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ABSTRACT

This work establishes low training and test error guarantees of gradient descent
(GD) and stochastic gradient descent (SGD) on two-layer ReLU networks with
Batch Norm. Prior work provided convergence analyses for low training error or
stationary points while critically relying on modifications to the setting such as
modifying Batch Norm and assuming the objective is smooth. Although smooth-
ness based analyses can handle deeper networks, the smoothness constants are
highly non-negligible. We take an alternative approach using a margin γ tailored
to normalized networks. In particular, for a network of width m, the test errors for
GD and SGD decrease at a rate ofO(m

1/3

γ1/3t
) andO( 1

γ2t ) up until t ≈ O( exp(γ2m)
n ).

Along the way, we show that γ can be O(
√
d) times larger than the margin of the

max margin linear predictor which can potentially explain the training and test
error speed up for normalized networks.

1 INTRODUCTION

While deep network architectures undergo constant evolution, few of these constant changes are so
beneficial that they persist in all future architectures. One such design decision is the pervasive use of
normalization layers, foremost amongst them batch normalization (BN) (Ioffe & Szegedy, 2015).
As mentioned, all modern architectures feature some sort of normalization layer, such as LLaMa
(Touvron et al., 2023), which uses RMSnorm (Zhang & Sennrich, 2019), and a simple normalization
choice even appears in classical architectures (Fukushima & Miyake, 1982).

The immediate widespread adoption of BN led to an intense scrutiny of its benefits; following initial
questions about its motivation for reducing covariate shift (Rahimi & Recht, 2017), a variety of
authors studied various aspects empirically, for instance negating the covariate shift hypothesis but
positing other benefits such as making the loss surface smoother (Santurkar et al., 2018), and empirical
support of its optimization and generalization benefits (Bjorck et al., 2018). Despite all the efforts,
there lacks analysis for loss convergence and test error for nonlinear networks with normalization
layers trained with standard descent methods.

In the classification setting, Kohler et al. (2019) showed convergence to stationary points for two
layer networks with tanh activation. Arora et al. (2018) also show convergence to stationary points for
multi-layer networks trained using GD but uses a modified BN layer which avoids a technical hurdle
that we deal with in this paper. In particular, they scale the nonzero constant in batch normalization
(typically used in practice to avoid dividing by zero errors) by the norm of the incoming node. While
seemingly innocous, this modification ensures that the norms of the layers being normalized grow
monotonically which in turn ensures that the reciprocal of the normalization factors in batch norm are
well-behaved. Furthermore, in prior work, gradients are assumed to be lipschitz which is problematic
as the lipschitz constants can be as large as O(ML) where M is the max width of the network and L
is the total number of layers and thus cannot be ignored. In this paper, we instead employ margin
based techniques utilized in Telgarsky (2022) that also establish low training and test error but for
two-layer networks without normalization.
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1.1 CONTRIBUTIONS

This work establishes convergence rates for loss and test error bounds that scale inversely with a
margin like quantity. Throughout the rest of the paper, let γ be the margin for networks with batch
norm, fully defined in section 1.4.

1. Section 1.4: Margin for normalized networks. We derive a notion of margin tailored
to networks with normalization. Broadly speaking, we use nonlinear data separators and
margins to construct a useful reference parameter. Finding a good reference parameter is
key to making analysis of the standard Euclidean potential and variants of thereof tractable
which in turn grants training and test error bounds. While our notion of margin is unique,
the margin based techniques used to prove theorem 2.1 and theorem 2.2 are derived from
Telgarsky (2022); Ji & Telgarsky (2020). Furthermore, we utilize a rescaled Euclidean
potential to prove theorem 2.1 and theorem 2.2 in order to handle layers of different degrees
of homogeneity which may be of independent interest.

2. Section 2: Gradient Descent, Stochastic Gradient Descent, and potential functions.
(a) Training and test error for GD on batch-normalized 2-layer networks. Theo-

rem 2.2 establishes convergence rates for loss and test error bounds for GD. Specifically,
GD obtains ε > 0 test error after O(γ

1/3m2/3

ε
√
n

) iterations while only needing the width

of the network to be Õ( 1
γ2 ). In contrast, prior results fall under the following categories:

convergence rates to global minimizer of loss or to stationary points. Results of the
former only applies to linear networks with batch normalization (Kohler et al., 2019;
Cai et al., 2019). For the latter category, Kohler et al. (2019) also proves convergence
rates to critical points for shallow networks but they freeze the outer layer, train Batch
Norm parameters using a bisection method, and apply gradient descent to unnormalized
network and normalize the parameters after training is complete. Similarly, Arora et al.
(2018) also obtains convergence rates to critical points for deep networks but they
assume bounds on smoothness which can be as large as Õ(ML) where M is the max
width of the network and L is the depth of the network. Furthermore, they modify
Batch Norm to ensure that the network is smooth and scalar invariant with respect to
the normalized layer. Note, in practice this scalar invariance fails to hold as a nonzero
ε is added to the variance term in Batch Norm. While seemingly negligible, lack of
scalar invariance allows the normalization factor in Batch Norm to shrink which in turn
allows the norm of the gradients to explode. In particular, this breaks the analysis used
in Arora et al. (2018).

(b) Train and test error for SGD on batch-normalized 2-layer networks. Theorem 2.1
establishes convergence rates for loss and test error bounds for SGD. In the case of SGD,
we require Õ( 1

εγ2 ) iterations to get ε > 0 test error while only needing the width of the
network to be Õ( 1

γ2 ). One caveat is the usage of the mean and variance statistics of the
whole dataset, rather than using minibatch statistics as in practice, which we leave to
future work. As with GD, Arora et al. (2018) also obtains convergence rates to critical
points for deep networks though assuming bounds on smoothness and modifying Batch
Norm as mentioned above.

(c) Potential functions. We utilize a rescaled Euclidean potential to prove theorem 2.1
and theorem 2.2 in order to handle layers of different degrees of homogeneity which
may be of independent interest.

1.2 RELATED WORK

Sources of BN optimization advantage Many explanations have been proposed for why batch
normalization improves optimization speed, with the original proposal being its mitigation of “internal
covariate shift” (Ioffe & Szegedy, 2015). Later work attempts to analyze BN empirically and
theoretically, with many of the explanations roughly divided into the following two categories.

Gradient and activation norms. Early empirical analysis of BN (Bjorck et al., 2018) considers
how BN addresses the well-established problem of exploding gradients (Hochreiter & Schmidhuber,
1997; He et al., 2016; Philipp et al., 2017). They demonstrate that networks with batch normalization
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are more stable since the activation and gradient distributions of BN networks are significantly less
heavy-tailed than networks without BN; this stability allows larger learning rates and resulting in
faster training as demonstrated in other work (Hanin & Rolnick, 2018). Further work (Lubana et al.,
2021) generalizes the link between the size of gradient norm and training stability, demonstrating that
normalization layers that can encourage large gradient norms, such as Instance Norm (Ulyanov et al.,
2016), tend to lose their stability benefits.

Optimization landscape smoothness. As an alternative to the internal covariate shift hypothesis,
works have suggested that BN improves the smoothness of the optimization landscape (Santurkar
et al., 2018; Karakida et al., 2019). Karakida et al. (2019) characterizes a notion of landscape
smoothness and proves that applying BN on the last layer can significantly reduce the sharpness
of the loss surface (Karakida et al., 2019). Studying the application of BN only on the last layer
can be justified by Bjorck et al. (2018) which empirically shows batch normalization on the final
layer provides the bulk of the benefits that BN is commonly known to provide (Bjorck et al., 2018).
Further theoretical analysis indicates that other forms of normalization, such as weight normalization
(Salimans & Kingma, 2016), also yield favorable effects on the optimization landscape (Dukler et al.,
2020). In addition, Lyu et al. (2022) provably show that for scale-invariant losses, gradient descent
coupled with weight decay implicitly obtain solutions that have small spherical sharpness, a quantity
defined as the maximal eigenvalue of the loss Hessian over the sphere.

Convergence analyses. Wu et al. (2018) analyzes convergence to a critical point for smooth functions
using an adaptive method inspired by weight normalization. Arora et al. (2018) builds upon techniques
used in Wu et al. (2018) to establish convergence rates to critical points for smooth networks that
use a modification of batch normalization. In the realm of regression, (Cai et al., 2019; Kohler et al.,
2019) also analyze convergence to critical points for batch-normalized linear models where the linear
layer is trained using GD and the affine parameter is trained via a bisection method. For weight
normalization, Dukler et al. (2020) prove a training error guarantee for weight-normalized two layer
networks using square loss where the outermost layer is fixed and only the affine and inner layer are
trained.

Replicating benefits induced by BN without using BN. A line of work aims to recreate the benefits
of BN without actually using normalization (Zhang et al., 2019; De & Smith, 2020; Shao et al.,
2020; Brock et al., 2021a) such as Fixup Initialization (Zhang et al., 2019), which recreates the
optimization benefits of BN even on deep networks like ResNet, and yields near-SOTA results on
ImageNet without normalization. Interestingly, they report that Fixup Initialization overfits more
strongly than BN providing more support for BN regularization effects. More recent work synthesizes
a fairly broad number of proposed intermediate factors contributing to the advantages provided by
BN, yielding more effective methods which replicate and improve upon BN advantages without using
normalization (Brock et al., 2021b). In particular, the authors propose a normalization-free variant
of ResNets called NFNets, which attain higher test accuracy and are more computationally efficient
than traditional BN ResNets.

1.3 NOTATION

Before stating our main results, we first develop some notation.

Problem setting and norms. We will work in the binary classification setting where we are given a
dataset {(xi, yi)}i∈[n] and yi ∈ {−1,+1}. Let µ := 1

n

∑n
i=1 xi andΣ := 1

n

∑n
i=1(xi−µ)(xi−µ)T.

We assume that the mean centered data points xi = xi−µ satisfy‖xi‖ ≤ 1. Unmarked norms‖·‖ are
`2 norms. Let‖·‖Σ denote the seminorm such that‖v‖Σ =

√
vTΣv. Fix ε ≥ 0 and define the batch

normalization factor as N(v) =
√
‖v‖2Σ + ε.

Initialization and architecture. We shall use roughly the pytorch default initialization schemes,
meaning a ∼ Nm/

√
m (vector whose entries are i.i.d gaussian with variance 1

m ) V ∼ Nm×d√
d

( m×d

matrix whose entries are i.i.d gaussian with variance 1
d ) and c =

→
1 ∈ Rm. We will work with

shallow networks with batch norm f(x;W = (a, c, V )) =
∑
j∈[m] ajσ

(
cj

〈
vj

N(vj) , x− µ
〉)

.
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Derivatives and suppressed notation. To reduce notational clutter, we often suppress the con-

tents of σ′ as follows oj |xi
:= σ′

(
cj

〈
vj

N(vj) , x− µ
〉)

. We will often group the outer and affine

parameters together as U = (a, c). For the reader’s convienience, we provide the partial derivatives:

∂af(W ;x) =
∑
j∈[m]

σ

cj 〈 vj
N(vj)

, x− µ

〉 ej ,

∂cf(W ;x) =
∑
j∈[m]

ajoj |xi

〈
vj

N(vj)
, x− µ

〉
ej ,

∂vjf(W ;x) =
ajcjoj |xi

N(vj)

(
I −

Σvjv
T
j

N(vj)
2

)
xi.

We also make the following data assumption.

Assumption 1.1. For j ∈ [m], let vj ∼ Nd√
d

. With probability at least 1− δ, we have

max
j

1

N(vj)
≤ εN . (1)

When ε > 0, we trivially have that with probability 1, assumption 1.1 is satisfied for εN = 1√
ε

Stochastic gradient descent (SGD) and gradient descent (GD): We will use the logistic loss
`(z) = ln(1 + exp(−z)). We also write `i(W ) = `(pi(W )) = `(yif(xi;W )) and the emprical risk
as R̂(W ) := 1

n

∑
i∈[n] `i(W ). The update for SGD is

Wi+1 := Wi − η∂W `i(W ) SGD,

whereas GD is given as the solution to a differential inclusion, specifically

Wt :=
·
W t = −∂W R̂(Wt) GD.

For both SGD and GD, we let ∂ denote an element of the Clarke differential. For more details on
these nonsmooth derivative formalism once again the reader is directed to the excellent work of
Clarke (1975), whose differential notion is now standard in the analysis of ReLU networks.

We open the section with the derivation of the margin for batch normalized networks and a compu-
tation of the margin on a specific dataset where the Batch Norm margin is O(

√
d) larger than the

margin of the max margin linear predictor (section 1.4). In section 2, we state formal theorems about
test error guarantees for normalized networks trained with SGD and GD.

1.4 MARGIN FOR BATCH-NORMALIZED NETWORKS

This section is devoted to motivating the usage of the margin γ that is tailored to Batch Norm. In
optimization, a common potential is the standard Euclidean potential. Concretely, if we have some
iterative algorithm that generates weights {Ws}s∈[t] and we are given a reference parameter W , the
squared Euclidean potential is ∥∥∥W0 −W

∥∥∥2

−
∥∥∥Wt −W

∥∥∥2

.

