
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WEBARENA VERIFIED

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous web agents have been growing in interest within the research commu-
nity and are increasingly operating in more complex multistep browser workflows.
However, widely used benchmarks can misestimate performance due to under-
specified goals and fragile evaluators—challenges typical of normal benchmark
maturation rather than flaws in the paradigm. This hinders accurate performance
assessment and limits benchmark utility for guiding method development. We
present WebArena Verified, a reproducible re-evaluation of WebArena that retains
its containerized environments while strengthening measurement. We audit all
812 tasks, repair misaligned checks and clarify ambiguous instructions, replace
substring matching with type-aware exact matching with semantic normalization,
verify backend state for mutation tasks, and adopt a structured JSON schema
with explicit status codes for deterministic scoring. For reporting, we provide
per-template macro-averaged metrics, 95% confidence intervals, and failure-mode
breakdowns. Our new evaluator reduces the false-negative rate by 11.3 percentage
points compared to the original scoring pipeline. To reduce evaluation overhead,
we introduce WebArena Verified Hard, a 258-task subset that retains difficult tasks,
reduces runtime by 68.2%, and maintains discriminative power and coverage. We-
bArena Verified remains drop-in compatible with existing agents, requiring only
minimal changes and enabling faithful comparisons. Code, data, and evaluation
tools will be released to support reproducibility.

1 INTRODUCTION

Autonomous web agents are now capable of executing increasingly complex web workflows that
demand dynamic navigation and extraction of visual and textual information. As these systems
are adopted more widely, robust and reproducible evaluation becomes essential for meaningful
progress. Existing benchmarks provide a solid foundation for measuring these abilities. For instance,
WebArena (Zhou et al., 2024) offers self-hosted, containerized sites that emulate real-world envi-
ronments, permitting task execution through standard browsers. The design of WebArena inspired
a family of follow-up benchmarks—VisualWebArena (Koh et al., 2024), Mind2Web (Deng et al.,
2023), WorkArena and WorkArena++ (Drouin et al., 2024; Boisvert et al., 2025), OSWorld (Xie
et al., 2024), and AndroidWorld (Rawles et al., 2024)—each expanding the scope of realistic tasks
and interface modalities. However, widespread adoption has revealed systematic evaluation errors
that undermine measurement validity (Zhu et al., 2025; Koh et al., 2024). Zhu et al. (2025) conducted
a recent audit of 37 public agent-benchmark suites—covering 13 web-interaction domains—that
revealed pervasive quality issues that erode confidence in reported results due to underspecified
success criteria, allowing disparate interpretations of task completion or low precision evaluators.
For example, on τ -bench (Yao et al., 2024), a trivial ”empty-output” agent achieved 38% success,
outperforming GPT-4o-based agents on intentionally impossible tasks. On WebArena, the brittle
string matching inflates success rates by 1.4–5.2% (Zhu et al., 2025). These issues reflect broader
patterns in benchmark maturation observed across machine learning benchmarks, yet they must be
addressed. Without robust evaluation, researchers struggle to identify genuine performance gaps,
increasing the risk of over-optimistic conclusions, and benchmark-specific adaptations while sub-
stantive deficiencies remain unaddressed. These reliability concerns have sparked efforts to improve
evaluation quality through principled debugging and systematic verification, such as SWE-Bench
Verified (Chowdhury et al., 2024), OSWorld Verified (Xie et al., 2025) and WorkArena++ (Boisvert
et al., 2025). This pattern of “verified” re-releases demonstrates the value of strengthening evaluation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mechanisms while preserving benchmark utility and adoption. For example, on SWE-bench Verified,
agents roughly doubled performance once flawed tasks were removed (Chowdhury et al., 2024).

We introduce WebArena Verified, an updated version of WebArena that preserves the original
containerized environments while improving evaluation reliability. Our approach re-verifies task
definitions, reference answers, and evaluators using deterministic evaluation with explicit success
criteria. We replace brittle string matching with backend state verification, standardize outputs to a
structured JSON schema, and report template-level macro-averages with 95% confidence intervals,
aligned with recent best-practice guidelines (Zhu et al., 2025) (§4). By enforcing structured JSON
outputs, WebArena Verified removes reliance on LLM judge evaluation and enables deterministic
scoring while reducing the evaluation cost. In practice, using WebArena Verified involves using the
updated task set with our evaluator. Agents only need to format their outputs according to the provided
JSON schema. We created WebArena Verified through a systematic audit of all 812 tasks, combining
structured human verification with trajectory analysis from eight high-performing agents (selected
from the top 10 submissions on the official leaderboard1). Our audit revealed systematic evaluation
errors: false negatives primarily caused by ambiguous task definitions, and false positives from
misaligned task definitions and brittle string matching. We address these issues by fixing 81 tasks
with reference alignment problems and 218 tasks with ambiguous definitions (Table 3). We replace
brittle string matching and DOM-dependent checks across affected tasks—implementing type-aware
exact/normalized matching (506 tasks) and backend state verification via API/database checks (424
tasks), with some tasks receiving both. For unachievable tasks, we introduce explicit status codes to
replace the problematic “N/A” response (Zhu et al., 2025). Building on these findings, we introduce
WebArena Verified Hard, a 258-task subset (210 single-site + 48 multi-site) that indicates broadly
consistent rankings while reducing evaluation cost by 68.2%. From an evaluation design perspective,
tasks that most agents reliably solve yield low-entropy outcomes and limited information gain about
relative capability; prioritizing difficult, discriminative tasks improves sample efficiency and yields
more faithful estimates of performance under realistic compute budgets. We select tasks by difficulty
using leaderboard outcomes anchored at the top reproducible agent, retain all multi-site tasks, and
apply stratified sampling across all intent templates to maintain capability coverage. Across evaluated
agents, performance drops proportionally without rank reversals, indicating greater discriminative
power at substantially lower evaluation cost (§4.5). Stability thresholds are not fully met—see
Appendix Table 8. We make the following contributions:

• WebArena Verified. A systematically improved benchmark that addresses evaluation errors in 299
tasks through reference answer alignment (81 tasks) and task definition clarification (218 tasks).
We replace brittle string matching with backend state verification via REST API calls and database
queries, and provide standardized JSON response schemas that replace LLM judge evaluation
with schema-validated scoring and direct state checks that improve determinism. We also treat
nonconforming JSON as a distinct error category and report parse failure rates (§5).

• Comprehensive audit of WebArena benchmark. Systematic audit of all 812 tasks employing
defined annotation protocols with inter-rater reliability checks alongside trajectory analysis from
eight high-performing agents, identifying systematic evaluation errors including false positives
from misaligned task definitions and false negatives from ambiguous specifications (§3).

• WebArena Verified Hard. A curated 258-task subset (210 single-site + 48 multi-site) selected by
task difficulty using performance outcomes from the official WebArena leaderboard that indicates
broadly consistent rankings while reducing computational cost by 68.2%; stability thresholds are
not fully met (Appendix Table 8). The subset retains 100% of multi-site tasks and applies stratified
sampling across intent templates (§4.5).

• Empirical validation and baseline scores. We demonstrate that verified scoring reduces false
positives; we establish baseline performance with a leading agent (OpenAI operator) and quantify
the impact of improved evaluation (§5).

2 RELATED WORK

Evaluation reliability remains a central bottleneck in agent benchmarking. Unlike static natu-
ral language processing (NLP) benchmarks where curation and labeling often suffice, realistic

1https://webarena.dev/

2

https://webarena.dev/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

agent tasks require reproducible test environments, deterministic state resets, and programmatic
verifiers. These requirements increase engineering complexity and human effort (Xie et al. 2024;
Boisvert et al. 2025). Zhu et al. (2025) introduced the Agentic Benchmark Checklist (ABC) and ap-
plied it to a comprehensive audit of prominent open source benchmarks, finding pervasive failures in
task validity, outcome validity, and reporting. Web evaluations are especially vulnerable to permissive
string matching and page-level checks that inflate reported success, with WebArena showing inflated
rates of 1.4–5.2% (Zhu et al., 2025; Zhou et al., 2024).

Verified and updated benchmarks. Systematic evaluation issues have driven researchers to develop
verified benchmark versions that address reliability problems in existing evaluation frameworks. SWE-
bench Verified (Jimenez et al., 2024) addresses task-test misalignment through human verification
of GitHub issues, ensuring solvability and proper evaluation criteria. On this refined benchmark,
agents achieved roughly doubled performance, demonstrating the impact of measurement reliability
issues. OSWorld-Verified (Xie et al., 2024) tackles infrastructure reliability and task specification
issues through systematic review of over 300 feedback items addressing evaluation inconsistencies
and environmental setup problems. Boisvert et al. (2025) developed WorkArena++, extending the
original WorkArena benchmark (Drouin et al., 2024) with enhanced verification protocols that address
compositional task evaluation while maintaining execution-based validation.

WebArena ecosystem. Zhou et al. (2024) introduced WebArena as a self-hosted multi-domain
environment for realistic web-based agent evaluation. Koh et al. (2024) developed VisualWebArena
as the multimodal extension, broadening construct coverage to tasks requiring visual grounding while
maintaining execution-based checks. While VisualWebArena introduces new evaluators, its main
focus is multimodal grounding; it largely inherits WebArena’s evaluation methodology (e.g., LLM
judge and string matching) and, to our knowledge, does not primarily target systematic measure-
ment reliability. Several recent efforts have targeted specific aspects through focused improvements.
WebArena-Lite (Liu et al., 2024) reduces scope to 165 tasks with 39 task-level corrections while
preserving the original evaluation methodology. Other extensions like WABER (Kara et al., 2025)
and ST-WebAgentBench (Levy et al., 2025) focus on robustness and safety testing; these are comple-
mentary and do not primarily target systematic evaluation reliability.

