents
the number of true positive residue pairs selected from a model’s top-k most probable pairs and Tpos
corresponds to the total number of true positive pairs in the complex, are

preck =
Tposk
k

(6)

and

reck =
Tposk
Tpos

. (7)

After defining top-k recall as such, in Tables 6 and 7 we provide the results of each model’s top-k
recall in the same set of experiments as given in Section 5.

A.3 DEFINITION OF EDGE GEOMETRIC FEATURES

Similar to Ingraham et al. (2019), we construct a local reference frame (i.e., an orientation Oi) for
each protein chain graph’s residues. Representing each residue by its Cartesian coordinates xi, we
formally define
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Table 6: The average top-k recall on two types of DIPS-Plus test targets.
16 (Homo) 16 (Hetero)

Method R@L R@L/2 R@L/5 R@L R@L/2 R@L/5

BI 0.01 0 0 0.01 0.01 0.01
DH 0.07 0.04 0.02
CC 0.17 0.12 0.07
DI (GCN) 0.14 (0.03) 0.08 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.02) 0.02 (0.01)
DI (GT) 0.17 (0.01) 0.10 (0.01) 0.05 (0.01) 0.09 (0.02) 0.05 (0.02) 0.03 (0.01)
DI (GeoT w/o EPE) 0.18 (0.02) 0.11 (0.01) 0.05 (0.01) 0.11 (0.03) 0.07 (0.02) 0.03 (0.02)
DI (GeoT w/o GFG) 0.19 (0.04) 0.11 (0.03) 0.05 (0.02) 0.09 (0.01) 0.05 (0.02) 0.03 (0.01)
DI (GeoT) 0.19 (0.004) 0.12 (0.004) 0.06 (0.003) 0.12 (0.003) 0.07 (0.01) 0.03 (0.01)

Table 7: The average top-k recall on dimers from CASP-CAPRI 13 & 14.
14 (Homo) 5 (Hetero)

Method R@L R@L/2 R@L/5 R@L R@L/2 R@L/5

BI 0.02 0.01 0 0.01 0 0
DH 0.02 0.01 0
CC 0.03 0.01 0.01
DI (GCN) 0.10 (0.01) 0.07 (0.01) 0.04 (0.02) 0.08 (0.04) 0.04 (0.02) 0.02 (0.01)
DI (GT) 0.10 (0.01) 0.06 (0.01) 0.02 (0.01) 0.10 (0.01) 0.05 (0.01) 0.02 (0.01)
DI (GeoT w/o EPE) 0.11 (0.01) 0.07 (0.01) 0.04 (0.01) 0.12 (0.02) 0.07 (0.01) 0.03 (0.01)
DI (GeoT w/o GFG) 0.10 (0.02) 0.06 (0.01) 0.03 (0.01) 0.11 (0.02) 0.07 (0.01) 0.03 (0.01)
DI (GeoT) 0.12 (0.03) 0.07 (0.01) 0.04 (0.01) 0.15 (0.02) 0.09 (0.01) 0.04 (0.01)

ui =
xi − xi−1
‖xi − xi−1‖

, ni =
ui × ui+1

‖ui × ui+1‖
, bi =

ui − ui+1

‖ui − ui+1‖
. (8)

with ni being the unit vector normal to the plane formed by the rays (xi−1 − xi) and (xi+1 − xi)
and bi being the negative bisector of this plane. We then define Oi as

Oi = [bi ni bi × ni]. (9)

Having defined the orientation Oi for each residue that describes the local reference frame (xi, Oi).
To provide the Geometric Transformer with an alternative notion of residue-residue orientations, we
define the unit vector normal to the amide plane for residue i as

Ui = (xCαi − xCβi)× (xCβi − xNi) (10)

where xCαi
, xCβi, and xNi are the Cartesian coordinates of the residue’s carbon-alpha (Cα),

carbon-beta (Cβ), and nitrogen (N ) atoms, respectively.

Finally, we relate the reference frames for residues i and j by describing their edge geometric fea-
tures as (

r(‖xj − xi‖), OT
i

xj − xi
‖xj − xi‖

, q(OT
i Oj), a(Ui,Uj)

)
(11)

with the first term r() being a distance encoding of 16 Gaussian RBFs spaced isotropically from
0 to 20 Å, the second term describing the relative direction of xj with respect to reference frame
(xi,Oi), the third term detailing an orientation encoding q() of the quaternion representation of the
rotation matrix OT

i Oj , representing each quaternion with respect to its vector of real coefficients,
and the fourth term a() representing the angle between the amide plane normal vectors Ui and Uj .

