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Abstract

Recent vision-language models have achieved
tremendous advances. However, their compu-
tational costs are also escalating dramatically,
making model acceleration exceedingly critical.
To pursue more efficient vision-language Trans-
formers, this paper introduces Cross-Guided
Ensemble of Tokens (CrossGET), a general accel-
eration framework for vision-language Transform-
ers. This framework adaptively combines tokens
in real-time during inference, significantly reduc-
ing computational costs while maintaining high
performance. CrossGET features two primary
innovations: 1) Cross-Guided Matching and En-
semble. CrossGET leverages cross-modal guided
token matching and ensemble to effectively uti-
lize cross-modal information, achieving wider
applicability across both modality-independent
models, e.g., CLIP, and modality-dependent ones,
e.g., BLIP2. 2) Complete-Graph Soft Match-
ing. CrossGET introduces an algorithm for the
token-matching mechanism, ensuring reliable
matching results while facilitating parallelizabil-
ity and high efficiency. Extensive experiments
have been conducted on various vision-language
tasks, such as image-text retrieval, visual reason-
ing, image captioning, and visual question an-
swering. The performance on both classic mul-
timodal architectures and emerging multimodal
LLMs demonstrates the framework’s effective-
ness and versatility. The code is available at
https://github.com/sdc17/CrossGET.

1Tsinghua University 2Shanghai AI Laboratory 3The Uni-
versity of Hong Kong 4Stanford University. Work was done
when Dachuan Shi was an intern at Shanghai AI Laboratory.
†Correspondence to: Chun Yuan <yuanc@sz.tsinghua.edu.cn>,
Jiaqi Wang <wjqdev@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The AI community is currently witnessing the bloom of
vision-language models (Kiros et al., 2014; Karpathy et al.,
2014; Antol et al., 2015; Vinyals et al., 2015; Yang et al.,
2016; Huang et al., 2017; Radford et al., 2021; Wang et al.,
2022a; Li et al., 2022; 2023b), with Transformer-based mod-
els such as CLIP (Radford et al., 2021), BLIP/BLIP2 (Li
et al., 2022; 2023c), and GPT-4V (OpenAI, 2023) emerging
as prominent in recent research. These models are capable
of tackling a broad range of vision-language tasks, such as
Image-Text Retrieval (Jia et al., 2015), Vision Reasoning
(Suhr et al., 2018), Image Captioning (Lin et al., 2014),
and Visual Question Answering (Antol et al., 2015). Nev-
ertheless, the notable improvement is at the expense of
significantly increased computational cost, making it less
accessible for consumers with limited resources.

The computational cost of Transformers increases monoton-
ically with the input tokens. Token reduction, which reduces
the number of tokens processed during forward, is an effec-
tive strategy to mitigate high computational costs for both
vision Transformers (Rao et al., 2021; Liang et al., 2022b;
Bolya et al., 2023) and language Transformers (Goyal et al.,
2020; Wang et al., 2021; Kim et al., 2022). Although studied
on the acceleration of unimodal models, a non-negligible
research gap persists in multimodal contexts.

In vision-language transformers, a straightforward idea in-
volves leveraging cross-modal information to guide token
reduction. This concept can be intuitively applicable in
modality-independent frameworks, such as CLIP (Radford
et al., 2021). However, recent popular vision-language
Transformers like BLIP/BLIP2 (Li et al., 2022; 2023c) and
LLaVA (Liu et al., 2023b;a) are modality-dependent, with
the vision encoder processing first. While vision features
can guide token reduction in the following networks, in-
corporating language priors to guide token reduction in the
vision encoder poses a challenge. The issue of facilitat-
ing bidirectional guidance, which would allow the preced-
ing modality to benefit from information in the succeeding
modality for token reduction, remains an open question.

This paper introduces CrossGET, a general acceleration
framework designed to efficiently reduce the number of to-
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Figure 1: Overview of CrossGET. ① CrossGET is a general multimodal token reduction framework that applies to both modality-
independent and modality-dependent models. ② CrossGET jointly considers the token similarity derived from intra-modal complete-graph
soft matching and the token importance indicated by cross-modal guidance to determine which tokens should be combined. The
cross-modal importance is subsequently utilized to weight tokens within each stack and output their ensembles. ③ Compared with the
original models, CrossGET achieves considerable computation saving and acceleration with negligible performance degradation.

kens for both modality-independent and modality-dependent
vision-language Transformers with bidirectional guidance.
CrossGET features two primary innovations: cross-guided
matching and ensemble and complete-graph soft matching.

Firstly, CrossGET utilizes cross-guided matching and en-
semble to identify and ensemble redundant tokens, which ap-
plies to both modality-independent and modality-dependent
models. CrossGET incorporates cross tokens into both
vision and language branches to facilitate learning of cross-
modal importance and to guide the selection of redundant
tokens.1 Secondly, for the underlying mechanism of to-
ken matching, CrossGET formulates it as a discrete opti-
mization problem and proposes an approximate algorithm
complete-graph soft matching to secure reliable matching re-
sults while maintaining parallelizability for high efficiency.
The contributions of this paper are summarized as follows:

• It is one of the pioneering efforts in token en-
semble framework for vision-language Transformers,
achieving general applicability across both modality-
independent and modality-dependent models. The ap-
proach is also validated in zero-shot scenarios.

1A naive solution is to calculate the similarity between vision
and language tokens directly. However, in modality-dependent
models, different modality branches are aligned crosswise or se-
quentially, rendering cross-modal similarity inaccessible to preced-
ing branches. CrossGET enables cross tokens within each modal-
ity to act as proxies for other modalities, allowing the preceding
modality to leverage information from the succeeding modality
without being constrained by the order of calculations.

• It introduces cross-guided matching and ensemble, a
novel approach for effectively leveraging cross-modal
information. It also proposes a complete-graph soft
matching algorithm for reliable token-matching results
while maintaining parallelizability.

• Its versatility has been validated across a broad range
of vision-language tasks, datasets, and model architec-
tures. This is also the first application of token ensem-
ble approaches to the modality-dependent pipeline of
BLIP2 (Li et al., 2023c), which is a widely adopted
paradigm among recent large vision-language Trans-
formers, e.g., LLaVA (Liu et al., 2023b), MiniGPT-
4 (Zhu et al., 2023), and mPLUG-Owl (Ye et al., 2023).

2. Related Work
Vision-Language Transformers According to the depen-
dency on calculation order across different modalities, exist-
ing vision-language Transformers can be classified into two
main categories: 1) Modality-independent models (Li et al.,
2020; 2021; Radford et al., 2021; Kim et al., 2021; Singh
et al., 2022). For example, CLIP (Radford et al., 2021) is a
representative model. These models allow for both the vi-
sual and language branches to be calculated simultaneously.
2) Modality-dependent models (Li et al., 2021; Yu et al.,
2022; Li et al., 2022; Alayrac et al., 2022), exemplified by
BLIP-based models (Li et al., 2022) and BLIP2/LLaVA-
based (Li et al., 2023c; Zhu et al., 2023; Dai et al., 2023;
Liu et al., 2023b; Gao et al., 2023) multimodal LLMs. In
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Figure 2: Diagram of introducing and leveraging cross-model guidance for vision-language Transformers. ① Cross tokens learn
cross-modal information by closing the after-projection distance between cross tokens of different modalities. The switches indicate that it
is free to choose whether to reduce tokens in different modalities and layers. ② Cross tokens provide cross-modal importance as a metric
to guide token matching. ③ The metric also guides the weighted summation of the stacked tokens to produce token ensemble results.

these models, calculation must commence with the visual
branch, as the language branch relies on outputs from the
visual branch as part of its inputs. CrossGET applies to both
modality-independent and modality-dependent scenarios.

Model Acceleration Techniques Numerous model acceler-
ation techniques exist, for example, knowledge distillation
(Hinton et al., 2015; Zhang et al., 2019; Jiao et al., 2019;
Wang et al., 2020b; Touvron et al., 2021; Yang et al., 2022),
model pruning (Han et al., 2015; He et al., 2017; Fan et al.,
2019; Zhu et al., 2021; Chavan et al., 2022; Tao et al., 2023),
and quantization (Xiao et al., 2022; Tao et al., 2022; Frantar
& Alistarh, 2022; Yuan et al., 2023; Frantar et al., 2023)
CrossGET is orthogonal to these techniques and does not
seek to quantitatively surpass them. Instead, being orthog-
onal indicates that these techniques can be used together
with CrossGET to further enhance their acceleration effect.
Besides, CrossGET offers distinct advantages, including
1) Unlike knowledge distillation that necessitates tuning,
CrossGET offers the flexibility to be utilized both with and
without tuning. This is particularly beneficial when tuning
large models is costly or when data are publicly unavailable.
2) The effectiveness of model pruning is heavily dependent
on granularity. Unstructured and semi-structured pruning
hardly delivers practical speedup without special hardware
support, which is unnecessary for CrossGET. 3) Low-bit
quantization may result in unstable training and necessitate
custom CUDA kernel implementations, which are unneces-
sary for CrossGET. Furthermore, a recent advance, TRIPS
(Jiang et al., 2022), employs text feature extracted from

the Bert (Devlin et al., 2018) encoder to unidirectionally
guide the token reduction in image encoder, which is lim-
ited to modality-independent models. In contrast, Cross-
GET is not only applicable to both modality-independent
and modality-dependent scenarios, but also executes the
modality-dependent token reduction in a more effective
bidirectional manner.

3. Methodology
Figure 1 demonstrates that CrossGET accelerates vision-
language Transformers by ensembling tokens. It is inserted
into the middle of Self-Attention and FFN layers in both
the vision and language branches. To effectively leverage
cross-modal information, CrossGET proposes cross-guided
matching and ensemble (Section 3.1). To achieve reliable
token-matching results, CrossGET utilizes a parallelizable
complete-graph soft matching algorithm (Section 3.2).

3.1. Cross-Guided Matching and Ensemble

Dependencies of Calculation Order For multimodal
models, in addition to utilizing intra-modal similarity as
guidance, token-matching results can further benefit from
cross-modal guidance. However, effectively introducing
cross-modal guidance is challenging, particularly when de-
pendencies exist on the calculation order of modalities.

For example, if modality A requires guidance from modal-
ity B, then B should perform inference, output features as
cross-modal guidance, and send these to A. However, if
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Figure 3: Illustration of complete-graph soft matching on two examples. Case2 is an inverted version of case1 in which the similarity
between token pairs in case2 equals (1− similarity of corresponding pairs in case1).

a calculation dependency exists (e.g., the output of A is a
necessary input for B), B cannot initiate inference before
A completes its inference process. Therefore, A cannot
leverage the cross-modal guidance provided by B.