To illustrate its usage, consider running GD on a convex, β-smooth objective h : Rd → R with step
size 1

β for t iterations, producing t iterates {zs}s∈[t]. Suppose we are given a reference parameter
zRd. It is well known that

h(zt)− h(z) ≤ β

2t

(
‖z0 − z‖2 −‖zt − z‖2

)
.
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Thus, it is evident that controlling the Euclidean potential controls the suboptimality gap which
highlights the usefulness of the squared Euclidean potential. For technical reasons, we shall consider
the negated rescaled squared Euclidean potential in this work:

Φ(t) :=
∥∥∥Ut − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α

(∥∥∥Vt − V ∥∥∥2

−
∥∥∥V0 − V

∥∥∥2
)
.

where α > 0 is some scaling constant. Unlike the convex optimization problem described above, the
choice of W matters in our setting and is the first technical hurdle in our analysis. Since the empirical
risk R̂ is sum of exponential tailed losses, solutions are off at infinity. Therefore, a natural way of
choosing reference parameter W is by considering some linear combination of our initial parameter
W0 and some positive margin direction

−→
W . To be more explicit, let us first define the margin function

γ(W ) := min
i∈[n]

yif(xi;W )

‖a‖‖c‖
The careful reader will note that we need to also normalize by‖V ‖ for γ to be a true margin function
if the constant ε in the normalization factor is nonzero. However, this detail is irrelevant as we will
see soon. As mentioned before, given some scaling constant r ≥ 0 and direction

−→
W which satisfies

γ(
−→
W ) > 0, it is natural to select the reference parameter

W = W0 + r
−→
W.

Unfortunately, this is rather difficult to use. Instead, we adopt the approaches in Telgarsky (2022),
Nitanda & Suzuki (2019), Ji & Telgarsky (2020) and consider letting f be an NTK predictor.
Explicitly, we redefine the margin function such that instead of using f that is a shallow network with
batch normalization it is instead an NTK predictor with batch normalization: f ∈ F̃ := {x,W →〈
W,∂f(x;W0)

〉
}.

Thus, given some scaling constant r ≥ 0 and direction
−→
W which satisfies γ(

−→
W ) > 0, we again

consider reference parameter

W = W0 + r
−→
W.

Since each layer is initialized with different norms (‖a‖ concentrates around 1,‖c‖ =
√
m, and‖V ‖

concentrates around
√

m
d ), it is useful to split the NTK predictor into three smaller NTK predictors.

In particular, we consider the decompositon〈
W,∂f(x;W0)

〉
=
〈
a, ∂af(x;W0)

〉
+
〈
c, ∂cf(x;W0)

〉
+
〈
V, ∂V f(x;W0)

〉
which leads to three natural margin functions

γa(a) := min
i∈[n]

yi

〈
a, ∂af(xi;W0)

〉
‖a‖

,

γc(c) := min
i∈[n]

yi

〈
c, ∂cf(xi;W0)

〉
‖c‖

,

γV (V ) := min
i∈[n]

yi
〈
V, ∂V f(xi;W0)

〉
.

This decomposition is nice as we can consider different scalings for different layers when constructing
the reference parameter as shown below:

W := (a0 + ra
−→a , c0 + rc

−→
C , V0 + rV

−→
V )

where −→aj ,−→cj ,
−→
V satisfy

γ := γa(−→a ) + γc(
−→
C ) + γV (

−→
V ) > 0.

We make one final modification. To account for the fact that our model is essentially 0-homogeneous
with respect to V , we drop γV (V ) and instead bake in the contribution of V to γ by evaluating the
inner products

〈
a, ∂a(·)

〉
and

〈
c, ∂c(·)

〉
at points in the set

S := {W ′ = (a′, c′, V ′) : a′ = a0, c
′ = c0,

√√√√√∑
j∈[m]

1

m

∥∥∥∥∥ v′j
N(vj)

− vj
N(vj)

∥∥∥∥∥
2

≤ RV }
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where RV is O(γ). We restrict RV as we cannot hope to compete against arbitarily large good
reference parameter V ′. We note that this radius is not as restrictive as it may appear since the

term

√∑
j∈[m]

1
m

∥∥∥∥ v′j
N(vj) −

vj
N(vj)

∥∥∥∥2

is being normalized by
√
m. In particular, we are essentially

competing with the optimal “effective” inner layer V/N(V ) that is within an O(γ
√
m) ball centered

at initialization. We now present the full assumption in detail.

Assumption 1.2 (definition of γ). For j ∈ m, let (aj , vj) ∼ Nm√
m
× Nm×d√

d
i.i.d. In addition, let

c =
−→
1 ∈ Rm. There exists an m′ ≥ 1 such that if m ≥ m′, we can find m tuples (−→aj ,−→cj ,−→vj ) ∈

R× R× Rd and constants γa, γc ≥ 0 such that∥∥−→a ∥∥ ,∥∥∥−→C ∥∥∥ ≤ 1, (norm condition),〈−→a , ∂af(x;W0)
〉
≥ γa,

〈−→
C , ∂cf(x;W0)

〉
≥ γc,

γ = γa + γc > 0, (total margin is positive),

∆V :=

√√√√√∑
j∈[m]

1

m

∥∥∥∥∥ −→vj
N(vj)

− vj
N(vj)

∥∥∥∥∥
2

≤ γ

32
, (max distance from initialization allowed).

We now calculate γ on the following dyadic dataset.
Definition 1.1 (Dyadic Dataset). Let e1, . . . , ed ∈ Rd denote the standard basis vectors. Define
examples (xi, yi)i∈[2d] as follows:

(xj , yj) = (2−jej ,+1), j ∈ {1, . . . , d}
(xj , yj) = (−2−j+dej−d,−1), j ∈ {d+ 1, . . . , n}

The purpose of this dataset is to highlight Batch Norm’s ability to handle features of different order
of magnitude.
Proposition 1.1. Suppose we are given examples (xi, yi)i∈[2d] as defined in definition 1.1. Then the
margin γlinear of the max margin linear predictor is

γlinear =

√
3

4d+1 − 4
.

Now consider the vector u = (2, 4, . . . , 2d) and define the unit vector
→
u := u

‖u‖ . Taking
−→
C = 0,

−→
V = V0, and −→a ∈ Rm such that −→aj = sgn(

→
u
ᵀ
v)1‖v0j‖∈[ 1

2 ,4], we have that assumption 1.2 holds

for γ ≥
√
d

40 γlinear.

2 FORMAL STATEMENTS AND PROOF SKETCHES

We open the section with a theorem establishing low test error for SGD. In addition, for a network of
width m, we show that at the time we reach low test error, the non-normalized parameters can move
away from initialization by O(m1/6) while the normalized parameters remain trapped in a O(1) ball.
We then present a similar theorem establishing low test error for GD. Unlike the SGD proof which
converts a training error guarantee into a test error guarantee via a martingale concentration inequality,
the GD proof requires a careful calculation of the Rademacher complexity of our function class.
Theorem 2.1 (Stochastic Gradient Descent Guarantees). Suppose weights W = (a, c, V ) where
(a, V ) ∼ Nm√

m
× Nm×d√

d
, c =

−→
1 ∈ Rm are given and assumption 1.2 holds, with corresponding

(−→a ,
−→
C ,
−→
V ) ∈ Rm × Rm × Rm×d and γ = γa + γc given.

Suppose width m satisfies

m ∈

[
229ε3N ln3/2( 5nt

δ )

γ2
, δ exp(

d

8
)

]
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and we set the learning rate η to be

η =
1

28εNγ2/3m1/3
.

With probability at least 1− 20δ,

1. the probability of misclassifying a point is

Pr(sgn(f(x;W )) 6= y) ≤ 215ε4N
γ2t

+
4 ln(1/δ)

t
; (2)

2. the maximum distance the parameters can travel from initialization is

max
s<t
‖Us − U0‖ = max

s<t

∥∥(as, cs)− (a0, c0)
∥∥ ≤ γ1/3m1/6

27εN
,

max
s<t
‖Vs − V0‖ ≤

1

2εN
.

Here we provide a proof sketch for theorem 2.1.

Given scaling constant r = O(γ1/3m1/6), we first construct reference parameters

U = (a,C) = r
−→
U + U0 , V = V0. (3)

The reference parameters serve as good directions for weights of the network to travel toward. U will
guide the iterates {Ws}s<t generated by SGD to a good solution.

1. We can use a perceptron style argument to control the loss derivatives∑
s<t

∣∣`′(Ws)
∣∣ ≤ ‖Uτ − U0‖

γ
√
m

, (4)

provided the iterates stay within a manifold Γ := {W ′ = (U, V ) |
∥∥U ′ − U∥∥ <

R,
∥∥V ′ − V0

∥∥ < RV } where radii R,RV > 0 are determined a priori. One can then
use the fact that asymptotically `′ ∼ ` and obtain a loss bound. Therefore, the remaining
parts of the proof will establish that for carefully chosen radii R,RV , the iterates remain
trapped in Γ.

2. In order to trap the iterates Ws in the manifold Γ, we assume contradictorily that there
exists a first time τ ≤ t where we exit the manifold Γ. To be more precise, letting rescaling
constant α = R2

R2
V

, we consider the first time τ such that√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≥ R. (5)

While this exit condition is pessimistic (W satisfying the exit condition implies W ∈ Γ
but the reverse statement is not necessarily true), checking one exit condition as opposed
to two simplifies analysis. Γ is similar to the manifold that was used to trap SGD iterates
of shallow networks without normalization (Telgarsky, 2022). There, a simpler manifold
was used {W ′ |

∥∥W ′ −W∥∥ ≤ R}. The simpler manifold cannot be used here as a tighter
control on‖Vs − V0‖ is necessary. To see why, one can observe that small displacement
in V results in large changes in the reciprocal of the normalization factor 1

N(vj) . At first
glance, it may seem rather strange normalization factors present a problem as they appear in
conjunction with 〈v, x〉 in the network and thus the quantity 〈v,x〉N(v) is well behaved. Upon
a closer inspection, one learns that the problem lies with the magnitude of the gradients.
Consider the partial derivative of the predictions with respect to the inner layer ∂V pi(Ws),∑ ajcjoj |xi

N(vj)

(
I −

Σvsjv
T
sj

N(vsj)
2

)
ejxi

T.
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Treating
(
I − Σvjv

T
j

N(vj)2

)
as a bounded linear operator (which we show in our analysis) there

is an extra reciprocal factor which cause a naive extension of (Telgarsky, 2022) to fail
without careful control of‖Vs − V0‖. Specifically, we force that it is at most O(1) while
still allowing the outer and affine layer U = (a,C) to move O(γ1/3m1/6).

3. Now since for time s < τ , we have Ws ∈ Γ, we will show that that the rescaled squared
Euclidean potential satisfies

ΦD(τ) =
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α

(∥∥∥Vτ − V ∥∥∥2

−
∥∥∥V0 − V

∥∥∥2
)

=
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α‖Vτ − V0‖2 ≤ O(1).

This will be used to show that
√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 < R which is a contradiction.

4. Now that we have trapped all the iterates Ws in Γ we obtain a loss bound as detailed above.
We then convert a training error bound into a test loss bound using a martingale concentration
inequality.

We now provide a similar guarantee for GD.
Theorem 2.2 (Gradient Descent Guarantees). Suppose weights W = (a, c, V ) where (a, V ) ∼
Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm are given and assumption 1.2 holds, with corresponding (−→a ,

−→
C ,
−→
V ) ∈

Rm × Rm × Rm×d and γ = γa + γc given.

Suppose width m satisfies

m ∈

[
229ε3N ln3/2( 5nt

δ )

γ2
, δ exp(

d

8
)

]
and we set the learning rate η to be

η =
1

28εNγ2/3m1/3
.

With probability at least 1− 20δ,

1. the probability of misclassifying a point is

Pr(sgn(f(x;W )) 6= y) ≤ 217m1/3ε4N
γ1/3t

√
n

+
4 ln(1/δ)

t
; (6)

2. the maximum distance the parameters can travel from initialization is

max
s<t
‖Us − U0‖ = max

s<t

∥∥(as, cs)− (a0, c0)
∥∥ ≤ 8,

max
s<t
‖Vs − V0‖ ≤

1

2εN
.

The proof strategy for obtaining results for GD is relatively similar to that of SGD and mainly differs
on converting training error guarantees to test error guarantees. The GD proof requires a careful
calculation of the Rademacher complexity of our function class.

3 CONCLUSION AND OPEN PROBLEMS

Feature learning. The present analysis requires a displacement condition; can it be extended to
a larger displacement radius, allowing feature learning regimes? Does batch norm and the rapid
convergence in displacement (as above) have consequences on feature learning?

Other architectures. Can the proof techniques in the present work be extended to multi-layer
cases, inhomogeneous cases, and other normalization types?

8
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Figure 1: γ estimates on the CIFAR-10 dataset. γa contributes most of the value to γ as γc is relatively
tiny.

A EXPERIMENTS

Here we provide details about the experiment setup and additional experiments.

A.1 ESTIMATION OF γa AND γc ON CIFAR-10

In Figure 1 we provide empirical estimates for γ on the subset of CIFAR-10 corresponding to the
cats vs. dogs binary classification task, by estimating γa and γc via reference networks. See the
subsection below on reference networks for more details. We try a few different widths and observe
that larger widths tend to be better for achieving the best lower bound for γ. Error bars plotted are 2
standard errors, estimated with 5 random seeds.

A.2 METHODS

Dataset and Setup. Experiments were conducted on the CIFAR-10 dataset (Krizhevsky et al., 2009),
which uses the MIT license, and was downloaded via pytorch. To match the binary classification
setting, we use only the data corresponding to the cat and dog classes, setting yi = −1 for cat, and
yi = 1 for dog. To match the assumption used in the proofs, the data was normalized such that all the
data points xi satisfied ‖xi‖ ≤ 1 .

We use a random subset of n = 1000 data points for the training set unless otherwise mentioned,
rather than the full set of approximately n = 12000 points. This is due to the setting being batch GD,
where n = 12000 takes a very long time per update, and requires larger networks and more iterations
to achieve a positive margin. Since the primary goal of these experiments is to investigate values in
practice versus theoretical bounds and compare BN and non-BN networks, rather than achieving
good testing accuracy, we consider this a worthwhile tradeoff for the computational speedup.

