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Abstract— Image captioning aims to automatically generate a
natural language description of a given image, and most state-of-
the-art models have adopted an encoder-decoder framework. The
framework consists of a convolution neural network (CNN)-based
image encoder that extracts region-based visual features from
the input image, and an recurrent neural network (RNN) based
caption decoder that generates the output caption words based
on the visual features with the attention mechanism. Despite
the success of existing studies, current methods only model the
co-attention that characterizes the inter-modal interactions while
neglecting the self-attention that characterizes the intra-modal
interactions. Inspired by the success of the Transformer model
in machine translation, here we extend it to a Multimodal
Transformer (MT) model for image captioning. Compared to
existing image captioning approaches, the MT model simultane-
ously captures intra- and inter-modal interactions in a unified
attention block. Due to the in-depth modular composition of
such attention blocks, the MT model can perform complex
multimodal reasoning and output accurate captions. Moreover,
to further improve the image captioning performance, multi-view
visual features are seamlessly introduced into the MT model.
We quantitatively and qualitatively evaluate our approach using
the benchmark MSCOCO image captioning dataset and conduct
extensive ablation studies to investigate the reasons behind its
effectiveness. The experimental results show that our method
significantly outperforms the previous state-of-the-art methods.
With an ensemble of seven models, our solution ranks the 1st
place on the real-time leaderboard of the MSCOCO image
captioning challenge at the time of the writing of this paper.

Index Terms— Image captioning, multi-view learning, deep
learning.

I. INTRODUCTION

RECENT advances in deep learning have resulted in
great progress in both the computer vision and natural

language processing communities. These achievements make
it possible to connect vision and language, and facilitate
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multimodal learning tasks such as image-text matching [1],
visual question answering [2]–[4], visual grounding [5] and
image captioning [6]–[10].

Image captioning aims to automatically describe an image’s
content using a natural language sentence. The task is chal-
lenging since it requires one to recognize key objects in
an image, and to understand their relationships with each
other. Most successful image captioning approaches adopt
the encoder-decoder framework, which is inspired by the
sequence-to-sequence model for machine translation [11].
The framework consists of a convolutional neural network
(CNN)-based image encoder that extracts region-based visual
features from an input image, and an recurrent neural net-
work (RNN) based caption decoder that iteratively generates
the output caption words based on the visual features. The
encoder-decoder model is usually trained in an end-to-end
manner to minimize the cross-entropy loss. Based on the
framework, plenty of improvements have been made by recent
works to further improve image captioning performance fur-
ther. For instance, to establish the fine-grained connections
of caption words and their related image regions, an attention
mechanism can be seamlessly inserted into the framework [7].
To provide a better understanding of the objects in the image,
region-based bottom-up-attention features can be extracted
from a pre-trained object detector to replace the traditional
CNN convolutional features [6]. To address the exposure
bias of generated captions by using the cross-entropy loss,
reinforcement learning (RL)-based algorithms are designed
to directly optimize the non-differentiable evaluation metrics
(e.g., BLEU [12] and CIDEr [13]) [10].

Despite the success that existing approaches have achieved,
they have the following limitations: 1) the current attention
mechanism in image captioning only models the co-attention
that characterizes inter-modal interactions (i.e., object-to-
word) while neglecting the self-attention that characterizes
intra-modal interactions (i.e., word-to-word and object-to-
object); 2) current image captioning models are usually shal-
low and may fail to fully understand the complex relationships
among visual objects; and 3) the region-based visual features
may fail to cover all objects in the image, leading to insuffi-
cient visual representations for generating accurate captions.

To address the first and second limitations, we extend
the Transformer model for machine translation [14] to a
Multimodal Transformer (MT) model for image captioning.
Different from the CNN-RNN captioning models, the MT
model does not use RNN and instead relies entirely on
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an attention mechanism to assess the global dependencies
between the input and output. By properly stacking such
attention blocks in depth, MT forms a deep encoder-decoder
model that simultaneously captures the self-attention within
each modality and the co-attention across different modalities.
To address the last limitation, we introduce multi-view feature
learning into the MT model to adapt both the aligned and
unaligned multi-view visual features.

To summarize, the main contributions of this study are
three-fold:

• The joint modeling of the self-attention and the
co-attention interactions for image captioning is first
proposed in the MT model. The MT model is capa-
ble of modeling three types of relationships using a
modular attention block, i.e., word-to-word, object-to-
object, and word-to-object. By stacking such atten-
tion blocks in depth, the deep MT model significantly
outperforms the state-of-the-art models, thereby high-
lighting the importance of deep reasoning for image
captioning.

• Multi-view learning on the image is introduced in con-
junction with the MT model to provide more diverse
and discriminative visual representations. We introduce
two alternative strategies to handle aligned and unaligned
multi-view features, respectively.

• Extensive experiments on the benchmark MSCOCO
image captioning dataset are conducted to quantita-
tively and qualitatively prove the effectiveness of the
proposed models. The experimental results show that
the MT significantly outperforms previous state-of-the-
art approaches with a single model. Furthermore, our
solution ranks the 1st place on the real-time leaderboard
of the MSCOCO image captioning challenge with an
ensemble of the proposed MT models.

• The proposed multi-view image representation strategy
can be easily applied to other tasks like VQA and visual
grounding. We conduct experiments on the benchmark
VQA and visual grounding datasets and obtain significant
improvement over the existing state-of-the-art methods
with single-view features.

The rest of the paper is organized as follows: In
section II, we review the related work of image captioning
approaches, especially the ones introducing attention mecha-
nisms. In section III, we revisit the basic Transformer model
and then propose the Multimodal Transformer model for image
captioning. In section IV, we introduce multi-view image
representation into the MT model to increase the visual repre-
sentation capacity, and the quality of the generated captions.
In section V, we introduce our extensive experimental results
for algorithm evaluation and use the benchmark MSCOCO
image captioning dataset to evaluate our proposed approaches.
Finally, we conclude this work in section VI.

