
CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Han Li * 1 Fei Liu * 2 Zhi Zheng 1 Yu Zhang 1 Zhenkun Wang 1

Abstract
Vehicle routing problems (VRPs) are signifi-
cant combinatorial optimization problems (COPs)
holding substantial practical importance. Re-
cently, neural combinatorial optimization (NCO),
which involves training deep learning models on
extensive data to learn vehicle routing heuristics,
has emerged as a promising approach due to its
efficiency and the reduced need for manual algo-
rithm design. However, applying NCO across
diverse real-world scenarios with various con-
straints necessitates cross-problem capabilities.
Current cross-problem NCO methods for VRPs
typically employ a constraint-unaware model, lim-
iting their cross-problem performance. Further-
more, they rely solely on global connectivity,
which fails to focus on key nodes and leads to
inefficient representation learning. This paper
introduces a Constraint-Aware Dual-Attention
Model (CaDA), designed to address these lim-
itations. CaDA incorporates a constraint prompt
that efficiently represents different problem vari-
ants. Additionally, it features a dual-attention
mechanism with a global branch for capturing
broader graph-wide information and a sparse
branch that selectively focuses on the key node
connections. We comprehensively evaluate our
model on 16 different VRPs and compare its per-
formance against existing cross-problem VRP
solvers. CaDA achieves state-of-the-art results
across all tested VRPs. Our ablation study con-
firms that each component contributes to its cross-
problem learning performance. The source code
for CaDA is publicly available at https://
github.com/CIAM-Group/CaDA.

*Equal contribution 1Guangdong Provincial Key Labora-
tory of Fully Actuated System Control Theory and Technol-
ogy, School of Automation and Intelligent Manufacturing, South-
ern University of Science and Technology, Shenzhen, China
2Department of Computer Science, City University of Hong
Kong, Hong Kong, China. Correspondence to: Zhenkun Wang
<wangzhenkun90@gmail.com>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Vehicle routing problems (VRPs) involve optimizing trans-
portation costs for a fleet of vehicles to meet all customers’
demands while adhering to various constraints. Numer-
ous studies have focused on VRPs due to their extensive
real-world applications in transportation, logistics, and man-
ufacturing (Cattaruzza et al., 2017; Rodrigue, 2020). Tradi-
tional methods for solving VRPs include exact solvers and
heuristic methods. Exact solvers, however, struggle with the
NP-hard nature of the problem, making them prohibitively
expensive to implement. On the other hand, heuristic meth-
ods are more cost-effective and provide near-optimal so-
lutions but require significant expert input in their design.
Recently, learning-based neural solvers have gained con-
siderable attention and have been successfully applied to
VRPs (Bengio et al., 2021; Kool et al., 2019; Bogyrbayeva
et al., 2024). These solvers train networks to learn a heuris-
tic, reducing the need for extensive manual algorithm design
and minimizing computational overhead.

Despite the promising performance of neural solvers on
VRPs, the majority of existing works require training a
model for each type of routing problem (Kwon et al., 2020;
Drori et al., 2020; Duan et al., 2020; Gao et al., 2020; Cap-
part et al., 2021; Zhao et al., 2021; Kool et al., 2022; Tyas-
nurita et al., 2017; Berto et al., 2024a). Given the diversity
of real-world vehicle routing problems with varying con-
straints (Tan & Yeh, 2021), developing a distinct model
for each routing problem is costly and hinders practical
application.

To tackle this challenge, recent efforts have been made to
develop cross-problem learning methods that can solve mul-
tiple VRPs with a single model (Liu et al., 2024; Zhou et al.,
2024a; Berto et al., 2024b; Lin et al., 2024). These cross-
problem methods typically employ an encoder-decoder
framework and are trained using reinforcement learning. For
example, MTPOMO (Liu et al., 2024) jointly trains a unified
model across five VRPs, each with one or two constraints,
enabling zero-shot generalization to problems that feature
combinations of these constraints. MVMoE (Zhou et al.,
2024a) employs a mixture-of-experts (MoE) (Shazeer et al.,
2017) structure in the feed-forward layer of a transformer-
based model to enhance its cross-problem learning capac-
ity. Furthermore, RouteFinder (Berto et al., 2024b) directly

1

https://github.com/CIAM-Group/CaDA
https://github.com/CIAM-Group/CaDA

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

trains and tests sixteen VRPs using a proposed unified re-
inforcement learning (RL) environment, which enables the
simultaneous handling of different VRPs in the same train-
ing batch. Additionally, RouteFinder leverages a modern
transformer-based model structure (Dubey et al., 2024),
along with global embeddings, to enhance performance.

Despite these advancements, existing cross-problem models
remain unaware of constraints (Liu et al., 2024; Zhou et al.,
2024a; Berto et al., 2024b). As different constraints signifi-
cantly alter the feasible solution space, this oversight notably
limits the models’ capabilities in cross-problem applications.
Furthermore, existing methods employ a transformer en-
coder which maintains global connectivity throughout the
node encoding process, leading to the inclusion of irrelevant
nodes and adversely affecting node representation.

This study proposes a novel Constraint-Aware Dual-
Attention Model (CaDA) to mitigate these challenges.
Firstly, we introduce a constraint prompt to enhance the
model’s awareness of the activated constraints. Further-
more, we propose a dual-attention mechanism consisting of
a global branch and a sparse branch. Since, in the encoder-
decoder framework, node pairs with higher attention scores
are more likely to be adjacent in the solution, the sparse
branch with Top-k sparse attention focuses on the more
promising connections between these key node pairs. Mean-
while, the global branch enhances the model’s capacity by
capturing information from the entire graph, ensuring that
the solution is informed globally. The effectiveness and su-
periority of CaDA have been comprehensively demonstrated
across 16 VRPs and real-world benchmarks.

The contributions of this paper are as follows:

• We introduce CaDA, an efficient cross-problem learn-
ing method for VRPs that enhances model awareness
of constraints and representation learning.

• We propose a constraint prompt, which facilitates high-
quality constraint-aware learning, and a dual-attention
mechanism, which ensures the encoding process is
both selectively focused and globally informed.

• We conduct a comprehensive evaluation of CaDA
across 16 VRP variants. CaDA achieves state-of-the-
art (SOTA) performance, surpassing existing cross-
problem learning methods. Additionally, our ablation
study validates the effectiveness of both the constraint
prompt and the dual-attention mechanism.

2. Preliminaries
2.1. Problem Definition

In this study, we focus on 16 VRP variants that encompass
five different constraints, including capacity (C), open route

(C) (O)

(B) (L)(TW)

`Depot Linehaul Backhaul Feasible
route

Time
window

Figure 1. The feasible solutions for different VRP variants.

(O), backhaul (B), duration limit (L), and time window
(TW). The illustrations of the constraints are presented in
Figure 1. In this section, we begin by outlining a general
definition of the VRP instance, then introduce the basic
CVRP, and proceed to describe four additional constraints.

A VRP instance G is a fully-connected graph defined by a
set of nodes V = {v0, v1, . . . , vN} with the total number
of nodes given by |V| = N + 1, and edges E = V × V .
Furthermore, v0 represents the depot, while {v1, . . . , vN}
represent the N customer nodes. Each node vi ∈ V consists
of the pair {X⃗i, Ai}, where X⃗i ∼ U(0, 1)2 represents the
node coordinates, and Ai denotes other attributes of the
nodes. Additionally, the travel cost between different nodes
is defined by their Euclidean distance, which is denoted by
the cost matrix D = {di,j , i = 0, . . . , N, j = 0 . . . , N}.

In CVRP, the depot node v0 has A0 = ∅, and each cus-
tomer node vi is associated with Ai = {δi}, where δi is
the customer’s demand at vi that the fleet of vehicles must
service. This fleet comprises homogeneous vehicles, each
with a specific capacity C. Each vehicle leaves the depot v0,
visits a subset of customers, and returns to the depot upon
completion of deliveries. The solution to CVRP consists
of the routes taken by all vehicles, i.e., {σ1,σ2, . . . ,σK},
where K is the total number of sub-routes. Each sub-route
σk = (σk

1 , σ
k
2 , . . . , σ

k
nk
), k ∈ {1, 2, . . . ,K}, where σk

i is
the index of the visited node at step i, and σk

1 = σk
nk

= 0.
nk = |σk| represents the number of nodes in it, and∑K

k=1 nk = T is the total number of visit steps.

The basic CVRP could be easily extended to various VRPs
by adding additional constraints. This study explores four
additional constraints as discussed in recent studies (Liu
et al., 2024; Zhou et al., 2024a; Berto et al., 2024b).

Open Route (O) In the OVRP, vehicles do not return to
the depot v0 after completing their sub-route.

Time Window (TW) This constraint requires that each
node must be visited within a specific time window, such
that each node Ai = {δi, ei, li, si}, where ei is the earliest
start time, li is the latest permissible time, and si represents
the time taken to service this customer. The depot v0 has

2

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

s0 = 0, e0 = 0, and l0 = T , indicating that each sub-tour
must be completed within a time limit of T . Time window
constraints are stringent; if a vehicle arrives earlier than ei,
it must wait until the start of the window.