Despite extensions to WebArena such as WebArena-Lite (Liu et al., 2024), a verified version that
covers the full task set remains missing. The next section introduces our approach.

3 SYSTEMATIC DIAGNOSIS OF THE WEBARENA BENCHMARK

Building on WebArena (Zhou et al., 2024), we conduct a systematic audit of the full 812 tasks across
all sites using the original evaluation harness. We apply the Agentic Benchmark Checklist ABC
framework (Zhu et al., 2025) to organize findings across task validity, outcome validity, and reporting.
Table 1 summarizes categories and counts, and the next subsection details the audit protocol.

Figure 1: Coarse page content evaluation lacks field specificity. In task ID 538, the harness passes if the address
appears anywhere on the page, which ignores field specificity (full-size in Appendix Figure 11).

3.1 AUDIT PROTOCOL

We combine an automated detector, eight-agent trajectories, and focused annotation. We flag tasks
that all eight agents fail as likely evaluator or reference issues; the same eight agents underpin the
hard-subset (§4.5). For retrieval tasks, we verify backend state against references. Task ambiguity
uses double annotation with adjudication. Four annotators, two calibration rounds; task-level Cohen’s
κ=0.83 (95% CI [0.81, 0.85]). The detector targets permissive string matching, context-free checks,
and unachievable tasks; we validated precision on a random sample and folded errors into the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

codebook. Audits used official site snapshots with a fixed harness and seeds (Appendix D). Labels
follow the ABC taxonomy and guide prevalence estimates and evaluator redesign.

Table 1: Issue categories identified through our analysis of 812 WebArena tasks. Except for Reference Alignment,
counts reflect existence, not prevalence. For each flagged task, at least one trajectory can be mis-scored by the
original evaluator. Actual incidence depends on agent behavior. Categories may overlap, and a single task can
exhibit multiple issues. Task descriptions are shortened for illustration. ID refers to task identifiers.

Category Tasks Problem Illustration

Task specification issues

Reference Alignment 81 ID 102 checks byteblaze/a11y-syntax, but the instruction targets
a11yproject/a11yproject.com.

Task Ambiguity 218 ID 358 states “Show me the shipping method. . . ” and requires an exact string match. ID
284 state “Show the least expensive shoe storage. . . ” requires URL navigation alone.

Evaluation mechanism issues

Permissive String Matching 506 ID 40 accepts any output that contains “Yes”. For example, “Yes, The final answer
is No” (reasoning trace). This over-credits partial matches and invalid outputs.

Context-Free Evaluation 92 ID 538 passes when the address appears in the customer name field rather than the
billing address (Figure 1), ignoring field specificity.

Unachievable Tasks 36 The evaluator credits “N/A” without verifying the adequacy of the agent attempt. This
conflates correct detection with early abandonment (Figure 2).

3.2 TASK SPECIFICATION AND EVALUATION MECHANISMS

Task Specification Issues. We examine tasks along evaluation alignment and interpretation variabil-
ity (Zhu et al., 2025). We find 81 tasks with misaligned criteria through spec-to-content comparison,
and 218 tasks with ambiguous intent where the instructions can be reasonably interpreted in multiple
ways (Table 1). These issues mainly create false negatives and motivate clearer intents.

Evaluation Precision. Two mechanisms show limited precision: string matching (must include)
accepts unintended partial matches, and page content checks (program html and locator=”) that
ignore field context (Zhu et al., 2025) (Figure 1). Permissive matching affects 506 tasks. Of these,
164 use outerText locator2, and 176 check agent responses directly. Direct response checks are
most problematic. For example, when expecting “2,” the evaluator accepts “2 000.” Page content
issues affect 92 tasks where the evaluator does not distinguish identical strings in different fields.

Shopping Map GitLab Reddit Admin
Sites (ordered by median steps)

0.0

0.5

1.0

1.5

2.0

2.5

St
ep

s
(n

or
m

al
iz

ed
)

Inadequate
explorations

Figure 2: Unachievable task evaluation across sites. The evaluator credits some “N/A” runs with limited
exploration. Per site, we show the distribution of normalized steps R = s/s̃site for feasible successes (median
R=1; shaded IQR) with credited “N/A” overlaid (x). Red region: inadequate exploration (R < τ); dashed line:
τ=0.5. Minimum step thresholds: GitLab/Reddit/Admin= 3, Map/Shopping= 2 (Appendix D).

Evaluation of Unachievable Tasks. WebArena contains unachievable tasks. The official harness
credits “N/A” (or falls back to an LLM judge), inducing asymmetric grading: high recall for exact
“N/A” but low precision, since it cannot distinguish justified infeasibility from premature “N/A”
without adequate exploration. Prior work shows such judges can accept empty/invalid answers
and are vulnerable to reward hacking (Zhu et al., 2025; Skalse et al., 2022). We analyze the 36

2outerText extracts visible text content of a DOM element, including nested elements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

unachievable tasks in Figure 2 using normalized steps R = s/s̃site (s̃site is the site median on feasible
successes). An accepted “N/A” is adequate if R ≥ τ , with τ = 0.5. Most credited “N/A” answers
follow non-trivial search, yet the evaluator still over-credits minimal exploration with clear agent
variation. Given their ¡ 5% prevalence, aggregate metrics may understate the impact of this bias.