Breaking Dependencies To allow A to leverage infor-
mation from the succeeding modality B without being con-
strained by order of calculations, CrossGET decouples the
capability to guide preceding modalities from the inference
process on succeeding modalities, i.e., B can offer guid-
ance to A before B’s inference. As illustrated in Figure
2, this is achieved by injecting learnable cross tokens into
each modality, driving them to learn cross-modal informa-
tion from each other. When conducting inference within a
modality, cross tokens act as proxies for other modalities,
offering cross-modal guidance on behalf of other modalities.

Cross-Guided Matching Cross tokens provide cross-
modal importance I as a metric to guide complete-graph soft
matching. I is calculated as the cosine similarity between
the query of the cross-token Tc ∈ R1×d where d is the
embedding size and the key of other tokens Ti ∈ R1×d, i ̸=
c:

Ii =
(TcW

q)(TiW
k)⊤

∥TcW q∥2∥TiW k∥2
, (1)

where W q,W k ∈ Rd×d are weights of query and key
layers, respectively. ∥ · ∥2 denotes L2-norm.

Cross-Guided Ensemble CrossGET can be further en-
hanced by incorporating cross-modal guidance into the en-
semble process. More specifically, employing the softmax
value of cross-modal importance to produce a weighted

summation of the stacked tokens as the ensemble results:

Ti =
∑

Tj∈Si

softmax(I)jTj , (2)

where Si represents the set of the stacked tokens, and Ti

signifies the corresponding ensembled token.

Loss Function JS divergence LJS (i.e., a symmetrized
KL divergence LKL) between after-projection cross tokens
T i
cv from vision and T i

cl from language in layer i is 2:

Li
JS = LJS [(T

i
cvW̃

v)||(T i
clW̃

l)] (3)

=
1

2

[
LKL[(T

i
cvW̃

v)||T i
m] + LKL[(T

i
clW̃

l)||T i
m]

]
, (4)

T i
m =

1

2
(T i

cvW̃
v + T i

clW̃
l), (5)

where W̃ v and W̃ l represent the detached weights of the ex-
isting projection layers used for alignment in vision modal-
ity and language modality, respectively. Being detached
implies that Li

JS produce gradients solely with respect to
cross tokens T i

cv and T i
cl, not affecting the projection layers.

The weight of projection layers W v and W l are updated ex-
clusively based on the gradients from the original loss. Li

JS
is introduced to encourage cross tokens to learn cross-modal
information from different modalities:

L = LO + α
∑L−1

i=0
Li
JS , (6)

where LO denotes the original loss for learning a multi-
modal model, α is a hyperparameter to align the loss items

2For modalities with different number of layers, order-
preserving mappings between layer indices can be employed.
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closely in order of magnitude, and L is the number of model
layers, which means cross tokens are inserted into each layer
of the model and LJS should be calculated for each layer.

3.2. Complete-Graph Soft Matching

Problem Formulation for Token Matching Token
matching is aimed at determining which tokens should be
combined. Suppose there are N ∈ N+ tokens in total, and
r ∈ N+ (r < N ) tokens among them should be eliminated
(i.e., combined together with other tokens), then the token
matching problem can be formulated as a discrete optimiza-
tion problem that is to find a set of feasible token pairs:

P = {(Ti,Tj) | 0 ≤ i, j ≤ N, i ̸= j}, |P | = r, (7)

where Ti denotes tokens i, and | · | denotes the size of the
set, to maximize the objective function

S =
∑

(Ti,Tj)∈P
D(Ti,Tj), (8)

where D is a function (e.g., cosine similarity) that calcu-
lates the similarity between the key of the token Ti and Tj .
Appendix C.1 provides examples to elaborate.

Parallelizability While iterative clustering can be utilized
for token matching, it cannot be parallelized and is time-
consuming. To facilitate the parallelizability, an additional
constraint T S ∩TD = ϕ, should be met. i.e., the source set
T S and destination set TD should be disjointed, where

T S = {Ti | (Ti,Tj) ∈ P}, |T S | = r, (9)

TD = {Tj | (Ti,Tj) ∈ P}, |TD| ≤ r. (10)

Algorithm Procedure Complete-Graph Soft Matching is
designed as a non-iterative, approximate algorithm to ensure
parallelizability and high efficiency. It enables each token
to consider its similarity with all other tokens, as shown in
Figure 3 (Appendix C.2 provides an implementation):

• Step 1: Calculate the cosine similarities KK⊤

∥K∥2
2

be-
tween the keys K of every two tokens to generate
the similarity matrix D ∈ RN×N (Diagonal self-
similarities are ignored).

• Step 2: Sort the rows and columns of the similarity
matrix in descending order based on their maximum
similarity max

1≤j≤N
Dij and max

1≤i≤N
Dij to other tokens.

• Step 3: Upon the sorted similarity matrix D⋆, a lower

triangle dependency mask Mij =

{
−∞ for i ≥ j

0 for i < j

is applied to disjoint the sets T S and TD. It explic-
itly prioritizes the matching among tokens based on

similarity values, ensuring source tokens with higher
priority do not become targets for those with lower
priority.

• Step 4: Select r rows with the highest similarity
max

1≤j≤N
D⋆

ij to other tokens as the source set T S . For

every token in T S , select tokens from T \T S that ex-
hibit the highest similarity as the destination set TD.

• Step 5: The matching among tokens leads to multiple
connected components (i.e., stacks), and tokens in each
stack are ensembled by averaging.

This procedure is non-iterative and parallelizable. As de-
picted in Figure 3, complete-graph soft matching achieves
optimal solutions in both case1 and case2.

Incorporation with Cross-Guided Matching and Ensem-
ble Modifications are as follows to leverage cross-modal
guidance (Appendix C.3 provides an implementation):

• Step 4: Select r rows via metric max
1≤j≤N

D⋆
ij − I (i.e.,

highest similarity to other tokens - cross-modal importance)
instead of max

1≤j≤N
D⋆

ij .

• Step 5: Instead of averaging, ensembling tokens via
weighted summation based on softmax(I).

Appendix C.4 and C.5 provide additional discussions on the
sub-optimal cases of this method and analyses regarding the
expectation of optimal matching probability, respectively.

4. Experiments
We report the performance on modality-independent model
CLIP (Radford et al., 2021) as well as modality-dependent
models BLIP/BLIP2 (Li et al., 2022; 2023c), and main-
stream tasks such as Image-Text Retrieval, Visual Reason-
ing, Image Captioning, and Visual Question Answering.

4.1. Experiments with CLIP on Image-Text Retrieval

We conduct experiments on the CLIP model, and Flickr30K
datasets (Young et al., 2014) with Karpathy split (Karpathy
& Fei-Fei, 2015) of Image-Text Retrieval and Text-Image
Retrieval task. The number of tokens is reduced to half with
the same reduction number for each layer. For example,
suppose one of the modalities of a 12-layer CLIP has 100
tokens as input, then ⌊ 10012 ⌋ = 8 tokens will be eliminated
from each layer so that the number of tokens left in the last
layer is 100− 12× 8 = 4, and the total number of tokens
across all layers is roughly reduced to half. If not specified,
the number of tokens to be reduced in other experiments is
also determined by this strategy.
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Table 1: Accelerate CLIP on the Flickr30K dataset of the Image-Text Retrieval task. R: Recall. R@1, R@5 and R@10 are the
higher the better. Experimental results are reported after training for all approaches. CrossGET▲ only uses complete-graph soft matching
(CGSM) (Section 3.2), CrossGET◆ adds cross-guided matching (CGM) (Section 3.1) on ▲, and CrossGET★ further adds cross-guided
ensemble (CGE) (Section 3.1) on ◆. Here UPop uses a larger CLIP as its original model, and therefore GFLOPs is higher.

Approach
Image → Text Text → Image Avg. GFLOPs

↓
Throughput

↑R@1 R@5 R@10 R@1 R@5 R@10 R@1

CLIP (Radford et al., 2021) 92.1 99.1 99.7 79.3 95.7 98.0 85.7 20.6 255.2

TRIPS (Jiang et al., 2022) 90.4 98.9 99.5 76.8 94.4 97.2 83.6 16.4 316.9
UPop (Shi et al., 2023) 82.9 95.7 97.8 67.3 89.5 93.5 75.1 51.3 -

Hourglass (Liang et al., 2022a) 90.5 99.0 99.7 77.9 94.8 97.3 84.2 15.0 342.3
DynamicViT (Rao et al., 2021) 89.4 98.8 99.3 75.7 94.2 97.0 82.6 12.2 422.1
EViT (Liang et al., 2022b) 89.9 98.6 99.4 76.7 94.5 97.4 83.3 12.4 413.2
ToMe (Bolya et al., 2023) 90.8↓1.3 99.2↑0.1 99.5↓0.2 78.1↓1.2 95.3↓0.4 97.7↓0.3 84.5↓1.2 11.8 417.4
ToMe+Extra Token 90.8↓1.3 98.7↓0.4 99.6↓0.1 78.8↓0.5 95.1↓0.6 97.6↓0.4 84.8↓0.9 11.9 412.9
ToMe+CGM&CGE 91.5↓0.6 99.0↓0.1 99.6↓0.1 78.6↓0.7 95.4↓0.3 97.8↓0.2 85.1↓0.6 11.9 409.9

CrossGET▲ (CGSM) 90.9↓1.2 99.2↑0.1 99.9↑0.2 79.1↓0.2 95.1↓0.6 97.6↓0.4 85.0↓0.7 11.9 408.9
CrossGET◆ (CGSM+CGM) 92.1↑0.0 99.3↑0.2 99.7↑0.0 79.5↑0.2 95.3↓0.4 97.7↓0.3 85.8↑0.1 12.0 402.1
CrossGET★ (CGSM+CGM&CGE) 92.1↑0.0 99.7↑0.6 99.8↑0.1 79.6↑0.3 95.7↑0.0 98.0↑0.0 85.9↑0.2 12.0↓42% 401.8↑57%

Table 2: Accelerate BLIP on the NLVR2 dataset of the Vision
Reasoning task. BLIP is the original model for all approaches.

Approach Dev AccTest AccGFLOPs Throughput

BLIP (Li et al., 2022) 82.3 83.4 132.5 39.8

UPop (Shi et al., 2023) 80.3↓2.0 81.1↓2.3 89.4 -
ToMe (Bolya et al., 2023)81.7↓0.6 82.2↓1.2 59.0 81.9
CrossGET▲ (CGSM) 82.2↓0.1 82.6↓0.8 60.8 77.7
CrossGET★ (Ours) 82.1↓0.2 83.2↓0.2 61.1↓57%76.8↑93%

Comparison with Baselines Unless stated otherwise, all
reported experimental results are after training. Table 1
demonstrates that CrossGET outperforms both the SOTA
multimodal model pruning approach UPop (Shi et al., 2023),
token reduction approach TRIPS (Jiang et al., 2022), and
other unimodal token reduction approachs (Bolya et al.,
2023; Liang et al., 2022b; Rao et al., 2021; Liang et al.,
2022a) without extra learnable parameter other than neg-
ligible cross tokens 3. It can also be observed that simply
adding an extra learnable token to unimodal approach ToMe
does not bring a notable improvement. In particular, the
average of Recall@1 is significantly lower than CrossGET,
which indicates that the improvement given by cross-guided
matching and ensemble is mainly from learning cross-modal
information instead of the increase of learnable tokens.

