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ABSTRACT

Class incremental learning (CIL) aims to develop an open intelligence system
that can continuously learn new concepts from new tasks while retaining the
knowledge to distinguish between new and old concepts. Recently, parameter-
additional-tuning methods (PAT) have successfully alleviated catastrophic forget-
ting by starting from a well-pre-trained model and only allowing a few additional
parameters to be trained. However, the contradiction between stability and plas-
ticity and the lack of inter-task features still challenge PAT-based CIL methods.
To address these, we propose unified PAT and basic memory replaying (BMR).
On the one hand, unified PAT transfer the model to sequential arrival downstream
tasks based on a fixed pre-trained vision transformer by unifying the prompt-based
and the adapter-based methods, offering more diversified plastic structures to effi-
ciently capture more useful features without large-scale parameters. On the other
hand, BMR synthesizes on-call virtual old samples with a fixed-size basic mem-
ory to create a global task that covers up all the sub-tasks, which makes inter-task
features more learnable without a large memory budget. Abundant experiments
prove the effectiveness of our method.

1 INTRODUCTION

Deep learning models are specialized in individual tasks but lack the open learning ability to deal
with other new tasks, which is very different from human beings. To address this problem, class
incremental learning (CIL) (Rebuffi et al. (2017)) attempts to develop an open artificial intelligence
system that can continuously learn new concepts from new tasks, while retaining the knowledge
learned from previous tasks and the ability to distinguish all the categories seen so far. However,
class incremental learning is much more difficult due to catastrophic forgetting (McCloskey & Co-
hen (1989)), meaning deep learning models’ performance of previous tasks degrades sharply when
transferred to new tasks.

Most existing CIL works would like to fine-tune the entire model over all learning phases, which
inevitably results in much forgetting since the decisive parameters for earlier tasks are very likely
to be overwritten. Though this forgetting can be resisted by replaying the seen data (Rebuffi et al.
(2017); Liu et al. (2020); Xin et al. (2021)), the performance of these approaches is still limited.
At the same time, as the number of learned categories increases, the memory overhead required for
replaying will become unacceptable for practical application.

In transfer leaning, instead of training the entire backbone, parameters-additional-tuning (PAT)
methods (Ding et al. (2022)) focus on tuning additional lightweight parameters to adapt one large-
scale pre-trained model to downstream tasks while keeping the pre-trained backbone frozen. There
are two main proven PAT methods for tuning on downstream tasks based on Vit (Dosovitskiy et al.
(2021)): prompt and adapter. As shown in the left picture of Figure 1, prompt-based PAT (Gao et al.
(2021)) prepends additional tunable prefix tokens to the input or hidden layer and trains these soft
prompts when tuning on downstream tasks. As shown in the middle picture of Figure 1, adapter-
based PAT (Houlsby et al. (2019)) inserts small neural modules called adapters to each layer of the
pre-trained Vit and only the adapters are trained at tuning time.

PAT naturally achieves the balance of stability and plasticity by making full use of the stable pre-
trained model and effectively transferring the additional parameters to downstream tasks, which is
inherently suitable for incremental learning. Recent studies (Wang et al. (2021; 2022)) have shown
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Figure 1: Illustration of the transformer architecture and state-of-the-art parameter-additional-tuning
methods and UPAT. Left: Prompt-based methods only tune the additional prompt tokens concate-
nated with class embedding tokens (CLS) and image tokens from the embedding layer. Middle:
Adapter-based methods only tune an additional small module which consists of two linear layers
for down sampling and up sampling, a non-linear function Relu and a scaling factor. Right:UPAT
combines prompt-based structures and adapter-based structures.

that prompt-based CIL methods can obtain state-of-the-art results without replaying old samples.
However, only prompt tokens are not plastic enough for their too few parameters and single struc-
tures, which limits the performance of prompt-bassed PAT. Since adapter-based methods remain
unproven for CIL, we introduce adapter to CIL and propose UPAT (unified parameters-additional-
tuning) as shown in the right picture of Figure 1 to further enhance the plasticity of PAT-based CIL
methods which enrich the structures of PAT by unifying prompt and adapter to learn more useful
features. In the meantime, to maintain the stability of UPAT, a feature distillation loss term is also
injected into the total learning loss which minimizes the distance between the representation output
from the new learning model and the representation output from the pre-trained model. Experiments
show that UPAT can effectively increase the upper limit of PAT-Based CIL with basic memory re-
playing that we introduce next.