II. RELATED WORK

In this section, we briefly review the most relevant research
on image captioning, especially those studies that introduce
attention models.

A. Image Captioning

The research on image captioning can be catego-
rized into the following three classes: template-based
approaches [15]–[17], retrieval-based approaches [18]–[20],
and generation-based approaches [6], [9], [10], [21], [22].

The template-based approaches address the task using a
two-stage strategy: 1) align the sentence fragments (e.g.,
subject, object, and verb) with the predicted labels from
the image; and 2) generate the sentence from the segments
using pre-defined language templates. Kulkarni et al. use
the conditional random field (CRF) model to predict labels
based on the detected objects, attributes, and prepositions,
and then generate caption sentences with a template by filling
in the blanks with the most likely labels [15]. Yang et al.
employ the HMM model to select the best objects, verbs, and
prepositions with respect to the log-likelihood for segments
generation [17]. Intuitively, the captions that are generated by
the template-based approaches highly depend on the quality
of the templates and usually follow the syntactical structures.
However, the diversity of the generated captions is severely
restricted.

To ease the diversity problem, retrieval-based approaches
are proposed to search the most relevant captions from a
large-scale caption database with respect to their cross-modal
similarities to the given image. Karpathy et al. propose a deep
fragment embedding approach to match the image-caption
pairs based on the alignment of visual segments (the
detected objects) and caption segments (subjects, objects, and
verbs) [18]. In the testing stage, the cross-modal matching
over the whole caption database (usually the captions from
the training set) is performed to generate the caption for
one image. Other methods such as [19], [20] use different
metrics or loss functions to learn the cross-modal matching
model. However, the retrieval efficiency becomes a bottleneck
for these approaches when the caption database is large and
restricting the size of the database may reduce the caption
diversity. Moreover, retrieval-based approaches cannot gen-
erate novel captions beyond the database, which means the
diversity problem has not been completely resolved.

Different from template-based and retrieval-based models,
generation-based models aim to learn a language model that
can generate novel captions with more flexible syntactical
structures. With this purpose, recent works explore this direc-
tion by introducing the neural networks for image captioning.
Vinyals et al. propose an encoder-decoder architecture by
utilizing the GoogLeNet [23] and LSTM networks [24] as
its backbones. Similar architectures are also proposed by
Donahue et al. [25] and Karpathy and Fei-Fei [26]. Due to the
flexibility and excellent performance, generation-based models
have become the mainstream for image captioning.

B. Attention Mechanism

Within the encoder-decoder framework, one of the most
important improvements for generation-based models is the
attention mechanism. Xu et al. introduce the soft and hard
attention models to mimic the human eye focusing on different
regions in an image when generating different caption words.
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The attention model is a pluggable module that can be seam-
lessly inserted into previous approaches to remarkably improve
the caption quality. The attention model is further improved
in [6], [9], [10], [27]. Chen et al. propose a spatial- and
channel-wise attention model to attend to visual features [27].
Lu et al. present an adaptive attention encoder-decoder model
for automatically deciding when to rely on visual or language
signals [9]. Rennie et al. design a FC model and an Att2in
model that achieve good performance [10]. Anderson et al.
introduce a bottom-up module that uses a pre-trained object
detector to extract region-based image features containing
potential objects, and a top-down module that utilizes soft
attention to dynamically attend to these object [6]. Compared
to the commonly used grid-based convolutional features in
image captioning, replacing them with the region-based detec-
tor features can bring significant performance improvement.
The bottom-up module has become a de-facto component in
the subsequent image captioning researches [22], [28] and
other related tasks that requires fine-grained image understand-
ing [3], [5], [29].

Beyond the image captioning tasks, attention mechanisms
are widely used in other multi-modal learning tasks such
as visual question answering (VQA). Lu et al. propose a
co-attention learning framework to alternately learn the image
attention and question attention [30]. Yu et al. reduce the
co-attention method into two steps, self-attention for a question
embedding and the question-conditioned attention for a visual
embedding [31]. Nam et al. propose a multi-stage co-attention
learning model to refine the attentions based on the memory of
previous attentions [32]. However, these co-attention models
learn separate attention distributions for each modality (image
or question) and neglect the dense interaction between each
question word and each image region, which becomes a
bottleneck for understanding the fine-grained relationships of
multimodal features. To address this issue, dense co-attention
models have been proposed, which establish the complete
interaction between each question word and each image region
[3], [33]. Compared to the previous co-attention models with
coarse interactions, the dense co-attention models deliver
significantly better VQA performance.

III. MULTIMODAL TRANSFORMER

In this section, we first briefly describe the preliminary
knowledge of the Transformer model [14]. Then, we introduce
the proposed Multimodal Transformer (MT) framework for
image captioning, which consists of an image encoder and
a caption decoder. The image encoder learns the deep image
representation in a self-attention manner, and then, the caption
decoder uses the attended image representations to generate
textual captions.

Before presenting the MT model, we first introduce its
basic components, the multi-head attention (MHA) and the
feed-forward networks (FFN), which was first proposed in the
Transformer model [14] for machine translation

A. MHA and FFN
Multi-head attention is a natural extension of the scaled

dot-product attention, a general attention model depicts the
interactions among a group of queries, keys, and values.