The network architecture used is as stated in the main body of the paper, i.e. a two-layer ReLU net
without biases, with BN unless otherwise stated. Similarly, initial parameters are sampled from the
distributions given in the paper, whose scales deviate slightly from pytorch defaults. The networks
are trained using batch GD on the logistic loss. Note that we flatten the spatial dimensions and RGB
input channels into a single 32(32)(3) = 3072 dimensional input vector.

Hyperparameters. For Figure 1, the learning rate ranges from 0.01 to 0.1, chosen to be as large as
possible without causing significant instability or divergence in the optimization, depending on the
network width. The networks are trained for as long as possible without being prohibitively long, in
order to maximize the margin. The number of iterations does differ for networks of different widths,
ranging from t = 10000 to t = 30000, but we observe by extrapolation that the margin reached at
the end of training seems to be at least 0.75x of the expected final margin, regardless of where t falls
within [10000, 30000].

Compute and Resources. The experiments required roughly 1 hour of compute on a V100, leverag-
ing cloud computing resources from Google Colab.
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Reference Networks for Figure 1. The explanation behind the method generating the γ plot is
somewhat involved. The goal of the experiments is to separately generate lower bound estimates
for γa and γc. To derive the process, note the inequalities in assumption 1.2 for γa and γc. By
instantiating arbitrary (−→aj ,−→cj ,−→vj ) according to the norm constraints, we can set γa and γc equal to
the left hand sides, yielding lower bounds for the best possible γa and γc (better instantiations would
yield better γa and γc).

Then, we choose to instantiate (−→aj ,−→cj ,−→vj ) by training “reference networks” and extracting their
parameters. Though it is not immediate, one can observe that the LHS for γa corresponds to the
unnormalized margin of a reference a-network divided by

√
m, where a reference a-network is a

BN net with a normalized such that ‖a‖ ≤ 1, c frozen to its initialization value (hence c =
−→
1 ), and

V is constrained according to the displacement condition. Similarly, the LHS for γc corresponds
to a function of a reference c-network, which is a BN net with a frozen to its initialization value, c
normalized such that ‖c‖ ≤ 1, and V is constrained according to the displacement condition. Note
that we may use arbitrary (−→aj ,−→cj ,−→vj ), and thus we may generate these parameters any way we wish
(not necessarily using batch GD). In this case, we use Adam (Kingma & Ba, 2014) instead of gradient
descent to optimize these networks, and normalize them accordingly to find our lower bounds.

We remark that, since we may arbitrarily select (−→aj ,−→cj ,−→vj ), we only use the above scheme to generate
the parameters because it seems to be effective. We could also use optimization methods other than
Adam/GD, different initialization scalings, or other setting modifications, provided that the process
results in (−→aj ,−→cj ,−→vj ) values that yield a good bound.

Lastly, constraining V displacement is somewhat tricky. The allowed displacement depends on
γ = γa + γc, so we need to estimate these terms first, but to do so according to our method, we need
to generate (constrained-V ) reference nets, so it is circular. To address this, we first get a lower bound
on γ by training reference networks with frozen V . Then we train reference networks allowing V to
move up to the amount prescribed by the displacement condition. However, in the given setup, we
find that V is allowed to move so little from initialization that allowing V to move according to the
displacement condition generates nearly equivalent γ estimates as freezing V .

B DATA SEMI-NORM‖·‖Σ AND NORMALIZATION FACTORS

This section develop tools to prevent normalization factors from becoming excessively small which is
a core difficulty in the SGD/GF proofs.

We first derive useful relations between the data semi-norm‖·‖Σ, `2 norm‖·‖, and the normalization
function N(·).
Lemma B.1. 1. For any v ∈ Rd, we have

‖v‖Σ ≤‖v‖ and ‖Σv‖ ≤‖v‖Σ ≤ N(v).

2. Let u, v ∈ Rd. Then we have ∣∣N(u)−N(v)
∣∣ ≤‖u− v‖Σ

Proof. 1. We first show‖v‖Σ ≤‖v‖:

‖v‖2Σ =
∑
i∈[n]

〈v, xi〉2

n
≤
∑
i∈[n]

‖v‖2

n
=‖v‖2 . (7)

Taking the square root of both sides gives the desired claim.

Now we show the sandwich inequality ‖Σv‖ ≤ ‖v‖Σ ≤ N(v). By definition of the
normalization factor N(·), we have

N(v) =

√
‖v‖2Σ + ε ≥‖v‖Σ .

Since‖v‖Σ ≤‖v‖ by eq. (7),

‖Σv‖2 = 〈Σv,Σv〉 = 〈Σv, v〉Σ ≤‖Σv‖Σ‖v‖Σ ≤‖Σv‖‖v‖Σ .
Dividing both sides by‖Σv‖ gives us the desired claim.
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2. Suppose a, b ∈ R such that b ≥ a ≥ 0. Consider the auxillary function

h(ε) =
√
b+ ε−

√
a+ ε

Since b+ ε ≥ a+ ε

h′(ε) =
1

2
(

1√
b+ ε

− 1√
a+ ε

) ≤ 0.

Therefore, for any ε ≥ 0, we have

h(ε) ≤ h(0).

Without loss of generality, assume‖u‖Σ ≥‖v‖Σ. Then

N(u)−N(v) =

√
‖u‖2Σ + ε−

√
‖v‖2Σ + ε ≤‖u‖Σ −‖v‖Σ ≤‖u− v‖Σ .

Nonnegativity of the semi-norm‖·‖Σ ensures

N(v)−N(u) ≤ 0 ≤‖u− v‖Σ .

The following lemma argues that if for any given time s, the inner layer Vs has not moved much
(i.e.‖Vs − V0‖ ≤ O(1)), then one can establish additive and multiplicative bounds for the reciprocal
of the normalization factors 1/N(vsj). The actual lemma is a bit more general and applies for any
V ′ :

∥∥V ′ − V ∥∥ ≤ O(1). To simplify notation, we shall write N(vj) and N(v′j) as Nj and N ′j
respectively.
Lemma B.2. Let V ∈ Rm×d and vj denote the rows of V . In addition, suppose εV , εN > 0 such
that ∥∥V T

∥∥
2,∞ ≤ εV , max

j

1

Nj
≤ εN .

For any c < 1, set

βV =
c

εN
, ρN =

1

1− c
, βN = ρN ε

2
N , βΠ = max(2, 2(εV + βV )ρN εN ), εratio = εV εN .

Then for any j ∈ [m] and any V ′ :
∥∥V − V ′∥∥ ≤ βV ,

1. we have the following multiplicative and additive bound for the reciprocal of the normaliza-
tion factors:

1

N ′j
≤ ρN

1

Nj
and

∣∣∣∣∣ 1

N ′j
− 1

Nj

∣∣∣∣∣ ≤ βN∥∥∥v′j − vj∥∥∥ .
2. Define the operator Tv′j := I − Σv′jv

′
j
T

N ′j
2 such that Tv′j : Rd → Rd. Then Tv′j is bounded:∥∥∥∥(I − Σv′jv

′
j
T

N ′j
2 )x

∥∥∥∥ ≤ βΠ.

3. We additionally have that
∣∣∣∣〈 vjNj

, x
〉∣∣∣∣ ≤ εratio for all i ∈ [n].

Proof. 1. We first show the multiplicative bound 1
N ′j
≤ ρN 1

Nj
.

Since
∥∥V ′ − V ∥∥ ≤ βV = c

εN
, for any j ∈ [m],∥∥∥v′j − vj∥∥∥ ≤∥∥V ′ − V ∥∥ ≤ c

εN
≤ cmin

k
N(vk) ≤ cNj . (8)
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Thus,
1

N ′j
=

1

Nj +N ′j −Nj
≤ 1

Nj −
∣∣∣N ′j −Nj∣∣∣ .

By lemma B.1 and eq. (8), we have that

1

Nj −
∣∣∣N ′j −Nj∣∣∣ ≤

1

Nj −
∥∥∥v′j − vj∥∥∥

Σ

≤ 1

Nj −
∥∥∥v′j − vj∥∥∥ ≤

1

Nj − cNj
=

1

1− c
1

Nj
.

Recalling that ρN = 1
1−c , we get the desired multiplicative bound 1

N ′j
≤ ρN 1

Nj
.

We now show the additive bound
∣∣∣∣ 1
N ′j
− 1

Nj

∣∣∣∣ ≤ βN

∥∥∥v′j − vj∥∥∥. Since 1
N ′j
≤ ρN

1
Nj

by

lemma B.2.1, we get ∣∣∣∣∣ 1

Nj
− 1

Nj

∣∣∣∣∣ =

∣∣∣N ′j −Nj∣∣∣
NjN ′j

≤ ρN

∣∣∣N ′j −Nj∣∣∣
N2
j

.

Finally, since
∣∣N ′ −Nj∣∣ ≤∥∥∥v′j − vj∥∥∥

Σ
≤
∥∥∥v′j − vj∥∥∥ by lemma B.1 and maxj

1
N(vj) ≤ εN ,

we get

ρN

∣∣∣N ′j −Nj∣∣∣
N2
j

≤ ρN ε2N
∥∥∥v′j − vj∥∥∥ . (9)

2. We consider two cases.

• Case 1: Suppose we had ∣∣∣∣〈v′j , x〉∣∣∣∣ ≤ ∣∣∣∣〈v′j , x〉Σ

∣∣∣∣ . (10)

Then, by lemma B.1 and our case assumption, eq. (10), expanding the norm gives

∥∥∥∥∥(I −
Σv′jv

′
j
T

N ′j
2 )x

∥∥∥∥∥ =

√√√√√‖x‖2 +

∥∥∥Σv′j

∥∥∥2 〈
v′j , x

〉2

N ′j
4 −

2 〈v′, x〉Σ 〈v′, x〉
N ′j

2

≤

√√√√√‖x‖2 +

∥∥∥Σv′j

∥∥∥2 〈
v′j , x

〉2

Σ

N ′j
4 +

2 〈v′, x〉2Σ
N ′j

2 case assumption: eq. (10)

≤

√√√√√‖x‖2 +

〈
v′j , x

〉2

Σ

N ′j
2 +

2‖v′‖2Σ‖x‖
2
Σ

N ′j
2 lemma B.1.2

≤

√√√√√‖x‖2 +

∥∥∥v′j∥∥∥2

Σ
‖x‖2Σ

N ′j
2 +

2‖v‖2Σ‖x‖
2
Σ

N ′j
2

≤
√
‖x‖2 + 3 lemma B.1.2

≤ 2.

• Case 2: Suppose instead ∣∣∣∣〈v′j , x〉∣∣∣∣ > ∣∣∣∣〈v′j , x〉
Σ

∣∣∣∣ . (11)

14



Under review as a conference paper at ICLR 2024

Since 1
N ′j
≤ ρN 1

Nj
by lemma B.2.1 and maxj

1
Nj
≤ εN , we get∥∥∥v′j∥∥∥

N ′j
≤
(∥∥vj∥∥+

∥∥∥v′j − vj∥∥∥) ρN εN ≤ (εV + βV )ρN εN . (12)

Expanding the norm and using lemma B.1, eqs. (11) and (12),

∥∥∥∥∥(I −
Σv′jv

′
j
T

N ′j
2 )x

∥∥∥∥∥ =

√√√√√‖x‖2 +

∥∥∥Σv′j

∥∥∥2 〈
v′j , x

〉2

N ′j
4 − 2

〈
v′j , x

〉〈
v′j , x

〉
Σ

N ′j
2

≤

√√√√√√1 +

〈
v′j , x

〉2

N ′j
2 + 2

∣∣∣∣〈v′j , x〉∣∣∣∣
N ′j

lemma B.1.2 and eq. (11)

= 1 +

∣∣∣∣〈v′j , x〉∣∣∣∣
N ′j

≤ 1 +

∥∥∥v′j∥∥∥
N ′j

≤ 1 + (εV + βV )ρN εN eq. (12)
≤ max(2, 2(εV + βV )ρN εN ).

3. Since‖V T‖2,∞ ≤ εV and maxj
1
Nj
≤ εN ,∣∣∣∣∣∣

〈
vj
Nj

, x

〉∣∣∣∣∣∣ ≤
∥∥vj∥∥
Nj
≤ εV εN . (13)

C GAUSSIAN CONCENTRATION

The following lemmas will control terms at initialization.

Lemma C.1. Suppose we are given weights W = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
and

c =
−→
1 ∈ Rm. Then, with probability at least 1− 4δ,

max
i∈[n]

∣∣pi(W )
∣∣ = max

i∈[n]

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ ≤ 4εN ln(
n

δ
). (14)

Proof. Fix index i ∈ [n]. We first massage the term
∣∣pi(W )

∣∣ into a form where we can apply the
uniform bound 1

Nj
≤ εN .

Let ej ∈ Rm be the standard basis vector and TV denote the rotation matrix such that

TV


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)

 =

∥∥∥∥∥∥∥∥∥∥


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)


∥∥∥∥∥∥∥∥∥∥
e1.
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Define µ and V as the marginal distribution and random variable corresponding to V respectively.
Fix β ≥ 0. By the law of total probability

Pr(

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ > β) =

∫
Pr(

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ > β | V = V ) dµ(V )

=

∫
Pr(

∣∣∣∣∣∣∣∣∣∣
〈
a,


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)


〉∣∣∣∣∣∣∣∣∣∣

> β | V = V ) dµ(V ).