Although memory is no longer a necessary element of PAT-based CIL methods to prevent forgetting,
when the model sequentially learns individual subtasks without any memory, the lack of inter-task
features becomes a serious problem that limits PAT methods. Instead, when memory is preserved,
inter-task supervision can be easily and implicitly introduced into the global classification tasks.
Therefore, we believe that memory is still necessary for PAT-based CIL to learn inter-task knowl-
edge. The key question is how to efficiently offer memory to introduce inter-task supervision while
limiting the memory budget simultaneously. Some works (Zhai et al. (2019)) try to generate old
samples by a high-capacity auxiliary network. They can somehow be regarded as data-free mem-
ory replaying methods, but these generative networks suffer from high complexity in both space
and time. Different from these works, we design a novel basic memory replaying (BMR) manner,
which only remembers a fixed-size basic memory and plays them by a simple linear combination
with trainable synthesis coefficients. BMR only relies on only one main backbone and some coef-
ficients to produce pictures which saves a lot of space budget. BMR distributes the virtual pictures
in the representation space by maximizing the similarity between their embeddings and the example
prototypes that are optimized by maximum similarity loss, which strengthens the supervision for
inter-task representation learning. The experimental results show that BMR can further improve
UPAT by effectively offering inter-task supervision.

In summary, we make the following contributions: (1) We propose UPAT, a unified tuning network
that combines previous prompt-tuning and novel adapter-tuning for CIL, which enhances the plas-
ticity by enriching the feature structures and maintaining stability by a simple feature distillation.
(2) We emphasize that data-free PAT-based CIL lacks the inter-task features, and adopt BMR to offer
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inter-task supervision without a large memory budget. (3) Combining UPAT and BMR, our method
significantly outperforms other state-of-the-art PAT-based methods in the CIL scenario.

2 RELATED WORK

2.1 CLASS INCREMENTAL LEARNING

Class incremental learning (CIL) (Rebuffi et al. (2017)) is a difficult scenario of incremental leaning.
It not only requires that the model should not forget the knowledge of learned tasks when learning
new tasks but also does not provide task ID when predicting, that is, the new and old categories
should be put together for classification. CIL is dominated by three categories of methods:replaying-
based, distillation-based, and parameter-isolation-based. Replaying-based methods replay original
or synthesized samples to preserve knowledge learned from old tasks (Rebuffi et al. (2017); Liu
et al. (2020); Xin et al. (2021); Iscen et al. (2020); Welling (2009); PourKeshavarzi et al. (2022)).
Distillation-based methods distill the current model with the previous model as the teacher to main-
tain stability (Li & Hoiem (2017); Hou et al. (2019); Douillard et al. (2020)). Parameter-isolation-
based methods are dedicated to each task to protect the model from any possible forgetting (Mallya
& Lazebnik (2018); Serra et al. (2018); Rusu et al. (2016); Aljundi et al. (2017)).

2.2 PARAMETER ADDITIONAL TUNING

Parameter-additional-tuning (PAT) (Ding et al. (2022)) is first proposed in NLP for parameter-
efficient transfer learning. It aims to transfer the large-scale pre-trained model to downstream tasks
by a few tunable parameters without adjusting the pre-trained model. The most popular PAT meth-
ods can be categorized into prompt-based methods and adapter-based methods. The adapter-based
methods inject tiny modules to the feed-forward networks in each transformer layer and get compet-
itive performance on downstream tasks by only training these tiny modules (Houlsby et al. (2019);
Karimi Mahabadi et al. (2021); Rücklé et al. (2021)). These prompt-based methods do not inject
neural modules into the Transformer model, but instead, learn new input tokens for the Transformer
backbone, and have achieved good performance in various NLP tasks compared with fine-tuning
methods (Gao et al. (2021); Li & Liang (2021); Hu et al. (2022)). L2P and DualPrompt introduce
the prompt-based method to the CIL field and also produce remarkable results. Instead, IPT (Deng
et al. (2022)) introduces prototype tuning to CIL, which is also a kind of PAT method that only tunes
additional prototypes and keeps the pre-trained model frozen. Different from the above methods, our
work first introduces an adapter to CIL and unifies the above methods to enrich the PAT structures
for class incremental tuning.