Table 2: We report success rates SRvuln and SR for knowledge-only baseline agents. SRvuln is computed on
string-matching tasks without URL verification with n=176. SR is computed on the full benchmark with
n=812. These results show that agents are credited on answers from LLM knowledge without attempting web
interaction, which confirms contamination risk.

Agent SRvuln SR

Knowledge-onlyClaude Sonnet 4 5.1% 1.1%
Knowledge-onlyGPT-5 22.7% 4.9%

3.3 KNOWLEDGE CONTAMINATION

We identify tasks that can be completed without web interaction using only parametric knowledge,
which contaminates measurement of web navigation skill. These represent tasks that check agent
responses via substring matching without URL verification, and account for 21.7% (176/812) of
the benchmark. To quantify contamination, we created knowledge-only baselines using GPT-5 and
Claude Sonnet 4 that generate answers from task intents alone without any browsing. Methods and
prompts appear in Appendix E. These baselines achieved non-negligible success rates (Table 2): GPT-
5 reached 22.7% on vulnerable tasks and 4.9% overall, while Claude Sonnet 4 achieved 5.1% and
1.1% respectively. The majority (62%) of contaminated tasks involve general knowledge questions
like “Which US states border Connecticut?” (ID 89) that test factual recall rather than web navigation.
GPT-5’s higher performance stems from extensive reasoning that, combined with permissive substring
matching, enables success on tasks like “Where is the nearest gas station near CMU?” (ID 237)
without accessing any location data. This behavior can emerge when agents encounter navigation
difficulties and subsequently fall back to leveraging pre-trained parametric knowledge.

4 WEBARENA VERIFIED

Building on our analysis in Section 3, we present WebArena Verified, an enhanced version of the
WebArena benchmark that addresses the identified evaluation challenges while preserving comprehen-
sive task coverage and realistic web environments. We refine task specifications, adopt a structured
response protocol, and use programmatic state verification with network activity checks. Table 3
summarizes these changes and links them to the diagnosis. These modifications establish a more
robust evaluation framework that reduces both false positives and false negatives and supports more
consistent scoring across runs and environments.

Table 3: WebArena Verified improvements mapped to diagnosis issues across all 812 tasks in the WebArena.

Improvement Tasks Description

Task specification improvements

Reference Alignment 81 Fixed misaligned evaluation criteria.

Task Ambiguity Resolution 218 Aligned intent to intended agent action (retrieval vs navigation).

Structured Response Protocol 812 Enforced JSON schema; removes evaluator-side parsing.

Evaluation mechanism improvements

Type-Aware Exact Matching 506 Replaced substring with exact/normalized matching.

Backend State Verification 424 REST API validation replaces DOM-dependent checks.

Explicit Status Reporting 36 Required specific status codes vs generic “N/A”.

Network Activity Monitoring 812 Activity verification ensures genuine website interaction.

LLM-as-Judge Elimination 118 Eliminated LLM evaluation using type-aware matching or intent adjustment.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 TASK SPECIFICATION REFINEMENT AND MISALIGNMENT RESOLUTION

We audited all tasks using the protocol in Section 3.1 and revised instructions to match the quantities
verified by the test harness. We applied minimal edits that preserve task difficulty and coverage. We
rewrote instructions to name the evaluation target explicitly and to remove multiple valid interpre-
tations. We clarified instructions and specified output formats when needed. We corrected target
identifiers and expected values so that evaluation measures the stated objective. Appendix D lists
every change with before and after instruction text, the corrected checker target and expected value.

4.2 STRUCTURED RESPONSE PROTOCOL

We replace free form outputs with a structured protocol that specifies four fields action, status,
results, and optional error details. This makes evaluation deterministic and reduces ambiguity
while keeping task difficulty unchanged. Each field has a simple role. action states the intent
retrieve, mutate, or navigate. status reports the agent status (success or a predefined error
type). results contains typed outputs for retrieval tasks otherwise null. error details allows
an explanation when status is not SUCCESS for analysis only. (See Appendix G for details). In
practice agents return valid JSON that conforms to the schema in Figure 12. This removes evaluator-
side parsing of free-form outputs and enables deterministic evaluation without an LLM judge for
simple outputs like durations or dates. Residual “parse failures” reflect agent non-conformance to the
JSON schema rather than evaluator parsing errors.