Effect of individual components As highlighted by grey
in Table 1, complete-graph soft matching (CGSM) brings
improvements on most of the metrics and a significant im-

3For fairness of comparison, methods that require additional
learnable parameters exceeding the level of several tokens are not
taken into comparison (e.g., simply adding a new linear projection
layer with weight W ∈ R768×768 already needs 768 times the
number of our cross token’s parameters Tc ∈ R1×768)

provement on text-to-image retrieval (recall@1 increases
from 78.1 to 79.1). Since the complete graph has more
similarity of token pairs to compute than the bipartite graph,
GFLOPs also slightly increase by 0.1. Cross-guided match-
ing (CGM) brings further improvement on most metrics
and a significant improvement on image-to-text retrieval
(recall@1 increases from 90.9 to 92.1). Since cross tokens
interact with other tokens during the forward, GFLOPs again
slightly increase by 0.1. Cross-guided ensemble brings final
improvement on all metrics with negligible extra GFLOPs.
Moreover, consistent improvements can also be observed
when Cross-Guided Matching and Ensemble is applied
to ToMe. Compared with the original CLIP, CrossGET
achieves the same image-to-text recall@1 and 0.3 higher
text-to-image recall@1 while saving 42% GFLOPs and im-
proving throughput by 57%.

4.2. Experiments with BLIP on Visual Reasoning

Table 2 shows CrossGET also achieves very competitive
performance on the BLIP model and NLVR2 dataset of a vi-
sion reasoning task that requires predicting whether a given
sentence can describe a pair of given images. Compared
with the original BLIP, CrossGET gets only 0.2 lower accu-
racies on the dev set and test set while saving 57% GFLOPs
and improving throughput by 93%.

4.3. Experiments at Different Reduction Ratios

Figure 4 illustrates experimental results at various reduc-
tion ratios under three different settings: (1) Comparisons
without training (left subfigure). Note that the only part of
CrossGET that requires training is learning cross tokens.
However, they are initialized with informative features (see
Appendix A.8) and already contain representative informa-
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Table 3: Accelerate BLIP on the COCO Caption dataset of the Image Caption task. The suffix -F denotes GFLOPs and throughput
for the forward, while -G denotes GFLOPs and throughput for the generation.

Approach CIDEr SPICE GFLOPs-F Throughput-F GFLOPs-G Throughput-G

BLIP (Li et al., 2022) 133.3 23.8 65.7 106.4 330.7 17.2

UPop (Shi et al., 2023) 128.9↓4.4 23.3↓0.5 39.8 - - -
ToMe (Bolya et al., 2023) 130.3↓3.0 23.3↓0.5 29.2 209.3 43.8 77.7
CrossGET (Ours) 131.6↓1.7 23.8↑0.0 30.1↓54% 183.5↑72% 46.7↓86% 73.9↑330%
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Figure 4: Performance-Cost tradeoffs in three situations: 1) The left subfigure illustrates the tradeoff for BLIP on the NVLR2 dataset
of the Visual Reasoning task without training. 2) The upper-right subfigure illustrates the tradeoff for BLIP on the NVLR2 dataset of
the Visual Reasoning task with training. 3) The lower-right subfigure illustrates the tradeoff for CLIP on the Flickr30K dataset of the
Image-Text Retrieval task are trained with 50% token reduced and then re-evaluated under other token reduction ratios without training.

Table 4: Accelerate BLIP on the NoCaps dataset of the Novel Object Caption task. All metrics are the higher the better, and the
evaluation uses the same model finetuned on the COCO Caption dataset as in Table 3, and therefore the GFLOPs and throughput of
models are the same as in Table 3.

Approach
in-domain near-domain out-domain entire

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

BLIP (Li et al., 2022) 111.9 14.9 108.8 14.8 112.1 14.2 109.9 14.7

ToMe (Bolya et al., 2023) 107.9↓4.0 14.8↓0.1 105.1↓3.7 14.4↓0.4 106.4↓5.7 14.1↓0.1 105.7↓4.2 14.4↓0.3
CrossGET (Ours) 113.2↑1.3 15.1↑0.2 107.2↓1.6 14.6↓0.2 107.4↓4.7 14.1↓0.1 108.1↓1.8 14.6↓0.1

tion even though they are not trained. Therefore, Cross-
GET can also be used without training (certainly worse than
with training); (2) Comparisons with training (upper-right
subfigure). (3) Re-evaluate a trained model (50% token
reduced) under other token reduction ratios without training
(lower-right subfigure). These subfigures demonstrate that
CrossGET achieves superior Pareto frontiers in all three
situations. Appendix A.17, A.18, and A.19 provide detailed
data. Besides, the original ToMe method does not require
training, and the comparison with it is illustrated in the small
plot at the lower right corner of the left subfigure.

4.4. Experiments with BLIP on Image Captioning

On auto-regressive models performing cross-modal interac-
tions at each layer and forward via Cross-Attentions, such
as the BLIP-Captioning (Li et al., 2022) model, CrossGET
achieves higher speedups. As shown in Table 3, reducing
the total tokens by half for the generation brings 86% saving
of GFLOPs and improving 330% throughput.

We also conduct experiments on the NoCaps (Agrawal et al.,
2019) datasets of the Novel Object Caption task, and the
model accelerated by CrossGET again achieves superior
performances on the entire task and all sub-tasks.
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Table 5: Accelerate BLIP on the VQA2.0 dataset of the Visual Question Answer task. ”yes/no”, ”number”, ”other”, and ”overall”
denote accuracy on the corresponding types of questions. These four metrics are the higher the better. The suffix -F denotes GFLOPs and
throughput for the forward that a single image may be accompanied by multiple questions and answers during training, while -T denotes
GFLOPs and throughput for the test that a single image is accompanied by only one question and answer.

Approach yes/no number other overall GFLOPs-F Throughput-F GFLOPs-T Throughput-T

BLIP (Li et al., 2022) 92.6 60.6 68.3 77.4 186.1 67.2 106.8 53.0

UPop (Shi et al., 2023) - - - 76.3↓1.1 109.4 - - -
ToMe (Bolya et al., 2023) 92.1↓0.5 59.3↓1.3 67.1↓1.2 76.5↓0.9 119.0 141.1 46.7 90.1
CrossGET (Ours) 92.4↓0.2 59.7↓0.9 67.7↓0.6 77.0↓0.4 124.5↓33% 120.4↑79% 49.0↓54% 81.3↑53%

Table 6: Accelerate multimodal LLM BLIP2-OPT6.7B on the COCO Caption dataset of the Image Caption task. The suffix -F
denotes GFLOPs and throughput for the forward, while -G denotes GFLOPs and throughput for the generation. ∗ indicates using greedy
decoding instead of beam search for generation. Experimental results on BLIP2-OPT2.7B are provided in Appendix A.15.

Approach Tuning CIDEr BLEU@4 GFLOPs-F Throughput-F GFLOPs-G Throughput-G Throughput-G∗

BLIP2-OPT6.7B - 144.5 42.5 1042.6 47.4 2461.1 16.2 46.2

w/o tuning 144.7 42.4 957.6 - 2342.7 - -
w/o tuning 144.3 42.3 868.1 - 2086.7 - -
w/o tuning 142.4 41.9 780.7 - 2232.4 - -
w/o tuning 135.5 40.1 695.1 - 2046.9 - -

ToMe
(Bolya et al., 2023)

w/ tuning 141.7↓2.8 41.4↓1.1 544.8 92.6 1510.0 21.5 75.1

w/o tuning 144.5 42.3 973.8 - 2392.3 - -
w/o tuning 144.6 42.4 881.1 - 2266.2 - -
w/o tuning 143.3 42.1 790.9 - 2176.1 - -
w/o tuning 137.5 40.6 703.4 - 2121.8 - -CrossGET(Ours)

w/ tuning 143.1↓1.4 42.0↓0.5 558.2↓49% 91.0↑92% 1583.2↓36% 21.6↑33% 75.7↑64%

4.5. Experiments with BLIP on Visual QA

We conduct experiments on the BLIP model (Li et al., 2022)
and the test-dev set of the VQA2.0 dataset (Goyal et al.,
2017). Table 5 demonstrates that CrossGET can also con-
siderably save computational cost and improve throughput
for the Visual Question Answering task. For example, when
compared with the original model, CrossGET gets only 0.4
lower overall accuracy on all three types of questions while
saving 33% GFLOPs and improving throughput by 79% for
the multiple-question scenario, and saving 54% GFLOPs
and improving throughput by 53% for the single-question
scenario.

4.6. Experiments with BLIP2 on Image Captioning

We apply CrossGET to the multimodal LLM BLIP2 (Li
et al., 2023c). Following the original strategy of BLIP2,
which tunes the ViT and Q-Former (a BERT) while freezing
the LLM, we conduct experiments with and without tuning.
Table 6 demonstrates that CrossGET consistently achieves
promising performance on multimodal LLMs. Addition-
ally, compared with BLIP, the language branch of BLIP2
receives fewer tokens from the vision branch, resulting in
less generation speedup.

4.7. Experiments with LLaVA-1.5 on Various Datasets

For experiments on LLaVA-1.5 (Liu et al., 2023a), we fol-
lowed its supervised fine-tuning (SFT) strategy, which tunes
the LLM (i.e., Vicuna (Chiang et al., 2023)) and projector
(i.e., MLP) while freezing the ViT. We evenly sampled 10%
of data from the SFT dataset of LLaVA-1.5 as our train-
ing dataset. We observed that using more data provided
limited improvement in performance recovery for models
after acceleration. As shown in Table 7, with only 10% of
the SFT data, CrossGET nearly doubles the throughput of
the model forward and improves the throughput of genera-
tion by nearly 50%, while maintaining more than 98% of
the original models’ capabilities on average. Table 7 also
indicates that with similar computational cost and through-
put, LLaVA-1.5-13B after acceleration achieves better over-
all performance than LLaVA-1.5-7B without acceleration,
which further demonstrates that instead of training smaller
models from scratch, CrossGET can efficiently create more
capable models from large-scale ones.

4.8. Experiments on CoOp Benchmark for Few-Shot
Image Classification

We followed the same settings as CoOp (Zhou et al., 2022b),
which uses 16 shots and freezes the backbone model CLIP

8



CrossGET: Cross-Guided Ensemble of Tokens for Accelerating Vision-Language Transformers

Table 7: Accelerate multimodal LLM LLaVA-1.5-7B and LLaVA-1.5-13B. Quantitative evaluation is conducted on ten widely used
datasets. Tput represents throughput. The superscript F denotes GFLOPs and throughput for the forward, while G denotes GFLOPs and
throughput for the generation. Details of each dataset are provided in Appendix A.4.