3 PRELIMINARY

3.1 PROBLEM DEFINTION

Given two stream of dataset {X1, X2, · · · , Xy} and {D0, D1, · · · , Dt}. Xy = {xy
1, x

y
2, · · · , xy

ny
}

consists of all samples belonging to class y. Dt = {Xst+1, Xst+2, · · · , Xst+1}, where Di ∩Dj =
∅, for any i ̸= j and st represents the total number of categories learned before phase t. The
classification requirements of class incremental learning in training and testing are different. During
training at phase t, Dt is the only accessible original dataset. During testing at phase t, the trained
model is required to classify totally st+1 seen categories.

3.2 TUING WITH EXAMPLE PROTOTYPES

BMR learns new example prototypes for each new class in the same way as IPT to alleviate semantic
drift. To enrich the diversity of example prototypes, for each class i, its Ne example prototypes ei are
initialized by k-means clustering from sample embeddings and optimized by maximum similarity
loss (MSL) LMS :

Lt
MS(x) = 1−max

j
(< Φ(x, θ), ejg(x) >), (1)
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where θ means the frozen pre-trained parameters, < Φ(x, θ), ejg(x) > means the cosine similarity
between the embedding of sample x and the j-th example prototype of class g(x) that sample x truly
belongs to and x ∈ Dt.

Example prototypes can effectively reduce high-level forgetting (semantic drift) by constraining the
category prototypes for each class with the prototypes classification loss:

Lt
CP (e

j
i ) = −

st+1∑
k=1

ŷk(e
j
i ) log yk(e

j
i ), (2)

where i ∈ [1, st+1] ∩N+,

[yk(e
j
i )]

T = softmax([< eji , ck >]T ), (3)

k ∈ [1, st+1]∩N+, ck means the k-th class’s category prototypes and ŷk(e
j
i ) means the label of eji .

Besides high-level forgetting, BMR further applies example prototypes to reduce lower-level forget-
ting (features forgetting) by the way described in Section 4.

4 METHODOLOGY

Figure 2: Overview of the proposed framework. There are three training stages for BMR. In
the first stage, example prototypes are trained by LMS . In the second stage, basic memory and
synthesis coefficients are trained by LSS . In the final stage, only the additional parameters and
category prototypes are trainable and they are optimized by LFD, LCP , LCS , and LCM .

4.1 OVERVIEW OF THE FRAMEWORK

The framework of our method is shown in Figure 2. The entire model consists of a fixed pre-
trained transformer, category prototypes for classification, example prototypes for semantic drift
compensation, additional parameters for efficient tuning, and the basic memory with each example’s
synthesis coefficients for on-call replaying. On the whole, the framework loops with three sequential
training stages. In the first training stage, only new example prototypes are optimized by LMS

which minimizes the cosine distance between example prototypes and image embeddings produced
by the pre-trained transformer. In the second training stage, basic memory and each example’s
synthesis coefficients are trained by LSS which minimizes the cosine distance between synthesized
image embeddings and target example prototypes. In the final training stage, virtual old samples are
synthesized by the BMR. Virtual samples and new task samples are separately sent to the network.
The additional parameters and category prototypes are trained by the classification loss of virtual
samples, new task samples, and prototypes samples as well as the feature distillation loss term.
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4.2 TUNING WITH UNIFIED PAT STRUCTURES AND FEATURE DISTILLATION

PAT is a promising paradigm to make a good trade-off between stability and plasticity for incremen-
tal learning. For plasticity, PAT has been proved that can achieve similar performance to fine-tuning
when it transfer pre-trained Vit to downstream tasks. For stability, PAT works with fewer addi-
tional parameters without tuning the entire model. In this section, to further improve the plasticity
and stability of PAT for incremental learning, we introduce adapter to CIL and unify prompt-based
structures and adapter-based structures to make the backbone more plastic. We also introduce a
distillation loss to stabilize the representation.