The input of the scaled dot-product attention consists of a
query q ∈ R

d , a set of keys kt ∈ R
d and values vt ∈ R

d , where
t ∈ {1, 2, . . . , n} is the number of key-value pairs and d is the
common dimensionality of all the inputs features. We calculate
the dot products of query with all keys, divide each by

√
d

and apply a softmax function to obtain the attention weights
on the values. In practice, we pack all the keys and values into
matrices K = [k1, . . . , kn] ∈ R

n×d and V = [v1, . . . , vn] ∈
R

n×d respectively. The attention function on a set of queries
Q = [q1, . . . , qm] ∈ R

m×d can be computed in parallel as
follows:

F = A(Q, K , V ) = softmax(
QK T

√
d

)V (1)

where F ∈ R
m×d correspond to the attended features of the

queries Q.
Instead of performing a single attention function for the

queries, multi-head attention (MHA) extends the scale-dot-
product attention model and introduce multiple attention func-
tions in parallel to model diverse information from different
representation subspaces. The multi-head attention contains
h parallel ‘heads’ with each head corresponding to an inde-
pendent scaled dot-product attention function. The attended
features F of the multi-head attention functions is given as
follows:

F = MHA(Q, K , V ) = Concat(h1, . . . , hh)Wo (2)

hi = A(QW Q
i , K W K

i , V W V
i ) (3)

where W Q
i , W K

i , W V
i ∈ R

d×dh are the projection matrices of
the i -th head. W O ∈ R

h∗dh×d is the output projection matrix
that aggregates the information from different heads. dh is the
dimensionality of the output features of each head. To prevent
the model from becoming too large, we set dh = d/h.

In addition to the MHA that performs linear transformations,
another basic component feed-forward networks (FFN) is
complemented to increase the nonlinearity of the Transformer
model. FFN takes the output features from MHA as its input
and further transform them using two fully-connected layers
with the ReLU and dropout layers in between as follows:

FFN(x) = FC (Dropout (ReLU (FC(x, 4d)) , 0.1) , d) (4)

where the input feature x ∈ R
d is first transformed to

4d-dimensional and then transformed to d-dimensional again.
The dropout ratio is set to 0.1.

To summarize, the MHA module learns the attended fea-
tures that consider the pairwise interactions between two input
features, and the FFN module further nonlinearly transforms
the attended features. By a modular composition of the two
modules, we attain the attention blocks that are can be stacked
in depth to construct the MT model for image captioning.

B. Multimodal Transformer for Image Captioning

Based on the preliminary information about the Trans-
former above, we describe the Multimodal Transformer (MT)
architecture for image captioning, which is a deep end-
to-end architecture that stacks attention blocks to form an
encoder-decoder strategy. It consists of an image encoder and a
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Fig. 1. Multimodal Transformer (MT) model for image captioning. It consists
of an image encoder to learn self-attended visual features, and a caption
decoder to generate the caption from the attended visual features. [s] is a
delimiter that indicates the start or the end of the caption.

textual decoder. The image encoder takes an image as its input
and uses a pre-trained Faster-RCNN model [34] to extract
region-based visual features. The visual features are then fed
into the encoder to obtain the attended visual representation
with self-attention learning. The decoder takes the attended
visual features and the previous word to predict the next word
recursively. The flowchart of the MT architecture is shown
in Fig. 1.

1) Image Encoder: The input image is represented as a
group of visual features that are extracted from a pre-trained
object detector [6]. Specifically, the detector is a Faster-RCNN
model [34] that is pre-trained on the Visual Genome
dataset [35]. We sort the detected objects w.r.t. their confi-
dence scores in descending order and keep the top-m objects.
Each object is represented as a feature vector xi ∈ R

dx

by mean-pooling the convolutional feature from its detected
region. Finally, the image is represented as a feature matrix
X ∈ R

m×dx .
The visual features X is first fed into a fully-connected

layer to adapt the feature dimensionality to the encoder. The
projected features (denote as X (0)) are then fed into the
encoder with L attention blocks [A1

enc, A2
enc, . . . , AL

enc]. The
i -th attention block Al

enc takes the output features Xl−1 from
the i − 1th attention block, and output their attended features
Xl in a recursive manner.

Xl = Al
enc(Xl−1) (5)

Each Aenc(X) consists of a MHA module and a FFN
module. The MHA module characterizes the self-attentions
within X that the queries Q, keys K and values V in Eq. (2)

all refer to the same input features X :

X ′ = LayerNorm(X + MHA(X, X, X)) (6)

Aenc(X) = LayerNorm(FFN(X ′) + X ′) (7)

where residual connections [36] and layer normalizations [37]
are applied after the MHA and FFN modules.

2) Caption Decoder: Based on the visual representations
from the encoder, the textual decoder generates captions for
the image. The input caption is first tokenized into words and
trimmed to a maximum length of n words. Each word in the
caption is first represented as a word vector yi ∈ R

300 by
using the 300-D GloVe word embedding [38] pre-trained on
a large-scale corpus. We use a feature matrix Y ∈ R

n×300

to represent a caption sentence. For the captions that are
shorter than 16 words, we use zero-padding to fill them to
the maximum size. To model the temporal information of
the captions, the word embeddings are then pass through a
one-layer LSTM network [24] with dy hidden units, resulting
in caption representations Y = [y1, . . . , yn] ∈ R

n×dy .
In the training stage, the caption decoder takes the inputs

from both the image encoder and caption representations.
Given the attended image features X L and the caption input
features Y , the caption decoder with L attention blocks
([A1

dec, A2
dec, . . . , AL

dec]) learns to predict the attended word
features in an analogous manner to the strategy in the encoder.