Backhaul (B) Customers with δi > 0 are linehaul cus-
tomers, requiring vehicles to load goods at the depot and
deliver them to their locations, while those with δi < 0 are
backhaul customers, where vehicles collect |δi| goods from
customers and return them to the depot. While all customers
in the standard CVRP are linehaul, the VRP with backhauls
(VRPB) includes types of customers, and linehaul tasks
must precede backhaul tasks to avoid reloading.

Duration Limit (L) In this constraint, the depot v0 has
A0 = {ρ}, where ρ is the length limit that each sub-tour
must adhere to.

2.2. Learning to Construct Solutions for VRPs

The process of constructing solutions autoregressively (i.e.,
decoding) can be modeled as a Markov decision process
(MDP), and the policy can be trained using RL methods.
As the model sequentially expands each sub-route, for sim-
plicity, at any decoding step t, τt represents the sequence of
nodes visited up to that point:

τt =

Kt⋃
k=1

(τk1 , τ
k
2 , . . . , τ

k
nk
) = (τ1, τ2, . . . , τt), (1)

where
⋃

denotes the concatenation of sequences from dif-
ferent sub-routes, Kt denotes the number of sub-tours up to
the current step. The MDP for the decoding step at time t is
defined in the Appendix B.1.

Subsequently, policy πθ can be optimized using RL methods
to maximize the expected reward J . This study employs
the REINFORCE algorithm (Williams, 1992) with a shared
baseline proposed by Kwon et al. (2020), to update the pol-
icy. Specifically, for a VRP instance V , N trajectories are
generated, starting with the first action {a11, a21, . . . , aN1 },
which is always 0. Each of the N trajectories then assigns
a unique one of the N customer nodes as the second point,
i.e., {a12, a22, . . . , aN2 } = {1, 2, . . . , N}. The policy subse-
quently samples actions for each trajectory until all have
derived feasible solutions {τ 1, τ 2, . . . , τN}. Finally, the
gradient of the policy is approximated by:

∇θJ(θ | V) ≈ 1

N

N∑
i=1

(r(τ i)− bi(V))∇θ log πθ(τ
i | V),

bi(V) = 1

N

N∑
j=1

r(τ j) for all i.

(2)

Where b(V) is the shared baseline function used to stabilize
learning, r(·) is the reward function and is defined as the
negative solution length, as detailed in Appendix B.1.

For the structure of policy πθ, existing approaches primarily
use transformer-based models.

2.3. Transformer Layer

The Transformer (Vaswani et al., 2017) comprises a multi-
head attention layer (MHA) and a feed-forward layer (FFD).
In some modern large language models (Chowdhery et al.,
2023; Touvron et al., 2023; Naveed et al., 2023), the FFD
is replaced by gated linear units (GLUs), with a detailed
introduction to GLUs provided in the Appendix B.2.

Attention Layer The classical attention function is:

Attention (X,Y) = A (YWV) ,

where A = Softmax

(
XWQ(YWK)⊤√

dk

)
,

(3)

where X ∈ Rn×d and Y ∈ Rm×d represent the input
embeddings. The parameters WQ,WK ∈ Rd×dk , and
WV ∈ Rd×dv are trainable matrices for the query, key, and
value projections, respectively. After calculating the atten-
tion matrix using the query and key matrices, the Softmax
function is applied independently across each row to nor-
malize the attention scores. These scores are then rescaled
by

√
dk, resulting in the scaled attention score matrix A.

The eventual output, denoted as Z, is a matrix in Rn×dv .

Additionally, for efficiency, the MHA projects X into Mh

separate sets of queries, keys, and values, upon which the
attention function is applied:

MHA(X,Y) = Concat(Z1, . . . , ZMh
)Wp,

where Zi = Attentioni(X,Y),∀i ∈ {1, . . . ,Mh},
(4)

where dk = dv = d
Mh

in each Attentioni. Wp ∈ Rd×d is a
learnable parameter. For self-attention, we have Y = X .

3. Methodology
3.1. Overall Pipeline

As shown in Figure 2, CaDA follows the general cross-
problem learning framework for VRPs which consists of
two stages: encoding the instance V to node embeddings
H(L), and decoding to construct solutions based on H(L)

sequentially. CaDA employs a prompt to introduce con-
straint information during the encoding process, so that the
encoder can identify whether certain constraints are valid.
In addition, CaDA utilizes a dual-attention mechanism. The
sparse branch uses Top-k sparse attention to concentrate on
the most promising adjacent node candidates. This enables

3

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

…

…

…

…

H(L)
𝐻(0)

𝑃(0)𝐻(0)(VRPBTW)

𝐻(0)

Q

K

V

Linear

layer

Node embedding

Global attention

layer

Sparse Attention

layer

Constraint tag 𝑉

Prompt
1

0

1

0

1

𝑃(0)

(1) Constraint Prompt

C

O

TW

L

B

Softmax

Top-k selection

Encoding Decoding

Top-K Sparse Attention

Decoder

…

Action

selection

Current node

Loss

calculation

Init node

embedding

Matrix Multiplication
Element-wise

Addition

Solution 𝝉

Action ProbabilitiesSwiGLU layer

(2) Dual-Attention Model

Layer 𝑖

𝑣1 𝑣2

𝑣0

𝑣3

𝑣4

𝐡 𝝉𝟏

(L)
𝐡𝝉𝟐
(L)

𝐡𝝉𝟑
(L)

Global branch 𝑓g

Sparse branch 𝑓𝑠

Input 𝒱

Figure 2. The pipeline of the proposed CaDA for VRPs. CaDA adopts the typical encoder-decoder framework and incorporates two new
components in the encoder: a dual-attention mechanism and a constraint prompt. The dual-attention mechanism comprises a global
branch with the standard Softmax function and a sparse branch with Top-k selection operation.

the model to identify and focus on highly relevant node pairs
based on learnable attention scores.

3.2. Constraint Prompt

To generate prompts that carry the problem’s constraint in-
formation, we represent the problem as a multi-hot vec-
tor V ∈ R5, corresponding to five distinct constraints.
This multi-hot vector is subsequently processed through
a straightforward multi-layer perceptron (MLP) to generate
the prompts:

P (0) = LayerNorm(VWa + ba)Wb + bb, (5)

where Wa ∈ R5×dh , ba ∈ Rdh , Wb ∈ Rdh×dh , and bb ∈
Rdh are learnable parameters. dh is the node’s embedding
dimension. Then this prompt can be concatenated with the
node embeddings.

3.3. Dual-Attention Mechanism

The input instance V with |V| = N + 1, is first transformed
into high-dimensional initial node embeddings by a linear
projection. The initial node embedding is denoted as H(0) ∈
R(N+1)×dh .

Subsequently, H(0) is concatenated with P (0) and processed
through a global branch fg , which consists of L layers. Each
consists of a standard MHA layer (Vaswani et al., 2017) and
a SwiGLU (Shazeer, 2020). The standard attention function
with Softmax never allocates exactly zero weight to any
node, thereby allowing each node access to the entire graph.
Concurrently, to capture information from closely related
nodes, a sparse branch denoted as fs with Top-k sparse
attention layers is introduced. Both branches adaptively

fuse information at the end of each layer.

Finally, the output from the global branch, H(L)
g , is used

for autoregressive decoding, with the likelihood of node
selection being primarily determined by the similarity of the
nodes’ embeddings.

Global Layer Each layer involves an MHA (Vaswani
et al., 2017) and a SwiGLU (Shazeer, 2020), along with root
mean square normalization (RMSNorm) (Zhang & Sennrich,
2019) and residual connections (He et al., 2016). Following
Berto et al. (2024b), we employ SwiGLU and RMSNorm
to improve convergence. The i-th layer is formulated as
follows:

Ĥ(i)
g = RMSNorm(i)

(
H(i−1)

g + MHA(i)(
H(i−1)

g ,Concat
[
H(i−1)

g , P (i−1)
]))

, (6)

H̃(i)
g = RMSNorm(i)

(
Ĥ(i)

g + SwiGLU(i)(Ĥ(i)
g)

)
, (7)

P̂ (i) = RMSNorm(i)
(
P (i−1) + MHA(i)(

P (i−1),Concat
[
H(i−1)

g , P (i−1)
]))

, (8)

P (i) = RMSNorm(i)
(
P̂ (i) + SwiGLU(i)(P̂ (i))

)
, (9)

where H
(i−1)
g ∈ R(N+1)×dh represents the node embed-

dings output from the (i− 1)-th global layer.

Sparse Layer In the sparse branch fs, each layer also
consists of an attention layer and a SwiGLU activation func-
tion. However, to focus more precisely on related nodes, we
replace the attention function Attention(·, ·) in MHA(·, ·)

4

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

with SparseAtt(·, ·), which masks attention scores smaller
than the Top-k scores by setting them to zero. This can be
formulated as follows:

SparseAtt(X,Y) = Softmax (M(A))YWV , (10)

where A is the attention score calculated as shown in Equa-
tion 3. M(·) is the Top-k selection operation:

[M(A)]ij =

{
Aij if Aij ∈ Top-k(Ai∗),

0 otherwise.
(11)

where Ai∗ represents the attention scores of the i-th node
with all other nodes, i.e., Ai∗ = {Aij | j ∈ {0, 1, . . . , N}},
and the Top-k operation selects the top k highest attention
scores from this set.