4.3 ROBUST EVALUATION FRAMEWORK

Our evaluation framework introduces the following improvements that address core issues identified in
Section 3. Type-Aware Exact Matching: We replace substring matching with exact comparison plus
semantic normalization. This eliminates false positives by disallowing partial matches. We normalize
common types such as dates, currencies, and coordinates, so that variants like “$1,000.00” and “1000
USD” compare correctly, accommodating formatting variants while enforcing exactness, without
an LLM judge. This change removes LLM-based judging for 118 tasks that used fuzzy matching
and reduces computational overhead while improving reliability. Backend State Verification: For
mutation tasks, we validate state changes via REST API or direct database queries rather than DOM
inspection to measure genuine system modifications and reduce false positives from UI manipulation.
Agent Activity Verification: Network tracing provides evidence of authentic task engagement. Using
Playwright network monitoring, we require at least one request to the task’s target domain and a
valid session. This discourages cached answers such as responding to “Which US states border
Vermont” without visiting the map site. Caches reset between tasks to avoid cross-task contamination.
Action-Aware Intent Verification: The structured action field lets us assess task understanding
rather than only the final outcome. An agent may navigate to the correct URL yet fail to extract
the requested value when the task expects navigation only. Under a URL-only check this could be
marked as success. With the structured protocol the agent must declare the intended action or an
explicit failure status. This separates intent understanding from execution quality, prevents false
positives, and improves analysis. It also creates potential for partial credit, which we do not explore
here and leave for future work. Unachievable Task Handling: We disallow generic N/A returns.
Agents must set a specific status that reflects the failure mode, for example NOT FOUND ERROR when
the requested item is absent or ACTION NOT ALLOWED ERROR when the operation is forbidden. This
requirement improves diagnosability and prevents strategic abandonment from inflating success rates,
as defined in Figure 12. For URL matching we keep the original evaluation but require an explicit
navigate action and a SUCCESS status.

4.4 RIGOROUS EVALUATION METRICS

The success rate (SR) in the original benchmark (Zhou et al., 2024) conflates templates with different
difficulty and frequency, which can mask site-specific patterns (Zhu et al., 2025). We follow best
practices and use templates as the analysis unit, comparing agents on identical template sets (Zhu
et al., 2025; Koh et al., 2024; Xie et al., 2024; Rawles et al., 2024; Drouin et al., 2024). Our primary
metric is the template–macro success (ŜRtmpl), the mean of per-template success rates; this enables

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

uncertainty quantification at no extra evaluation cost:

ŜRtmpl =
1

T

T∑
t=1

SRt, (1)

where SRt is the SR for template t, and T is the total number of templates. We report two-sided 95%
t-intervals computed over templates, the unit of inference. For agent comparisons, we use paired
template-level differences anchored at the best-performing agent; see Appendix I for details.

4.5 WEBARENA VERIFIED HARD: A REPRESENTATIVE SUBSET

The full WebArena benchmark contains 812 tasks, requiring considerable cost for evaluation. To
address this limitation while preserving discriminative power and representativeness, we introduce
WebArena Verified Hard, a carefully constructed subset that focuses evaluation on genuinely difficult
tasks while maintaining broad site coverage. Concretely, we quantify task difficulty from multi-agent
trajectories using a survival-style model that treats steps as exposure to success, explicitly capturing
heterogeneity in agent capabilities and site- and intent-specific difficulty. We empirically characterize
task difficulty and define a principled threshold to select a difficulty-prioritized, category-balanced
subset that can be monitored to more sensitively detect improvements in agent performance. Intu-
itively, we estimate how success probability evolves with steps and rank tasks by the inferred per-task
difficulty βt.

To construct the subset, we estimate task hardness from leaderboard trajectories of eight agents,
fitting on single-site tasks across four self-hosted sites (655 tasks; single-site Map is excluded
due to contamination, §3.3). Multi-site tasks are omitted from modeling but appended in full to
the released subset. Tasks are grouped into per-site categories via a human-annotated taxonomy;
categories serve both as hierarchical clusters and as selection units (with caps). We model per–attempt
success y ∈ {0, 1} given n steps via the cumulative hazard H(n) with success probability p(n) =
1 − exp(−H(n)), and fit a complementary log–log GLMM with a log(1+n) exposure offset to
estimate the per-step hazard:

cloglog
(
pa,t(n)

)
= log(1+n) + µ+ θa − βt + ξt + bn + δ Iexh︸ ︷︷ ︸

ηa,t

, (2)

where log(1+n) is the log-steps exposure offset (more steps means more chances to succeed)
and exp(ηa,t) acts as the per-step hazard within a step bin. ξt := usite(t) + vtemplate(t) + wcat(t)
aggregates site, template, and per-site category effects; bn indexes the step bin at step count n; µ is
the global intercept (baseline log–hazard) reflecting overall difficulty; θa captures agent ability; βt is
task-specific difficulty (larger is harder); bn is a piecewise baseline hazard (relaxes constant-hazard
assumption where early steps may be disproportionately useful, or late steps may be diminishing
returns); and Iexh flags runs that hit the step cap (if δ < 0, capped runs tend to be harder; if δ > 0,
caps coincide with late surges in success). For task t, the reference success at site-specific steps nref
for a reference agent (θ=0) is

p̂t = 1− exp
(
− Ĥt(nref)