Approach VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MMBCN SEEDI GFLOPsF TputF GFLOPsG TputG

LLaVA-1.5-7B 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 66.2 4480.9 32.0 6216.7 1.7
with CrossGET 77.3 61.4 47.7 66.7 54.9 83.9 1510.2 64.7 55.2 64.4 2382.5↓31% 60.4↑89% 4098.4↓34% 2.5↑47%

LLaVA-1.5-13B 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 68.2 8505.3 18.6 11862.0 1.1
with CrossGET 78.7 62.6 51.8 71.4 58.0 84.9 1548.8 66.3 62.0 67.5 4500.3↓47% 37.0↑99% 7825.9↓34% 1.6↑45%

Table 8: Accelerate CLIP on the CoOp benchmark for the few-shot Image Classification task. Following the same settings as CoOp,
we use 16 shots and report top-1 accuracy on each of the 11 datasets. Details of each dataset are provided in Appendix A.3.
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CoOp (Zhou et al., 2022b) 71.1 95.4 93.3 77.5 95.6 86.5 37.3 75.1 65.8 82.6 83.7 78.5 20.6

70.8 94.6 90.8 81.9 95.8 82.0 43.7 74.1 65.7 88.4 82.2 79.1↑0.6 16.5↓20%
70.2 94.9 90.1 81.1 95.0 81.5 43.1 73.5 65.9 86.9 81.9 78.6↑0.1 14.2↓31%

CoOp with CrossGET
(Ours) 67.6 93.9 89.5 76.6 93.3 79.7 41.3 72.1 64.2 84.5 80.5 76.7↓1.8 12.0↓42%

while conducting prompt tuning. The experimental results
in Table 8 demonstrate that CrossGET achieves notable
computational cost savings on few-shot Image Classification
task4. For example, CrossGET achieves a 31% lossless
computational cost saving according to the average top-
1 accuracy over 11 datasets. Besides, the performance-
cost trade-off on the CoOp benchmark is relatively worse
than other experiments we have reported, which should
be attributed to 1) most of the model parameters (i.e., the
whole backbone) are frozen, resulting in worse convergence
than the full-parameter fine-tuning we have used for other
experiments; 2) only a portion of the datasets are used for
few-shot learning, resulting in more severe overfitting than
when using the entire datasets in other experiments.

5. Conclusion
In this paper, we introduce CrossGET, a general token en-
semble framework tailored for accelerating vision-language
Transformers. CrossGET effectively utilizes bidirectional
cross-modal guidance to make informed decisions on to-
ken selection and ensemble. Notably, our token-matching
method is grounded on an approximate complete-graph
matching algorithm, ensuring superior token-matching reli-
ability in comparison to bipartite-graph approaches while
maintaining parallelizability for high efficiency. In summary,
CrossGET provides favorable performance-cost tradeoffs

4We report overall accuracy on all classes as in CoOp, rather
than splitting classes into two groups and reporting separate accu-
racy as in CoCoOp (Zhou et al., 2022a).

and demonstrates robust applicability, as evidenced through
extensive empirical evaluations on a multitude of vision-
language tasks, datasets, and model architectures.
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A. Supplementary Experiments and Details
A.1. Diagram of Adding Cross Tokes to Different Models
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Figure 5: Diagram of adding cross tokes to modality-independent models such as CLIP (Radford et al., 2021) (left) and modality-dependent
models such as BLIP/BLIP2 (Li et al., 2022; 2023c) (right).

Figure 5 demonstrates that CrossGET is designed to be a general framework that can be used for accelerating both modality-
independent vision-language models such as CLIP (Radford et al., 2021) model and modality-dependent vision-language
models such as BLIP/BLIP2 (Li et al., 2022; 2023c) -based models.

Two different types of dependencies exist for modality-dependent vision-language models. The first type that BLIP (Li
et al., 2022) belongs to is that the succeeding modality interacts with the final output of the preceding modality through
Cross-Attention modules. For this type, in addition to reducing the number of its own tokens, the succeeding modality can
also be accelerated by reducing the number of tokens output from the preceding modality to speed up Cross-Attentions.

The second type BLIP2 (Li et al., 2023c) -based models such as InstructBLIP (Dai et al., 2023), MiniGPT-4 (Zhu et al.,
2023), and mPLUG-Owl (Ye et al., 2023) belong to is that the succeeding modality takes the final output of the preceding
modality as part of its input sequence to the first layer, and the cross-modal interaction is conducted by Self-Attentions in
the succeeding modality. For the second type, the succeeding modality can be accelerated by reducing the length of the
cross-modal input sequence to speed up Self-Attentions and FFNs in the succeeding modality.

Take BLIP2 as an example. BLIP2 consists of a ViT for processing visual input, a Q-Former (a Bert) for bridging modalities,
and an LLM for taking inputs from Q-Former and generating text output accordingly. During fine-tuning, ViT and Q-Former
are tunable while the LLM is frozen. To accelerate BLIP2, we can reduce the number of tokens in both ViT and Q-Former.
It is worth noting that there are two ways to reduce the number of tokens processed by LLM. The first one is reducing the
number of tokens in Q-Former. Since LLM takes Q-Former’s output as its input, the token reduction conducted in Q-Former
leads to LLM acceleration. This setting gives the default performance we reported in the paper. The second one is directly
ensembling tokens in LLM. We have also tested this setting and discussed it in Appendix A.16.

Recently, vision-language models that take interleaved sequences as inputs, such as Flamingo (Alayrac et al., 2022) and
VPG-C (Li et al., 2023d), also attracted much attention. CrossGET can be further extended to these models since they can
still be categorized as either modality-dependent or modality-independent models. However, some modifications should be
made to the concrete strategy for matching tokens. More specifically, for interleaved vision-language inputs, we also need to
consider cross-fragment guidance between different image/text fragments within the same modality, which will be more
complicated than single image-text scenarios where we only consider cross-modal guidance between different modalities.
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A.2. Hyperparameter Settings

Table 9: Training hyperparameters for accelerating BLIP-based models.

Hyperparameters

BLIP-NLVR
(Li et al., 2022)

BLIP-Captioning
(Li et al., 2022)

BLIP-VQA
(Li et al., 2022)

NLVR2
(Suhr et al., 2018)

COCO Caption
(Chen et al., 2015)

NoCaps
(Agrawal et al., 2019)

VQAv2
(Goyal et al., 2017)

Optimizer AdamW(Loshchilov & Hutter, 2017)
AdamW β (0.9, 0.999)
Batch size 512
Weight decay 0.05 0.05 0.05 0.05
Epochs 15 5 5 10
Initial learning rate 3× 10−6 1× 10−5 1× 10−5 2× 10−5

Learning rate schedule CosineLRScheduler (Loshchilov & Hutter, 2016)
Data augmentation RandomAugment (Cubuk et al., 2020)
Training Precision Mixed Precision (Micikevicius et al., 2017)
Matching loss coefficient 101 102 102 101

Table 10: Training hyperparameters for accelerating CLIP and BLIP2-based models.

Hyperparameters

CLIP-Retrieval
(Radford et al., 2021)

BLIP2-OPT2.7B-
Captioning (Li et al., 2023c)

BLIP2-OPT6.7B-
Captioning (Li et al., 2023c)

Flickr30K
(Young et al., 2014)

COCO Caption
(Chen et al., 2015)

COCO Caption
(Chen et al., 2015)

Optimizer AdamW (Loshchilov & Hutter, 2017)
AdamW β (0.9, 0.999)
Batch size 512 1024 512
Weight decay 0.2 0.05 0.05
Epochs 12 5 5
Initial learning rate 1× 10−5 1× 10−5 1× 10−5

Learning rate schedule CosineLRScheduler (Loshchilov & Hutter, 2016)
Data augmentation RandomAugment (Cubuk et al., 2020)
Training Precision Mixed Precision (Micikevicius et al., 2017)
Matching loss coefficient 100 10−1 10−1

Table 11: Training hyperparameters for accelerating CoOp and LLaVA-1.5 models.

Hyperparameters

CLIP-CoOp
(Zhou et al., 2022b)

LLaVA-1.5-7B
(Liu et al., 2023a)

LLaVA-1.5-13B
(Liu et al., 2023a)

See Appendix A.3 SFT data of LLaVA-1.5 SFT data of LLaVA-1.5

Optimizer AdamW (Loshchilov & Hutter, 2017)
AdamW β (0.9, 0.999)
Batch size EuroSAT: 128. Others: 256 128 128
Weight decay 0.0005 0 0
Epochs ImageNet: 50. Others: 200 1 1
Initial learning rate ImageNet: 2× 10−2. Others: 5× 10−2 2× 10−5 2× 10−5

Learning rate schedule CosineLRScheduler (Loshchilov & Hutter, 2016)
Matching loss coefficient 101 10−3 10−1

The hyperparameters about model training are listed in Table 9, Table 10, and Table 11. The hyperparameters about model
structures are listed in Table 12.
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Table 12: Structure hyperparameters for all models used in our experiments. The superscript * indicates 2 Transformers share parameters.
The superscript † indicates hyperparameters are from (OPT, Q-Former).

Model Input
resolution

Vision Transformer
(Touvron et al., 2021; Fang et al., 2023)

Language Transformer
(Devlin et al., 2018; Zhang et al., 2022)

number layers width heads number layers width heads

CLIP-Retrieval 336×336 1 12 768 12 1 12 512 8
CLIP-CoOp 336×336 1 12 768 12 1 12 512 8
BLIP-NLVR 384×384 2* (12, 12) (768, 768) (12, 12) 1 12 768 12
BLIP-Captioning 384×384 1 12 768 12 1 12 768 12
BLIP-NoCaps 384×384 1 12 768 12 1 12 768 12
BLIP-VQA 480×480 1 12 768 12 2 (12, 12) (768, 768) (12, 12)
BLIP2-OPT2.7B 364×364 1 39 1408 16 2† (32, 12) (2560, 768) (32, 12)
BLIP2-OPT6.7B 364×364 1 39 1408 16 2† (32, 12) (4096, 768) (32, 12)
LLaVA-1.5-7B 336×336 1 24 1024 16 1 32 4096 32
LLaVA-1.5-13B 336×336 1 24 1024 16 1 40 5120 40

A.3. Evaluation Datasets for CoOp

The CoOp benchmark (Zhou et al., 2022b) consists of 11 datasets, which are ImageNet (1000 classes) (Deng et al., 2009),
Caltech101 (100 classes) (Fei-Fei et al., 2004), OxfordPets (37 classes) (Parkhi et al., 2012), StanfordCars (196 classes)
(Krause et al., 2013), Flowers102 (102 classes) (Nilsback & Zisserman, 2008), Food101 (101 classes) (Bossard et al., 2014),
FGVCAircraft (100 classes) (Maji et al., 2013), SUN397 (397 classes) (Xiao et al., 2010), DTD (47 classes) (Cimpoi et al.,
2014), EuroSAT (10 classes) (Helber et al., 2019), and UCF101 (101 classes) (Soomro et al., 2012). For each dataset, we
randomly sample 16 images in each class as its training set for few-shot learning.