Let g ∼ N (0, 1). By rotational invariance of gaussians, the tail probability can be rewritten as follows

∫
Pr(

∣∣∣∣∣∣∣∣∣∣
〈
T T

V a,


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)


〉∣∣∣∣∣∣∣∣∣∣
≥ β | V = V ) dµ(V )

=

∫
Pr(|g|

∥∥∥∥∥∥∥∥∥∥


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)


∥∥∥∥∥∥∥∥∥∥
≥ β | V = V ) dµ(V ).

We have shown the follow random variables are equal in distribution.

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj

N(vj)
, xi

〉
)

∣∣∣∣∣∣ d∼|g|
∥∥∥∥∥∥∥∥∥∥


σ(
〈
c1

v1

N(v1) , xi

〉
)

...
σ(
〈
cm

vm
N(vm) , xi

〉
)


∥∥∥∥∥∥∥∥∥∥
. (15)

Now we can apply the uniform bound 1
Nj
≤ εN to get that

Pr(|g|

∥∥∥∥∥∥∥∥∥∥


σ(c1

〈
v1

N1
, xi

〉
)

...
σ(cm

〈
vm
Nm

, xi

〉
)


∥∥∥∥∥∥∥∥∥∥
> β) ≤ Pr(εN |g|

∥∥∥∥∥∥∥
 σ(c1 〈v1, xi〉)

...
σ(cm 〈vm, xi〉)


∥∥∥∥∥∥∥ > β).

Recalling that c = 1, we have altogther

Pr


∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ > β

 ≤ Pr(|g|

∥∥∥∥∥∥∥∥∥∥


σ(
〈
v1

N1
, xi

〉
)

...
σ(
〈
vm
Nm

, xi

〉
)


∥∥∥∥∥∥∥∥∥∥
> β). (16)

Using the same argument we used to derive eq. (15), one can show that

εN

∣∣∣∣∣∣
∑
j∈[m]

ajσ(
〈
vj , xi

〉
)

∣∣∣∣∣∣ d∼ εN |g|
∥∥∥∥∥∥∥
σ(〈v1, xi〉)

...
σ(〈vm, xi〉)


∥∥∥∥∥∥∥ . (17)
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By eq. (16) and eq. (17),

Pr


∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ ≥ 4εN ln(1/δ)

 ≤ Pr

εN
∣∣∣∣∣∣
∑
j∈[m]

ajσ(
〈
vj , xi

〉
)

∣∣∣∣∣∣ > 4εN ln(1/δ)

 .

By the proof of (Telgarsky, 2022, lemma A.2), we have that with probability 1− 4δ,

Pr

max
i
εN

∣∣∣∣∣∣
∑
j∈[m]

ajσ(
〈
vj , xi

〉
)

∣∣∣∣∣∣ > 4εN ln(1/δ)

 ≤ 4δ.

Therefore, union bounding over i ∈ [n], we have with probability at least 1− 4δ,

max
i

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ ≤ 4εN ln(n/δ).

The following lemma controls norms of gaussian vectors.

Lemma C.2. Suppose (a, V ) ∼ Nm√
m
× Nm×d√

d
. With probability at least 1− δ, we have that

‖a‖ ≤ 1 +

√
2 ln( 1

δ )

m
.

Additionally, if m ≤ δ exp(d8 ),

• with probability at least 1− δ, we have

∥∥V T
∥∥

2,∞ ≤ 1 +

√
2 ln( 1

δ )

d
≤ 2.

• Suppose d ≥ 2. With probability at least 1− δ,

max
j∈m

1∥∥vj∥∥ ≤ 5.

Proof. We mostly repeat the proof of (Telgarsky, 2022, lemma B.3). Let ã = a
√
m so that ã ∼ Nm.

Since the function ã → ‖ã‖√
m

is (1/
√
m)- lipschitz, by gaussian concentration (Wainwright, 2019,

theorem 2.26), with probability at least 1− δ
‖a‖ =‖ã‖ /

√
m

≤ E‖ã‖ /
√
m+

√
2 ln(1/δ)

m

≤
√
E‖ã‖2/

√
m+

√
2 ln(1/δ)

m

= 1 +

√
2 ln(1/δ)

m
.

By the same argument, with probability at least 1− δ, we have∥∥vj∥∥ ≤ 1 +

√
2 ln(1/δ)

d
.
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Union bounding j ∈ [m] and recalling that m ≤ δ exp(d8 ), we have with probability at least 1− δ

max
j∈[m]

∥∥vj∥∥ ≤ 1 +

√
2 ln(m/δ)

d
≤ 1 +

√
1

4
< 2.

Additionally, for any fixed j ∈ [m], we have with probability at least 1 − δ ((Wainwright, 2019,
theorem 2.26)) ∥∥vj∥∥ ≥ E[

∥∥vj∥∥]−
√

2 ln(1/δ)

d
=

√
2

d

Γ(d+1
2 )

Γ(d2 )
−
√

2 ln(1/δ)

d
. (18)

Let us recall Gautschi’s inequality which states that for any x ∈ R and s ∈ (0, 1),

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

Setting x = d
2 −

1
2 and s = 1

2 , Gautschi’s inequality asserts Γ( d+1
2 )

Γ( d
2 )

>
√

d−1
2 . Thus, eq. (18) can be

simplified: ∥∥vj∥∥ >√2

d

√
d− 1

d
−
√

2 ln(1/δ)

d
=

√
1

2
−
√

2 ln(1/δ)

d
.

Therefore, union bounding over j ∈ [m],

min
j∈[m]

∥∥vj∥∥ ≥√1

2
−
√

2 ln(1/δ)

d

=

√
1

2
−
√

2 ln(m/δ)

d

≥
√

1

2
−
√

1

4

>
1

5
.

Rearranging the terms gives the desired claim.

D ALIGNMENT

This section will establish that reference parameters constructed from
−→
W = (−→a ,

−→
C ,
−→
V ), correspond-

ing to assumption 1.2, is highly aligned with gradient features ∂pi(W ′) where W ′ is constrained to
some manifold Γ. Large alignment in turn will be used to guide SGD and GF iterates Ws toward
good directions in the proofs of theorem 2.1 and theorem 2.2.

The following lemma will control common terms found when trying to bound various alignment
quantities in lemma D.3.
Lemma D.1. Fix V, V ∈ Rm×d and let (βV , βN , βΠ, εratio) be constants corresponding to V in the
context of lemma B.2. Then for any V ′ such that

∥∥V − V ′∥∥ ≤ βV , we have

1. an uniform upper bound for the difference between per-row preactivations corresponding to
V, V ′ ∣∣∣∣∣∣

〈
v′j
N ′j

, xi

〉
−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥ ,

2. an uniform upper bound for per-row preactivations corresponding to V ′∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio,

18
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3. an uniform upper bound for the difference between per-row preactivations corresponding to
V, V ∣∣∣∣∣∣

〈
v′j
N ′j

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥ ,

4. an uniform upper bound for per-row preactivations corresponding to V∣∣∣〈vj , xi〉∣∣∣ ≤
∥∥∥∥∥vj − vj

Nj

∥∥∥∥∥+ εratio,

5. an uniform upper bound for the difference between per-row activations corresponding to
V, V ′∣∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j

, xi

〉
− oj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥+ εratio.

Proof. 1. Lemma B.2 establishes the following upper bounds:

1

N ′j
≤ ρN

1

Nj
,

∣∣∣∣∣ 1

N ′j
− 1

Nj

∣∣∣∣∣ ≤ βN∥∥∥v′j − vj∥∥∥ ,
∣∣∣∣∣∣
〈
vj
Nj

, x

〉∣∣∣∣∣∣ ≤ εratio

which in conjuction with the fact that maxj∈[m]
1
Nj
≤ εN grants∣∣∣∣∣∣

〈
v′j
N ′j

, xi

〉
−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣ ≤
∥∥∥v′j − vj∥∥∥

N ′j
+

∣∣∣∣∣ 1

N ′j
− 1

Nj

∣∣∣∣∣
∣∣∣∣∣∣
〈
vj
Nj

, xi

〉∣∣∣∣∣∣
≤ ρN

∥∥∥v′j − vj∥∥∥
Nj

+ βN

∥∥∥v′j − vj∥∥∥ εratio

≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥ . (19)

2. By eq. (19) and since
∣∣∣∣〈 vjNj

, x
〉∣∣∣∣ ≤ εratio (lemma B.2), we have∣∣∣∣∣∣

〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
〈
vj
Nj

, xi

〉∣∣∣∣∣∣
≤ (ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+ εratio. (20)

3. Again by employing eq. (19),∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
〈
vj
Nj

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣
≤ (ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥ . (21)

4. Since
∣∣∣∣〈 vjNj

, x
〉∣∣∣∣ ≤ εratio by lemma B.2,

∣∣∣〈vj , xi〉∣∣∣ ≤
∣∣∣∣∣∣〈vj , xi〉−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
〈
vj
Nj

, xi

〉∣∣∣∣∣∣
≤

∥∥∥∥∥vj − vj
Nj

∥∥∥∥∥+ εratio. (22)
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5. By eqs. (20) to (22), we immediately have that

max


∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ,
∣∣∣〈vj , xi〉∣∣∣ ,

∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣
 ≤ (ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥+ εratio

which in turn controls

∣∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j

, xi

〉
− oj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣∣ =



∣∣∣∣∣
〈
v′j
N ′j
, xi

〉∣∣∣∣∣ o′j
∣∣
xi

= 1, oj
∣∣
xi

= 0∣∣∣〈vj , xi〉∣∣∣ o′j
∣∣
xi

= 0, oj
∣∣
xi

= 1∣∣∣∣∣
〈
v′j
N ′j
, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣ o′j
∣∣
xi

= 1, oj
∣∣
xi

= 1

0 o′j
∣∣
xi

= oj
∣∣
xi

= 0

≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥+ εratio.

The following technical lemma will be used to prove lemma D.3.

Lemma D.2. Suppose weights W = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm, and

δ ∈ (0, 1) are given. Consider radii R,RV , rescaling constant α, and width m satisfying

R ≤ γ1/3m1/6

27εN
, RV = βV =

1

2
εN , α =

R2

β2
V

, m ≤ δ exp(
d

2
).

Denote Γ := {W ′ |
∥∥U ′ − U∥∥ < R,

∥∥V ′ − V ∥∥ < RV }. Then, with probability at least 1− 6δ, for
any W ′ ∈ Γ,∣∣∣〈a, ∂api(W ′)〉∣∣∣+

∣∣∣〈C ′ − C, ∂cpi(W ′)〉∣∣∣+ α
∣∣∣〈V ′ − V, ∂V pi(W ′)〉∣∣∣ ≤ Rγ√m

32
.

Proof. By lemma C.2, with probability at least 1 − 2δ, ‖V T‖2,∞ ≤ 2 and ‖a‖ ≤ 2. Given that
βV = 1

2εN
, let (ρN , βN , βΠ, εratio) be constants corresponding to V in lemma B.2. In particular, we

can consider the following instantiation

ρN = 2, βN = 2ε2N , βΠ = 9εN , εratio = 2εN . (23)

Now, let us start by bounding by
∣∣∣〈a, ∂api(W ′)〉∣∣∣. We first introduce terms

∑
j∈[m] ajσ(cj

〈
v′j
N ′j
, xi

〉
)

and
∑
j∈[m] ajσ(cj

〈
vj
Nj
, xi

〉
) via add and subtract, and then we apply Cauchy-Schwarz to get∣∣∣〈a, ∂api(W ′)〉∣∣∣

=

∣∣∣∣∣∣
∑
j∈[m]

ajσ(c′j

〈
v′j
N ′j

, xi

〉
)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j∈[m]

aj

σ(c′j

〈
v′j
N ′j

, xi

〉
)− σ(cj

〈
v′j
N ′j

, xi

〉
) + σ(cj

〈
v′j
N ′j

, xi

〉
)− σ(cj

〈
vj
Nj

, xi

〉
) + σ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣aj∣∣∣∣∣c′j − cj∣∣∣
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣+
∣∣aj∣∣∣∣cj∣∣

∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−

〈
vj
Nj

, xi

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
j∈[m]

ajσ(cj

〈
vj
Nj

, xi

〉
)

∣∣∣∣∣∣ .
(24)
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Since W ′ ∈ Γ, we have that maxj

∥∥∥v′j − vj∥∥∥ ≤ ∥∥V ′ − V ∥∥ ≤ βV . Therefore, we can

invoke lemma D.1.2 and lemma D.1.1 bound to

∣∣∣∣∣
〈
v′j
N ′j
, xi

〉∣∣∣∣∣ and

∣∣∣∣∣
〈
v′j
N ′j
, xi

〉
−
〈
vj
Nj
, xi

〉∣∣∣∣∣ re-

spectively. Discarding an additional 4δ failure probability, we apply lemma C.1 to get that∣∣∣∣∑j∈[m] ajσ(cj

〈
vj
Nj
, xi

〉
)

∣∣∣∣ ≤ 4εN ln(nδ ) whereby the eq. (24) simplifies to∣∣∣〈a, ∂api(W ′)〉∣∣∣
≤
∑
j∈[m]

∣∣aj∣∣∣∣∣c′j − cj∣∣∣ ((ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio

)
+
∑
j∈[m]

∣∣aj∣∣ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ 4εN ln(

n

δ
)

≤‖a‖
∥∥C ′ − C∥∥ ((ρN εN + βN εratio)βV + εratio) +‖a‖ (ρN εN + βN εratio)βV + 4εN ln(

n

δ
)

≤ 10ε2NR+ 6ε2N + 4εN ln(n/δ).

We now tackle the second term
∣∣∣〈C ′ − C, ∂cpi(W ′)〉∣∣∣. Lemma D.1.2 establishes∣∣∣∣∣∣

〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio.