Our definition of these edge geometric features makes use of the backbone atoms for each residue.
As such, the graph representation of protein chains we use with the Geometric Transformer encodes
not only residue-level geometric features but also those derived from an atomic view of protein
structures. We hypothesized this hybrid approach to modeling protein structure geometries would
have a noticeable downstream effect on interface contact prediction precision via the node and edge
representations learned by the Geometric Transformer. This hypothesis is confirmed in Section 5.4.
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Table 8: The protein complexes selected from DIPS-Plus for testing interface contact predictors.
PDB ID Chain 1 Chain 2 Type PDB ID Chain 1 Chain 2 Type

1BHN B D Homo 1AON R S Hetero
1KPT A B Homo 1BE3 D E Hetero
1SDU A B Homo 1GK8 K M Hetero
1UZN A B Homo 1OCZ R V Hetero
2B4H A B Homo 1UWA A I Hetero
2G30 C E Homo 3A6N A E Hetero
2GLM E F Homo 3ABM D K Hetero
2IUO D J Homo 3JRM H I Hetero
3BXS A B Homo 3MG6 D E Hetero
3CT7 B E Homo 3MNN C F Hetero
3NUT A D Homo 3T1Y E H Hetero
3RE3 B C Homo 3TUY D E Hetero
4HEQ A B Homo 3VYG G H Hetero
4LIW A B Homo 4A3D C L Hetero
4OTA D F Homo 4CW7 G H Hetero
4TO9 B D Homo 4DR5 G I Hetero

Table 9: The CASP-CAPRI 13-14 protein complexes selected for testing interface contact predic-
tors.

PDB ID Chain 1 Chain 2 Type

5W6L A B Homo
6D2V A B Homo
6E4B A B Homo
6FXA C D Homo
6HRH A B Homo
6MXV A B Homo
6N64 A B Homo
6N91 A B Homo
6NQ1 A B Homo
6QEK A B Homo
6UBL A B Homo
6UK5 A B Homo
6YA2 A B Homo
7CWP C D Homo
6CP8 A C Hetero
6D7Y A B Hetero
6TRI A B Hetero
6XOD A B Hetero
7M5F A C Hetero

A.4 PROTEIN COMPLEXES SELECTED FOR TESTING

To facilitate reproducibility of the results presented in Section 5.4, Table 8 displays the PDB and
chain IDs of DIPS-Plus protein complexes chosen for testing. Likewise, in Table 9, we provide the
PDB and chain IDs of CASP-CAPRI 13-14 targets chosen for testing. These two tables describe
precisely which targets were selected and ultimately used in our RCSB-derived benchmarks. For
full data provenance, the targets we selected from the Docking Benchmark 5 dataset (Vreven et al.
(2015)) for benchmarking are the same 55 protein heterodimers used for testing in works such as
that of Fout et al. (2017), Townshend et al. (2019), and Liu et al. (2020).
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A.5 INVARIANCE OR EQUIVARIANCE?

In our view, a natural question to ask concerning a deep learning architecture designed for a specific
task is whether equivariance to translations and rotations in R3 should be preferred over invariance
to transformations in such a geometric space. The benefits of employing equivariant representations
in a deep learning architecture primarily include symmetry-preserving updates to type-1 tensors
such as the coordinates representing an object in R3 and the derivation of invariant relative feature
poses for type-0 features such as scalars (Cohen & Welling (2016)). However, equivariant represen-
tations, particularly those derived with a self-attention mechanism, typically induce large memory
requirements for training and inference. In contrast, in the context of data domains such as ordered
sets or proteins where there exists a canonical ordering of points, invariant representations may be
adopted to simultaneously reduce memory requirements and provide many of the benefits of using
equivariant representations such as attaining these relative poses of type-0 features (Ingraham et al.
(2019) and Jumper et al. (2021)). As such, in the context of the Geometric Transformer, we decided
to pursue invariance over equivariance, to reduce the network’s effective memory requirements and
to improve its learning efficiency and generalization capabilities (Bronstein et al. (2021)). How-
ever, for applications such as protein-protein docking that may more directly rely on type-1 tensors
for network predictions (Costa et al. (2021)), designing one’s network architecture to preserve full
translation and rotation equivariance in R3 is, in our perspective, a worthwhile research direction
to pursue as many promising results on molecular datasets have already been demonstrated with
equivariant neural networks such as SE(3)-Transformers (Fuchs et al. (2020)) and lightweight graph
architectures such as the Equivariant Graph Neural Network (Satorras et al. (2021)).

A.6 RATIONALE BEHIND THE NODE INITIALIZATION SCHEME

DIPS-Plus residue-level features are initially embedded in our protein chain graphs to accelerate the
network’s training. However, we also initially append node-wise min-max positional encodings in
our network’s operations. We do this to initialize the Geometric Transformer with information con-
cerning the residue ordering of the chain’s underlying sequence as such ordering is important to un-
derstanding downstream protein structural, interactional, and functional properties of each residue.