A.4. Evaluation Datasets for LLaVA-1.5

After applying CrossGET to LLaVA-1.5 (Liu et al., 2023a), we used 10 datasets to evaluate model performance, including
VQA-v2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VisWiz (Gurari et al., 2018), ScienceQA-IMG (Lu et al.,
2022), TextVQA (Singh et al., 2019), POPE (Li et al., 2023e), MME (Yin et al., 2023), MMBench (Liu et al., 2023c),
MMBench-CN (Liu et al., 2023c), and SEED-Bench-Image (Li et al., 2023a).

A.5. Ablation Study on Training Hyperparameters

The hyperparameters are basically inherited from original models and do not need a specific tune. The particular case is that
batch sizes are adjusted to fit our computational resources. The only additional hyperparameter introduced by CrossGET is
the matching loss coefficient α, which is used to balance the original loss items and the matching loss item. For simplicity,
α can be determined as the number α ∈ {10i}i∈N that makes the original loss items and the matching loss item have the
closest order of magnitude, and therefore, it does not need to be tuned either.

Table 13: Ablation study about batch size
on BLIP-NLVR.

Batch size Dev Acc Test Acc

128 82.0↓0.1 82.8↓0.4
256 82.2↑0.1 83.0↓0.2
512 82.1 83.2
1024 82.2↑0.1 83.0↓0.2

Table 14: Ablation study about learning
rate on BLIP-NLVR.

Learning rate Dev Acc Test Acc

1× 10−6 81.8↓0.3 82.5↓0.7
3× 10−6 82.1 83.2
1× 10−5 82.2↑0.1 82.7↓0.5
3× 10−5 82.0↓0.1 82.6↓0.6

Table 15: Ablation study about coef-
ficient α for matching loss on BLIP-
NLVR.

Coefficient Dev Acc Test Acc

100 82.0↓0.1 82.5↓0.7
101 82.1 83.2
102 81.8↓0.3 82.7↓0.5

Table 13, Table 14, and Table 15 investigate how hyperparameters affect the model performance. Experimental results
show that the performance is insensitive to batch size and slightly sensitive to the learning rate. As for the matching loss
coefficient α ∈ {10i}i∈N, set it to the value that makes the original loss items and the matching loss item have the closest
order of magnitude as mentioned above will work well.
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A.6. Ablation Study on Different Modalities

Table 16: Ablation study about applying CrossGET on different modalities.

Modality I2T R@1 T2I R@1 GFLOPs

vision only 92.1 79.6 12.0
language only 92.8↑0.7 80.4↑0.8 19.3↑61%
vision and language 91.4↓0.7 78.3↓1.3 10.6↓12%

As shown in Figure 2, it is flexible that CrossGET can be applied on both vision and language modalities or only on one of
the modalities. Table 16 investigates the trade-off between model performance and computational cost of application on
different modalities. Experimental results show that CrossGET only on the vision modality achieves the best trade-off.

A.7. Ablation Study on the Strategy of Adding Cross Token

Table 17: Ablation study about the strategy of adding cross tokens.

Depth I2T R@1 T2I R@1 GFLOPs

shallow 91.5↓0.6 79.5↓0.1 12.0
deep 92.1 79.6 12.0
share 90.7↓1.4 78.8↓0.8 12.0

There are several strategies for injecting cross tokens into the model. For example, (1) deep: adding different cross tokens
for each layer; (2) shallow: only adding one cross token into the first layer; (3) share: adding one cross token but jointly
optimized in each layer. Table 17 shows that adding different cross tokens for each layer achieves the best performance.

A.8. Ablation Study on the Initialization of Cross Token

Table 18: Ablation study about initializing cross tokens.

Initialization I2T R@1 T2I R@1 GFLOPs

zero 91.7↓0.4 77.9↓1.7 12.0
normal random 90.4↓1.7 77.6↓2.0 12.0
uniform random 90.2↓1.9 77.6↓2.0 12.0
informative tokens 92.1 79.6 12.0

For fine-tuning, cross tokens are kind of sensitive to the initialization strategy. Using informative tokens to initialize cross
tokens is recommended. More specifically, for the vision modality, [CLS] token can be used to initialize the cross token. For
the language modality, the cross token can be initialized by [CLS]/[EOS]/[EOT] tokens for discriminative tasks (it depends
on which token is ultimately used to calculate the loss) and by [BOS] token for auto-regressive tasks (if there is no, we use
the first token of the input sequence to initialize instead).

Table 18 shows that zero initialization and random initialization perform worse. We think the sensitivity should be attributed
to the limited training time for fine-tuning and the purpose of quickly adapting to downstream tasks. More specifically,
random/zero initialization may work well for pre-training since there is enough time for cross tokens to learn informative
guidance. However, it will be difficult for random/zero initialization to learn well with limited iterations for fine-tuning.
Therefore, initializing the cross token with [CLS] token in the vision modality and [CLS]/[BOS]/[EOS]/[EOT] token in the
language modality implies that the cross token already contains some informative guidance of the modality it is in, and
would be easier to form more informative guidance with this good starting point.

A.9. Ablation Study on the Projection Layer Detach

The final projection layers are initially used to project features from the different modalities into aligned representations. In
CrossGET, the final projection layers are detached from the original model and used for aligning cross tokens. The detach
operation prevents gradients with respect to cross tokens from updating the projection layers. Table 19 shows that detaching
both vision and language projection improves performance.
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Table 19: Ablation study about projection layer detach.

Projection detach I2T R@1 T2I R@1 GFLOPs

neither 91.5↓0.6 78.9↓0.7 12.0
vision only 91.4↓0.7 79.4↓0.2 12.0
language only 90.5↓1.6 78.9↓0.7 12.0
both 92.1 79.6 12.0

A.10. Ablation Study on the Number of Cross Tokens

Table 20: Ablation study on number of cross tokens.

Number Dev Acc Test Acc GFLOPs

1 82.1 83.2 61.1
2 82.2↑0.1 83.2↑0.0 61.4↑0.3
3 81.9↓0.2 83.2↓0.0 61.8↑0.7
4 82.0↓0.1 82.9↓0.3 62.2↑1.1

Table 20 investigates how the performance is impacted by the number of cross tokens on the Vision Reasoning Task and
BLIP (Li et al., 2022) model. It can be observed that the performance is not sensitive to the increase in the number of tokens,
which is unlike prompt tuning (Lester et al., 2021; Jia et al., 2022) that model performance can be boosted by increasing the
number of tokens. Considering the additional computational cost of multiple cross tokens, using only one cross token is
recommended.

A.11. Ablation Study on Tokens for Computing Importance

For BLIP (Li et al., 2022) on the Visual Reasoning task, a different setting from default is that not cross tokens alone, but
all tokens are used to compute importance. By default, in the modality-independent model CLIP (Radford et al., 2021),
only the [CLS] and [EOS] tokens are ultimately used for computing loss. In contrast, for the modality-dependent model
BLIP-NLVR, all tokens output from the vision modality are parts of the inputs for the language modality and matter.

Table 21: Ablation study about tokens for computing importance.

used tokens Dev Acc Test Acc

cross token 82.1↑0.0 82.9↓0.3
other tokens 81.9↓0.2 82.2↓1.0
all tokens 82.1 83.2
importance 82.2↑0.1 83.0↓0.2

Four settings about which tokens are used for computing importance are tested as shown in Table 21: (1) cross token: cross
tokens contribute all; (2) other tokens: other tokens contribute all; (3) all tokens (adopted): cross tokens contribute to 1

2
importance while other tokens contribute to the other 1

2 ; (4) importance: we can reuse the dot product between the query and
key of each token (including cross tokens) that has already been calculated in the Self-Attention as the importance metric to
avoid extra computational cost for introducing other tokens’ importance.

A.12. Ablation Study on Tokens for Computing JS divergence

For BLIP (Li et al., 2022) on the Image Caption task, a different setting from default is that not only the loss of JS divergence
between the pairs of cross tokens but also the JS divergence between the cross tokens and other tokens should be added as
loss items. By default, in the language modality of the discriminative model CLIP (Radford et al., 2021), only the [EOS]
token matters for the final output. In contrast, for the auto-regressive model BLIP-Captioning, tokens are generated based on
their previous tokens, and therefore, every token matters.

Table 22 shows that combined JS divergence between pairs of cross tokens as well as between cross tokens and other tokens
as loss performs best. Besides, weighting the loss between cross tokens and other tokens according to the generation order
also helps. The weight for the i-th generated token is 1− i

L where L is the maximum generation length, which means the
first generated token is more important than the later ones since they are generated based on former ones.

20



CrossGET: Cross-Guided Ensemble of Tokens for Accelerating Vision-Language Transformers

Table 22: Ablation study about which tokens are used for computing JS divergence as additional loss items.

JS divergence as loss CIDEr SPICE

only between pairs of cross tokens 130.2↓1.4 23.7↓0.1
only between cross tokens and other tokens 131.0↓0.6 23.5↓0.3
w/o weighting loss according to generation order 131.2↓0.4 23.7↓0.1
between cross tokens and all tokens 131.6 23.8

A.13. Comparison Experiments with Text-Relevant Image Patch Selection

Table 23: Accelerate CLIP on the Flickr30K dataset of the Image-Text Retrieval task. R: Recall. R@1, R@5, and R@10 are the
higher the better. The TRIPS represents Text-Relevant Image Patch Selection (Jiang et al., 2022). The -L indicates using an additional
learnable projection to align the text [CLS] token with vision tokens.

Approach
Image → Text Text → Image Avg. GFLOPs

↓
Throughput

↑R@1 R@5 R@10 R@1 R@5 R@10 R@1

CLIP (Radford et al., 2021) 92.1 99.1 99.7 79.3 95.7 98.0 85.7 20.6 255.2

TRIPS (Default FLOPs) 87.6 98.7 99.4 76.6 94.4 97.0 82.1 16.4 317.7
TRIPS-L (Default FLOPs) 90.4 98.9 99.5 76.8 94.4 97.2 83.6 16.4 316.9
TRIPS (Same FLOPs) 75.5 94.3 97.8 63.9 88.5 93.8 69.7 12.0 423.5
TRIPS-L (Same FLOPs) 70.1 92.4 96.9 61.2 86.8 92.1 65.7 12.0 423.1

CrossGET (Ours) 92.1↑0.0 99.7↑0.6 99.8↑0.1 79.6↑0.3 95.7↑0.0 98.0↑0.0 85.9↑0.2 12.0↓42% 401.8↑57%

In Table 23, the TRIPS (Default FLOPs) (Jiang et al., 2022) indicates we follow the recommended setting of the original
TRIPS, i.e., we take the 5th and 10th as the patch-selection layer and set the keep ratio of each layer to 70%. The TRIPS
(Same FLOPs) indicates we decrease the keep ratio of each patch-selection layer to achieve similar GFLOPs with ToMe
(Bolya et al., 2023) and CrossGET. Overall, the experimental results demonstrate that CrossGET outperforms TRIPS under
similar computational costs.