Y l = Al
dec(X L , Y l−1) (8)

Each Adec(X, Y ) consists of two MHA modules and one
FFN module to:

Y ′ = LayerNorm(Y + MHA(Y, Y, Y )) (9)

Y ′′ = LayerNorm(Y ′ + MHA(Y ′, X, X)) (10)

Adec(X, Y ) = LayerNorm(FFN(Y ′′) + Y ′′) (11)

where the first MHA module models the self-attentions within
Y and the second MHA module learns the guided-attention on
Y guided by X . It is worth noting that in the self-attention
learning for Y (i.e., the first MHA module), each word is
only allowed to attend to the words at earlier positions in the
output sequence. This is implemented by masking subsequent
positions (setting them to -∞) before the softmax step in
the self-attention calculation, thereby resulting in a triangular
mask matrix M ∈ R

n×n .
The output features Y L = [yL

1 , yL
1 , . . . , yL

n ] are fed into
a linear word embedding layer to transform the features to
a dv -dimensional space, where dv is the vocabulary size.
Subquently, softmax cross-entropy loss is performed on each
word to predict the probability of its next word.

In the testing stage, the caption is generated word-
by-word in a sequential manner. When generating the
tth word, the input features are represented as Y≤t =
[y1, y2, . . . yt−1, 0, . . . , 0] ∈ R

n×dy , where 0 ∈ R
dy cor-

responds a zero-padded feature. The input caption features
along with the image features are fed forward the model
to obtain the word with the largest probability among the
whole word vocabulary. The predicted word is then integrated
into the inputs to recursively generate the new inputs Y≤t+1.
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Fig. 2. The flowchart of the aligned multi-view (AMV) image encoder model. Given an image, different object detectors are regarded as the multiple views.
To obtain the aligned multi-view features, we choose one of the M detectors to predict the unified bounding boxes for objects, and then use these bboxes to
extract aligned multi-view features. The aligned multi-view features are fed into the AMV image encoder (which is exactly the same as the one for single-view
features introduced in section III-B).

To improve the diversity of generated captions, we also
introduce the beam search strategy during the testing stage.

IV. IMAGE ENCODER WITH MULTI-VIEW

VISUAL REPRESENTATION

In this section, we introduce multi-view image represen-
tations and modify the the image encoder in section III-B
to multi-view image encoder to facilitate the representation
capacity of the MT model. Though it has been intensively
investigated by previous works [39]–[41], existing multi-view
learning approaches focus on integrating the global multi-view
features (e.g., color histogram or GIST descriptor) from the
whole image. However, such global multi-view features may
fail to preserve the fine-grained semantics of the image,
thus leading to incorrect caption. In contrast, we extract
region-based local multi-view features from different object
detector to represent the image. Each object detector here is
regarded as one single view and we adopt the Faster R-CNN
models with different backbones (e.g., ResNet-101, ResNet-
152 or ResNeXt-101) to form the multi-view features.

Note that the objects extracted from different detectors are
naturally unaligned, thereby making it challenging to learn
the correspondence across different views. To address this
problem, we extend the proposed image encoder model in
section III-B, and introduce two multi-view image encoder
models, namely, the Aligned Multi-View (AMV) image
encoder and the Unaligned Multi-View (UMV) image encoder,
respectively.

A. Aligned Multi-View Image Encoder

The AMV model uses a simple strategy to obtain the
aligned multi-view features from different object detectors.
Rather than extracting the object bounding boxes and cor-
responding features for each view, we propose a two-stage
feature extraction framework. Given M pre-trained Faster
R-CNN models, we first select one detector as the primary
model to generate the unified bounding boxes for all views.
The choices of different primary models has little influence
on the quality of the generated features, and we simply
choose the model with the highest detection performance.
Subsequently, the unified bounding boxes are used to extract
features from different Faster R-CNN models. Specifically,
the Faster R-CNN models degenerate to their Fast R-CNN
versions [42] that take the pre-computed bounding boxes as

inputs. The resulting multi-view features are aligned such that
each paired multi-view features correspond to one object in
the image.

Assuming that we generate m unified bounding boxes,
the extracted features from the i -th view (i ∈ {1, 2, . . . , M})
can be represented as X(i) ∈ R

m×di , where di is the
dimensionality of the features. By simply concatenating
the features in columns, we obtain the multi-view features
X = [X(1), X(2), . . . , X(M)] ∈ R

m×(d1+d2+...,dM ). These
aligned multi-view features can replace the aforementioned
single-view feature, and be seamlessly fed into the image
encoder. The overall flowchart of the AMV model is shown
in Fig. 2.

To align the multi-view features, the AMV model uses the
unified bounding boxes. However, we argue that this strategy
may harm the diversity of multi-view features, leading to a
limited representation capacity of the encoded image features.
Moreover, the AMV model implicitly constrains the object
detector for each view to be a Faster R-CNN model, which can
either take the pre-computed proposals as inputs or generate
the proposals using the built-in Region Proposal Networks
(RPN) [34]. This constraint limits the usage of one-stage
object detectors, e.g., RetinaNet [43] and YOLO [44].

B. Unaligned Multi-View Image Encoder

To address the limitations of the AMV encoder model,
we propose a more generalized unaligned multi-view (UMV)
image encoder model that can directly integrate the unaligned
multi-view features from different object detectors (see the
flowchart in Fig. 3).

The extracted visual features for the i -th view can be
represented as X(i) ∈ R

mi ×di , where the number of features
mi and the feature dimensionality di can be different across
multiple views. The unaligned multi-view features are fed
into an encoder to be aligned and fused simultaneously.
Specifically, we choose one view as the primary view and use
its features to learn the guided-attention for other views. The
attended features from other views are then integrated into the
features in the primary view to output the output features.