Unified PAT structures. As shown in Figure 1, we combine two common structures of additional
parameters for Vit including prompt-based and adapter-based. Let the input tokens to the i-th trans-
former layer be xi ∈ RLD. Original Transformer layer (Layer) is denoted by:

xi+1 = Layer(xi), (4)
Layer(xi) = MLP (LN(hi(xi))) + hi(xi), (5)
hi(xi) = MHSA(LN(xi)) + xi. (6)

MHSA and LN respectively represent multi-head-self-attention and layer normalization. We first
concatenate extra trainable tokens pt with image tokens x′

1 and class embedding ct as the input to
the first transformer layer in the same way as prompt-based methods:

x1 = Concatenate(x′
1, pt, ct), (7)

where x′
1 ∈ R(HW )D, pt ∈ RPD, ct ∈ R1×D. (8)

Then, we modify the Equation 5 for each transformer layer in the same way as adapter-based meth-
ods:

TL(xi) = MLP (LN(hi(xi))) +Adapter(LN(hi(xi))) + hi(xi) (9)

The Adapter module is defined by followed formulation:

Adapter(x) = Linearup(Relu(Lineardown(x)))× scaling (10)

where Linearup is an up-sample linear layer and Lineardown is a down-sample linear layer.

Distilling from the pre-trained model. Adding the extra parameters to the pre-trained backbone
risks the instability of the representation. To address this, feature distillation loss is introduced by
distilling from the pre-trained model:

LFD(x) = 1− < Φ(x, θ),Φ(x, θ, γ) >, (11)

where γ represents all the extra parameters including adapters and prompt tokens and θ means the
frozen pre-trained parameters.

4.3 TUNING WITH BASIC MEMORY REPLAYING

As shown in the experiment results in Section 5.2, although unified PAT with distillation from the
pre-trained model can significantly improve the performance, it still performs mediocrely for smaller
split CIL settings compared to the IPT baseline. We believe that is caused by the lack of inter-task
features. Since the model only learns new knowledge from the sequential arriving individual sub-
tasks, it is difficult to get more useful features to distinguish inter-task concepts. The key to address-
ing this problem is to construct inter-task supervision. Replaying with buffer memory that consists
of original samples is an effective method to construct inter-task supervision. However naive mem-
ory replaying (NMR) requires at least one example for each class, bringing a large uncontrollable
memory budget, which may not meet the requirements of practical application (Naive memory re-
playing means selecting several original samples for each class from old data, the selective method
is to choose the closest samples to the example prototypes). Therefore, we propose a novel replay-
ing strategy basic memory replaying (BMR) to introduce inter-task supervision. BMR only stores
a small, fixed-size basic memory and replays the same number of synthesized samples as example
prototypes for each class in an on-call manner by a simple linear combination with synthesis co-
efficients. It is worth noting that synthesis coefficients do not need to be stored after eacn phase’s
training while basic memory will not grow with the increase of the number of categories. The size
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of synthesis coefficients is st+1 × Ne × Nb at phase t and the total size parameters trained in the
second training stage is Nb ×C ×H ×W + st+1 ×Ne ×Nb, which is much smaller than the size
of total synthesized images st+1 × Ne × C ×H ×W when s(t + 1) increases to a large number.
This help saves the memory budget and speeds up the second training stage.

Basic memory is the set of Nb basic samples Bm ∈ RCHW that is the same shape as the original
sample x ∈ RCHW inputted to the network. It synthesizes virtual samples vjk ∈ RCHW by a linear
combination with synthesis coefficients sjmk ∈ R:

vjk =

Nb∑
m=1

sjmc Bm, (12)

where vjk means the j-th virtual samples of the k-th class, k ∈ [1, st+1] ∩N+ and j ∈ [1, Ne] ∩N+.
In the second stage, BMR attempts to optimize basic memory and synthesis coefficients by the
following synthesis similarity loss:

LSS(e
j
k) = 1− < Φ(vjk, θ), e

j
k > . (13)

LSS aims to maximize the similarity between synthesized samples and example prototypes in the
representation space. To learn useful inter-task features, the distribution of the synthesized samples
neads to be similar to the real distribution of original samples. Since example prototypes have been
diversified by the k-means initialization and maximum similarity loss (MSL) to cover the distribution
of original samples in the representation space, LSS can ensure the representativeness of the virtual
samples for simulating the real distribution. Note that the θ here is frozen.