Fusion Layer In our model, a simple linear projection is
applied at the end of each layer to transform embeddings
between two branches. For the i-th layer, the outputs from
the global and sparse branches are denoted as H̃(i)

g and H̃
(i)
s ,

respectively. The final outputs are given by:

H(i)
g = H̃(i)

g + (H̃(i)
s Ws + bs), (12)

H(i)
s = H̃(i)

s + (H̃(i)
g Wg + bg), (13)

where Ws, bs, Wg , and bg are learnable parameters.

3.4. Decoder

After encoding, the output of the global branch, H(L) =

[h
(L)
0 ,h

(L)
1 , . . . ,h

(L)
N], is utilized to construct the solution.

During the autoregressive decoding process, at step t, the
context embedding is defined as:

Hc = Concat
[
h(L)
τt , cl

t, c
b
t , zt, lt, ot

]
Wt, (14)

where τt is the partial solution already generated, and τt
is the last node of the partial solution. The terms cl

t, c
b
t

represent the remaining capacity of the vehicle for linehaul
and backhaul customers, respectively. The terms zt, lt,
and ot represent the current time, the remaining length of
the current partial route (if the problem includes a length
limitation), and the presence indicator of the open route,
respectively. The matrix Wc ∈ R(dh+5)×dh is a learnable
parameter.

Then the context embeddings are processed through an
MHA to generate the final query:

qc = MHA(Hc,Concat
[
h
(L)
i : i ∈ It

]
), (15)

where It represents the set of feasible actions at the current
step. The compatibility ui is computed as:

ui =

ξ · tanh
(

qc(h
(L)
i)⊤√
dk

)
if i ∈ It,

−∞ otherwise,
(16)

2.45

2.29

2.14 2.16

1.97

1.71

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

G
ap

 (
%

)

(a) Average gap of different
neural solvers on VRPs with 50
nodes.

3.97

3.68 3.64

3.39

3.13

2.81

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

G
ap

 (
%

)

(b) Average gap of different
neural solvers on VRPs with
100 nodes.

Figure 3. Comparison results of CaDA with SOTA cross-problem
neural solvers, showing the average gap on 16 VRPs.

where ξ is a predefined clipping hyperparameter. Finally,
the action probabilities πθ(τt = i | V, τ1:t−1) are obtained
by applying the Softmax function to u = {ui}i∈I . Addi-
tionally, the feasibility testing process for determining the
set of feasible actions It at the current step is detailed in
Appendix B.3.

4. Experiments
To evaluate the effectiveness of the proposed CaDA for
VRPs, we conduct experiments on 16 VRP variants with
five constraints. Furthermore, we perform ablation studies
to validate the efficiency of the proposed components.

4.1. Baselines

We utilize SOTA traditional and neural solvers as base-
lines. For the traditional solvers, we use PyVRP (Wouda
et al., 2024), an extension of HGS-CVRP (Vidal, 2022),
and Google’s OR-Tools. Both baselines run on a single
CPU core with time limits of 10s for VRP50 and 20s for
VRP100. For the neural solvers, we compare our method
against representative multi-task learning models: MT-
POMO (Liu et al., 2024), MVMoE (Zhou et al., 2024a), and
RouteFinder (Berto et al., 2024b), including RF-POMO, RF-
MoE, and RF-TE. We utilize the open-source code published
by RouteFinder (Berto et al., 2024b). For each method, we
train two models from scratch on VRP50 and VRP100 using
the same hyperparameters and problem settings as in Berto
et al. (2024b). The detailed problem setup can be found in
Appendix C.1. However, for RF-MoE and MVMoE, due
to their higher memory demands, we utilize the pre-trained
parameters provided by RouteFinder (Berto et al., 2024b)
and test them under the same hardware settings as ours. All
neural methods are trained using the same data budget. For
CaDA, we train two models on VRP50 and VRP100, with
the hyperparameters outlined in Appendix C.2. Mixed-batch
training is employed to stabilize the training process (Berto
et al., 2024b). Among the neural solvers, MVMoE has the
largest model size (3.7 M), followed by CaDA (3.4 M),

5

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Table 1. Performance on 1K test instances of 16 VRPs. The best learning-based results are highlighted with a gray background.

Solver n = 50 n = 100 Solver n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

C
V

R
P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
OR-Tools 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools 16.089 0.347% 10.4m 25.814 1.506% 20.8m
MTPOMO 10.520 1.423% 2s 15.941 2.030% 8s MTPOMO 16.419 2.423% 2s 26.433 3.962% 9s
MVMoE 10.499 1.229% 3s 15.888 1.693% 11s MVMoE 16.400 2.298% 3s 26.390 3.789% 11s
RF-POMO 10.506 1.300% 2s 15.908 1.833% 8s RF-POMO 16.363 2.066% 2s 26.361 3.675% 9s
RF-MoE 10.499 1.225% 3s 15.877 1.625% 11s RF-MoE 16.389 2.232% 3s 26.321 3.516% 11s
RF-TE 10.502 1.257% 2s 15.860 1.524% 8s RF-TE 16.341 1.933% 2s 26.228 3.154% 8s
CaDA 10.494 1.182% 2s 15.870 1.578% 8s CaDA 16.278 1.536% 2s 26.070 2.530% 8s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m
OR-Tools 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools 10.570 2.343% 10.4m 16.466 5.302% 20.8m
MTPOMO 6.717 3.194% 2s 10.216 5.028% 8s MTPOMO 10.775 1.733% 2s 16.157 2.483% 8s
MVMoE 6.705 3.003% 3s 10.177 4.617% 11s MVMoE 10.753 1.525% 3s 16.099 2.113% 11s
RF-POMO 6.699 2.926% 2s 10.190 4.761% 8s RF-POMO 10.748 1.498% 2s 16.117 2.241% 8s
RF-MoE 6.697 2.880% 3s 10.139 4.234% 11s RF-MoE 10.737 1.390% 3s 16.070 1.937% 11s
RF-TE 6.682 2.658% 2s 10.115 3.996% 8s RF-TE 10.747 1.485% 2s 16.057 1.858% 8s
CaDA 6.670 2.468% 2s 10.121 4.045% 8s CaDA 10.731 1.333% 2s 16.057 1.847% 8s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools 10.519 0.078% 10.4m 17.027 0.583% 20.8m
MTPOMO 10.036 3.596% 2s 15.102 5.052% 8s MTPOMO 10.676 1.558% 2s 17.442 3.022% 9s
MVMoE 10.007 3.292% 3s 15.023 4.505% 10s MVMoE 10.674 1.541% 3s 17.416 2.870% 12s
RF-POMO 9.992 3.135% 2s 15.025 4.534% 8s RF-POMO 10.656 1.361% 2s 17.405 2.809% 9s
RF-MoE 9.980 3.017% 3s 14.973 4.168% 10s RF-MoE 10.674 1.540% 3s 17.388 2.704% 12s
RF-TE 9.979 3.000% 2s 14.935 3.906% 8s RF-TE 10.645 1.264% 2s 17.328 2.352% 9s
CaDA 9.960 2.800% 2s 14.960 4.038% 8s CaDA 10.613 0.957% 2s 17.226 1.751% 9s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m
V

R
PB

LT
W

HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
OR-Tools 10.331 1.390% 10.4m 15.426 4.338% 20.8m OR-Tools 18.422 0.332% 10.4m 29.830 2.770% 20.8m
MTPOMO 10.679 4.760% 2s 15.718 6.294% 8s MTPOMO 19.001 2.199% 3s 30.948 3.794% 9s
MVMoE 10.639 4.384% 3s 15.642 5.771% 11s MVMoE 18.983 2.097% 3s 30.892 3.609% 12s
RF-POMO 10.590 3.926% 2s 15.632 5.725% 8s RF-POMO 18.938 1.863% 2s 30.847 3.452% 9s
RF-MoE 10.575 3.765% 3s 15.542 5.125% 10s RF-MoE 18.957 1.960% 3s 30.809 3.325% 12s
RF-TE 10.569 3.713% 2s 15.523 5.008% 8s RF-TE 18.910 1.713% 2s 30.705 2.978% 9s
CaDA 10.543 3.461% 2s 15.525 5.001% 8s CaDA 18.848 1.376% 2s 30.520 2.359% 9s

V
R

PB
T

W

HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
OR-Tools 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools 16.441 0.499% 10.4m 26.259 1.899% 20.8m
MTPOMO 18.649 1.938% 2s 30.478 3.426% 9s MTPOMO 16.832 2.877% 2s 26.913 4.455% 9s
MVMoE 18.632 1.841% 3s 30.437 3.284% 12s MVMoE 16.817 2.783% 3s 26.866 4.272% 12s
RF-POMO 18.603 1.684% 2s 30.384 3.102% 9s RF-POMO 16.756 2.419% 2s 26.818 4.084% 9s
RF-MoE 18.616 1.757% 3s 30.340 2.951% 12s RF-MoE 16.777 2.548% 3s 26.773 3.910% 12s
RF-TE 18.573 1.517% 2s 30.249 2.641% 9s RF-TE 16.728 2.248% 2s 26.706 3.645% 9s
CaDA 18.500 1.117% 2s 30.059 1.999% 9s CaDA 16.669 1.879% 2s 26.540 2.995% 9s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