The preceding ienquality and multiple applications of Cauchy-Schwarz implies

∣∣∣〈C ′ − C, ∂cpi(Ws)
〉∣∣∣ =

∣∣∣∣∣∣
∑
j∈[m]

(c′j − cj)

ajo′j∣∣xi

〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣∣c′j − cj∣∣∣ (∣∣aj − aj∣∣+
∣∣aj∣∣)

∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣∣c′j − cj∣∣∣ (∣∣aj − aj∣∣+
∣∣aj∣∣)((ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+ εratio

)
≤
∥∥C ′ − C∥∥(∥∥a′ − a∥∥+ 2

)(
(ρN εN + βN εratio)

∥∥V ′ − V ∥∥+ εratio

)
≤ 5ε2N (R2 + 2R).

Finally, we control α
∣∣∣〈V ′ − V, ∂V pi(W ′)〉∣∣∣. Since

∥∥∥∥(I − Σv′jv
′
j
T

N ′j
2 )x

∥∥∥∥ ≤ βΠ by lemma B.2, we have

α
∣∣∣〈V ′ − V, ∂V pi(WS)

〉∣∣∣ = α

∣∣∣∣∣∣∣
∑
j∈[m]

〈
v′j − vj ,

ajc
′
jo
′
j

∣∣
xi

N ′j

xi − Σv′j

〈
v′j , xi

〉
N ′j

2

〉
∣∣∣∣∣∣∣

≤ α
∑
j∈[m]

∥∥∥v′j − vj∥∥∥
∣∣∣∣∣ajc′jN ′j

∣∣∣∣∣
∥∥∥∥∥∥
I − v′jv

′
j
T

N ′j
2

xi

∥∥∥∥∥∥
≤ αβΠ

∑
j∈[m]

∥∥∥v′j − vj∥∥∥
∣∣∣∣∣ajc′jN ′j

∣∣∣∣∣
≤ αβΠ

∑
j∈[m]

∥∥∥v′j − vj∥∥∥
N ′j

[∣∣aj − aj∣∣∣∣∣c′j − cj∣∣∣+
∣∣cj∣∣∣∣aj − aj∣∣+

∣∣aj∣∣∣∣∣c′j − cj∣∣∣+
∣∣aj∣∣∣∣cj∣∣] .

(25)
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Recalling that c =
→
1 and applying the inequality 1

N ′j
≤ ρN εN (lemma B.2), Equation (25) simplifies

to

α
∣∣∣〈V ′ − V, ∂V pi(WS)

〉∣∣∣ ≤ αβΠ

∑
j∈[m]

∥∥∥v′j − vj∥∥∥
N ′j

[∣∣aj − aj∣∣∣∣∣c′j − cj∣∣∣+
∣∣aj − aj∣∣+

∣∣aj∣∣∣∣∣c′j − cj∣∣∣+
∣∣aj∣∣]

≤ αβΠ

∑
j∈[m]

∥∥∥v′j − vj∥∥∥ (ρN εN )

[∣∣aj − aj∣∣∣∣∣c′j − cj∣∣∣+
∣∣aj − aj∣∣+

∣∣aj∣∣∣∣∣c′j − cj∣∣∣]
≤ αβΠρN εN

∥∥V ′ − V ∥∥(∥∥a′ − a∥∥∥∥C ′ − C∥∥+
∥∥a′ − a∥∥+‖a‖

∥∥C ′ − C∥∥)
≤ 36ε2N (R4 + 3R3).

Putting everything together gives∣∣∣〈a, ∂api(W ′)〉∣∣∣+
∣∣∣〈C ′ − C, ∂cpi(W ′)〉∣∣∣+ α

∣∣∣〈V ′ − V, ∂V pi(W ′)〉∣∣∣
≤ 36ε3NR

4 + 108ε3NR
3 + 5ε2NR

2 + 20ε2NR+ 6ε2N + 4εN ln(n/δ)

≤ Rγ
√
m

32
.

The following lemma will control important alignment quantities. The first half will control alignment
with gradient features at special points. The remaining half will control alignment with gradient
features generated from W ′ ∈ Γ. Before stating the lemma, we introduce further notation. We shall
overload the normalization function N(·) so that given V ∈ Rm×d, N(V ) = (N(v1), . . . , N(vm)).
In additon, � will denote element-wise multiplication.

Lemma D.3. Suppose weightsW = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm are given

and assumption 1.2 holds, with corresponding (−→a ,
−→
C ,
−→
V ) ∈ Rm × Rm × Rm×d and γ = γa + γc

given.

In addition, consider radii R,RV , r, rescaling constant α, and width m satisfying

R ∈

[
8,
γ1/3m1/6

27εN

]
, RV ≤ βV =

1

2εN
, r =

R

8
, α =

R2

β2
V

, m ∈

[
229ε3N ln3/2(5n/δ)

γ2
, δ exp(

d

8
)

]
.

Further, construct the following reference parameters

U = (a,C) = r
−→
U + U, W a = (a,N(

−→
V )� C,

−→
V ), WC = (a,N(

−→
V )�

−→
C ,
−→
V ). (26)

Denote Γ := {W ′ |
∥∥U ′ − U∥∥ < R,

∥∥V ′ − V ∥∥ < RV }. Then ,with probability at least 1− 7δ, for
any W ′ ∈ Γ we have

1.
〈−→
U , ∂Upi(W

′)
〉
≥ 3γ

√
m

4 ,

2.
〈
U, ∂Upi(W

′)
〉
− pi(W ′) + α

〈
V − V ′, ∂V pi(W ′)

〉
≥ r(γ

√
m

2 ).

Proof. By lemma C.2, with probability at least 1 − δ, ‖V T‖2,∞ ≤ 2. Given that βV = 1
2εN

, let
(ρN , βN , βΠ, εratio) be constants corresponding to V in lemma B.2. Without loss of generality, assume
εN ≥ 1. Then, we can simplify the constants:

ρN = 2, βN = 2ε2N , βΠ = 9εN , εratio = 2εN . (27)
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By assumption 1.2 and definition of W a and W c, we have〈−→a , ∂api(W a)
〉
≥ γa

√
m and

〈−→
C , ∂cpi(WC)

〉
≥ γc
√
m. (28)

Further, since W ′ ∈ Γ, we have

max
(∥∥a′ − a∥∥ ,∥∥C ′ − C∥∥) ≤ R and

∥∥V ′ − V ∥∥ ≤ βV .
With these facts in hand, let us prove the two alignment inequalities.

1. We first note that∣∣∣∣〈−→a , ∂api(Ws)− ∂api(W a)
〉∣∣∣∣

≤
∑
j∈[m]

∣∣−→aj ∣∣
∣∣∣∣∣∣σ(c′j

〈
v′j
N ′j

, xi

〉
)− σ(cj

〈
vj , xi

〉
)

∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣−→aj ∣∣
∣∣∣c′j − cj∣∣∣

∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣+
∣∣cj∣∣
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣
 .

Using lemma D.1.2 to get

∣∣∣∣∣
〈
v′j
N ′j
, xi

〉∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio, we control

the first sum.∑
j∈[m]

∣∣−→aj ∣∣∣∣∣c′j − cj∣∣∣
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ≤
∑
j∈[m]

∣∣−→aj ∣∣∣∣∣c′j − cj∣∣∣ ((ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio

)
≤
∥∥−→a ∥∥∥∥C ′ − C∥∥(∥∥V ′ − V ∥∥ (ρN εN + βN εratio) + εratio

)
≤ R

(
βV (ρN εN + βN εratio) + εratio

)
≤ 5ε2NR.

Using lemma D.1.3 to bound

∣∣∣∣∣
〈
v′j
N ′j
, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣ and the fact that c =
→
1 , we control the

second sum.∑
j∈[m]

∣∣−→aj ∣∣∣∣cj∣∣
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉
−
〈
vj , xi

〉∣∣∣∣∣∣ ≤
∑
j∈[m]

∣∣−→aj ∣∣
(ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥


≤
∥∥−→a ∥∥

(ρN εN + βN εratio)
∥∥V ′ − V ∥∥+

√√√√√∑
j∈[m]

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥

2


≤ (ρN εN + βN εratio)βV +

√
m∆V

≤ 3ε2N +
√
m∆V .

Putting it altogether, we have∣∣∣∣〈−→a , ∂api(Ws)− ∂api(W a)
〉∣∣∣∣ ≤ 5ε2NR+

√
m∆V + 3ε2N . (29)

By eqs. (28) and (29),〈−→a , ∂api(W ′)〉 =
〈−→a , ∂api(W a)

〉
+
〈−→a , ∂api(W ′)− ∂api(W a)

〉
≥ γa

√
m− (5ε2NR+

√
m∆V + 3ε2N ). (30)
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Similarly, note that

∣∣∣∣〈−→C , ∂cpi(Ws)− ∂cpi(WC)
〉∣∣∣∣

≤
∑
j∈[m]

∣∣−→cj ∣∣
∣∣∣∣∣∣ajo′j∣∣xi

〈
v′j
N ′j

, xi

〉
− ajoj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣−→cj ∣∣∣∣aj − aj∣∣
∣∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣+
∑
j∈[m]

∣∣−→cj ∣∣∣∣aj∣∣
∣∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j

, xi

〉
− oj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣∣ .
Using lemma D.1.2 to get

∣∣∣∣∣
〈
v′j
N ′j
, xi

〉∣∣∣∣∣ ≤ (ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio, we control

the first sum.∑
j∈[m]

∣∣−→cj ∣∣∣∣aj − aj∣∣
∣∣∣∣∣∣
〈
v′j
N ′j

, xi

〉∣∣∣∣∣∣ ≤
∑
j∈[m]

∣∣−→cj ∣∣∣∣aj − aj∣∣ ((ρN εN + βN εratio)
∥∥∥v′j − vj∥∥∥+ εratio

)
≤
∥∥∥−→C ∥∥∥∥∥a′ − a∥∥((ρN εN + βN εratio)

∥∥V ′ − V ∥∥+ εratio

)
≤ R

(
(ρN εN + βN εratio)βV + εratio

)
≤ 5ε2NR.

Using lemma D.1.5 to bound

∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j
, xi

〉
− oj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣, we control the second sum.

∑
j∈[m]

∣∣−→cj ∣∣∣∣aj∣∣
∣∣∣∣∣∣o′j∣∣xi

〈
v′j
N ′j

, xi

〉
− oj

∣∣
xi

〈
vj , xi

〉∣∣∣∣∣∣
≤
∑
j∈[m]

∣∣−→cj ∣∣∣∣aj∣∣
(ρN εN + βN εratio)

∥∥∥v′j − vj∥∥∥+

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥+ εratio



≤
∥∥∥−→C ∥∥∥‖a‖

(ρN εN + βN εratio)
∥∥V ′ − V ∥∥+

√√√√√∑
j∈[m]

∥∥∥∥∥ vjNj − vj
∥∥∥∥∥

2

+ εratio


≤ 10ε2N + 2

√
m∆V .

Thus, we have∣∣∣∣〈−→C , ∂cpi(Ws)− ∂cpi(WC)
〉∣∣∣∣ ≤ 5ε2NR+ 2

√
m∆V + 10ε2N . (31)

Therefore, by eqs. (28) and (31) we obtain〈−→
C , ∂cpi(W

′)
〉

=
〈−→
C , ∂cpi(WC)

〉
+
〈−→
C , ∂Cpi(W

′)− ∂Cpi(WC)
〉

≥ γc
√
m− (5ε2NR+ 2

√
m∆V + 10ε2N ). (32)

Therefore, by eqs. (30) and (32) we get that

〈−→
U , ∂Upi(W

′)
〉
≥ γ
√
m− (10ε2NR+ 3

√
m∆V + 13ε2N ). (33)
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Since we have R ≤ γ1/3m1/6

27εN
,
√
m∆V ≤ γ

√
m

16 , and m ≥ 229ε3N ln3/2(5n/δ)
γ2 , eq. (33)

simplifies to 〈−→
U , ∂Upi(W

′)
〉
≥ γ
√
m− γ

√
m

2
=
γ
√
m

2
. (34)

2. Discarding another 6δ failure probability and invoking lemma D.2 and homogeneity,∣∣∣〈U, ∂Upi(W ′)〉− pi(W ′) + α
〈
V − V ′, ∂V pi(W ′)

〉∣∣∣
=
∣∣∣〈a, ∂api(W ′)〉+

〈
C ′ − C, ∂cpi(W ′)

〉
+ α

〈
V − V ′, ∂V pi(W ′)

〉∣∣∣
≤
∣∣∣〈a, ∂api(W ′)〉∣∣∣+

∣∣∣〈C ′ − C, ∂cpi(W ′)〉∣∣∣+ α
∣∣∣〈V − V ′, ∂V pi(W ′)〉∣∣∣

≤ Rγ
√
m

32

= r
γ
√
m

4
. (35)

From eqs. (35) and (34), we have that〈
U, ∂Upi(W

′)
〉
− pi(W ′) + α

〈
V − V ′, ∂V pi(W ′)

〉
= r

〈−→
U , ∂Upi(W

′)
〉

+
〈
U, ∂Upi(W

′)
〉
− pi(W ′) + α

〈
V − V ′, ∂V pi(W ′)

〉
≥ r(3γ

√
m

4
)− r(γ

√
m

4
)

= r(
γ
√
m

2
).

E STOCHASTIC GRADIENT DESCENT

In this section, we will provide a proof of theorem 2.1.

We will start by providing a bound on the squared norm of the loss gradients. Then we will prove
a martingale concentration inequality used to convert a training error guarantee into a test error
guarantee. Finally, we will conclude with a proof of theorem 2.1

Lemma E.1. Suppose weights W = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm are

given. Consider radii R,RV , and width m satisfying

R ≤ γ1/3m1/6

27εN
, RV = βV =

1

2
εN , m ∈

[
229ε3N ln3/2(5n/δ)

γ2
, δ exp(

d

8
)

]
.