Tuning with on-call basic memory replaying. After basic memory and synthesis coefficients of
each prototype are trained into a steady state, BMR uses Equation 12 to generate Ne × St+1 virtual
samples vjk for each class to construct a super-task that covers all the class seen so far at phase t. In
the final training stage, the total tuning loss is formulated:

Ltuning = λ1LCS + λ2LCP + λ3LCV + λ4LFD, (14)

where LCS is the classification loss of new samples, LCV is the classification loss of synthesized
virtual samples, and λp, p ∈ [1, 4] ∩ N+ are the adjustable hyperparameters to balance sub-loss
items. At each phase t, we formulate Lt

CS and Lt
CV as:

Lt
CS(x) = −

st+1∑
i=st+1

ŷi(x) log yi(x), (15)

Lt
CV (v

j
k) = −

st+1∑
i=1

ŷi(v
j
k) log yi(v

j
k), (16)

where [yk(x)]
T = softmax([< Φ(x, θ, γ), ck >]T ), (17)

x ∈ Dt, k ∈ [1, st+1] ∩N+ and j ∈ [1, Ne] ∩N+.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Datasets. We perform our experiments on CIFAR-100 (Krizhevsky et al. (2009)), Stanford-Cars
(Krause et al. (2013)) and Oxford-Flower(Nilsback & Zisserman (2008)). CIFAR-100 consists of
60000 32 × 32 color images that belong to 100 classes. There are 500 training images and 100
testing images per class. The Stanford Cars dataset consists of 196 classes of cars with a total of
16,185 images that are divided into 8,144 training images and 8,041 testing images which are in
the shape of 360 × 240. Oxford-Flower is an image classification dataset consisting of 102 flower
categories. Each class consists of between 40 and 258 images.

Benchmark protocol. We evaluate our method under different phase settings. For CIFAR-100, we
evaluate the proposed methods under 5, 10, and 25 phases settings. For Stanford-Car, the settings
are 7, 14, and 49 phases. For Oxford-Flowers, the settings are 6 and 17 phases. Because PAT-based
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CIL methods do not train the entire model, the fine-tuning upper bound is not suitable for PAT-based
methods. So we adopt the 1 phase setting as the upper bound for all the PAT-based methods.

Metrics. We report the two standard metrics to measure the quality of CIL: final accuracy (Final
Acc) and the average of forgetting (AF). Supposed the accuracy of task i at phase t is Ai

t and the
accuracy of all the classes that have been learned at phase t is A1:t

t . Final accuracy is just defined
as the accuracy at the last phase T : AT . Average forgetting is to estimate the forgetting of previous
tasks which is defined as:

1

T

T∑
i=1

(Ai
i −Ai

T ) (18)

Implementation details. We implement our method in PyTorch with RTX 3090 GPUs. All the
results are based on VitB/16 or VitL/14 pre-trained in CLIP (Radford et al. (2021)). SGD is used
for optimization with a base learning rate of 0.01. All the gradients are clipped into the range of 5
to 100 to accelerate training. The model is trained for 20 epochs in the first stage, 10 epochs in the
second stage, and 10 epochs in the final stage on CIFAR-100. On Stanford-Cars, the numbers of
epochs at sequential stages are 40, 20, and 20. On Oxford-Flowers, the numbers are also 40, 20, 20.
Our code will be open source after review.

5.2 ABLATION STUDY

Table 1: Main ablation results (final accuracy) on CIFAR-100, Stanford-Cars, and Oxford-
Flowers. We compare different memory management methods (Mem Management) including BMR,
NMR(naive memory replaying), and no memory (NO). We report the results of NMR that use 1 and
10 samples per class. Results are reported under different phase settings. Note that we regard the
result of the 1 phase setting as the different upper bounds of different tuning structures. ”Fixed”
structure means keeping the backbone frozen with no additional parameters. All results are based
on the same VitB/16 pre-trained on CLIP400M by CLIP with 10 example prototypes.