)
, Ĥt(nref) ≈ exp

(
log(1+nref) + µ− βt + ξt + bbin(nref)

)
, (3)

where nref(site) as the median steps among sites with at least 30 successful attempts; otherwise the
60th percentile of steps over all attempts on that site, winsorized at the site’s 95th percentile and
floored to 1. in reference predictions we set Iexh=0. We then define the hardness probability as

πt = Pr
(
p̂t ≤ τhard

)
, (4)

estimated from posterior draws so that uncertainty is explicitly reflected in the score. Within each
per-site category we rank by πt and cap the number selected. Categories with aggregated median
reference success above a hyperparameter τeasy are labeled very easy and receive a tighter cap (κeasy
vs. κdefault otherwise) and ties favor site diversity. We show the ranking of per-site categories by
median reference success in Fig. 3 (top-3 hardest and top-3 easiest per site) Our analysis showed
that the hardest categories involve multi-step, state-changing interactions (e.g., completing forms
and updating data), whereas the easiest are browse/read-only. For example, on GitLab, viewing the
To-Do list is a single click from the main page, whereas creating a Merge Request requires navigation,
branch selection, form completion, and submission.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MR Creation
Issue Browsing

Issue Management
Project Discovery

Account Todos
Analytics & Contributions

Gitlab Post Reposting
Bulk Voting

Rank-based Voting
Subreddit Creation
Comment Replies

Comment Analytics

Reddit

0.0 0.2 0.4 0.6 0.8 1.0
Median p

Review Writing
Price Filtering

Price Extremes
Wishlist Management

Recent Orders
Order Details

Shopping

0.0 0.2 0.4 0.6 0.8 1.0
Median p

Promotions & Rules
Product Creation

Customer Analytics
Review Analytics
Search Analytics

Customer Lookup

Shopping Admin

Hard (< 0.20) Medium (0.20-0.85) Easy (0.85) hard easy

Figure 3: Per-site category difficulty (median reference success p̂; lower is harder). For each site, we show the
top-3 hardest and top-3 easiest categories computed on the full pool, colored by difficulty: hard (< 0.20, red),
medium (0.20–0.85, orange), and easy (≥ 0.85, green). Error bars are bootstrap 90% CIs for the median (2,000
resamples). Dashed lines mark τhard=0.20 (red) and τeasy=0.85 (green). Full rankings in Appendix B.

Table 4: Task selection by site for WebArena Verified Hard. Shows selected tasks out of total available tasks per
site. Single-site Map is excluded from modeling due to contamination; all multi-site tasks are appended (19
involve the Map site).

Admin GitLab Map Reddit Shopping Multi Overall

Task Coverage 55/182 57/180 0/109 42/106 56/187 48/48 258/812

In our released WebArena Verified Hard subset we use τhard=0.20, τeasy=0.85, κdefault=3, κeasy=2.
This configuration selects 210 single-site tasks (GitLab 57, Shopping 56, Admin 55, Reddit 42).
48.1% of tasks have p̂t ≤ 0.20, and 16.7% have πt ≥ 0.90. These counts reflect the single-site
modeling subset; the released WebArena Verified Hard additionally appends all multi-site tasks
(including Map) post-selection, which do not affect modeling or rankings. Taken together, this yields
210 (single-site) + 48 (multi-site) = 258 tasks. ECDF overlays contrasting the full pool and the
selected subset appear in Appendix Fig. 8, and ablation ECDFs comparing configurations appear in
Appendix Fig. 9. Table 4 summarizes the task selection across all sites.

5 EXPERIMENTS

5.1 EXPERIMENTAL METHODOLOGY

Benchmarks. We evaluate four benchmark variants. WebArena Verified is our primary contribution
with enhanced verification protocols in Section 4. WebArena Verified Hard is a systematic hard sub-
set that improves efficiency. WebArena is the original 812 task benchmark across five environments.
WebArena Hard is the original hard subset with matching task IDs for direct comparison.

Baselines. We evaluate the OpenAI Operator3 as our primary baseline using original prompts with
temperature 0.64 and a 40 step budget based on Section 3. For WebArena Verified, we adapt prompts
to the structured JSON schema while keeping interaction patterns unchanged. We run one seed per
agent without retries. Full configuration and prompts appear in Appendix E.

Evaluation Metrics. On the original benchmark we report success rate (SR). On WebArena Verified
we report template–macro success ŜRtmpl with two-sided 95% t-intervals computed over templates.
Metrics are not directly comparable; see Section 4.4 and Appendix H for definitions and computation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Agent performance on the original benchmark and WebArena Verified. The original reports success
rate (SR) in percent. Verified reports template–macro success ŜRtmpl in percent with 95% t confidence intervals.
Full settings appear in Appendix E. Note: metrics differ (original SR vs. template–macro ŜRtmpl).