Denote Γ := {W ′ |
∥∥U ′ − U∥∥ < R,

∥∥V ′ − V ∥∥ < RV }. For any W ′ ∈ Γ,

∥∥∇Upi(W ′)∥∥2 ≤ 211ε4Nm and
∥∥∇V pi(W ′)∥∥2 ≤ 216ε4NR

4.

proof of lemma E.1. By lemma C.2, with probability at least 1 − δ, ‖V T‖2,∞ ≤ 2. Given that
βV = 1

2εN
, let (ρN , βN , βΠ, εratio) be constants corresponding to V in lemma B.2. Without loss of

generality, assume εN ≥ 1. Then, we can simplify the constants:

ρN = 2, βN = 2ε2N , βΠ = 9εN , εratio = 2εN . (36)
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For any i ∈ [n], expanding the square gives us

∥∥∇Upi(Ws)
∥∥2

=

∥∥∥∥∥∥
∑
j∈[m]

σ(cj

〈
vj

N(vj)
, xi

〉
)ej

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(1)

+

∥∥∥∥∥∥
∑
j∈[m]

ajoj |xi

〈
vj

N(vj)
, xi

〉
ej

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(2)

.

Since W ′ ∈ Γ, we have max
(∥∥c′ − c∥∥ ,∥∥a′ − a∥∥) ≤ ∥∥U ′ − U∥∥ ≤ R. Additionally, we have∣∣∣∣ v′jNj

∣∣∣∣2 ≤ 52(2 + βV )2ρ2
N ε

2
N by eq. (12) which gives

(1) ≤
∑
j∈[m]

(c′j)
2

(
v′j
Nj

)2

≤
∥∥c′∥∥2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤ (
∥∥c′ − c∥∥+‖c‖)252(2 + βV )2ρ2

N ε
2
N ≤ (R+

√
m)252(2 + βV )2(ρN εN )2.

(2) ≤
∑
j∈[m]

(a′j)
2

∥∥∥v′j∥∥∥2

N(v′j)
2
≤
∥∥a′∥∥2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤
(∥∥a′ − a∥∥+‖a‖

)2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤ (R+ 2)252(2 + βV )2ρ2
N ε

2
N .

Putting it altogether gives us ∥∥∇Upi(Ws)
∥∥2

= (1) + (2) ≤ 211ε4m.

Lemma B.2 establishes

∥∥∥∥∥
(
I − Σvjv

T
j

N(vj)2

)
xi

∥∥∥∥∥
2

≤ βΠ which implies

∥∥∇V pi(Ws)
∥∥2

=

∥∥∥∥∥∥
∑
j∈[m]

ajcjoj |xi

N(vj)

(
I −

Σvjv
T
j

N(vj)
2

)
ejxi

T

∥∥∥∥∥∥
2

≤
∑
j∈[m]

(a′j)
2(c′j)

2

N(v′j)
2

∥∥∥∥∥∥
(
I −

Σvjv
T
j

N(vj)
2

)
xi

∥∥∥∥∥∥
2

≤
∥∥a′∥∥2

max
j

∣∣∣c′j∣∣∣2
N(v′j)

2

∥∥∥∥∥∥
(
I −

Σvjv
T
j

N(vj)
2

)
xi

∥∥∥∥∥∥
2

≤ (R+ 2)2(R+ 1)2(ρN εN )2β2
Π

≤ 216ε4NR
4.

The following martingale concentration inequality is essentially from (Ji & Telgarsky, 2020, Lemma
4.3) and will be key tool for obtaining a test error guarantee.

Lemma E.2 (martingale concentration). Suppose {Ws}s<t is a sequence of weights where Ws only
depends on {(xr, yr)}r<s. Denote p as the dimension of Ws. Let g : Rd × {±1} × Rp → R satisfy
0 ≤ g ≤ 1.

Then
∑
s<t E[g(x, y;Ws)]− g(xs, ys;Ws) is a martingale difference and with probability at least

1− δ,

∑
s<t

E[g(x, y;Ws)] ≤ 4
∑
s<t

g(xs, ys;Ws) + 4 ln(
1

δ
).
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Proof. Let Fs+1 be the σ-algebra generated by (x1, y1), . . . , (xs, ys) (i.e. Fs+1 :=
σ((x1, y1), . . . , (xs, ys))). Denote

Xs = E(x,y)

[
g(x, y;Ws)

]
, Ys = g(xs, ys;Ws), Zs = Xs − Ys.

Since Xs = E[Ys |Fs],
E[Zs |Fs] = Xs − E[Ys |Fs] = 0.

Thus, Zs is a martingale difference.

Since 0 ≤ g ≤ 1, we have that Ys, Zs ≤ 1. Therefore,

E[Z2
s | Fs] = E[Y 2

s − 2XsYs +X2
s | Fs] = E[Y 2

s | Fs]−X2
s ≤ E[Y 2

s | Fs] ≤ E[Ys | Fs] = Xs.

We can now invoke a variant of Freedman’s inequality (Agarwal et al., 2014, Lemma 9)∑
s<τ

Ex,y[g(x, y;Ws)] ≤
∑
s<τ

g(xs, ys;Ws) + (e− 2)
∑
s<τ

Ex,y[g(x, y;Ws)] + ln(1/δ).

Rearranging and noticing 1
3−e ≤ 4, we get the desired result.

Corollary E.3. With probability at least 1− δ,∑
s<t

E[
∣∣`′(−p(x, y,Ws))

∣∣] ≤ 4
∑
s<t

∣∣`′(−p(xs, ys,Ws))
∣∣+ 4 ln(1/δ).

Proof. Let g be the function x, y,W →
∣∣`′(−p(x, y;W ))

∣∣. Since
∣∣`′∣∣ ∈ [0, 1], we have that 0 ≤ g ≤

1. Now we can invoke lemma E.2 to get that with probability at least 1− δ,∑
s<t

E[
∣∣`′(−p(x, y,Ws))

∣∣] ≤ 4
∑
s<t

∣∣`′(−p(xs, ys,Ws))
∣∣+ 4 ln(1/δ).

Corollary E.4. With probability at least 1− δ,∑
s<t

E(x,y)[min{`(−p(x, y;Ws)), ln(2)}] ≤ 4
∑
s<t

min{`(−p(xs, ys;Ws)), ln(2)}+ 4 ln(1/δ).

Proof. Let g be the function x, y,W → min{`(−p(x, y;W )), ln(2)}. Since ` ≥ 0 and ln(2) < 1,
we have that 0 ≤ g ≤ 1. Now invoke lemma E.2 to get the desired result.

Theorem E.5 (theorem 2.1). Suppose weights W = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm are given and assumption 1.2 holds, with corresponding (−→a ,

−→
C ,
−→
V ) ∈ Rm×Rm×Rm×d

and γ = γa + γc given.

Suppose width satisfies

m ∈

[
229ε3N ln3/2( 5nt

δ )

γ2
, δ exp(

d

8
)

]
,

and we set the learning rate to be η = 1
28εNγ2/3m1/3 .

With probability at least 1− 20δ, the SGD iterates (Ws)s≤t satisfy

• an upper bound on parameter movement,

max
s<t
‖Us − U0‖ = max

s<t

∥∥(as, cs)− (a0, c0)
∥∥ ≤ γ1/3m1/6

27εN
,

max
s<t
‖Vs − V0‖ ≤

1

2εN
,
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• a test error bound,

min
s<t

Pr(sgn(f(x;Ws)) 6= y) ≤ 223ε4N
γ2t

+
4 ln(1/δ)

t
. (37)

Proof. By lemma C.2, with probability at least 1− 3δ,‖V T‖2,∞ ≤ 2,‖a‖ ≤ 2 , and maxj∈m
1

‖vj‖ ≤

5. Given that βV = 1
2εN

, let (ρN , βN , βΠ, εratio) be constants corresponding to V in lemma B.2.
Without loss of generality, assume εN ≥ 1. Then, we can simplify the constants:

ρN = 2, βN = 2ε2N , βΠ = 9εN , εratio = 2εN . (38)

Set radii R,RV , rescaling constant α, and manifold Γ as

R =
γ1/3m1/6

27εN
, RV = βV =

1

2
εN , α =

R2

β2
V

, Γ := {W ′ |
∥∥U ′ − U0

∥∥ < R ,
∥∥V ′ − V0

∥∥ < RV }.

Further, construct the following reference parameter

U = (a,C) = r
−→
U + U. (39)

Consider the first time τ such that√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≥ R. (40)

Assume contradictory that τ ≤ t and note that for all time s < τ , we have

‖Us − U0‖ < R and ‖Vs − V0‖ < RV = βV . (41)

Since Ws ∈ Γ, discarding 7δ failure probability, by lemma D.3,〈
U, ∂Upi(W

′)
〉
− pi(W ′) + α

〈
V − V ′, ∂V pi(W ′)

〉
≥ r(γ

√
m

2
) ≥ ln(5t). (42)

Expanding the square,∥∥∥Us+1 − U
∥∥∥2

+ α‖Vs+1 − V0‖2

=
∥∥∥Us − U∥∥∥2

+ α‖Vs − V0‖2 + 2η

[〈
∂`s(Ws), U − Us

〉
+ α

〈
∂`s(Ws), Vs − V0

〉]
+ η2(1 + α)

∥∥∂`s(Ws)
∥∥2
.

(43)

Rearranging the terms and taking the sum over s < τ , we have that

ΦD(τ) :=
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α‖Vτ − V0‖2

≤
∑
s<τ

2η`′s(Ws)

[〈
∂Ups(Ws), U − Us

〉
+ α

〈
∂V ps(Ws), Vs − V0

〉]
︸ ︷︷ ︸

(A)

+ η2
∑
s<τ

`′s(Ws)
2
(∥∥∂Ups(Ws)

∥∥2
+ α

∥∥∂V ps(Ws)
∥∥2
)

︸ ︷︷ ︸
(B)

. (44)
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By lemma D.3, convexity of `, and eq. (59), we can control the inner product term (A);

(A) = 2η
∑
s<τ

`′s(Ws)

n

[〈
U, ∂Upi(W

′)
〉

+ α
〈
V0 − V ′, ∂V pi(W ′)− pi(W ′)

〉]
≤ 2η

n

∑
s<τ

`

(〈
U, ∂Upi(W

′)
〉

+ α
〈
V0 − V ′, ∂V pi(W ′)

〉)
− `(Ws)

≤ 2η

n

∑
s<τ

`(ln(5t))− `i(Ws)

≤ 2η

n

∑
s<τ

1

5t
− `i(Ws)

≤ 2η

 τ

5t
−
∑
s<τ

`s(Ws)


≤ 2η

5
. (45)

Then by eq. (61), the rescaled Euclidean potential ΦD simplifies to∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α‖Vτ − V0‖2

≤ 2η

5
+ η2

∑
s<τ

(∥∥`′s(Ws)∂Ups(Ws)
∥∥2

+ α
∥∥`′s(Ws)∂V ps(Ws)

∥∥2
)

︸ ︷︷ ︸
(B)

. (46)

By lemma E.1 , we can control the sum containing the squared gradient norm terms:

(B) = η2
∑
s<τ

(∥∥`′s(Ws)∂Ups(Ws)
∥∥2

+ α
∥∥`′s(Ws)∂V ps(Ws)

∥∥2
)

(47)

≤ η2(211ε4Nm+ 216αε4NR
4)
∑
s<τ

(∣∣`′s(Ws)
∣∣) (48)

≤ η2(211ε4Nm+ 216ε6NR
6)
∑
s<τ

(∣∣`′s(Ws)
∣∣) . (49)

To control
∑
s<τ

(∣∣`′s(Ws)
∣∣), we use the perceptron argument

‖Uτ − U0‖ = sup
‖U‖≤1

〈U,Uτ − U0〉

≥
〈
U,Uτ − U0

〉
≥

〈
U, η

∑
s<τ

−`′s(Ws)
〈
U, ∂Upi(Ws)

〉〉

≥ η γ
√
m

4

∑
s<τ

∣∣`′s(Ws)
∣∣ .

Rearranging gives

∑
s<τ

∣∣`′s(Ws)
∣∣ ≤ 4‖Uτ − U0‖

ηγ
√
m

. (50)

Combining eqs. (47) and (50) gives us

ΦD(τ) ≤ 2η

5
+ η

(
213ε4N

√
m

γ
+

218ε6NR
6

γ
√
m

)
‖Uτ − U0‖ . (51)
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Now observe

ΦD(τ) =
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥+ α‖Vτ − V0‖2

≥‖Uτ − U0‖2 + α‖Vτ − V0‖2 − 2‖Uτ − U0‖
∥∥∥U − U0

∥∥∥
≥‖Uτ − U0‖2 + α‖Vτ − V0‖2 − 2r

∥∥(aτ , Cτ )− (a,C)
∥∥ .

From the preceding quadratic inequality and eq. (62), we obtain

‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≤ 2r
∥∥(aτ , Cτ )− (a,C)

∥∥+ ΦD(τ)

≤ 2r
∥∥(aτ , Cτ )− (a,C)

∥∥+
2η

5
+ η

(
213ε4N

√
m

γ
+

218ε6NR
6

γ
√
m

)
‖Uτ − U0‖ .

Dividing both sides by
√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 gives us

√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≤

2r‖Uτ − U0‖√
‖Uτ − U0‖2 + α‖Vτ − V0‖2

+
η
(

2
5 +

213ε4N
√
m

γ +
218ε6NR

6

γ
√
m

)
‖Uτ − U0‖√

‖Uτ − U0‖2 + α‖Vτ − V0‖2

≤ 2r + η

(
2

5
+

213ε4N
√
m

γ
+

218ε6NR
6

γ
√
m

)
≤ R/2 +R/20 +R/8 +R/8

< R.