Dataset Metric Tuning Structure Fixed UPAT UPAT UPAT UPAT
Mem Management No No BMR NMR NMR

CIFAR-100 Final Acc

phase=1 81.52 88.66 88.6 88.67 88.64
phase=5 77.67 80.37 81.77 80.72 82.61

phase=10 76.13 77.98 80.06 78.99 81.56
phase=25 76.11 76.46 78.01 77.14 80.88

buffer size 0 0 10 100 1000

Stanford-Cars Final Acc

phase=1 85.94 87.84 86.81 87.78 87.82
phase=7 81.18 81.74 82.26 82.88 83.74

phase=14 79.99 81.67 82.12 82.72 83.65
phase=49 79.62 79.92 81.80 80.34 83.45

buffer size 0 0 10 198 1980

Oxford-Flowers Final Acc
phase=1 97.35 97.72 97.63 97.69 97.74
phase=6 92.80 93.54 94.44 94.75 95.89

phase=17 93.01 93.30 95.53 94.50 95.85
buffer size 0 0 10 102 1020

Main Ablation The proposed method is comprised of three components: example prototypes,
UPAT(unified-parameter-additional-tuning), and BMR(basic memory replaying). Here we analyze
the effect of these components. Note that we regard the result of the 1 phase setting as the different
upper bounds of different tuning structures. From the results of Table 1 and and Figure 3, we make
the following observations: (1) UPAT significantly improves the IPT baseline (fixed backbone +
example prototypes) under larger split setting such as 5 phases and 10 phases settings of CIFAR-100
by capturing more useful features. (2) UPAT performs mediocrely compared with the IPT baseline
under small task setting such as 25 phases settings of CIFAR-100 and 49 phases settings of Stan-
ford Car because the positive impact of the new features learned from small tasks is not enough to
cover up the negative impact of forgetting. (3) BMR successfully constructs inter-task supervision
for UPAT to learn more inter-task features while reducing intra-task forgetting, which is reflected
by the improvement of final accuracy and higher representation separability as shown in Figure 3.
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(4) Compared with NMR, BMR achieves competitive performance with a fixed-size buffer memory
and is even better than the NMR uses about ten times bigger buffer size.

Figure 3: T-SNE(Van der Maaten & Hinton (2008)) of 10 classes that belong to different phases
on CIFAR-100. Compared to pre-trained and UPTA, BMR significantly improves the inter-phase
performance of UPAT.

Table 2: Ablation results of UPAT on CIFAR-100, Stanford-Cars, and Oxford-Flowers. We study
the prompt structure and adapter structure’s effect for UPAT as well as feature distillation (FD). We
study their effect with BMR and no memory (No). All results are based on the same VitB/16 pre-
trained on CLIP400M by CLIP with 10 example prototypes.

Phase 10 14 17
Dataset CIFAR-100 Stanford-Cars Oxford-Flowers

Memory Management Prompt Adapter FD Final Acc Final Acc Final Acc
No ! # ! 77.02 81.52 93.59
No # ! ! 77.54 79.97 93.51
No ! ! # 77.61 25.79 90.76
No ! ! ! 77.98 79.92 93.30

BMR ! ! # 80.13 66.53 95.09
BMR ! # ! 76.09 80.76 94.45
BMR # ! ! 78.59 81.84 95.52
BMR ! ! ! 80.06 82.12 95.53

Ablation of UPAT. UPAT consists of prompt tokens, adapters, and feature distillation (FD). Here we
study the effect of these elements. From the results in Table 2, we make the following conlusions: (1)
Prompt-tuning has more single structures and fewer parameters than adapter-tuning, which brings
more stability but less plasticity. When there is no memory used, the positive impact from the
strong stability of prompt-tuning covers up the negative impact from the weak plasticity, so prompt-
tuning may even be better than adapter-tuning or UPAT such as the results of 14 phases setting
on Stanford Car. However, when some memory makes up for the weaker stability of the adapter
and UPAT, prompt-tuning will be no longer better than the adapter and UPAT. Therefore, the upper
limit of prompt-tuning is lower than that of the adapter and UPAT. (2) Feature distillation effectively
improves performance when there is no memory used. Feature distillation also helps the training
stability of UPAT. There may be problems with training stability without feature distillation, taking
the results of 14 phases on Stanford-Cars for example. (3) UPAT is consistently better than prompt
and adapter on different datasets with BMR memory management. UPAT offering richer structures
to strengthen the plasticity for incremental representation learning. (4) For the low plasticity of the
structure of prompt-tuning, the synthetic sample brought by BMR is more like a noise than effective
inter-task supervision to some extent, which reduces the performance of prompt-tuning.
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Table 3: Comparison with several state-of-the-art PAT-based CIL methods on CIFAR-100 and
Stanford-Cars. We report the results with BMR or no memory (No) on CIFAR-100. Note that
we regard the result of the 1 phase setting as the different upper bounds of different PAT methods.
All results are based on the same VitB/16 pre-trained on CLIP400M by CLIP with 10 example pro-
totypes. ”AF” means average forgetting.