Given the multi-view features X(1), X(2), . . . , X(M), they are
first linearly projected into a common d-dimensional space to
obtain their transformed representations F(1), F(2), . . . , F(M).
Assuming that F(1) corresponds to the features of the primary
view, we have M − 1 MHA modules in total to model the
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Fig. 3. The flowchart of the unaligned multi-view (UMV) image encoder model. Given an image, unaligned multi-view features are extracted from different
object detectors in parallel. The unaligned multi-view features are fed into the UMV model to output the attended features with adaptive alignment learning.

interactions between F(1) and F(i) with i ∈ {2, 3, . . . , M}.
F̃(i) = MHA(i)(F(1), F(i), F(i)) (12)

where F̃(i) ∈ R
m1×d is the attended output features for the

i -th view. The obtained features F̃(2), F̃(3), . . . , F̃(M) have the
same shape as F(1), and so they can be integrated with F(1)

via an element-wise summation. The MHA modules here can
be understood as learning the image-guided attention over the
image features from other views.

F̃(1) = F(1) + F̃(2) + F̃(3), . . . ,+F̃(M) (13)

Following the image encoder model in section III-B, the inte-
grated features F̃(1) that are followed by layer normalization
[37] are then fed forward through the FFN module to obtain
the transformed representations. It is worth noting that the
UMV model can also be stacked in depth to learn more
accurate interactions across different views, thus resulting
in more discriminative output visual features for generating
captions.

V. EXPERIMENTS

In this section, we conduct experiments and evaluate the
proposed MT models on MSCOCO 2015 image caption-
ing dataset [45]. Additionally, we use the Visual Genome
dataset [35] to pre-train the object detectors that are further
used to extract the bottom-up-attention visual features [6].

A. Datasets

MSCOCO is a benchmark dataset for various computer
vision tasks, including object detection, instance segmentation,
and image captioning [45]. It contains 83k training images,
40k validation images, and 81k test images. Each image is
associated with five captions. Similar to [6], we use the Karpa-
thy splits [26] that have been extensively used for reporting
results in prior works. These splits merge the images from the
original train and val splits, resulting in 121k images in total.
After that, the 123k images are split into 113k/5k/5k images
for training/validation/testing, respectively. The trained models

are ensembled to obtain the predictions that are submitted
to the official MSCOCO test server. To evaluate the caption
quality, we use four automatic evaluation metrics, namely,
BLEU [12], ROUGE-L [46], METEOR [47] and CIDEr [13].

Flickr30k is a dataset that is widely used in caption-image
retrieval and image caption generation tasks [48]. It contains
31k images with five captions annotated for each image.
We use the publicly available split where the validation set and
testing set each have 1k images, and the remaining 29k images
are used for training. Similar to previous works, we adopt
BLEU [12] and METEOR [47] as the evaluation metrics.

Visual Genome is a large-scale dataset to evaluate the
interactions between objects in the images. It contains 108k
images with densely annotated objects, attributes, and rela-
tionships. Following the strategies in [6], we use the object
and attribute annotations to pre-train the bottom-up-attention
models. All the images are split into training (98k images),
validation (5k images) and testing (5k images). Since part of
images in Visual Genome are also found in the MSCOCO
captioning dataset, we perform careful checking to avoid
affecting the MSCOCO validation and testing splits. Similar
to [6], we perform extensive cleaning and filtering of the
training data to select 1,600 object classes and 400 attributes.
This cleaned dataset is used for training our object detection
models.

B. Implementation Details

For the captions, we perform the pre-processing as follows.
All the caption sentences are converted to lower case and
tokenized into words with white space. The rare words that
occur less than 5 times or do not exist in the pre-trained
GloVe vocabulary [38] are discarded, resulting in a vocabulary
of 9,343 words. Each word in the caption is represented
as word embedding vector by looking-up the GloVe word
vocabulary. The out-of-vocabulary words are represented as
all-zero vectors.

For the images, we use the pre-trained bottom-up-attention
models to detect the objects and extract visual features for
the detected objects. For multi-view image representation,
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TABLE I
ABLATIONS OF THE PROPOSED MT MODELS EVALUATED ON THE MSCOCO KARPATHY TEST SPLIT. B@1, M, AND C CORRESPOND TO THE

BLEU@1, METEOR AND CIDER SCORES, RESPECTIVELY. FOR EACH MODEL, WE REPORT THE RESULTS OPTIMIZED WITH EITHER THE

CROSS-ENTROPY LOSS OR THE SELF-CRITICAL LOSS [10]. R-101, R-152, X-101 DENOTE THE OBJECT DETECTOR WITH RESNET-101,
RESNET-152 AND RESNEXT-101 BACKBONES, RESPECTIVELY. ALL MODELS USE PRE-TRAINED FASTER R-CNN MODELS

TO OBTAIN INPUT VISUAL FEATURES AND ALL RESULTS ARE OBTAINED WITH BEAM SEARCH IN THE TESTING STAGE.
THE BEST RESULT FOR EACH EVALUATION METRIC IS BOLDED.

we trained up to three Faster R-CNN [34] models (i.e.,
number of views M = 3) with different backbones, namely
ResNet-101 [36], ResNet-152 [36] and ResNeXt-101 [49],
respectively. For each model, we select the top-100 objects
with the highest confidence scores to represent the image,
where each object is represented as a vector by mean-pooling
the last convolutional feature from its detected region.

The hyper-parameters of the MT models that are used in
the experiments are listed as follows. The dimensionality of
input image features dx , and the input caption features dy are
2048 and 512, respectively. According to the recommendation
in [14], the latent dimensionality d in the MHA module is
512, the number of heads h is 8, and the latent dimensionality
for each head dh = d/h = 64. The number of attention blocks
L in the encoder and decoder ranges in {1, 2, 4, 6, 8}.