When compared with TRIPS, one of the CrossGET’s advantages is that it can more easily deal with the models in which
the embedding sizes of vision and language branches are different. More specifically, TRIPS is not directly applicable to
the models with different embedding sizes of the vision branch and language branch, and without a projection layer that
projects the language embedding size into the vision embedding size as well.

For example, the vision and language embedding sizes in the CLIP model we used are 768 and 512, respectively. Besides,
there is a 768→ 512 projection layer for vision projection and a 512→ 512 for language projection. TRIPS requires the
projected text [CLS] token to have the same embedding size as the tokens in the vision branch. However, CLIP has no
trained (i.e., aligned) 512→ 768 projection layer to fulfill this. To overcome this problem, we propose two strategies: 1)
The first one is to use the pseudo-inverse of the trained 768→ 512 projection layer to project the 512-dimensional text
[CLS] token into a 768-dimensional token, whose experimental results are denoted without -L. 2) The second one is to add
an additional 512→ 768 learnable projection layer into the original model and then jointly optimize, whose experimental
results are denoted with -L. Note that this is not a problem for CrossGET since cross tokens are learned cross-modally while
used intra-modally, and the embedding size of cross tokens is the same as other tokens in the same modality branch. Thus,
CrossGET doesn’t need a projection layer to align cross tokens when they are used as metrics to guide the token reduction.

The other advantage of CrossGET is that it can deal with both modality-independent and modality-dependent models, which
is also an important contribution of CrossGET. We have discussed this in Section 3.1, and TRIPS can serve as an example to
elaborate it. More specifically, TRIPS uses text [CLS] token, i.e., the output of the language encoder in the ALBEF (Li et al.,
2021) model as the metric to guide the token reduction in the vision branch. However, this paradigm cannot be used in
multimodal models where the input of the language branches depends on the output of the vision branch.

For example, in the BLIP-NLVR (Li et al., 2022) model, the output of the vision branch is a necessary input for the language
branch. And if we want to use the text [CLS] token i.e., the output of the language branch as a metric to guide the token
reduction in the vision branch, we have to first forward through the vision branch, get the last layer’s output as the input
of the language branch, forward through the language branch, get the last layer’s output as the metric, i.e., only after the
forward of the vision branch is finished, we can get the required metric used for vision branch. CrossGET breaks this
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paradox of cycles by using cross tokens as proxies for other modalities, providing cross-modal guidance on behalf of other
modalities without being constrained by the order of calculations.

A.14. Comparison Experiments with Adpater

Table 24: Accelerate CLIP on the Flickr30K dataset of the Image-Text Retrieval task. R: Recall. R@1, R@5, and R@10 are the
higher the better. The Adapter-x represents Adaptformer (Chen et al., 2022b), and the integer x in Adapter-x represents the middle
dimension of the adapter.

Approach
Image → Text Text → Image Avg. GFLOPs

↓
Throughput

↑R@1 R@5 R@10 R@1 R@5 R@10 R@1

CLIP (Radford et al., 2021) 92.1 99.1 99.7 79.3 95.7 98.0 85.7 20.6 255.2

ToMe (Bolya et al., 2023) 90.8 99.2 99.5 78.1 95.3 97.7 84.5 11.8 417.4
ToMe +Adapter-16 89.2 98.7 99.6 75.9 94.2 97.1 82.6 11.9 404.1
ToMe +Adapter-64 89.9 98.8 99.5 76.7 94.4 97.3 83.3 12.0 401.2
ToMe +Adapter-256 90.2 99.0 99.4 76.7 94.5 97.5 83.5 12.5 386.4
ToMe +Adapter-1024 90.3 99.0 99.8 78.0 94.6 97.4 84.2 14.5 346.2
ToMe +Adapter-4096 91.4 98.8 99.6 78.2 95.0 97.6 84.8 22.7 243.5

CrossGET (Ours) 92.1↑0.0 99.7↑0.6 99.8↑0.1 79.6↑0.3 95.7↑0.0 98.0↑0.0 85.9↑0.2 12.0↓42% 401.8↑57%

The experimental results demonstrate that when using ToMe (Bolya et al., 2023) with an adapter (Chen et al., 2022b), the
middle dimension of the adapter needs to be very large(e.g., around 4096) for the model to perform better than without using
the adapter. However, the additional computation cost introduced by the adapter is significant (see GFLOPs and Throughput
in the above Table 24), and the performance is still worse than CrossGET.

A.15. Experiments with BLIP2 on Image Captioning

Table 25: Accelerate multimodal LLM BLIP2-OPT2.7B (Li et al., 2023c) on the COCO Caption dataset of the Image Caption task. The
suffix -F denotes GFLOPs and throughput for the forward, while -G denotes GFLOPs and throughput for the generation. ∗ indicates using
greedy decoding instead of beam search for generation.

Approach Tuning CIDEr BLEU@4 GFLOPs-F Throughput.-F GFLOPs-G Throughput.-G Throughput.-G∗

BLIP2-OPT2.7B - 145.6 42.8 854.2 54.0 1379.3 22.3 52.4

w/o tuning 145.1 42.6 769.1 - 1294.2 - -
w/o tuning 144.2 42.3 679.7 - 1218.1 - -
w/o tuning 142.8 42.2 592.2 - 1104.0 - -
w/o tuning 136.5 40.6 506.7 - 1018.5 - -

ToMe
(Bolya et al., 2023)

w/ tuning 142.4↓3.2 41.7↓1.1 404.6 107.5 855.1 30.5 86.7

w/o tuning 145.9 43.1 785.4 - 1310.5 - -
w/o tuning 144.6 42.6 692.7 - 1204.5 - -
w/o tuning 144.2 42.7 602.5 - 1114.3 - -
w/o tuning 138.6 41.2 514.9 - 1053.3 - -CrossGET(Ours)

w/ tuning 143.1↓2.5 41.9↓0.9 413.9↓52% 104.5↑94% 822.0↓40% 30.5↑37% 84.1↑60%

Experimental results on BLIP2-OPT2.7B (Li et al., 2023c) are listed in Table 25, which demonstrates similarly promising
performance of CrossGET as on BLIP2-OPT6.7B. Note that the performance of the original model we tested locally is
slightly lower than the results reported in the original paper.

A.16. Experiments with BLIP2 about Where to Reduce Tokens

We conduct experiments on directly ensembling tokens on OPT. To elaborate, directly ensembling tokens on OPT leads to
fewer tokens stored in the KV cache. Therefore, during each generation step, a smaller number of previous tokens’ KV
cache will attend to the current token and thus need less computational cost for Self-Attentions.

An intriguing finding from Table 26 is that the performance of OPT is positively affected by directly ensembling tokens on
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Table 26: Accelerate multimodal LLM BLIP2-OPT on the COCO Caption dataset of the Image Caption task.

Method Where to reduce tokens CIDEr GFLOPs

BLIP2-OPT2.7B / 145.6 854.2
BLIP2-OPT2.7B with CrossGET On ViT and Q-Former 143.1 413.9
BLIP2-OPT2.7B with CrossGET On ViT and LLM 142.4↓0.7 417.7

BLIP2-OPT6.7B / 144.5 1042.6
BLIP2-OPT6.7B with CrossGET On ViT and Q-Former 143.1 558.2
BLIP2-OPT6.7B with CrossGET On ViT and LLM 143.5↑0.4 566.1

the relatively larger OPT6.7B model while negatively affected by the same setting on the relatively smaller OPT2.7B model.
A possible explanation for the contrasting behaviors is:

• To accelerate OPT, the smaller 2.7B model is more vulnerable to the disturbance brought by the token ensemble within
the model (note that the OPT model is frozen, so it cannot adapt its weights of parameters when the number of tokens
is getting smaller). Therefore, applying CrossGET on Q-Former is a better setting so that the OPT model is accelerated
by taking fewer input tokens.

• The larger 6.7B model is more resilient to the disturbance brought by the token ensemble within the model. Moreover,
ensembling tokens within the OPT model can help preserve the tokens’ information as much as possible (if the number
of tokens is reduced in the preceding Q-Former, the lost information due to the ensemble operation will be inaccessible
to the succeeding OPT model).

Moreover, the experiments also indicate that after ensembling tokens, at least two competing factors determine the extent of
the performance affected: 1) performance increases due to preserving more tokens’ information within the OPT model.
2) performance decreases depending on frozen OPT’s resilience to the disturbance brought by token ensemble within the
model.

A.17. Evaluation at Different Reduction Ratios without Training

Exhaustive experimental results at different reduction ratios without training are listed in Table 27.

A.18. Evaluation at Different Reduction Ratios with Training

More experimental results at different reduction ratios with training are listed in Table 28.

A.19. Re-Evaluation Trained Model at Different Reduction Ratios

Once CrossGET has trained a model at a certain compression ratio, a series of models with different performance and
computational costs are obtained simultaneously. More specifically, by simply adjusting the number of tokens reduced at
inference, it is free to use different models without training based on the desired budget. Table 29 provides the relevant
experimental results for CLIP model on the Flickr30K dataset of the Image-Text Retrieval task.
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Table 27: Experimental results at different reduction ratios for BLIP on the NVLR2 dataset of the Visual Reasoning task without training.

Approach Test Acc Drop GFLOPs Reduction

BLIP (Li et al., 2022) 83.38 - 132.54 -

83.34 -0.04 136.92 0.97x
83.32 -0.06 135.18 0.98x
83.40 +0.02 133.43 0.99x
83.22 -0.16 131.69 1.01x
83.17 -0.21 129.96 1.02x
83.02 -0.36 128.23 1.03x
83.08 -0.30 126.50 1.05x
82.99 -0.39 124.78 1.06x
82.88 -0.50 123.07 1.08x
82.81 -0.57 121.36 1.09x
82.85 -0.53 119.65 1.11x
82.66 -0.72 117.95 1.12x
82.48 -0.90 116.25 1.14x
82.20 -1.18 114.56 1.16x
82.30 -1.08 112.87 1.17x
82.02 -1.36 111.19 1.19x
81.67 -1.71 109.51 1.21x
81.90 -1.48 107.84 1.23x
81.75 -1.63 106.17 1.25x
81.63 -1.75 104.51 1.27x
81.47 -1.91 102.84 1.29x
81.43 -1.95 101.19 1.31x
81.29 -2.09 99.54 1.33x
80.93 -2.45 97.89 1.35x
80.87 -2.51 96.25 1.38x
80.93 -2.45 94.61 1.40x
80.86 -2.52 92.98 1.43x
80.68 -2.70 91.35 1.45x
80.55 -2.83 89.73 1.48x
80.28 -3.10 88.12 1.50x
80.35 -3.03 86.50 1.53x
80.22 -3.16 84.89 1.56x
80.22 -3.16 83.29 1.59x
80.38 -3.00 81.69 1.62x
80.17 -3.21 80.10 1.65x
80.17 -3.21 78.51 1.69x
80.30 -3.08 76.92 1.72x
80.12 -3.26 75.34 1.76x
80.21 -3.17 73.76 1.80x
80.02 -3.36 72.19 1.84x
79.79 -3.59 70.63 1.88x
79.64 -3.74 69.07 1.92x
80.02 -3.36 67.51 1.96x
79.87 -3.51 65.96 2.01x
79.68 -3.70 64.60 2.05x
79.32 -4.06 63.33 2.09x
79.10 -4.28 62.03 2.14x
78.80 -4.58 60.78 2.18x
78.85 -4.53 59.73 2.22x

CrossGET
(without training)

78.85 -4.53 58.65 2.26x
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Table 28: Experimental results at different reduction ratios for BLIP on the NVLR2 dataset of the Visual Reasoning task with training.