dataset Method Memory Buffer size phase=1 5 10 25
Final Acc Final Acc AF Final Acc AF Final Acc AF

CIFAR-100

L2P No 0 84.52 75.58 0.79 70.07 0.70 65.17 0.51
DualPrompt No 0 85.19 77.02 0.26 76.40 0.37 75.08 0.45
Fixed-ITP No 0 81.52 77.67 0.23 76.13 0.27 76.11 0.01

UPAT No 0 88.66 80.37 0.69 77.98 0.51 76.46 0.23
L2P BMR 10 84.35 75.64 2.60 75.90 1.37 74.15 0.69

DualPrompt BMR 10 85.03 79.46 0.95 76.78 0.34 75.43 0.29
Fixed-ITP BMR 10 81.32 77.87 0.21 76.21 0.24 76.09 0.01

UPAT BMR 10 88.60 81.77 0.93 80.06 0.59 78.01 0.60

Method Memory Buffer size phase=1 7 14 49
Final Acc Final Acc AF Final Acc AF Final Acc AF

Stanford-Cars

L2P BMR 10 86.71 79.95 0.61 80.26 0.60 77.91 0.40
DualPrompt BMR 10 86.41 81.13 0.30 81.32 0.38 80.78 0.11
Fixed-ITP BMR 10 85.78 81.20 0.04 80.01 0.19 79.78 0.03

UPAT BMR 10 86.81 82.26 0.22 82.12 0.46 81.80 0.35

5.3 COMPARATIVE STUDY

Comparison Approaches. We compare our method UPAT with the recent state-of-the-art PAT-
based methods including L2P (Wang et al. (2021)), DualPrompt (Wang et al. (2022)) and IPT (Deng
et al. (2022)) with no memory as well as BMR memory management. For fair comparison, all the
results are based on the same VitB/16 pre-trained on CLIP400M (Radford et al. (2021)) by CLIP.

Comparative rsults. Results are shown in Table 3. For the metric final accuracy, UPAT significantly
outperforms all other methods under different phase settings with it’s higher upper bound that comes
from richer tuning structures while Fixed-ITP has the lowest average forgetting because it only tunes
the prototypes and remains representation unchanged. In additional, we can see that UPAT can
benefit more from BMR than other methods, which is also related to the rich structures of UPAT.

5.4 WHY TRAINING BASIC MEMORY FROM EXAMPLE PROTOTYPES

Example prototypes are initialized by k-means clustering and optimized by maximum similarity loss
(MSL), which makes them widely distributed in the representation space. Training basic memory
from example prototypes helps to avoid the homogenization of synthetic samples. Here we com-
pare two methods: training basic memory from the example prototypes (ours) or by the way MRP
(PourKeshavarzi et al. (2022)). Table 4 shows that training basic memory from example prototypes
is much better than the way proposed in MRP.

Table 4: Final accuracy of CIFAR-100 under 5 phase setting and 10 phase setting.
phase=5 10 25

Ours 81.77 80.06 78.01
MRP 81.04 79.02 76.73

6 CONCLUSION

In this work, we propose UPAT and BMR. UPAT first introduces adapter-based methods and unifies
prompt-based structures and adapter structures, which help UPAT to get higher plasticity potential
for CIL. Meanwhile, the stability of UPAT is also guaranteed by feature distillation. BMR effectively
constructs inter-task supervision to promote UPAT learning better inter-task features by synthesizing
virtual samples via a simple linear combination of trainable fixed-size basic memory and small-size
synthesis coefficients. Our method UPAT-BMR achieves a better balance of stability and plasticity
with limited acceptable overhead and outperforms other state-of-the-art PAT-based approaches under
different settings as demonstrated by extensive experiments.
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