L

HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m
OR-Tools 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools 6.927 0.386% 10.4m 10.582 2.363% 20.8m
MTPOMO 7.105 2.973% 2s 10.882 5.264% 8s MTPOMO 7.112 3.053% 2s 10.888 5.318% 8s
MVMoE 7.089 2.744% 3s 10.841 4.869% 11s MVMoE 7.094 2.799% 3s 10.847 4.929% 11s
RF-POMO 7.085 2.686% 2s 10.839 4.857% 8s RF-POMO 7.088 2.703% 2s 10.842 4.883% 8s
RF-MoE 7.081 2.617% 3s 10.806 4.528% 11s RF-MoE 7.082 2.630% 3s 10.807 4.537% 11s
RF-TE 7.065 2.385% 2s 10.774 4.233% 8s RF-TE 7.068 2.417% 2s 10.778 4.266% 8s
CaDA 7.049 2.159% 2s 10.762 4.099% 8s CaDA 7.051 2.166% 2s 10.762 4.102% 8s

O
V

R
PB

LT
W

HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m
OR-Tools 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools 11.682 0.109% 10.4m 19.303 0.757% 20.8m
MTPOMO 11.823 1.315% 3s 19.658 2.602% 9s MTPOMO 11.823 1.307% 3s 19.656 2.592% 9s
MVMoE 11.816 1.249% 4s 19.640 2.514% 12s MVMoE 11.816 1.245% 4s 19.637 2.499% 13s
RF-POMO 11.810 1.192% 3s 19.618 2.393% 10s RF-POMO 11.809 1.182% 3s 19.620 2.403% 10s
RF-MoE 11.824 1.309% 4s 19.607 2.334% 12s RF-MoE 11.823 1.303% 4s 19.605 2.324% 12s
RF-TE 11.789 1.017% 2s 19.554 2.061% 9s RF-TE 11.790 1.027% 2s 19.555 2.062% 9s
CaDA 11.760 0.771% 2s 19.435 1.439% 9s CaDA 11.761 0.779% 2s 19.436 1.441% 9s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools 10.497 0.114% 10.4m 17.023 0.728% 20.8m
MTPOMO 6.720 3.248% 2s 10.224 5.112% 8s MTPOMO 10.677 1.572% 2s 17.442 3.020% 9s
MVMoE 6.706 3.028% 3s 10.184 4.693% 11s MVMoE 10.677 1.564% 3s 17.418 2.880% 12s
RF-POMO 6.701 2.944% 2s 10.190 4.762% 8s RF-POMO 10.656 1.362% 3s 17.404 2.802% 9s
RF-MoE 6.695 2.859% 3s 10.140 4.252% 11s RF-MoE 10.673 1.531% 3s 17.386 2.696% 12s
RF-TE 6.683 2.680% 2s 10.121 4.054% 8s RF-TE 10.646 1.267% 2s 17.328 2.352% 9s
CaDA 6.671 2.475% 2s 10.122 4.052% 8s CaDA 10.613 0.961% 2s 17.226 1.752% 9s

RF-TE (1.7 M), and MTPOMO (1.3 M).

4.2. Testing and Hardware

We utilize the test dataset published by Routefinder (Berto
et al., 2024b), which includes 1K randomly generated in-

stances for each VRP variant, at scales of 50 and 100. For
all neural solvers, we employ a greedy rollout strategy with
×8aug (Kool et al., 2019). This approach conducts equiva-
lent transformations to augment the original instance and re-
ports the best results among the eight augmented instances.

6

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Table 2. Average objective function value and gap across 16 VRPs
for ablation models and CaDA.

Obj. Gap

CaDA w/o Prompt 11.534 1.926%
CaDA w/o Sparse 11.521 1.795%
CaDA 11.513 1.714%

0.00

0.10

0.20

0.30

0.40

0.50

0.60

G
ap

 (
%

)

TADA w/o Prompt

TADA w/o Sparse

Δ

0.00

0.10

0.20

0.30

0.40

0.50

0.60

G
ap

 (
%

)

CaDA w/o Prompt

CaDA w/o Sparse

Δ

Figure 4. Ablation study on the proposed components of CaDA
across 16 VRPs. The height of the bars represents the increased
gap in performance between the model with specific components
ablated and the baseline CaDA.

All experiments are run on a platform with NVIDIA
GeForce RTX 3090 GPUs and Intel(R) Xeon(R) Gold 6348
CPUs at 2.60 GHz. Training our model from scratch takes
about 17 hours for VRP50 and 25 hours for VRP100.

4.3. Main Results

In Table 1, we report the average performances for each
dataset and the gaps compared to the best-performing tradi-
tional VRP solvers, as indicated by asterisks (*). Addition-
ally, we present the total time required to solve the dataset.
The best learning-based results for each dataset are high-
lighted with a gray background. Furthermore, we present
the comparison results with the average gap on 16 VRPs for
both 50-node and 100-node instances in Figure 3.

Results illustrate that the proposed CaDA method can ef-
fectively manage various VRP variants at different scales.
Specifically, for VRP50 and VRP100, CaDA surpasses the
second-best method by 0.26% and 0.32%, respectively. It
ranks first among all neural network-based solvers for all
VRP50 variants and for 13 out of 16 VRP100 variants. Sim-
ilar to other neural solvers, CaDA significantly reduces the
running time compared to SOTA heuristic solvers.

4.4. Ablation Study

In this section, we conduct ablation studies to validate the
efficacy of the proposed components in CaDA. Specifically,
we separately remove the constraint prompt and the Top-
k operation, resulting in two CaDA variants: CaDA w/o
prompt and CaDA w/o Sparse, where “w/o” stands for

1.795

1.771 1.774

1.714

1.66

1.68

1.70

1.72

1.74

1.76

1.78

1.80

1.82

G
ap

 (
%

)

1.942

1.804

1.714

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Prompt on
Both Branch

Prompt on
Sprase
Branch

Prompt on
Global Branch

(Ours)

G
ap

 (
%

)

(a) CaDA with different prompt
positions: concatenated to the
input of the global branch,
sparse branch, or both, where
the first is the standard setting.

1.795

1.771 1.774

1.714

1.66

1.68

1.70

1.72

1.74

1.76

1.78

1.80

1.82

G
ap

 (
%

)

(b) CaDA with different
sparse operations in the sparse
branch or only standard
softmax in both branches;
Top-k is the standard setting.

Figure 5. The average gap across 16 VRPs for CaDA variants under
different model settings.

1.714 %

1.754 %

1.73%

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

性
能
差
距

(%
)

CaDA with k = N/2
CaDA with k = N/4
CaDA with k = N/8

1.800

1.733
1.722

1.754

1.714

1.65

1.70

1.75

1.80

k=N/25 k=N/8 k=N/5 k=N/4 k=N/2 (Ours)

G
ap

 (
%

)
Figure 6. Average gap on 16 VRPs for CaDA variants with differ-
ent k values in the Top-k selection operation, where k = N

2
is the

standard setting.

“without”. In CaDA w/o Sparse, both branches use the
standard Softmax with global connectivity. CaDA and its
variants are trained and evaluated on VRP50. During testing,
×8aug (Kool et al., 2019) is employed.

The results in Table 2 show the average gap on 16 VRPs
and demonstrate that all components of CaDA make sub-
stantial contributions, with the prompt playing a particularly
important role. Additionally, to study the effect of differ-
ent components on various problems, we demonstrate the
increased gap of these two ablation models compared with
CaDA on different VRP datasets in Figure 4. These re-
sults illustrate that both the prompt and the sparse operation
improve performance on all VRP variants.

Then, we further explore the influence of different CaDA set-
tings. Specifically, using CaDA as the baseline, we conduct
experiments on VRP50, focusing on the following aspects:

Position of Prompt We consider three positions to intro-
duce prompts, as shown in Figure 5(a), which illustrates
the average gap across 16 VRP variants for the different
models. The results indicate that integrating both sparse and
prompt mechanisms within the same branch yields inferior
performance, whereas concatenating the prompt only to the
input of the global branch achieves the best performance.

Different Sparse Function To validate the efficacy of our
Top-k sparse operation, we compare CaDA against three

7

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

(a) CaDA on OVRP

(c) CaDA on CVRP

(b) CaDA w/o Prompt on OVRP

(d) CaDA w/o Prompt on CVRP

Figure 7. The distribution of attention weights between customers and the depot Ai0, i ∈ {1, 2, . . . , N} for CaDA and CaDA w/o Prompt
on CVRP and OVRP. Kernel density estimation (KDE) with Gaussian kernels is applied to estimate the attention weight distribution,
which is visualized using a heatmap. CaDA w/o Prompt exhibits a similar attention distribution across both problems, leading to increased
interference between tasks. In contrast, CaDA shows a significantly lower density of high attention values for OVRP, indicating that the
proposed prompt effectively provides constraint information as depot will never be the next action for any customer in OVRP.

variants: 1) removing the Top-k selection in the sparse
branch, 2) replacing it with 1.5-entmax (Peters et al., 2019),
and 3) replacing it with sparsemax (Martins & Astudillo,
2016). Figure 5(b) shows the average gap across 16 VRPs.
Firstly, CaDA with different sparse functions consistently
outperforms the version of CaDA with standard Softmax,
which only has global connectivity. This indicates that the
model benefits from focusing on promising nodes. Further-
more, the Top-k operation outperforms the other two sparse
operations, demonstrating its effectiveness for VRPs.

k for Top-k To explore the different k values’ ef-
fects on CaDA, we conducted experiments with k ∈{

N
2 ,

N
4 ,

N
5 ,

N
8 ,

N
25

}
and trained these models from scratch

respectively. Figure 6 shows the average gap on 16 VRP50
datasets. It indicates that when k = N

2 , the sparse branch
can better cooperate with the global branch. This is the
standard setting for CaDA.