This a contradiction and thus for all time s ≤ t, we have that√
‖Us − U0‖2 + α‖Vs − V0‖2 < R

By eq. (50) and since R = γ1/3m1/6

27εN
, we get∑

s<τ

∣∣`′s(Ws)
∣∣ ≤ 4‖Uτ − U0‖

ηγ
√
m

≤ 4R

ηγ
√
m
≤ 222ε4N

γ2
.

Using the fact that 1y 6=sgn(f(x;Ws)) ≤ 2
∣∣`′(p(x, y,Ws))

∣∣ and corollary E.3, we get

tmin
s<t

Pr(y 6= sgn(f(x;Ws))) ≤
∑
s<t

Pr(y 6= sgn(f(x;Ws)))

=
∑
s<t

E[1{y 6=sgn(f(x;Ws))}]

≤ 1

2

∑
s<t

E(x,y)[
∣∣`′(−p(x, y,Ws))

∣∣]
≤ 2

∑
s<t

∣∣`′(−p(xs, ys,Ws))
∣∣+ 4 ln(1/δ)

≤ 223ε4N
γ2

+ 4 ln(1/δ).

Dividing by t gives the desired results.

F GRADIENT DESCENT

This section will be devoted to proving theorem 2.2. We first start by establishing some properties
regarding Rademacher complexity.
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F.1 RADEMACHER COMPLEXITY

In this section, we provide an upper bound for the Rademacher complexity of batch-normalized
networks which will be used to obtain test error guarantees for networks trained by GF.

We will utilize many of the techniques used in the proof of Telgarsky (2022, lemma C.5) though
some care is needed to take advantage of the additional constraint embedded in the hypothesis class:
‖V − V0‖ ≤ ρ for some ρ > 0.

Before presenting the lemma, we develop some notation. Let G ⊂ Rd → R and X = {(xi, yi)}i∈[n].
Define ∗ be the operation such that

G ∗ X := {(φ(x1), . . . , φ(xn)) |φ ∈ G}

In standard expositions for Rademacher complexity (e.g. Shalev-Shwartz & Ben-David (2014)) the
notiation ◦ is used in place of ∗ but we shall favor the usage of ∗ as ◦ will denote another operation
as indicated in lemma F.2.
Lemma F.1. Suppose data X = {(xi, yi)}i∈[n] is given. Consider the hypothesis class

H =

(x, y)→ y
∑
j∈[m]

ajσ(cj

〈
vj

N(vj)
, x− µ

〉
) :

∑
j∈[m]

∣∣∣∣∣ ajcjN(vj)

∣∣∣∣∣ ≤ B , ‖V − V0‖ ≤ ρ

 .

Then

Rad (H ∗ X ) ≤
4Bρ

∥∥∥X∥∥∥
n

≤ 4Bρ√
n
.

Proof. Define

ãj = sgn(aj) and c̃j = sgn(cj).

Let sconv denote the symmetric convex hull. Note

H =

(x, y)→ y
∑
j∈[m]

ajσ(cj

〈
vj

N(vj)
, x− µ

〉
) :

∑
j∈[m]

∣∣∣∣∣ ajcjN(vj)

∣∣∣∣∣ ≤ B , ‖V − V0‖ ≤ ρ


=

(x, y)→ y
∑
k∈[n]

∣∣∣∣ akckN(vk)

∣∣∣∣ ∑
j∈[m]

∣∣ajcj∣∣ ãj∑
k∈[n]

∣∣∣ akckN(vk)

∣∣∣σ(c̃j
〈
vj , x− µ

〉
) :

∑
j∈[m]

∣∣∣∣∣ ajcjN(vj)

∣∣∣∣∣ ≤ B , ‖V − V0‖ ≤ ρ


⊆ B

(x, y)→ y
∑
j∈[m]

pjσ(c̃j
〈
uj , x− µ

〉
) : p ∈ Rm , ‖p‖1 ≤ 1 , c̃j ∈ {±1} , ‖V − V0‖ ≤ ρ


⊆ B sconv

({
(x, y)→ yσ(c̃j

〈
vj , x− µ

〉
) : ‖V − V0‖ ≤ ρ , c̃j ∈ {±1}

})
.

Thus by standard facts from Rademacher Calculus (Shalev-Shwartz & Ben-David, 2014),

n · Rad

(
B sconv

({
(x, y)→ yσ(c̃j

〈
vj , x− µ

〉
) : ‖V − V0‖ ≤ ρ , c̃j ∈ {±1}

}
∗ X
))

≤ 2nBRad
({

(x, y)→ yσ(c̃j
〈
vj , x− µ

〉
) : ‖V − V0‖ ≤ ρ , c̃j ∈ {±1}

}
∗ X
)

≤ 2nBRad
({

(x, y)→ yc̃j
〈
vj , x− µ

〉
: ‖V − V0‖ ≤ ρ , c̃j ∈ {±1}

}
∗ X
)
. (52)

Let G :=
{

(x, y)→ y
〈
vj , x− µ

〉
: ‖V − V0‖ ≤ ρ , j ∈ [m]

}
.
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Then eq. (52) can be rewritten as

2nBRad
(
{G ∪ −G

}
∗X
)
≤ 4nBRad (G ∗ X )

= 4BEε sup
j∈[m]

sup
‖v−v0j‖≤ρj ,∑

k∈[m] ρ
2
k=ρ2

∑
i∈[n]

εi 〈v, yixi〉

= 4BEε sup
j∈[m]

sup
‖v−v0j‖≤ρj ,∑

k∈[m] ρ
2
k=ρ2

∑
i∈[n]

εi
〈
v − v0j , yixi

〉

= 4BEε sup
j∈[m]

sup
‖uj‖≤ρj ,∑
k∈[m] ρ

2
k=ρ2

∑
i∈[n]

εi
〈
uj , yixi

〉

= 4BEε sup
j∈[m]

sup
ρj :
∑

k∈[m] ρ
2
k=ρ2

ρj

∥∥∥∥∥∥
∑
i∈[n]

εiyixi

∥∥∥∥∥∥
= 4BEερ

∥∥∥∥∥∥
∑
i∈[n]

εiyixi

∥∥∥∥∥∥
≤ 4Bρ

∥∥∥X∥∥∥
F
.

where the last inequality follows from the fact that

Eε

∥∥∥∥∥∥
∑
i∈[n]

εiyixi

∥∥∥∥∥∥ ≤
√√√√√Eε

∥∥∥∥∥∥
∑
i∈[n]

εiyixi

∥∥∥∥∥∥
2

=

√
Eε
∑
i∈[n]

‖xi‖2 + Eε
∑
i 6=j

εiεj
〈
yixi, yjxj

〉
=
∥∥∥X∥∥∥

F
.

We will need a variation of the contraction lemma (also known as the peeling lemma) (Shalev-Shwartz
& Ben-David, 2014, lemma 26.9).
Lemma F.2. For each i ∈ [n], let φi : R → R be ρ - lipschitz on Ki ⊂ R. For a ∈ Rn, let
φ(a) =

(
φ1(a1), . . . , φn(an)

)
. Denote φ ◦ A = {φ(a) : a ∈ A}. Suppose additionally we have

A ⊂ K1 × · · · ×Kn. Then

Rad(φ ◦A) ≤ ρRad(A)

The proof of lemma F.2 follows directly from the proof of Shalev-Shwartz & Ben-David (2014,
lemma 26.9) and the observation that one only needs φi to be ρ-lipschitz on πi(A) where πi(a) = ai
for any vector a ∈ Rn. Thus, we defer the full proof to Shalev-Shwartz & Ben-David (2014, lemma
26.9).
Lemma F.3. In this section, we will control the squared gradient norm.∥∥∥∇UR̂(Ws)

∥∥∥2

≤ 175ε4Nm
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n∥∥∥∇V R̂(Ws)
∥∥∥2

≤ 8100ε4NR
4
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n

For any i ∈ [n], we have that

∥∥∇Upi(Ws)
∥∥2

=

∥∥∥∥∥∥
∑
j∈[m]

σ(cj

〈
vj

N(vj)
, xi

〉
)ej

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(1)

+

∥∥∥∥∥∥
∑
j∈[m]

ajoj |xi

〈
vj

N(vj)
, xi

〉
ej

∥∥∥∥∥∥
2

︸ ︷︷ ︸
(2)

32



Under review as a conference paper at ICLR 2024

Using lemma B.2

(1) ≤
∑
j∈[m]

(c′j)
2

(
v′j
Nj

)2

≤
∥∥c′∥∥2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤ (
∥∥c′ − c∥∥+‖c‖)2(2 + βV )2ρ2

N ε
2
N ≤ (R+

√
m)2(2 + βV )2(ρN εN )2

(2) ≤
∑
j∈[m]

(a′j)
2

∥∥∥v′j∥∥∥2

N(v′j)
2
≤
∥∥a′∥∥2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤
(∥∥a′ − a∥∥+‖a‖

)2

max
j

∣∣∣∣∣ v′jNj
∣∣∣∣∣
2

≤ (R+ 2)2(2 + βV )2ρ2
N ε

2
N

Therefore, ∥∥∇Upi(Ws)
∥∥2

= (1) + (2) ≤ 175ε4m

By lemma B.2.1 and lemma B.2.3

∥∥∇V pi(Ws)
∥∥2

=

∥∥∥∥∥∥
∑
j∈[m]

ajcjoj |xi

N(vj)

(
I −

Σvjv
T
j

N(vj)
2

)
ejxi

T

∥∥∥∥∥∥
2

≤
∑
j∈[m]

(a′j)
2(c′j)

2

N(v′j)
2

∥∥∥∥∥∥
(
I −

Σvjv
T
j

N(vj)
2

)
xi

∥∥∥∥∥∥
2

≤
∥∥a′∥∥2

max
j

∣∣∣c′j∣∣∣2
N(v′j)

2

∥∥∥∥∥∥
(
I −

Σvjv
T
j

N(vj)
2

)
xi

∥∥∥∥∥∥
2

≤ (R+ 2)2(R+ 1)2(ρN εN )2β2
Π

≤ 8100ε4NR
4

In addition, note that since
∣∣`′∣∣ ≤ 1, we have that

∑
i∈[n]
|`′i(Ws)|

n ≤ 1 which implies∑
i∈[n]

∣∣`′i(Ws)
∣∣

n

2

≤
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n
(53)

Consequently, by eq. (53)

∥∥∥∇UR̂(Ws)
∥∥∥2

=

∥∥∥∥∥∥
∑
i∈[n]

`′i(Ws)∇Upi(Ws)

∥∥∥∥∥∥
2

≤

∑
i∈[n]

∣∣`′i(Ws)
∣∣

n

2

max
k∈[n]

∥∥∇Upk(Ws)
∥∥2

≤

∑
i∈[n]

∣∣`′i(Ws)
∣∣

n

 175ε4Nm

Repeating the same argument, we get that

∥∥∥∇V R̂(Ws)
∥∥∥2

=

∥∥∥∥∥∥
∑
i∈[n]

`′i(Ws)∇V pi(Ws)

∥∥∥∥∥∥
2

≤ 8100ε4NR
4
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n
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Theorem F.4 (theorem 2.2). Suppose weights W = (a, c, V ) where (a, V ) ∼ Nm√
m
× Nm×d√

d
, c =

−→
1 ∈ Rm are given and assumption 1.2 holds, with corresponding (−→a ,

−→
C ,
−→
V ) ∈ Rm×Rm×Rm×d

and γ = γa + γc given.

Suppose width satisfies

m ∈

[
229ε3N ln3/2( 5nt

δ )

γ2
, δ exp(

d

8
)

]
,

and we set the learning rate to be η = 1
28εNγ2/3m1/3 .

With probability at least 1− 20δ, the SGD iterates (Ws)s≤t satisfy

• an upper bound on parameter movement,

max
s<t
‖Us − U0‖ = max

s<t

∥∥(as, cs)− (a0, c0)
∥∥ ≤ γ1/3m1/6

27εN
,

max
s<t
‖Vs − V0‖ ≤

1

2εN
,

• a test error bound,

min
s<t

Pr(sgn(f(x;Ws)) 6= y) ≤ 223ε4N
γ2t

+
4 ln(1/δ)

t
. (54)

Proof. By lemma C.2, with probability at least 1− 3δ,‖V T‖2,∞ ≤ 2,‖a‖ ≤ 2 , and maxj∈m
1

‖vj‖ ≤

5. Given that βV = 1
2εN

, let (ρN , βN , βΠ, εratio) be constants corresponding to V in lemma B.2.
Without loss of generality, assume εN ≥ 1. Then, we can simplify the constants:

ρN = 2, βN = 2ε2N , βΠ = 9εN , εratio = 2εN . (55)

Set radii R,RV , rescaling constant α, and manifold Γ as

R =
γ1/3m1/6

27εN
, RV = βV =

1

2
εN , α =

R2

β2
V

, Γ := {W ′ |
∥∥U ′ − U0

∥∥ < R ,
∥∥V ′ − V0

∥∥ < RV }.