Approach Test Acc Drop GFLOPs Reduction

BLIP (Li et al., 2022) 83.38 - 132.54 -

83.74 +0.36 118.34 1.12x
83.31 -0.07 85.27 1.55x
83.19 -0.19 61.09 2.17x
82.28 -1.10 58.95 2.25x
81.33 -2.05 53.25 2.49x
80.67 -2.71 50.14 2.64x

CrossGET
(with training)

78.19 -5.19 45.11 2.94x

Table 29: Experimental results for re-evaluating a model trained by CrossGET (50% tokens reduced) at different reduction ratios without
training.

Approach Recall@1 - Trained Change GFLOPs Increase

CLIP (Radford et al., 2021) 85.70 -0.15 20.57 1.71x

85.86 +0.01 20.70 1.72x
85.79 -0.06 20.48 1.70x
85.93 +0.08 19.90 1.65x
85.88 +0.03 19.32 1.60x
86.06 +0.21 18.74 1.56x
86.19 +0.34 18.17 1.51x
86.34 +0.49 17.60 1.46x
86.15 +0.30 17.03 1.41x
86.21 +0.36 16.46 1.37x
86.33 +0.48 15.90 1.32x
86.19 +0.34 15.33 1.27x
86.29 +0.44 14.77 1.23x
86.06 +0.21 14.22 1.18x
86.01 +0.16 13.66 1.13x
86.08 +0.23 13.11 1.09x

CrossGET
(re-evaluate
without training)

86.20 +0.35 12.56 1.04x

CrossGET (with training) 85.85 - 12.04 -
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B. Supplementary Related Works
Token Reduction Prior works have advanced token reduction in unimodal scenarios, such as for vision (Chen et al., 2021;
Rao et al., 2021; Su et al., 2022; Chavan et al., 2022; Liang et al., 2022b; Yin et al., 2022; Liang et al., 2022a; Bolya et al.,
2023) or language (Goyal et al., 2020; Kim & Cho, 2020; Kim et al., 2022; Lassance et al., 2021). CrossGET emerges as
one of the pioneering efforts in token ensemble frameworks for multimodal scenarios. Additionally, It is one of the few
approaches requiring no extra learnable parameters aside from negligible cross tokens. Although ToMe (Bolya et al., 2023)
also does not require learnable parameters, it is limited to unimodal scenarios. For the convenience of parallelizability, it
adopts a bipartite matching method that delivers relatively unreliable token-matching results.

Multimodal Transformer Acceleration A few studies have tried to accelerate multimodal Transformers. Gan et al. (2022)
investigates unstructured pruning, discovering that winning tickets (Frankle & Carbin, 2018) also exist in multimodal
Transformers. By structured pruning, UPop (Shi et al., 2023) proposes that small vision-language models can be unifiedly
searched within large ones and then progressively pruned. DistillVLM (Fang et al., 2021) and EfficientVLM (Wang et al.,
2022b) suggest knowledge distillation to mimic the distribution of large vision-language models. MiniVLM (Wang et al.,
2020a) employs lightweight networks for its construction. AWQ (Lin et al., 2023) applies weight-only quantization on
multimodal Transformers. CrossGET achieves acceleration through ensembling tokens, which is orthogonal to these existing
strategies by shrinking model parameters. TRIPS (Jiang et al., 2022) utilizes text information for unidirectional guidance
in reducing image patches and is limited to modality-independent models. In contrast, CrossGET enables bidirectional
learning of guidance information between modalities and applies to both modality-independent and modality-dependent
models. Appendix A.13 provides more comparisons and analyses on TRIPS.

Parameter-Efficient Fine-Tuning Parameter-efficient fine-tuning aims to reduce the number of learnable parameters
during fine-tuning. It primarily encompasses adapters (Houlsby et al., 2019; Sung et al., 2022b), prompt tuning (Li & Liang,
2021; Khattak et al., 2022), low-rank adaptation (Hu et al., 2021; Hyeon-Woo et al., 2021), parameter sharing (Lan et al.,
2019; Shi et al., 2021), dropout (Fan et al., 2019; Shi et al., 2022) and their combinations (He et al., 2021; Karimi Mahabadi
et al., 2021). LST (Sung et al., 2022a) suggests a side tuning for enhanced memory efficiency. In multimodal scenarios,
LiteVL (Chen et al., 2022a) proposes to inherit image-text pre-trained weights with some slight modifications to quickly
adapt to video-text tasks without heavy pre-training, thereby reducing the training cost. While parameter-efficient fine-tuning
enhances efficiency in the fine-tuning phase, it does not accelerate model inference. Conversely, CrossGET mainly focuses
on improving efficiency during inference, and accordingly, the model inference can be significantly accelerated.
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C. Supplementary Methodology Details
C.1. Examples for Demonstrating Token Matching

Optimal Objective Function and Solution For example, when the number of tokens in total is N = 4, and the number
of tokens to be reduced is r = 2, by verifying and comparing all possible token-matching results, the optimal objective
function for case1 in Figure 3 can be obtained:

S∗
1 = D(T1,T4) +D(T2,T3) = 0.5 + 0.6 = 1.1, (11)

and the corresponding optimal solution for token matching can be determined as

P ∗
1 = {(T1,T4), (T2,T3)}. (12)

Similarly, the optimal objective function for case2 (inverted case1) in Figure 3 is

S∗
2 = D(T1,T3) +D(T2,T4) = 0.9 + 0.8 = 1.7 (13)

and the corresponding optimal solution for token matching is

P ∗
2 = {(T1,T3), (T2,T4)}. (14)

Revisiting Bipartite Soft Matching ToMe (Bolya et al., 2023) suggests a non-iterative bipartite soft matching ensure
parallelizability, which divides tokens into two disjoint sets alternately, for each token in the first set calculates the maximum
similarity from it to each token in the other set, and the token pairs with the highest similarities will be merged.

Take case1 in Figure 3 as an example, tokens are firstly divided into {T1,T3} and {T2,T4}, then the maximum similarity
from T1 to {T2,T4} is D(T1,T4) = 0.5 and from T3 to {T2,T4} is D(T3,T2) = 0.6. Therefore, the optimal objective
function in Eq.11 and optimal solution in Eq.12 are achieved:

SB
1 = D(T1,T4) +D(T2,T3) = S∗

1 , PB
1 = {(T1,T4), (T2,T3)} = P ∗

1 (15)

However, for case2 (inverted case1), bipartite soft matching leads to a worse solution: tokens are firstly divided into
{T1,T3} and {T2,T4}, then the maximum similarity from T1 to {T2,T4} is D(T1,T2) = 0.6 and from T3 to {T2,T4} is
D(T3,T4) = 0.7. Therefore, the optimal objective function in Eq.13 and optimal solution in Eq.14 are not achieved:

SB
2 = D(T1,T2) +D(T3,T4) < S∗

2 , PB
2 = {(T1,T2), (T3,T4)} ≠ P ∗

2 (16)

This is attributed to the design of bipartite soft matching that for the convenience of ensuring parallelizability, each token
only takes into account the similarity with half but not all other tokens, and the method degrades when tokens with high
similarity are not divided into different sets.

Shifting to Complete-Graph Soft Matching An approximate algorithm complete-graph soft matching is proposed to
tackle the above challenge. It enables each token to take into account the similarity with all other tokens while avoiding
introducing iterative and non-parallelizable operations.

Take case2 in Figure 3 as an example, all tokens T = {T1,T2,T3,T4} are sorted in descending order according to their
maximum similarity to other tokens: T ′ = {T1,T3,T2,T4}. After adding the dependency mask, the maximum similarity
from top priority source token candidate T1 to its destination tokens {T3,T2,T4} is D(T1,T3) = 0.9, from second priority
source token candidate T3 to its destination tokens {T2,T4} is D(T3,T4) = 0.7, and from third priority source token
candidate T2 to its destination token T4 is D(T2,T4) = 0.8. The source token candidates among them corresponding to
the two largest similarities are selected as the source token set Ts = {T1,T2} while remaining tokens form the destination
token set TD = {T3,T4}. Then the maximum similarity from T1 to {T3,T4} is D(T1,T3) = 0.9 and from T2 to {T3,T4}
is D(T2,T4) = 0.8. Therefore, the optimal objective function in Eq.13 and optimal solution in Eq.14 are achieved:

SC
2 = D(T1,T3) +D(T2,T4) = S∗

2 , PC
2 = {(T1,T3), (T2,T4)} = P ∗

2 . (17)

Similarly, it can also be verified that complete-graph soft matching achieves the optimal objective function in Eq.11 and
optimal solution in Eq.12 for case1 in Figure 3.
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C.2. Algorithm Implementation of Complete-Graph Soft Matching

Algorithm 1 Complete-Graph Soft Matching
Input: Number of tokens N , number of tokens to be reduced r, original tokens T = {Ti}Ni=1 and their corresponding keys

K = {Ki}Ni=1 where |T | = |K| = N
Output: Reduced tokens T ⋆ = {T ⋆

i }
N−r
i=1 where |T ⋆| = N − r

1 # Step1: Calculate the cosine distance Dij between the keys of tokens

2 D = KK⊤

∥K∥2
2
+ diag(−∞,−∞, · · ·,−∞︸ ︷︷ ︸

N

), D ∈ RN×N , diag : RN → RN×N

3 # Step2: Descendingly sort similarity matrix D by maximum similarity
4 AS = argsort( max

1≤j≤N
Dij) ∈ RN , AD = argsort( max

1≤i≤N
Dij) ∈ RN

5 D⋆ = sortd(sorts(D,AS),AD), sorts : D
⋆
ij ←DAS

i j , sortd : D⋆
ij ←DiAD

j

6 # Step3: Add a lower triangle dependency mask M

7 D⋆ = D⋆ +M , Mij =

{
−∞ for i ≥ j

0 for i < j

8 # Step4: Pick source tokens T S and destination tokens TD by similarity
9 A = argsort( max

1≤j≤N
D⋆

ij) ∈ RN , AS = (Ai)1≤i≤r ∈ Rr, T S = {Ti|i ∈ AS}

10 A = argmax
j∈({k}N

k=1\AS)

D⋆
ij ∈ RN , AD = (Ai)i∈AS ∈ Rr, TD = {Ti|i ∈ AD}

11 # Step5: Average source and corresponding destination tokens
12 return T ⋆ = [T \(T S ∪ TD)] ∪ { 12 (T

S
i + TD

i )}ri=1

Algorithm 1 is the detailed implementation of the proposed complete-graph soft matching. The Step1 ∼ 5 in the comments
correspond to the Step1 ∼ 5 described in Section 3.2 of the main text. Regarding parallelizability, there are no sequential
loops in the algorithm procedure. Therefore, data can be processed in parallel within each step by parallelizable operations
(such as bmm, matmul, scatter and gather in Pytorch (Paszke et al., 2019)).