4.5. Visualization of Constraint Awareness

To explore the influence of the prompt, we conducted fur-
ther statistical experiments on the distribution of attention
scores within the encoder. While the results related to the
influence of the open route constraint are detailed below,
the study on the influence of the time window constraint
is provided in Appendix C.3. All experiments involve 100
VRP50 instances randomly selected from the test dataset,
and attention scores were collected from all heads across all
global layers.

Influence on Open Route Constraint In the case of the
open route constraint, where the vehicle does not return
to the depot v0, the depot will never be the next node for
any customer node vi. Whereas in CVRP, the vehicle must
return to the depot, making it a potential next node for any
customer. As a result, the model should exhibit different
customer-depot attention patterns for CVRP and OVRP.
Specifically, in CVRP, the model should exhibit a greater
number of high attention scores Ai0 compared to OVRP.

Figure 7 shows the distribution of Ai0 for CaDA and CaDA
w/o Prompt on CVRP and OVRP. We apply KDE with Gaus-
sian kernels to estimate the distribution of attention weights
between 0.2 and 0.8. The bandwidth parameter is set to
0.1, and the KDE is visualized using a heatmap. Firstly,
CaDA exhibits a significantly different distribution of atten-
tion scores between CVRP and OVRP, whereas CaDA w/o
Prompt shows a similar attention distribution across both
problems. When no prompt is provided, the encoder cannot
distinguish between CVRP and OVRP instances, because
both variants share identical input structures, with values
sampled from the same distribution. This limitation leads
the encoder to view instances of different variants as the
same and process them with the same attention patterns.

Furthermore, when comparing CaDA on CVRP and CaDA
on OVRP, we observe a significantly lower density of high
attention values for OVRP, indicating that the proposed
prompt effectively provides constraint information and helps
the model better understand the problem.

4.6. Generalization to Unseen Constriants

We further conduct experiments to evaluate both zero-shot
and fine-tuning performance on two unseen constraints:

• Multi-Depot (MD): Vehicles may start from any of
the multiple depots but must return to their respective
starting depot. Evaluation involves 16 variants, each
created by adding an MD constraint to one of the 16
problems in Table 1. The number of depots is set to
three, following Berto et al. (2024b).

• Mixed Backhaul (MB): Linehaul and backhaul cus-
tomers can be served in any order, subject to vehicle
capacity limits. We evaluate 8 variants, each formed
by replacing the Backhaul constraint with the MB con-
straint in the 8 Backhaul-constrained problems listed
in Table 1.

Table 3 shows the zero-shot performance of different mod-

8

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Table 3. Zero-shot results on unseen constraints. Reported values
are the average performance gap.

Zero-shot MD MB

MTPOMO 42.29% 9.28%
MVMoE 45.56% 8.74%
RF-TE 41.93% 9.12%
CaDA 39.34% 8.46%
CaDA×32 28.86% 7.40%

5.5

7.5

9.5

11.5

13.5

15.5

17.5

1 2 3 4 5 6 7 8 9 10

G
ap

(%
)

Epoch

MTPOMO MVMoE

RF-TE CaDA

Figure 8. Average performance gap on 16 MD VRP variants during
fine-tuning.

els on VRP50. For CaDA, we initialized the prompt using
the “closest” trained task (e.g., MDOVRPBL → OVRPBL,
OVRPMB → OVRPB). We additionally provide a ×32 data
augmentation method for CaDA, which reports the best solu-
tion among utilizing 32 prompts. Specifically, we generate
all possible combinations of a 5-dimensional binary vector
V (i.e., 25). Given the relatively poor zero-shot performance
across all evaluated models, generalization to the MD con-
straint appears more challenging. CaDA achieves SOTA
results on both MD and MB constraints.

For the more challenging MD constraint, we further com-
pare the fine-tuning performance of different models. We
use a batch size of 128, 10,000 samples per epoch, a learn-
ing rate of 3 × 10−4, and employ mixed-batch training.
Figure 8 shows the convergence curves of each model dur-
ing fine-tuning, where CaDA consistently achieves SOTA
performance.

5. Conclusion
In this paper, we have proposed the Constraint-Aware Dual-
Attention Model (CaDA), a novel cross-problem neural
solver for the VRPs. CaDA incorporates a constraint prompt
and a dual-attention mechanism, which consists of a global
branch and a sparse branch, to efficiently generate constraint-
aware node embeddings. We have thoroughly evaluated
CaDA across 16 VRP variants and real-world benchmark in-
stances. CaDA shows superior performance when compared
to the current leading neural solvers. Additional ablation
studies confirm the effectiveness of the proposed constraint
prompt and dual-attention mechanism.

Acknowledgements
This work was partially supported by the National Natu-
ral Science Foundation of China (Grant Nos. 62476118
and 12202472), the Natural Science Foundation of Guang-
dong Province (Grant No. 2024A1515011759), the
Natural Science Foundation of Shenzhen (Grant No.
JCYJ20220530113013031), the Guangdong Science and
Technology Program (Grant No. 2024B1212010002), and
the Foundation of National Key Laboratory of Aircraft Con-
figuration Design (Grant No. ZYTS-202404).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher,

Z., Pham, P., Ravula, A., Sanghai, S., Wang, Q., and
Yang, L. Etc: Encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, pp.
268–284, 2020.

Baevski, A. and Auli, M. Adaptive input representations for
neural language modeling. In International Conference
on Learning Representations, 2019.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Berto, F., Hua, C., Park, J., Luttmann, L., Ma, Y., Bu, F.,
Wang, J., Ye, H., Kim, M., Choi, S., Zepeda, N. G.,
Hottung, A., Zhou, J., Bi, J., Hu, Y., Liu, F., Kim, H.,
Son, J., Kim, H., Angioni, D., Kool, W., Cao, Z., Zhang,
J., Shin, K., Wu, C., Ahn, S., Song, G., Kwon, C., Xie,
L., and Park, J. RL4CO: an Extensive Reinforcement
Learning for Combinatorial Optimization Benchmark.
arXiv preprint arXiv:2306.17100, 2024a. https://
github.com/ai4co/rl4co.

Berto, F., Hua, C., Zepeda, N. G., Hottung, A., Wouda, N.,
Lan, L., Tierney, K., and Park, J. Routefinder: Towards
foundation models for vehicle routing problems. In ICML
2024 Workshop on Foundation Models in the Wild, 2024b.

9

https://github.com/ai4co/rl4co
https://github.com/ai4co/rl4co

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Bi, J., Ma, Y., Wang, J., Cao, Z., Chen, J., Sun, Y., and Chee,
Y. M. Learning generalizable models for vehicle routing
problems via knowledge distillation. Advances in Neural
Information Processing Systems, 35:31226–31238, 2022.

Blondel, M., Martins, A., and Niculae, V. Learning classi-
fiers with fenchel-young losses: Generalized entropies,
margins, and algorithms. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pp. 606–
615. PMLR, 2019.

Bogyrbayeva, A., Meraliyev, M., Mustakhov, T., and Daulet-
bayev, B. Machine learning to solve vehicle routing
problems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 2024.

Cappart, Q., Moisan, T., Rousseau, L.-M., Prémont-
Schwarz, I., and Cire, A. A. Combining reinforcement
learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 3677–3687, 2021.

Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J.
Vehicle routing problems for city logistics. EURO Journal
on Transportation and Logistics, 6(1):51–79, 2017.

Chen, X., Li, H., Li, M., and Pan, J. Learning a sparse
transformer network for effective image deraining. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5896–5905, 2023.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Correia, G. M., Niculae, V., and Martins, A. F. Adap-
tively sparse transformers. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on
Natural Language Processing, pp. 2174–2184, 2019.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L.,
Chen, D., and Guo, B. Cswin transformer: A general
vision transformer backbone with cross-shaped windows.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 12124–12134, 2022.

Drakulic, D., Michel, S., and Andreoli, J.-M. Goal: A
generalist combinatorial optimization agent learner. In
The Thirteenth International Conference on Learning
Representations, 2024.

Drori, I., Kharkar, A., Sickinger, W. R., Kates, B., Ma, Q.,
Ge, S., Dolev, E., Dietrich, B., Williamson, D. P., and
Udell, M. Learning to solve combinatorial optimization
problems on real-world graphs in linear time. In 2020
19th IEEE International Conference on Machine Learn-
ing and Applications, pp. 19–24. IEEE, 2020.