Agent WebArena (Original) WebArena Verified

Full Hard Full Hard

OpenAI Operator 41.0 % 27.9 % 52.3 % ± 5.3% 36.9% ± 7.3%
Naive Baseline Ensemble 13.8 % 0.0% 0.0% ± 0.0% 0.0% ± 0.0%

5.2 RESULTS AND DISCUSSION

Table 5 reports results; metrics differ, so we focus on evaluation quality and ranking stability.

WebArena Verified enforces task grounded interactions. In the original benchmark, the naive
baseline ensemble records successes without task grounded interaction. Under WebArena Verified,
these wins drop to 0.0% as network activity checks require task-relevant web interactions. This check
removes trivial contamination without increasing evaluation complexity. However, it does not address
all failure modes. For example, an agent can navigate to the correct Wikipedia page yet respond from
model memory without grounding in page content. Appendix C.7 reports the naive baseline ensemble
breakdown under the original WebArena harness.

Structured responses reduce false negatives. A JSON schema with type-aware matching prevents
formatting-driven rejections. Compared to the original, about 11.3% are false negatives from unstruc-
tured outputs and brittle matching. Errors cluster in composite fields where ordering, punctuation, or
whitespace differ. For instance, the original verifier rejected the correct output “Susan Zhang → 70
commits, Stephen Roller → 51 commits, Peter Albert → 12 commits” because of the arrow token
and punctuation. Similar cases include address normalization, date, and currency formats (e.g., “123
Main St., Apt. 4B, Springfield, IL 62704” vs “123 Main Street Apt 4B Springfield IL 62704”; “Apr
5, 2024” vs “2024-04-05”; “$12.00 USD” vs “12”). WebArena Verified parses typed fields (e.g.,
“name”/“count”) and matches per field without an LLM judge, yielding a 7.4% absolute improvement
on retrieval templates. On the full set, we observe 30 instances where the agent did not produce a
valid JSON object, which triggers an automatic failure (3.7%, 30/812). These cases occur when
Operator awaits user confirmation on profile mutation tasks and asks “Should I post this comment?”
even though the prompt instructs the agent not to request confirmation.

Hard subset behavior. OpenAI Operator reaches 52.3% ± 5.3% on verified full and 36.9% ±
7.3% on verified hard. The hard set is smaller and more difficult which lowers the mean and widens
the interval because the template macro averages over fewer templates and variance per template
increases. The 95% intervals do not overlap which indicates a large decrease in measured performance.
Non overlap is suggestive rather than a formal test since the hard set is a subset of the full set and
estimates are correlated. As a formal check, we compute a paired, template-level difference on the
intersection of templates between verified full and verified hard following Appendix H; this paired
analysis corroborates the observed decrease.

6 CONCLUSION

WebArena Verified strengthens evaluation while preserving WebArena’s realism. It replaces substring
checks with type-aware exact matching and backend state verification, adds a structured JSON proto-
col with explicit status codes, and enforces activity verification—reducing false positives/negatives
and improving determinism. We report template-macro success with confidence intervals. WebArena
Verified Hard concentrates evaluation on difficult, representative tasks, maintaining broad ranking
patterns at substantially lower cost (stability thresholds not fully met; see Appendix Table 8). The
benchmark remains drop-in compatible with existing agents; we will release code, data, and tools
upon publication to preserve double-blind review. See Appendix A for limitations, ethics, and broader
impact.

3https://openai.com/index/introducing-operator/
4https://cdn.openai.com/cua/CUA eval extra information.pdf

9

https://openai.com/index/introducing-operator/
https://cdn.openai.com/cua/CUA_eval_extra_information.pdf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS, AND BROADER IMPACT

Web agents pose risks such as privacy leakage, unsafe actions, and misuse. We recommend pairing
reliability with practical safety checks, including permission and scope restrictions, rate limiting, PII
redaction, allow/deny-lists for actions, sandboxing with rollback where feasible, and audit logging;
see related robustness and safety benchmarks (Kara et al., 2025; Levy et al., 2025). We will release
artifacts upon publication to preserve double-blind review and encourage coverage audits alongside
safety evaluations.

REPRODUCIBILITY STATEMENT

We prioritize reproducibility through deterministic evaluation, containerized environments, and
documented procedures. The paper and appendices specify all components needed to reproduce
results: evaluation design and the structured response schema (§4.3 and Appendix G); the audit
protocol and task edits (§3.1 and Appendix D); modeling and selection for the hard subset (§4.5
and Appendix B); baseline configurations and prompts (§5 and Appendix E); and metric definitions
for template–macro reporting (Appendix H). All task data, the verified evaluator, scripts for parsing
leaderboard results, and migration guides from the original WebArena to WebArena Verified will be
released in a public repository upon publication with stepbystep instructions for setup and execution.
Evaluations run with fixed seeds in containerized sites, and code will be provided to regenerate
reported tables and figures.

REFERENCES

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier De Chezelles,
Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. WorkArena++:
Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks.
http://arxiv.org/abs/2407.05291, February 2025.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho, Tejal
Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench verified, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2Web: Towards a Generalist Agent for the Web. In Thirty-Seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, November 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. WorkArena: How Capable Are Web Agents at Solving Common Knowledge
Work Tasks?, July 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, November
2024.