To train the MT models, we use the Adam solver [50]
with a batch size of 10. The base learning rate is set to
min(1te−4, 3e−4), where t is the current epoch number that
starts at 1. After 6 epochs, the learning rate is decayed by
1/2 after every 3 epochs. All models are first trained for
15 epochs using the cross-entropy loss and then are further
trained for additional 10 epochs using the self-critical loss
to alleviate the exposure bias during cross-entropy optimiza-
tion [10].

C. Ablation Studies

We run a number of ablation experiments on MSCOCO
image captioning dataset to explore the effectiveness of

the single-view MT models (MTsv) with different hyper-
parameters, as well as its multi-view variants with aligned
multi-view image encoder MTamv and unaligned multi-view
image encoder MTumv. The results shown in Table I are
discussed in detail below.

1) Caption Representations: Table I(a) summarizes the
ablation experiments on different caption representations for
MTsv with the number of attention blocks L = 6. Compared
with the reference model that uses randomly initialized word
embeddings and positional encoding [14], we can see that
using the word embeddings that are pre-trained by GloVe
[38] brings significant improvements. In addition, introducing
other tricks such as replacing PE with an LSTM network to
model the temporal information, or fine-tuning the GloVe word
embeddings along with the MT model can slightly improve
the performance further. Note that the GloVept+LSTM model
and the GloVept+ft+LSTM model report the same perfor-
mance in the cross-entropy loss stage, as the fine-tuning
is performed only in the self-critical loss stage. Directly
fine-tuning the GloVe embedding from scratch (i.e., from the
cross-entropy loss) leads to inferior performance. This result
can be explained as the word embeddings being sensitive to
the captioning performance, and training from scratch may
degenerate their representation capacity.

2) Number of Attention Blocks: Table I(b) shows the per-
formance of the MTsv models with different number of
attention blocks L ∈ {1, 2, 4, 6, 8}. We can see that the
model size grows linearly as L increases. Regarding the
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performance, we have two observations as follows: 1) as
increasing L, the model’s performance gradually improves
and is saturated at a certain number. This can be explained
as a deeper model capturing more complex relationships
among objects, providing a more accurate understanding
of the image contents. In addition, a deeper model has a
larger representation capacity and has a larger risk to over-
fit the training set, and 2) the optimal model is achieved
at different L that are trained with different losses, i.e.,
L = 4 for the cross-entropy loss and L = 6 for the
self-critical loss. The reinforcement learning-based self-critical
loss provides a more diverse exploration of the hypothesis
space to avoid overfitting, and thus it can better utilize the
potential of large models.

3) Single-View vs. Multi-View: Next, we compare the MT
model with single-view or multi-view features in Table I(c).
We use two Faster R-CNN models with different backbones
(ResNet-101 or ResNet-152) to extract the multi-view features.
For MTamv, the unified object boxes are extracted from the
detector with the ResNet-152 backbone. From the results,
we can see following that: 1) the representation capacity
of the object detectors may slightly influence the image
captioning performance. The MTsv model with the ResNet-
152 backbone steadily outperforms the counterpart with the
ResNet-101 backbone; and 2) introducing multi-view features
significantly improves the captioning performance over the
single-view models. MTumv slightly outperforms MTamv, thus
highlighting the effect of using diverse multi-view features
with unaligned objects.

4) Number of Views: In Table I(d), we show the per-
formance of the MTumv models with different number of
views M . We can see that the performance of MTumv with
M = 3 has little improvement when compared to the obtained
best results with M = 2 (i.e., backbones of R-101 and
R-152). All the other metrics except the CIDEr score has only
0.1 0.3 point improvement. On the other hand, increasing M
will linearly increase the model size, computational cost, and
memory usage. To make a trade-off between efficiency and
efficacy, we terminate at M = 3 and do not introduce more
views to the image encoder.

5) Computational Costs and Model Sizes: In Fig. 4,
we show the computational costs in terms of the average
training FLOPs and training time per one image, as well as the
model sizes of the MT models with different visual features.
We also introduce a strong reference model Up-Down [6] for
comparison. From the results, we can see that: 1) the model
size, FLOPs, and training time are positively correlated with
each other, therefore we use the FLOPs metric to measure
the computation cost in the following; 2) when the number
of views M = 2, FLOPs of MTamv, and MTumv are nearly
identical and are only about 10% higher than that of MTsv;
3) when M = 3, FLOPs of MTumv are about 30% higher than
all the counterparts, which is sublinear with respect to M . This
can be explained that there are M-1 MHA modules but only
one FFN module in each of the attention block in UMV image
encoder. Since FLOPs of one FFN module is much higher than
one MHA module, the cost of the FFN module counteracts
the costs of multiple MHA modules in MTumv; and 4) with

Fig. 4. Ablations of the computational costs of the MT models with different
visual features. SV, AMV-2, UMV-2, UMV-3 denotes the the single-view
features (R-101), aligned multi-view features (R-101 and R-152), unaligned
multi-view features (R-101 and R-152), unaligned multi-view features
(R-101, R-152 and X-101), respectively. For each model, we report the average
training FLOPs vs. training time per one image in (a) and its corresponding
model size in (b). Up-Down [6] is a strong reference image captioning model.
(a) FLOPs vs. Training Time. (b) Model Sizes.

up to a 3× increase of FLOPs, our best MTumv model obtains
12-point improvement over the reference Up-Down model in
terms of the CIDEr score (see Table II).

D. Comparative Results on MSCOCO

By taking the ablation results into account, we compare our
best single-view and multi-view MT models to the state-of-
the-art approaches on MSCOCO image captioning dataset.