Duan, L., Zhan, Y., Hu, H., Gong, Y., Wei, J., Zhang, X., and
Xu, Y. Efficiently solving the practical vehicle routing
problem: A novel joint learning approach. In Proceed-
ings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 3054–3063,
2020.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural networks, 107:3–11,
2018.

Fang, H., Song, Z., Weng, P., and Ban, Y. Invit: A general-
izable routing problem solver with invariant nested view
transformer. In International Conference on Machine
Learning, pp. 12973–12992. PMLR, 2024.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., and Lu,
H. Dual attention network for scene segmentation. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3146–3154, 2019.

Gao, C., Shang, H., Xue, K., Li, D., and Qian, C. Towards
generalizable neural solvers for vehicle routing problems
via ensemble with transferrable local policy. In Proceed-
ings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 6914–6922, 2024.

Gao, L., Chen, M., Chen, Q., Luo, G., Zhu, N., and Liu, Z.
Learn to design the heuristics for vehicle routing problem.
arXiv preprint arXiv:2002.08539, 2020.

Geisler, S., Sommer, J., Schuchardt, J., Bojchevski, A., and
Günnemann, S. Generalization of neural combinatorial
solvers through the lens of adversarial robustness. In
International Conference on Learning Representations,
2022.

Gu, J., Kwon, H., Wang, D., Ye, W., Li, M., Chen, Y.-H.,
Lai, L., Chandra, V., and Pan, D. Z. Multi-scale high-
resolution vision transformer for semantic segmentation.

10

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 12094–12103, 2022.

Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z., Cheng, M.-M., and
Hu, S.-M. Segnext: Rethinking convolutional attention
design for semantic segmentation. Advances in Neural
Information Processing Systems, 35:1140–1156, 2022.

Guo, Q., Qiu, X., Liu, P., Shao, Y., Xue, X., and Zhang, Z.
Star-transformer. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 1315–1325,
2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. Learning to solve
routing problems via distributionally robust optimization.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pp. 9786–9794, 2022.

Kim, M., Park, J., et al. Learning collaborative policies
to solve np-hard routing problems. Advances in Neural
Information Processing Systems, 34:10418–10430, 2021.

Kim, M., Park, J., and Park, J. Sym-nco: Leveraging
symmetricity for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:
1936–1949, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In International Conference on
Learning Representations, 2019.

Kool, W., van Hoof, H., Gromicho, J., and Welling, M.
Deep policy dynamic programming for vehicle routing
problems. In International conference on integration
of constraint programming, artificial intelligence, and
operations research, pp. 190–213. Springer, 2022.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33:21188–21198, 2020.

Li, B., Wu, G., He, Y., Fan, M., and Pedrycz, W. An
overview and experimental study of learning-based op-
timization algorithms for the vehicle routing problem.
IEEE/CAA Journal of Automatica Sinica, 9(7):1115–
1138, 2022a.

Li, J., Ma, Y., Gao, R., Cao, Z., Lim, A., Song, W.,
and Zhang, J. Deep reinforcement learning for solving
the heterogeneous capacitated vehicle routing problem.

IEEE Transactions on Cybernetics, 52(12):13572–13585,
2022b.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-
X., and Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. Advances in neural information processing systems,
32, 2019.

Lin, Z., Wu, Y., Zhou, B., Cao, Z., Song, W., Zhang, Y.,
and Senthilnath, J. Cross-problem learning for solving
vehicle routing problems. In The 33rd International Joint
Conference on Artificial Intelligence, 2024.

Liu, F., Lin, X., Wang, Z., Zhang, Q., Tong, X., and Mingx-
uan, Y. Multi-task learning for routing problem with
cross-problem zero-shot generalization. In The 30th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining. Association for Computing Machinery, 2024.

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
International conference on machine learning, pp. 1614–
1623. PMLR, 2016.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S.,
Usman, M., Akhtar, N., Barnes, N., and Mian, A. A
comprehensive overview of large language models. arXiv
preprint arXiv:2307.06435, 2023.

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. Rein-
forcement learning for solving the vehicle routing prob-
lem. Advances in neural information processing systems,
31, 2018.

Pan, W., Xiong, H., Ma, J., Zhao, W., Li, Y., and Yan,
J. Unico: On unified combinatorial optimization via
problem reduction to matrix-encoded general tsp. In
The Thirteenth International Conference on Learning
Representations, 2025.

Peng, B., Wang, J., and Zhang, Z. A deep reinforcement
learning algorithm using dynamic attention model for
vehicle routing problems. In Artificial Intelligence Algo-
rithms and Applications: 11th International Symposium,
ISICA 2019, Guangzhou, China, November 16–17, 2019,
Revised Selected Papers 11, pp. 636–650. Springer, 2020.

Peters, B., Niculae, V., and Martins, A. F. Sparse sequence-
to-sequence models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pp. 1504–1519, 2019.

Rodrigue, J.-P. The geography of transport systems. Rout-
ledge, New York, 5 edition, 2020. doi: 10.4324/
9780429346323.

11

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pp. 234–241. Springer, 2015.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations,
2017.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D.,
Mu, Y., Wang, X., Liu, W., and Wang, J. High-resolution
representations for labeling pixels and regions. CoRR,
abs/1904.04514, 2019.

Tan, S.-Y. and Yeh, W.-C. The vehicle routing problem:
State-of-the-art classification and review. Applied Sci-
ences, 11(21):10295, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tyasnurita, R., Özcan, E., and John, R. Learning heuristic
selection using a time delay neural network for open
vehicle routing. In 2017 IEEE Congress on Evolutionary
Computation, pp. 1474–1481. Ieee, 2017.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and
Subramanian, A. New benchmark instances for the ca-
pacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vidal, T. Hybrid genetic search for the cvrp: Open-source
implementation and swap* neighborhood. Computers &
Operations Research, 140:105643, 2022.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
Advances in neural information processing systems, 28,
2015.

Wang, C. and Yu, T. Efficient training of multi-task neural
solver with multi-armed bandits. CoRR, 2023.

Wang, C., Yang, Y., Han, C., Guo, T., Zhang, H., and Wang,
J. A game-theoretic approach for improving generaliza-
tion ability of tsp solvers. In ICLR 2022 Workshop on
Gamification and Multiagent Solutions, 2022a.

Wang, H., Shen, J., Liu, Y., Gao, Y., and Gavves, E.
Nformer: Robust person re-identification with neighbor
transformer. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 7297–
7307, 2022b.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. Deep
high-resolution representation learning for visual recogni-
tion. IEEE transactions on pattern analysis and machine
intelligence, 43(10):3349–3364, 2020.

Wang, P., Wang, X., Wang, F., Lin, M., Chang, S., Li,
H., and Jin, R. Kvt: k-nn attention for boosting vision
transformers. In European conference on computer vision,
pp. 285–302. Springer, 2022c.

Wang, W., Chen, W., Qiu, Q., Chen, L., Wu, B., Lin, B.,
He, X., and Liu, W. Crossformer++: A versatile vision
transformer hinging on cross-scale attention. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2023.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Wouda, N. A., Lan, L., and Kool, W. Pyvrp: A high-
performance vrp solver package. INFORMS Journal
on Computing, 2024.

Xin, L., Song, W., Cao, Z., and Zhang, J. Multi-decoder
attention model with embedding glimpse for solving ve-
hicle routing problems. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 12042–
12049, 2021.

Xin, L., Song, W., Cao, Z., and Zhang, J. Generative ad-
versarial training for neural combinatorial optimization
models, 2022. URL https://openreview.net/
forum?id=9vsRT9mc7U.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi,
A., and Agrawal, A. Context encoding for semantic
segmentation. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 7151–
7160, 2018.

Zhang, J., Tu, Z., Yang, J., Chen, Y., and Yuan, J.
Mixste: Seq2seq mixed spatio-temporal encoder for 3d
human pose estimation in video. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 13232–13242, 2022a.

12

https://openreview.net/forum?id=9vsRT9mc7U
https://openreview.net/forum?id=9vsRT9mc7U

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Zhang, Z., Zhang, Z., Wang, X., and Zhu, W. Learning to
solve travelling salesman problem with hardness-adaptive
curriculum. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 9136–9144, 2022b.

Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., and Sun, X. Ex-
plicit sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637,
2019.

Zhao, H., Gou, Y., Li, B., Peng, D., Lv, J., and Peng, X.
Comprehensive and delicate: An efficient transformer
for image restoration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 14122–14132, 2023.

Zhao, J., Mao, M., Zhao, X., and Zou, J. A hybrid of
deep reinforcement learning and local search for the vehi-
cle routing problems. IEEE Transactions on Intelligent
Transportation Systems, 22(11):7208–7218, 2021.

Zhou, J., Wu, Y., Song, W., Cao, Z., and Zhang, J. Towards
omni-generalizable neural methods for vehicle routing
problems. In International Conference on Machine Learn-
ing, pp. 42769–42789. PMLR, 2023.

Zhou, J., Cao, Z., Wu, Y., Song, W., Ma, Y., Zhang, J.,
and Xu, C. Mvmoe: Multi-task vehicle routing solver
with mixture-of-experts. In International Conference on
Machine Learning, 2024a.

Zhou, S., Chen, D., Pan, J., Shi, J., and Yang, J. Adapt or
perish: Adaptive sparse transformer with attentive feature
refinement for image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2952–2963, 2024b.