C.3. Algorithm Implementation of Cross-Guided Matching and Ensemble

Algorithm 2 Cross-Guided Matching and Ensemble (improvements upon Algorithm 1)
Input: Same inputs as Algorithm 1, plus query of the cross token Q
Output: Same as Algorithm 1

1 # Step1∼3: Same as Algorithm 1
2 # Step4: Pick tokens T S and TD by similarity and importance

3 I = KQ⊤

∥K∥2∥Q∥2
∈ RN

4 A = argsort( max
1≤j≤N

D⋆
ij − I) ∈ RN , AS = (Ai)1≤i≤r ∈ Rr, T S = {Ti|i ∈ AS}

5 A = argmax
j∈({k}N

k=1\AS)

D⋆
ij ∈ RN , AD = (Ai)i∈AS ∈ Rr, TD = {Ti|i ∈ AD}

6 # Step5: Sum weighted source and corresponding destination tokens
7 P = {(T S

i ,TD
i )}ri=1, W = {softmax(Ii, Ij)|(Ti,Tj) ∈ P }

8 return T ⋆ = [T \(T S ∪ TD)] ∪ {
∑|Wi|

j=1 WijPij}ri=1

Algorithm 2 demonstrates how to improve complete-graph soft matching by adding cross-guided matching and ensemble
upon it. It is worth noting that line7 ∼ 8 in Algorithm 2 does not imply that only two tokens are in each stack of tokens to
be ensembled. This is because different source tokens in T S may have the same destination token in TD, which implies that
the size of the stack is allowed to be larger than two (in this case, the procedure of ensembling stacks with the different
number of tokens can still be implemented by parallelizable operations such as scatter add in Pytorch).
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C.4. Sub-optimal Cases for Complete-Graph Soft Matching

Section 3.2 has already shown the cases that complete-graph soft matching achieves optimal matching, and here we provide
more analyses on the sub-optimal cases of complete-graph soft matching.

The main sub-optimal cases come from the trade-off between parallelizability and matching accuracy. To achieve paralleliz-
ability, the set of source token T S and destination tokens TD have to be disjoint:

T S ∩ TD = ϕ. (18)

Otherwise, consider
T S ∩ TD = {Tx} ≠ ϕ, 1 ≤ x ≤ N (19)

where N is the number of the original tokens, then

(∃Ti ∈ T S s.t. (Ti,Tx) ∈ P ) ∧ (∃Tj ∈ TD s.t. (Tx,Tj) ∈ P ) (20)

where P = {(T S
i ,TD

i )}ri=1 is the set of the paired tokens to be ensembled, is true. However, there is a computational
dependency between merging Ti into Tx and merging Tx into Tj . The two operations of the merging require iterations and
therefore cannot be parallelized.

T S and TD are disjoint (i.e., Eq.18 holds) is equivalent to the constraint

∀Ti ∈ T S ,Ti /∈ TD (21)

is satisfied. In the Step1 of the Algorithm 1, computation is conducted on a complete graph. Therefore T S and TD are joint,
and constraint 21 does not been satisfied. In Step3, the added lower triangle dependency mask ensures that source tokens
with higher priority (i.e., whose keys have higher maximum cosine similarity to keys of other tokens) will not become
targets for other source tokens with lower priority, i.e., a relaxed constraint

∀Ti ∈ T S ,Ti /∈ (TD
j )i≤j≤N (22)

is satisfied. However, the unsatisfied part of the constraint 21

∀Ti ∈ T S ,Ti /∈ (TD
j )1≤j<i (23)

indicates that source tokens with low priority may still become targets for other source tokens with high priority. To further
satisfy constraint 23, the line10 of Step4 in Algorithm 1 explicitly removes all elements of the source token set from the set
of all tokens to construct the set of the destination tokens. And the sub-optimal cases for complete-graph soft matching arise
when

argmax
j∈({k}N

k=1\AS)

D⋆
ij ̸= argmax

j∈{k}N
k=1

D⋆
ij , (24)

which indicates a source token may exist whose closest destination token in TD happens to be another source token in T S .
For parallelizability, this destination token is removed from TD, resulting in the source token can only match the second
closest destination token in the set of reduced TD.

C.5. Expectation of Optimal Matching Probability and Complexity Analysis

Expectation of Optimal Matching Probability For a token Ti ∈ T , assume that any other token Tj ∈ T \{Ti} has the
same probability of being its optimal destination token, i.e.

∀1 ≤ j ≤ N, p((Ki,Kj) = argmax
1≤k≤N

k ̸=i

s(Ki,Kk)) =
1

N − 1
(25)

where s(x, y) is a function that calculates cosine similarity between x and y.

For complete-graph soft matching, in layer l (1 ≤ l ≤ L), supoose X ∼ p(x) is a discrete random variable about whether a
token from T S (|T S | = r) can find its optimal destination token in TD (|TD| = N − lr), and the probability distribution
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p(x) is:

p(X = can) =
|TD|∑
1

p((Ki,Kj) = argmax
1≤k≤N+(1−l)r

k ̸=i

s(Ki,Kk)) (26)

=
N − lr

N + (1− l)r − 1
. (27)

p(X = not) = 1− p(X = can). (28)

Denote L ∼ p(l) as a discrete random variable (L ⊥⊥X) about the current layer number, and

∀1 ≤ l ≤ L, p(L = l) =
1

L
(29)

Denote h(X,L) as a indicator function

h(X,L) =

{
1 for X = can
0 for X = not

(30)

Then the expectation of a token from T S can find its optimal destination token in TD is

EC = EXL [h(X,L)] =
∑
l∈L

∑
x∈X

h(x, l)pXL(x, l) (31)

=
∑
l∈L

∑
x∈X

h(x, l)pX(x)pL(l) (32)

=

L∑
l=1

[1 · p(X = can) + 0 · p(X = not)]
1

L
(33)

=
1

L

L∑
l=1

N − lr

N + (1− l)r − 1
(34)

Similarly, given by bipartite soft matching used in ToMe (Bolya et al., 2023), the expectation of a token from T S

(|T S | = ⌈N+(1−l)r
2 ⌉) can find its optimal destination token in TD (|TD| = ⌊N+(1−l)r

2 ⌋) is

EB =
1

L

L∑
l=1

1

N + (1− l)r − 1
⌊N + (1− l)r

2
⌋ (35)

Compare EC given by complete-graph soft matching with EB give by bipartite soft matching:

EC − EB =
1

L

L∑
l=1

1

N + (1− l)r − 1
(N − lr − ⌊N + (1− l)r

2
⌋) (36)

≥ 1

L

L∑
l=1

1

N + (1− l)r − 1
(N − lr − N + (1− l)r

2
) (37)

=
1

L
[

L−1∑
l=1

1

N + (1− l)r − 1

N − lr − r

2︸ ︷︷ ︸
Part1: 1≤l≤L−1

+
1

N + (1− L)r − 1

N − Lr − r

2︸ ︷︷ ︸
Part2: l=L

] (38)

For part1 in Eq.38, since the number of remaining tokens is always a positive integer, we have

N − Lr ≥ 1, (39)
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and therefore for 1 ≤ l ≤ L− 1:
N − lr ≥ r + 1⇔ N − lr − r ≥ 1 > 0 (40)

always holds. Morever
N + (1− l)r − 1 = (N − lr − 1) + r > 0 (41)

always holds. Furthermore, we have part1 > 0 always holds, which indicates the expectation given by complete-graph soft
matching is higher than bipartite soft matching except for the last layer.

For part2 in Eq.38, bipartite soft matching evenly divides tokens into two disjoint sets, and the size of each set is not less
than r. However, the remaining tokens before the last layer may be less than 2r. In such a situation, bipartite soft matching
have to reduce the r to the r⋆ such that

N − Lr⋆ = r⋆ (42)

complete-graph soft matching follows the same design, and therefore part2 = 0 holds. Overall, we have

EC − EB > 0 (43)

always holds. For example, for a CLIP (Radford et al., 2021) model with

N = 197, L = 12, r = 16 (44)

used in our experiments, given by complete-graph soft matching, the expectation of optimal matching probability for a token
from T S is

EC =
1

12

12∑
l=1

197− l × 16

197 + (1− l)× 16− 1
≈ 0.78, (45)

while given by bipartite soft matching, the corresponding expectation is

EB =
1

12

12∑
l=1

1

197 + (1− l)× 16− 1
⌊197 + (1− l)× 16

2
⌋ = 0.50 < EC (46)

C.6. Complexity Analysis for Complete-Graph Soft Matching

Since the sort and argsort operations in Algorithm 1 and 2 can be solved by algorithms with O(N logN) complexity such
as QuickSort (Hoare, 1962), the major complexity O(N2) comes from the computation of cosine similarities between each
pair of tokens.

A comparison of different matching methods is listed in Table 30, which demonstrates that as a parallelizable method,
CrossGET can achieve relatively high expectation of optimal matching probability for a certain token from T S with relatively
low complexity.

Table 30: A comparison of different matching methods. Denote N as the number of the original tokens, r as the number of tokens to be
reduced, and T as the number of iterations for k-means.

Method Iterative Parallelizable Expectation of Optimal Matching Probability Complexity

Greedy Search Yes ✗ {1} O(rN2)
K-Means Yes ✗ [1− ϵ, 1], limT→∞ ϵ = 0 O(rNT )
Random No ✓ 1

N−1
∈ [0, 0 + ϵ], limN→∞ ϵ = 0 O(r)

ToMe (Bolya et al., 2023) No ✓ 1
L

L∑
l=1

1
N+(1−l)r−1

⌊N+(1−l)r
2

⌋ ∈ [ 1
2
, 1
2
+ ϵ], limN→∞ ϵ = 0 O(N2)

CrossGET (Ours) No ✓ 1
L

L∑
l=1

N−lr
N+(1−l)r−1

∈ [1− ϵ, 1], limN→∞ ϵ = 0 O(N2)
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