A.7 RATIONALE BEHIND THE EDGE INITIALIZATION MODULE’S DESIGN

For the edge initializer module’s four protein geometric features, we sought to include enough geo-
metric information for the network to be able to uniquely determine the Euclidean positions of each
node’s neighboring nodes. For this reason, we adopt similar distance, direction, and orientation
descriptors as Ingraham et al. (2019). We concatenate the protein backbone-geometric features pro-
vided by inter-residue distances, directions, and orientations with the angles between each residue
pair’s amide plane normal vectors. This is done ultimately to apply gating to each edges’ messages,
distances, directions, orientations, and amide angles separately to encourage the network to learn
the importance of specific channels in each of these input features. Gating is a technique that has
previously been shown to encourage neural networks to not become over-reliant on any particular
input feature (Gu et al. (2020)) and, as such, in the Geometric Transformer can be seen as a form of
channel-wise dropout for single feature sets. By also employing residual connections from original
edge representations to gating-learned edge representations, the network module can operate more
stably in the presence of multiple neural network layers (He et al. (2016)). Furthermore, in the edge
initialization module, we introduce edge-wise sinusoidal position encodings to provide the network
with a directional notion of residue-to-residue distances in protein chains’ underlying sequences.

A.8 RATIONALE BEHIND THE CONFORMATION MODULE’S DESIGN

The conformation module’s design was inspired by SphereNet (Liu et al. (2021b)) and similar graph
neural network architectures designed for learning on 3D graphs. What distinguishes our confor-
mation module from the works of others is its introduction of the notion of 2n edge geometric
neighborhoods when updating edge representations as well as its incorporation of geometric in-
sights specific to large biomolecules such as proteins. Namely, by including the residue-residue
distances, residue-residue local reference frame directions and (quaternion) orientations, and amide
plane-amide plane angles, the network is provided with enough information to ascertain the rela-
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tive coordinates of each neighboring residue from a given residue’s local reference frame (Liu et al.
(2021b)), thereby ensuring the network’s capability of adequately learning from 3D structures.

A.9 ALTERNATIVE NETWORKS WITHIN THE INTERACTION MODULE

We, like Liu et al. (2020), note that the task of interface prediction bears striking similarities to
dense prediction tasks in computer vision (e.g., semantic segmentation). In this train of thought,
we experimented with several semantic segmentation models as replacements for our interaction
module’s dilated ResNet, one namely being DeepLabV3Plus (Chen et al. (2018)). We observed
a strong propensity of such semantic segmentation models to identify interaction regions well but
to do so with low pixel-wise precision. We hypothesize this is due to the downsampling and up-
sampling methods often employed within such architectures that invariably degrade the original
input tensor’s representation resolution. We also experimented with several state-of-the-art Vision
Transformer and MLP-based models for computer vision but ultimately found their algorithmic
complexity, memory usage, or input shape requirements to be prohibitive for this task, since our test
datasets’ input protein complexes can vary greatly in size to contain between 20 residues and over
2,000 residues in length. As such, for the design of DeepInteract’s interaction module, we experi-
mented primarily with convolution-based architectures that do not employ such sampling techniques
or pose limited input size constraints.

A.10 HARDWARE USED

The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge National Laboratory (ORNL) is an
open science computing facility that supports HPC research. The OLCF houses the Summit compute
cluster. Summit, launched in 2018, delivers 8 times the computational performance of Titan’s 18,688
nodes, using only 4,608 nodes. Like Titan, Summit has a hybrid architecture, and each node contains
multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected with NVIDIA’s high-speed
NVLink. Each node has over half a terabyte of coherent memory (high bandwidth memory + DDR4)
addressable by all CPUs and GPUs plus 800GB of non-volatile RAM that can be used as a burst
buffer or as extended memory. To provide a high rate of I/O throughput, the nodes are connected
in a non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect. We used the
Summit compute cluster to train all our models.

A.11 SOFTWARE USED

In addition, we used Python 3.8 (Van Rossum & Drake (2009)), PyTorch 1.7.1 (Paszke et al.
(2019)), and PyTorch Lightning 1.4.8 (Falcon (2019)) to run our deep learning experiments.
PyTorch Lightning was used to facilitate model checkpointing, metrics reporting, and dis-
tributed data parallelism across 72 Tesla V100 GPUs. A more in-depth description of the
software environment used to train and predict with DeepInteract models can be found at
https://github.com/BioinfoMachineLearning/DeepInteract.
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