13

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

A. Related Work
A.1. Neural Combinatorial Optimization

Neural combinatorial optimization (NCO) approaches utilize deep reinforcement learning to train a policy that constructs
solutions in an autoregressive manner. Nazari et al. (2018) are the first to apply pointer networks (Vinyals et al., 2015) to
solve the VRP. Subsequently, the pioneering work attention model (AM) (Kool et al., 2019) employs a powerful Transformer-
based architecture. This model is optimized using the REINFORCE algorithm (Williams, 1992) with a greedy rollout
baseline. Building on this, Kwon et al. (2020) introduce the policy optimization with multiple optima (POMO) method,
which leverages solution symmetries and has demonstrated significantly improved performance. Subsequently, numerous
studies have further refined both AM and POMO, enhancing Transformer-based methods (Xin et al., 2021; Kim et al., 2021;
Peng et al., 2020; Kim et al., 2022). Given the diverse constraints and attributes in real-world transportation needs, some
research focuses on various VRP variants, including heterogeneous capacitated VRP (HCVRP) (Li et al., 2022b), VRP with
time windows (VRPTW) (Gao et al., 2020; Cappart et al., 2021; Zhao et al., 2021; Kool et al., 2022), and open route VRP
(OVRP) (Tyasnurita et al., 2017). More information can be found in recent reviews (Bogyrbayeva et al., 2024; Li et al.,
2022a).

A.2. Cross-Problem Learning for VRPs

Neural methods for solving VRPs typically train and evaluate deep models on the same instance distributions. Some studies
have explored generalization across multiple distributions (Zhang et al., 2022b; Xin et al., 2022; Geisler et al., 2022; Wang
et al., 2022a; Jiang et al., 2022; Bi et al., 2022). Additionally, Zhou et al. (2023) consider both problem size and distribution
variations. Recent developments have begun to address cross-problem generalization (Wang & Yu, 2023; Lin et al., 2024;
Drakulic et al., 2024; Liu et al., 2024; Zhou et al., 2024a; Berto et al., 2024b; Pan et al., 2025). Wang & Yu (2023) use
multi-armed bandits to achieve task scheduling. Lin et al. (2024) demonstrate how a model pre-trained on the travelling
salesman problem (TSP) could be effectively adapted to targeted VRPs through efficient fine-tuning, e.g., inside tuning, side
tuning, and low-rank adaptation (LoRA).

To tackle multiple VRP variants in a unified model, MTPOMO (Liu et al., 2024) conceptualizes VRP variants as combinations
of underlying constraints, enabling the model to achieve zero-shot generalizability to more tasks. MVMoE proposes a new
model architecture using the MoE (Shazeer et al., 2017) approach to improve performance. Furthermore, RouteFinder (Berto
et al., 2024b) proposes to use a modern transformer encoder structure incorporating SwiGLU (Dauphin et al., 2017),
RMSNorm (Zhang & Sennrich, 2019), and Pre-Norm (Baevski & Auli, 2019; Child et al., 2019), which considerably
improves the model’s capability. However, these approaches remain unaware of constraints and maintain only global
connectivity throughout the encoding process, which limits their cross-problem capabilities.

A.3. Multi-Branch Architecture

Multi-branch architectures have been widely used and have achieved success in computer vision. Some research employs
multiple branches to capture both low and high-resolution image information, ultimately producing a comprehensive and
powerful semantic representation that can be used for downstream tasks such as image segmentation (Ronneberger et al.,
2015; Guo et al., 2022; Gu et al., 2022) or human pose estimation (Sun et al., 2019; Wang et al., 2020). Other studies
assign different branches to focus on distinct aspects by utilizing attention mechanisms (Fu et al., 2019; Zhang et al.,
2022a; Dong et al., 2022; Wang et al., 2023). For instance, DANet (Fu et al., 2019) proposes a dual attention network
for scene segmentation, with one branch responsible for capturing pixel-to-pixel dependencies and another for capturing
channel dependencies across different feature maps, thereby capturing global context (Zhang et al., 2018). Similarly,
Crossformer++ (Wang et al., 2023) groups image patches in both local and global ways, incorporating short-distance and
long-distance attention to achieve better representation, retaining both small-scale and large-scale features in the embeddings.
Recent NCO methods adopt similar strategies for VRPs. Gao et al. (2024) propose global and local policies for CVRP and
TSP, defining “local” by Euclidean distance. Fang et al. (2024) suggest learning from multiple nested local views. They both
focusing on generalization across distributions and scales. In contrast, CaDA addresses 16 VRP variants using a learnable
mechanism (Top-k sparse attention) to dynamically select related nodes based on attention scores.

14

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

A.4. Sparse Attention

Recent studies have proposed using sparse attention to reduce computational complexity and minimize the harmful influence
of unnecessary and irrelevant items, thereby improving performance (Zhao et al., 2019; Wang et al., 2022c;b; Chen et al.,
2023; Zhao et al., 2023). To achieve this, many researchers utilize pre-defined sparse attention patterns based on prior
knowledge, such as local or strided attention, or combinations of multiple patterns (Guo et al., 2019; Li et al., 2019;
Beltagy et al., 2020; Ainslie et al., 2020). For instance, LogSparse (Li et al., 2019) ensured that each token only attends to
itself and its preceding tokens, using an exponential step size. However, these methods can be overly harsh and require
well-informed prior knowledge. Another category of methods achieves sparse attention by adding an additive operation that
eliminates small attention scores to exactly zero, such as the Top-k operation (Zhao et al., 2019; Wang et al., 2022c;b; Chen
et al., 2023) and the ReLU2 operation (Zhou et al., 2024b), or employs a sparsity-inducing alternative to Softmax, such as
sparsemax (Martins & Astudillo, 2016) and α-entmax (Peters et al., 2019; Blondel et al., 2019; Correia et al., 2019). In this
study, we use the simple yet efficient Top-k selection operation to achieve sparse attention and enhance the representation
learning from the most relevant nodes.

B. Method Details
B.1. MDP for Learning to Construct Solutions

When the policy autoregressively builds the VRP solution, the MDP for the decoding step t can be defined as follows:

State st ∈ S is the ordered tuple (τt−1,V) given by the current partial solution τt−1 = (τ1, τ2, . . . , τt−1) and the instance
V . Initially, τ0 = ∅, and at the end, sT contains a feasible solution τT .

Action at ∈ A is the selected index in the current step, which will be added at the end of the partial solution. If at = 0,
i.e., the vehicle returns to the depot node, it signifies the end of the current sub-tour and the start of a new one.

Policy A neural model πθ with learnable parameters θ is used as a policy to generate solutions sequentially, where the
probability of generating the final feasible solution is:

πθ(τ |V) =
T∏

t=1

πθ(at|st) =
T∏

t=1

πθ(τt | τt−1,V). (17)

Reward r ∈ R can only be obtained when a whole feasible solution τT is generated and is defined as the negative solution
length:

r(τT) = −
T−1∑
t=1

dτtτt+1
. (18)

B.2. Gated Linear Unit

The standard transformer blocks include an FFD that processes the input X through two learned linear projections, with a
ReLU activation function applied between them. In many recent modern transformer-based large language models (Chowd-
hery et al., 2023; Touvron et al., 2023; Naveed et al., 2023), this configuration has been replaced by GLUs (Dauphin et al.,
2017). GLUs consist of a component-wise product of two linear projections, where one projection is first passed through a
nonlinear function. We employ SwiGLU (Dauphin et al., 2017), which utilizes the sigmoid linear unit (SiLU) (Elfwing
et al., 2018) as the nonlinear function, as recommended in the RouteFinder(Berto et al., 2024b). The SwiGLU is defined as:

SwiGLU(X) = X ⊙ σ(XW1 + b1)⊗ SiLU(XW2 + b2), (19)

where ⊙ denotes element-wise multiplication, ⊗ is matrix multiplication, σ is the sigmoid function, and W1,W2, b1, b2 are
learnable parameters.

B.3. Feasibility Evaluation

During decoding, at step t, we use the following feasibility testing procedure to identify the set of feasible actions, denoted
as It.

15

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

1. Each customer node can only be visited once. If the depot is the last action in a partial solution, the next action cannot
be the depot (to avoid a self-loop).

i ∈ τ1:t−1, i ∈ {1, 2, . . . , N} ⇒ i /∈ It, (20)
τt−1 = 0 ⇒ 0 /∈ It. (21)

2. For a problem without the open route constraint (V1 = 0), each sub-route needs to return to the depot v0 within the
given limit. There are two types of constraints that enforce limits on when each sub-route must reach the depot: the
time window constraint (V2 = 1) with a time limit T , and the Distance Limit constraint (V3 = 1) with a distance limit
ρ.

(V1 = 0) ∧ (V2 = 1) ∧
(
(zt + dτt−1i + si + di0) > T

)
∨
(
(V1 = 0) ∧ (V3 = 1) ∧

(
lt < dτt−1i + di0

))
⇒ i /∈ It. (22)

3. For problems with a time window constraint (V2 = 1), each customer node vi has a time window [ei, li] and a service
time si. The vehicle must visit vi and complete its service within the specified time window.