1) Results on the Karpathy Test Split: In Table II, we report
the comparative results of our approaches along with the
SCST [10], ADP-ATT [9], LSTM-A [21], Up-Down [6] and
GCN-LSTM [22] on the Karpathy test split. Note that all
the compared methods use the same ResNet-101 backbone.
With single-view features, the MTsv model outperforms most
state-of-the-art methods, especially when it is optimized using
the self-critical loss. When equipped with multi-view fea-
tures, the MTumv model (trained with the self-critical loss)
achieves the new state-of-the-art single-model performance for
this split in terms of all evaluation metrics. Note that the
RFNet [51] also incorporates multi-view features, and they
introduce more views than our approach (4 vs. 2). However,
its performance is inferior to MTumv, which suggests that the
strategy to fuse multi-view features, rather than the number of
views, is the key to the captioning performance.

2) Results on the Official Test Server: We also submitted
the results obtained from an ensemble of seven MT models to
the official MSCOCO test server1 and compare with the state-
of-the-art in Table III. The ensemble consists of two MTsv
models, two MTamv models, and three MTumv models with
different random seeds. The ensemble strategy is performed
during the prediction of each caption word. Given one testing
image, the input visual features are fed forward through the
seven models in parallel to predict the word probabilities
over the vocabulary. The predicted word distributions from
different models are then integrated to vote the word with
the largest probability. By doing so in a recursive manner,
we finally obtain the caption sentence for the image. Table III
demonstrates the results of the comparison to the state-of-the-
art solutions on the leaderboard including the published ones

1https://competitions.codalab.org/competitions/3221#results
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TABLE II

SINGLE-MODEL IMAGE CAPTIONING PERFORMANCE ON THE MSCOCO KARPATHY TEST SPLIT. THE METHODS MARKED WITH * DENOTE USING

PRE-TRAINED FASTER R-CNN MODELS TO OBTAIN INPUT VISUAL FEATURES. R, D, I-V3, I-V4 AND IR-V2 DENOTES THE RESNET, DENSENET,

INCEPTION-V3, INCEPTION-V4 AND INCEPTION-RESNET-V2 MODEL, RESPECTIVELY

TABLE III

REAL-TIME LEADERBOARD OF THE STATE-OF-THE-ART SOLUTIONS ON THE ONLINE MSCOCO TEST SERVER (APRIL 21ST, 2019).

THE FIRST SPLIT SHOWS THE PUBLISHED SOLUTIONS WHILE THE SECOND SPLIT SHOWS THE UNPUBLISHED ONES.

ALL THE PUBLISHED SOLUTIONS USE THE MODEL ENSEMBLING STRATEGY

(in the first split) and the unpublished ones (in the second
split). C5 (or c40) denotes the official test settings with 5
(or 40) ground-truth captions, respectively. Compared to all
the top performing solutions on the leaderboard, our solution
significantly outperforms all the other solutions in terms of
all reported evaluation metrics at the time of submission
(April 21st, 2019).

E. Comparative Results on Flickr30k

In Table IV, we compare our MT models to the state-of-the-
arts on Flickr30k dataset. From the results, we have similar
observations to those on the MSCOCO dataset: 1) the MTsv
model with single-view visual features has significantly out-
performed existing state-of-the-art approaches on this dataset;
2) by replacing R-101 with R-152 backbone, the model
performance is slightly improved; 3) modeling multi-view
features in the MT model brings prominent improvement over
the models with single-view features; and 4) MTumv steadily
outperforms MTamv due to its capacity in modeling latent
correlations among aligned objects from different views.

TABLE IV

COMPARISON TO THE STATE-OF-THE-ART APPROACHES

ON FLICKR30K DATASETS

F. Qualitative Analysis

To better understand the effectiveness of the proposed
approach, we adopt the trained model on MSCOCO and
visualize the learned attentions of MTsv in Fig. 5 and MTumv
in Fig. 6, respectively. Due to space limitations, we only show
one example for each model and visualize the attention maps
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Fig. 5. Visualizations of the 1st and 6th attention maps (softmax(QK/
√

d)) of the MTsv model with R-101 backbone. Enc(SA) denotes the self-attention
in the image encoder; Dec(SA) and Dec(GA) denote the self-attention and guided-attention in the caption decoder, respectively. GT denotes the one of the
five ground-truth captions provided by MSCOCO. The index within [0-19] shown on the axes of the attention maps corresponds to each object in the image
(20 objects in total). For better visualization effect, we highlight some objects in the image that receive large attention values.

from typical attention blocks. From the demonstrated results,
we have the following observations.

1) Attentions of the MTsv Encoder: The self-attentions (SA)
of the 1st and 6th blocks in the image encoder that are in Fig. 5
reflect the pairwise similarity of the visual objects. From
the results, we can see that the following: 1) in Enc(SA)-
1, the largest attention values almost appear on the diagonal
line, indicating that the pairwise interactions are not learned
in the first block; and 2) the largest values in Enc(SA)-6 form
vertical lines (e.g., the 4th, 9th and 13th columns), which
correspond to the key objects of the image (e.g., the girl
and the skateboard). This result reveals that all the attended
features tend to use the features of these key objects for the
representation.

2) Attentions of the MTsv Decoder: The self-attention
the 1st and 6th blocks of the caption decoder that are
shown in Fig. 5 reflects the similarity of paired words. The
largest attention values in Dec(SA)-1 almost appear on the
diagonal line, which is similar to those in the Enc(SA)-1.
In Dec(SA)-6, the word importance and pairwise word similar-
ities are simultaneously represented. For example, the columns
of ‘woman’ and ‘riding’ obtain focused attention weights,
and the relationship between ‘woman’ and ‘skateboard’ is
highlighted.