Further, construct the following reference parameter

U = (a,C) = r
−→
U + U. (56)

Consider the first time τ such that√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≥ R. (57)

Assume contradictory that τ ≤ t and note that for all time s < τ , we have
‖Us − U0‖ < R and ‖Vs − V0‖ < RV = βV . (58)

Since Ws ∈ Γ, discarding 7δ failure probability, by lemma D.3,〈
U, ∂Upi(W

′)
〉
− pi(W ′) + α

〈
V − V ′, ∂V pi(W ′)

〉
≥ r(γ

√
m

2
) ≥ ln(5t). (59)

Expanding the square,∥∥∥Us+1 − U
∥∥∥2

+ α‖Vs+1 − V0‖2 =
∥∥∥Us − U∥∥∥2

+ α‖Vs − V0‖2

+ 2η

∑
i∈[n]

`′i(Ws)

n

〈
∂Upi(Ws), U − Us

〉
+ α

∑
i∈[n]

`′i(Ws)

n

〈
∂V pi(Ws), Vs − V0

〉
+ η2


∥∥∥∥∥∥
∑
i∈[n]

∂U `i(Ws)

∥∥∥∥∥∥
2

+ α

∥∥∥∥∥∥
∑
i∈[n]

∂V `i(Ws)

∥∥∥∥∥∥
2
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Rearranging the terms and taking the sum over s < τ , we have that

ΦD(τ) :=
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α‖Vτ − V0‖2

≤ 2η
∑
s<τ

∑
i∈[n]

`′i(Ws)

n

[〈
∂Upi(Ws), U − Us

〉
+ α

〈
∂V pi(Ws), Vs − V0

〉]
︸ ︷︷ ︸

(A)

+ η2
∑
s<τ


∥∥∥∥∥∥
∑
i∈[n]

∂UR̂(Ws)

n

∥∥∥∥∥∥
2

+ α

∥∥∥∥∥∥
∑
i∈[n]

∂V R̂(Ws)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
(B)

. (60)

By lemma D.3, convexity of `, and eq. (59), we can control the inner product term (A);

(A) = 2η
∑
s<τ

`′i(Ws)

n

[〈
U, ∂Upi(W

′)
〉

+ α
〈
V0 − V ′, ∂V pi(W ′)− pi(W ′)

〉]
≤ 2η

n

∑
s<τ

`

(〈
U, ∂Upi(W

′)
〉

+ α
〈
V0 − V ′, ∂V pi(W ′)

〉)
− `(Ws)

≤ 2η

n

∑
s<τ

`(ln(5t))− `i(Ws)

≤ 2η

n

∑
s<τ

1

5t
− `i(Ws)

≤ 2η

 τ

5t
−
∑
s<τ

`s(Ws)


≤ 2η

5
. (61)

Then by eq. (61), the rescaled Euclidean potential ΦD simplifies to∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥2

+ α‖Vτ − V0‖2

≤ 2η

5
+ η2

∑
s<τ


∥∥∥∥∥∥
∑
i∈[n]

∂UR̂(Ws)

n

∥∥∥∥∥∥
2

+ α

∥∥∥∥∥∥
∑
i∈[n]

∂V R̂(Ws)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
(B)

. (62)

By lemma E.1 , we can control the sum containing the squared gradient norm terms:

(B) = η2
∑
s<τ

175ε4Nm
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n
+ α8100ε4NR

4
∑
i∈[n]

∣∣`′i(Ws)
∣∣

n

 (63)

≤ η2(211ε4Nm+ 216αε4NR
4)
∑
s<τ

∑
i∈[n]

∣∣`′i(Ws)
∣∣

n
(64)

≤ η2(211ε4Nm+ 216ε6NR
6)
∑
s<τ

∑
i∈[n]

∣∣`′i(Ws)
∣∣

n
. (65)

To control
∑
s<τ

∑
i∈[n]
|`′i(Ws)|

n , we use the perceptron argument
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‖Uτ − U0‖ = sup
‖U‖≤1

〈U,Uτ − U0〉

≥
〈
U,Uτ − U0

〉
≥

〈
U, η

∑
s<τ

−`′i(Ws)
〈
U, ∂Upi(Ws)

〉〉

≥ η γ
√
m

4

∑
s<τ

∣∣`′i(Ws)
∣∣ .

Rearranging gives

∑
s<τ

∣∣`′i(Ws)
∣∣ ≤ 4‖Uτ − U0‖

ηγ
√
m

. (66)

Combining eqs. (63) and (66) gives us

ΦD(τ) ≤ 2η

5
+ η

(
213ε4N

√
m

γ
+

218ε6NR
6

γ
√
m

)
‖Uτ − U0‖ . (67)

Now observe

ΦD(τ) =
∥∥∥Uτ − U∥∥∥2

−
∥∥∥U0 − U

∥∥∥+ α‖Vτ − V0‖2

≥‖Uτ − U0‖2 + α‖Vτ − V0‖2 − 2‖Uτ − U0‖
∥∥∥U − U0

∥∥∥
≥‖Uτ − U0‖2 + α‖Vτ − V0‖2 − 2r

∥∥(aτ , Cτ )− (a,C)
∥∥ .

From the preceding quadratic inequality and eq. (62), we obtain

‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≤ 2r
∥∥(aτ , Cτ )− (a,C)

∥∥+ ΦD(τ)

≤ 2r
∥∥(aτ , Cτ )− (a,C)

∥∥+
2η

5
+ η

(
213ε4N

√
m

γ
+

218ε6NR
6

γ
√
m

)
‖Uτ − U0‖ .

Dividing both sides by
√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 gives us

√
‖Uτ − U0‖2 + α‖Vτ − V0‖2 ≤

2r‖Uτ − U0‖√
‖Uτ − U0‖2 + α‖Vτ − V0‖2

+
η
(

2
5 +

213ε4N
√
m

γ +
218ε6NR

6

γ
√
m

)
‖Uτ − U0‖√

‖Uτ − U0‖2 + α‖Vτ − V0‖2

≤ 2r + η

(
2

5
+

213ε4N
√
m

γ
+

218ε6NR
6

γ
√
m

)
≤ R/2 +R/20 +R/8 +R/8

< R.

This a contradiction and thus for all time s ≤ t, we have that√
‖Us − U0‖2 + α‖Vs − V0‖2 < R

By eq. (66) and since R = γ1/3m1/6

27εN
, we get∑

s<t

∑
i∈[n]

1

n

∣∣`′i(Ws)
∣∣ ≤ 4‖Uτ − U0‖

ηγ
√
m

≤ 4R

ηγ
√
m
≤ 222ε4N

γ1/3
.
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Dividing both sides by t, we obtain

inf
s∈[0,t]

∑
i∈[n]

−`′i(Ws)

n
≤ 222m1/3ε4N

γ1/3t
.

Let ρ ∈ (0, 1). We will first show that g(z) = −`′(z) is ρ-lipschitz on the interval [g−1(ρ),∞). To
show this, we will show the uniform bound

∣∣g′∣∣ ≤ ρ on the interval [g−1(ρ),∞). Note that∣∣g′(z)∣∣ =
exp(z)(

1 + exp(z)
)2 .

which is monotonically decreasing on the interval [g−1(ρ),∞). Therefore,
∣∣g′(z)∣∣ is the largest when

z = g−1(ρ). Since g−1(z) = ln( 1
z − 1),

sup
z∈[g−1(ρ),∞)

∣∣g′(z)∣∣ =
∣∣∣g′(g−1(ρ))

∣∣∣ =
ρ−1 − 1

ρ−2
≤ ρ. (68)

For the remainder of the proof, let ρ = 4R
γ
√
m

. Now define our hypothesis class as

H =

(x, y)→ y
∑
j∈[m]

ajσ(cj

〈
vj

N(vj)
, x− µ

〉
) : W ∈ Γ ,max

i
−`′(pi(W )) ≤ ρ

 .

Since g ∈ [0, 1], we can apply Shalev-Shwartz & Ben-David (2014, theorem 26.3) to get, with
probability at least 1− δ,

sup
h∈H

Ez=(x,y)

[
g(h(z))

]
− 1

n

∑
i∈[n]

g(h(zi))

 ≤ 2Rad(g ◦ H ∗ X ) + 3

√
ln(2/δ)

2n
. (69)

To control 2Rad(g ◦ H ∗ X ), we first note thatH ◦ X ⊂ [g−1(ρ),∞)d. Furthermore, g is ρ-lipschitz
on [g−1(ρ),∞) by eq. (68) and thus we can invoke lemma F.2 to get

Rad(g ◦ H ∗ X ) ≤ ρRad(H ∗ X ).

We shall bound Rad(H ∗ X ) by invoking lemma F.1. To this end, first note that for any W ′ ∈ Γ,∥∥a′∥∥ ≤∥∥a′ − a0

∥∥+‖a0‖ ≤ R+ 2 ≤ 10,∥∥c′∥∥ ≤∥∥c′ − c0∥∥+‖c0‖ ≤ R+
√
m ≤ 2

√
m.

Therefore, for any W ′ ∈ Γ

∑
j∈[m]

∣∣∣a′jc′j∣∣∣
N(v′j)

≤
∥∥a′∥∥∥∥c′∥∥ εN ≤ 20εN

√
m.

Furthermore, W ′ ∈ Γ implies
∥∥V ′ − V ∥∥ < RV = 1

2εN
. Therefore, by lemma F.1, we have

Rad(H ∗ X ) ≤ 40
√
m√
n

.

Thus, recalling that ρ = 4R
γ
√
m

= 32
γ
√
m

, eq. (69) simplifies to

sup
h∈H

Ez=(x,y)

[
g(h(z))

]
− 1

n

∑
i∈[n]

g(h(zi))

 ≤ 80
√
mρ√
n

+ 3

√
ln(2/δ)

2n
(70)

≤ 2560

γ
√
n

+ 3

√
ln(2/δ)

2n
. (71)
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Finally, using the fact that Pr(y 6= f(x;W )) ≤ 2Ez=(x,y)

[
g(yf(x;W ))

]
and rearranging eq. (70),

inf
s≤t

Pr(y 6= f(x;Wt)) ≤ inf
s≤t

2Ez=(x,y)

[
g(yf(x;Wt))

]
≤ 2

n

∑
i∈[n]

g(yif(xi;Wt)) +
2560

γ
√
n

+ 3

√
ln(2/δ)

2n

≤ 32

γn
√
m

+
2560

γ
√
n

+ 3

√
ln(2/δ)

2n

≤ 211

γ
√
n

+ 3

√
ln(2/δ)

2n
.

G COMPUTATION OF BN MARGIN ON DYADIC DATASET

In this section, we provide a proof of proposition 1.1.

Proof. Recall the dyadic dataset. Let e1, . . . , ed ∈ Rd denote the standard basis vectors.

(xj , yj) = (2−jej ,+1), j ∈ {1, . . . , d}
(xj , yj) = (−2−j+dej−d,−1), j ∈ {d+ 1, . . . , n}

Then the covariance matrix Σ satisfies

Σij =

{
0 i 6= j
2−2j

d i = j

Now consider the vector u = (2, 4, . . . , 2d) and define the unit vector
→
u := u

‖u‖ . We note that
→
u is

the max margin linear predictor for the dataset. Furthermore, the margin satisfies

γlinear := min
i∈[2d]

yix
T

i

→
u =

1√∑d
r=1 22r

=
1√

4d+1−1
4−1 − 1

=

√
3

4d+1 − 4
≤
√

3

4d+1
.

Consider the infinite network

x→ E[sgn(
→
u
ᵀ
v)σ(

vᵀx

‖v‖Σ
)].

Let M be the orthonormal matrix M ∈ Rd×d such that its first column is
→
u and the second column is

(I−→u→u
ᵀ

)x∥∥∥(I−→u→u
ᵀ

)x
∥∥∥ , and the remaining columns be any vectors such that M is orthonormal. Consequently,

letting r2 =

√
‖x‖2 − (

→
u
ᵀ
)2, matrix M satisfies

M
→
u = e1 Mx = e1

→
u
ᵀ
x+ r2e2. (72)

By rotational invariance of gaussians, eq. (72), and since‖Mv‖ =‖v‖,

E[y sign(
→
u
ᵀ
v)σ(

vᵀx

‖v‖Σ
)] = E[ysgn(v1)σ(

v
→
u
ᵀ
xy2 + v2r2

‖Mv‖Σ
)] (73)

= Eysgn(v1)=1
v2≥0

[
σ(|v1|

→
u
ᵀ
xy + v2r2)− σ(|v1|

→
u
ᵀ
xy + v2r2)

‖Mv‖Σ
] (74)

+ Eysgn(v1)=1
v2≥0

[
σ(|v1|

→
u
ᵀ
xy − v2r2)− σ(−|v1|

→
u
ᵀ
xy − v2r2)

‖Mv‖Σ
]. (75)
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Inspecting the signs of the ReLU argument, we see that the first ReLu argument is positive, exactly
one of the second and third argument is postive, and the fourth argument is negative. Therefore, the
eq. (73) simplifies to

E[y sign(
→
u
ᵀ
v)σ(

vᵀx

‖v‖Σ
)] = 2Eysgn(v1)=1

v2≥0

[
|v1|

→
u
ᵀ
xy

‖Mv‖Σ
] =

1

2
E[
|v1|

→
u
ᵀ
xy

‖Mv‖Σ
].

Finally, noting that
→
u
ᵀ
xy ≥ γlinear and E[ |v1|

‖Mv‖Σ
] ≥

√
d

10 grants

E[y sign(
→
u
ᵀ
v)σ(

vᵀx

‖v‖Σ
)] ≥ 1

20
γlinear.

39


	Introduction
	Contributions
	Related Work
	Notation
	Margin for batch-normalized networks

	Formal statements and proof sketches
	Conclusion and open problems
	Experiments
	Estimation of a and c on CIFAR-10
	Methods

	 Data semi-norm  and Normalization factors
	Gaussian Concentration
	Alignment
	Stochastic gradient descent 
	Gradient Descent
	Rademacher complexity

	Computation of BN margin on Dyadic Dataset