(V2 = 1) ∧ (zt + dτt−1i + si > li) ⇒ i /∈ It. (23)

4. For the problem with the backhaul constraint (V4 = 1), the backhaul will be masked if there are still linehaul services
that have not been completed.

(δi < 0) ∧ (∃j ∈ {1, 2, . . . , N}(δj > 0) ∧ (j /∈ τ1:t−1)) ⇒ i /∈ It. (24)

5. For customers, service is available when their demand does not exceed the current available capacity.(
(δi > 0) ∧ (δi > cl

t)
)
∨
(
(δi < 0) ∧ (−δi > cb

t)
)
⇒ i /∈ It. (25)

C. Experiment Details
C.1. Problem Setup

Table 4. 16 VRP variants with five constraints.
Capacity Open Route Backhaul Duration Limit Time Window

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓

In this section, we provide a detailed description of the problem setup used in this study, with the associated constraints
summarized in Table 4.

16

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Locations The nodes’ locations are represented by a two-dimensional vector X⃗i, i ∈ {0, . . . , N}, and are derived from a
uniform distribution U(0, 1).

Capacity In this study, we consider only homogeneous vehicles, with the same vehicle capacity C shared among all
vehicles, and the number of vehicles is unlimited. Following the common capacity setup used in previous studies (Kool
et al., 2019; Kwon et al., 2020), for N = 50 and N = 100, the vehicle capacity C is set to 40 and 50 respectively.

Node Demands In our study, there are two types of customers: linehaul customers with demand δi < 0 and backhaul
customers with δi > 0 (when the backhaul constraint is active). We generate node demands as follows: we generate linehaul
demands δli for all customers i ∈ {1, . . . , N} by uniform sampling from the set of integers {1, 2, ..., 9}. If the backhaul
constraint is inactive, each node’s true demand δi is equal to δli. The demand generation process is now complete. Otherwise,
we generate backhaul demands δbi by sampling uniformly from the same set of integers {1, 2, ..., 9}. Subsequently, generate
a temporary variable yi ∼ U(0, 1) for each customer i. The demand δi for each customer i is determined by the following
rule:

δi =

{
δli if yi ≥ 0.2,

δbi otherwise.
(26)

For each node, there is a 20% probability that it represents backhaul customers in an instance.

Furthermore, before passing the demands δi to the policy, for training stability, we normalize the demand δi to the range
[0, 1] by δ′i =

δi
C . We set the normalized capacity to 1 to ensure that at each step of the decoding process, the remaining

capacity ct also falls within the range [0, 1].

Time Windows For problems with time window constraints, several related factors must be considered: time windows
[ei, li] and service times si. For the depot, e0 = s0 = 0, l0 = T = 4.6, where T represents the overall time limit for each
sub-route. Additionally, the vehicle speed is 1.0.

For customers i ∈ {1, 2, . . . , N}, service times si are uniformly sampled from [0.15, 0.18]. Additionally, time window
lengths ∆ti are uniformly sampled from [0.18, 0.2]. Moreover, each customer’s time window must be feasible for the tour
(0, i, 0); otherwise, there is no feasible tour to service this customer. Consequently, the upper bounds for the start times of
the time windows are calculated as:

eup
i =

T − si −∆ti
d0i

− 1. (27)

Subsequently, the start times of the time windows ei are determined as follows:

ei = (1 + (eup
i − 1) · yi) · d0i, (28)

where yi ∼ U(0, 1). Finally, the end times of the time windows are determined by:

li = ei +∆ti. (29)

Distance Limit For problems with the Distance Limit constraint, each sub-tour must be completed within a limit ρ. To
ensure each instance has a feasible solution, i.e., the length of the tour (0, i, 0) should remain within this limit, ρ is sampled
from U(2 ·max(d0∗), ρmax), where ρmax = 3.0 is a predefined upper bound.

C.2. Hyperparameters

The hyperparameters used for training CaDA are summarized in Table 5.

C.3. Visualization of Constraint Awareness for Time Window Constraints

For the time window constraint, nodes vi can only be visited within their respective time windows (ei, li), and serving each
customer costs si time. Thus, the relationship between node pairs (vi, vj) is influenced by their time-related factors and
positional distances, i.e., (ei, li, si), (ej , lj , sj), and dij .

If an edge (i, j) is legal, then it must satisfy ei + si + dij ≤ lj − sj . This condition means that if a vehicle starts at time ei,
spends si time servicing vi, and takes dij time to reach vj , it must arrive by (lj − sj) at the latest to successfully service vj

17

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

Table 5. Experiment hyperparameters.

Hyperparameter Value

Model
Embedding dimension dh 128
Number of attention heads Mh 8
Number of encoder layers L 6
Top-k (N)

2
Feedforward hidden dimension da 512
Tanh clipping ξ 10.0

Training
Batch size 256
Train data per epoch 100,000
Optimizer AdamW
Learning rate (LR) 3e−4

Weight decay 1e−6

LR scheduler MultiStepLR
LR milestones [270, 295]
LR gamma 0.1
Gradient clip value 1.0
Training epochs 300
Number of tasks used for training 16

Table 6. Average gap on CVRPLIB datasets for CaDA tested with different values of k ∈ {10, 25, 50, 100}.

k Obj. Gap

10 6440.8 4.61%
25 6431.8 4.17%
50 6458.6 4.79%
75 6463.7 4.88%
100 6475.7 5.15%

and leave the node within the service window. Accordingly, we derive the following inequality:

ei + si + dij ≤ lj − sj

=⇒ (lj − ei)− dij − (si + sj) ≥ 0.
(30)

Define Pi,j = (lj − ei)− dij − (si + sj). Figure 9 visualizes the distribution of Aij across varying Pij . Firstly, CaDA
exhibits fewer high attention values for Pi, j < 0. Additionally, for Pij values that are too high, the vehicle may need to
wait a long time at vj to wait until the start of the time window ej . For example, consider Pij = 4 while the overall time
limit for the sub-route is T = 4.6. Including the edge (i, j) in the solution may result in significant time wasted waiting.
Compared to the CaDA w/o Prompt, CaDA also exhibits fewer high attention values for Pij > 3, indicating that CaDA
more efficiently understands the problem constraints.

C.4. Result on Real-World Instances

To further validate the effectiveness of CaDA in real-world instances, we conducted experiments using five test suites from
CVRPLib1 benchmark datasets. These datasets comprise a total of 99 instances from Sets A, B, F, P, and X (Uchoa et al.,
2017), with graph scales ranging from 16 to 200, various node distributions, and customer demands. CaDA is trained on 16
different VRP types, each with a graph size of 100 nodes.

1http://vrp.atd-lab.inf.puc-rio.br/

18

http://vrp.atd-lab.inf.puc-rio.br/

CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention

(a) CaDA (b) CaDA w/o Prompt

Figure 9. For 100 VRPTW instances, the distribution of attention scores Aij across varying Pi,j , where Aij is the attention score from
node vi to node vj , and Pi,j = (lj − ei)− dij − (si + sj) represents the surplus time when the vehicle starts from vi at time ei and
travels to vj . If Pi,j < 0, the edge (i, j) is illegal; if Pi,j becomes too large, including (i, j) in the solution may result in the vehicle
having to wait a long time for vj to open. The shade represents the density in that region. For CaDA, the attention scores at extremely
high and low Pi,j values are diminished, indicating that the model successfully comprehends the time window constraint.

Table 7. Results on CVRPLib datasets.
MTPOMO MVMoE RF-POMO RF-MoE RF-TE CaDA25 CaDA25 × 32

Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Set A 1041.9 1087.9 5.07% 1071.3 3.07% 1064.1 2.11% 1072.2 2.83% 1070.3 2.86% 1069.9 2.76% 1062.9 2.00%
Set B 963.7 1006.9 4.86% 999.2 3.94% 991.6 2.89% 994.0 3.17% 987.4 2.58% 987.5 2.58% 982.7 2.02%
Set F 707.7 820.0 16.23% 770.5 7.38% 804.0 13.93% 813.0 14.31% 794.7 12.95% 748.7 5.74% 745.3 4.99%
Set P 587.4 629.3 11.10% 1144.0 5.31% 606.4 4.72% 603.3 3.39% 608.7 4.59% 607.9 4.82% 601.2 3.16%
Set X 27220.1 28952.5 6.09% 614.0 6.76% 28825.4 5.54% 29125.2 6.37% 28520.3 4.46% 28745.0 4.97% 28573.9 4.41%

Avg. 6104.2 6499.3 8.67% 919.8 5.29% 6458.3 5.84% 6521.5 6.01% 6396.3 5.49% 6431.8 4.17% 6393.2 3.32%

We initially explore the effect of different k values on the Top-k sparse operation during testing. Table 6 demonstrates the
average gap compared to the best-known results from CVRPLIB across all instances when testing CaDA with different
k ∈ {10, 25, 50, 100}. The results show that when k = 25, CaDA achieves the best performance across different scales.

Furthermore, we compared CaDA with existing cross-problem neural solvers. Table 7 exhibits the comparison results of five
test suites with the average objective function values, and the gap with the best-known solution for each dataset. The best
results for each dataset are highlighted in bold. CaDA25 represents CaDA tested with k = 25. Results demonstrate that the
proposed CaDA25 × 32 achieves the best performance among the learning methods.

19