The guided-attention (GA) reflects the multimodal relation-
ships between word-object pairs. In Dec(GA)-1, the learned
attentions are not concentrated, and some word-object similari-
ties are incorrect (e.g., the 15th object is not related to the word
‘skateboard’). In contrast, the attention in Dec(GA)-6 has
clearer meanings. The co-attention of key objects along with
their word-object relationships are highlighted accordingly.

3) Attentions of the MTumv Encoder: In Fig 6, we visu-
alize the 1st, 3rd and 6th guided-attention (GA) blocks in
the multi-view image encoder. In Enc(GA)-1, the unaligned
objects from different views are adaptively aligned (e.g.,
the 5th object in R-101 and the 5-th object in R-152, and
the 3rd object in R-101 and the 6th object in R-152).
In Enc(GA)-3, the contextual relationships are also involved
(e.g., the 5th object in R-152 has large attention values to the
1st and the 4th objects in R-101, which correspond to different
parts of the woman’s body). In Enc(GA)-6, the modeled
contextual relationships cover specific objects and contain
background scenes (e.g., the 13th object in R-152 and the 10-th
object in R-101). These observations reveal that the UMV
image encoder learns to align the objects and explores more
complex interactions across multi-view features to provide a
fine-grained understanding of the image content.

4) Predicted Caption Examples: We show some predicted
captioning examples in Fig 7. The first two rows show four
examples where MTumv outperforms MTsv, and the third row
shows two examples where MTsv outperforms MTumv. The
last row shows two examples where both models generate
incorrect captions. From the demonstrated results, we can
see the following that: 1) although MTumv quantitatively
outperforms MTsv, the performance gap is not qualitatively
different and they have their advantages in different cases. This
results in a diverse ensemble when they are integrated together;
2) the incorrect captions are caused by small objects (e.g.,
the newspaper or the second person). Moreover, by analyzing
the strengths and weaknesses of MTumv, we can see that:
compared to the single-view MT model, the multi-view MT
model has an advantage in accurately describing the objects
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Fig. 6. Visualizations of the 1st, 3rd and 6th attention maps of the MTumv model with R-101 and R-152 backbones. Enc(GA) denotes the guided-attention
in the UMV image encoder (i.e., the cross-view attention within the MHA module in Fig. 3).

Fig. 7. Examples generated by the MTsv and MTumv models on MSCOCO validation set. GT denotes one of the five ground-truth captions. The first two
rows show four examples that MTumv outperforms MTsv, and the third row shows two examples that MTsv outperforms MTumv. The last row shows two
examples that both models generate incorrect captions.

whereas has weakness in understanding the background. From
the ensemble learning point of view, if every base learner
is strong (i.e., the visual features for each view can well
describe the semantics of objects), their ensemble is able to
achieve better performance than any of the base learner; on
the contrary, if all base learners are weak (i.e., the visual
features for all views cannot understand the semantics of
the background), their ensemble may result in even worse
performance compared to any of the base learner.

G. AMV Representation Beyond Image Captioning

Although the MT model is specifically designed for the
image captioning task, the proposed aligned multi-view image
representation (AMV) framework is generalized that can be
simply applied to other tasks that take region-based visual

features such as VQA and visual grounding. Here we conduct
experiments on one VQA dataset VQA-v2 [58] and one
visual grounding dataset RefCOCO [59]. For each benchmark
dataset, we choose the state-of-the-art method on this dataset
and replace its single-view visual features by the AMV ones.
Specifically, we adopt the MCAN model [29] as reference
VQA model and the DDPN model [5] as the reference visual
grounding model.

The comparative results on VQA-v2 and RefCOCO are
shown in Table V and Table 3, respectively. For the results,
we can see that: 1) introducing the AMV visual features can
significantly improve the performance of the state-of-the-art
approaches for VQA and visual grounding; and 2) the obtained
improvement is getting smaller when increasing the number
of views is from two to three.
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TABLE V

ACCURACIES (%) ON THE TEST-DEV SPLIT OF VQA-V2 [58] TO
COMPARE WITH THE STATE-OF-THE-ART VQA METHODS. ALL

MODELS ARE TRAINED ON THE TRAIN+VAL+VG SPLITS, WHERE

VG INDICATES THE AUGMENTED TRAINING SAMPLES FROM

VISUAL GENOME. THE FIRST SPLIT SHOWS THE STATE-OF-
THE-ART RESULTS WITH SINGLE-VIEW VISUAL

FEATURES AND THE SECOND SPLIT SHOWS

THE MCAN MODEL WITH DIFFERENT
AMV FEATURES

TABLE VI

ACCURACIES (%) ON REFCOCO [59] TO COMPARE WITH THE

STATE-OF-THE-ART VISUAL GROUNDING METHODS

VI. CONCLUSION

In this paper, we present a novel Multimodal Trans-
former (MT) framework for image captioning. The MT con-
sists of an image encoder that generates visual representations
via deep self-attention learning, and a caption decoder to
transform the encoder’s visual features to textual captions.
To further facilitate the capacity of visual features, we intro-
duce multi-view learning into the image encoder and pro-
pose two MT variants, MTamv and MTumv, to model the
aligned multi-view features and unaligned multi-view features,
respectively. We quantitatively and qualitatively evaluate the
proposed MT models on the benchmark MSCOCO image
captioning dataset and conduct extensive ablation studies to
explore the reasons behind the MT’ s effectiveness. Exper-
imental results show that our method significantly outper-
forms existing approaches, and an ensemble of seven models
achieves the best performance on the real-time leaderboard of
the MSCOCO image captioning challenge. Finally, we extend
the proposed multi-view image representation strategy to other
tasks like VQA and visual grounding and obtain significant
improvement over the existing state-of-the-art methods with
single-view features.
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