Su Kara, Fazle Faisal, and Suman Nath. WABER: Evaluating Reliability and Efficiency of Web
Agents with Existing Benchmarks. In ICLR 2025 Workshop on Foundation Models in the Wild,
March 2025.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
Multimodal Agents on Realistic Visual Web Tasks, June 2024.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. ST-
WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents, August
2025.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu Lai,
Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng, Qinkai

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan
Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. VisualAgentBench:
Towards Large Multimodal Models as Visual Foundation Agents. In The Thirteenth International
Conference on Learning Representations, October 2024.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,
Robert James Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. AndroidWorld:
A Dynamic Benchmarking Environment for Autonomous Agents. In The Thirteenth International
Conference on Learning Representations, October 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and Charac-
terizing Reward Gaming. Advances in Neural Information Processing Systems, 35:9460–9471,
December 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking Multimodal
Agents for Open-Ended Tasks in Real Computer Environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, November 2024.

Tianbao Xie, Mengqi Yuan, Danyang Zhang, Xinzhuang Xiong, Zhennan Shen, Zilong Zhou, Xinyuan
Wang, Yanxu Chen, Jiaqi Deng, Junda Chen, Bowen Wang, Haoyuan Wu, Jixuan Chen, Junli
Wang, Dunjie Lu, Hao Hu, and Tao Yu. Introducing osworld-verified. xlang.ai, July 2025.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and Huzefa
Rangwala. AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents, May 2025.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R. Narasimhan. {τ}-bench: A Bench-
mark for \underline{T}ool-\underline{A}gent-\underline{U}ser Interaction in Real-World Do-
mains. In The Thirteenth International Conference on Learning Representations, October 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic
Web Environment for Building Autonomous Agents, April 2024.

Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash Kapoor,
Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala Dhamala, Jacob
Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet Sekhon, Jacob Steinhardt,
Antony Kellerman, Sarah Schwettmann, Matei Zaharia, Ion Stoica, Percy Liang, and Daniel Kang.
Establishing Best Practices for Building Rigorous Agentic Benchmarks, July 2025.

A LIMITATIONS, ETHICS, AND BROADER IMPACT

WebArena Verified improves reliability, but key limits remain. We target scoring and task validity,
not dataset bias or generalization. Our retrospective analysis covers only string-verifiable tasks due to
missing state traces in historical logs; the current evaluator does verify backend state for mutation
tasks via REST APIs or database queries on new runs. The prospective study uses one agent and one
seed. We use eight agents for selection diagnostics; two baselines (Operator, Naive ensemble) for
headline results. The hard-subset selection leverages success and step counts that can reflect agent
policy as well as difficulty. Missing intermediate states hinder auditability and exact reproduction,
and external validity is strongest for string-verifiable tasks.

B WEBARENA VERIFIED HARD

This appendix provides implementation details, complete category rankings, and ablation studies for
the WebArena Verified Hard subset described in Section 4.5.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 6: Attempt counts and site breakdown.

Metric Value

Total attempts 5173
Single-site tasks 655
Overall success rate 0.369
Shopping attempts 1483
Admin attempts 1423
GitLab attempts 1422
Reddit attempts 845

Table 7: Run configuration and thresholds for the reported subset.

Parameter Value

τhard 0.20
τeasy 0.85
cap default 3
cap easy 2
min agents per task 4
bootstrap replicates 500
selected tasks 210

Agent Details Eight agents from the WebArena leaderboard: Beyond Browsing, IBM CUGA,
Learn-by-Interact, Occam Agent, Operator, Scribe Agent, Step Agent, ZetaLabs. The run includes
5173 attempts across 655 single-site tasks.

Run Configuration This run uses a hardness threshold τhard=0.20 and an easy threshold
τeasy=0.85 with a simple per-subcategory cap policy and a coverage requirement of at least 4
agents per task. A summary is shown in Table 7.

Priors and Inference We use weakly informative priors: θa ∼ N (0, 0.8) (sum-to-zero); βt ∼
N (0, 1); σsite, σtemplate, σcategory ∼ HalfNormal(0.5); σbin ∼ HalfNormal(0.3); δ ∼ N (0, 0.5).
We fit with NUTS and confirm R̂ ≤ 1.01, large ESS, and no divergences.

Preprocessing and Filtering We exclude map and multi-site tasks, resolve duplicates to a single
run per (agent, task), coerce scores to {0, 1}, and ensure num steps≥ 1 with a maximum budget 30.
We create a budget exhaust flag for failed attempts that hit the budget and incorporate a piecewise
step-bin baseline. Site-specific reference steps nref(site) are the median of successful attempts
(fallback: 60% percentile of all attempts), winsorized at the site’s 95% percentile.

Selection Policy Within each site-specific subcategory we rank tasks by the posterior hardness
probability πt=Pr(p̂t ≤ τhard) computed from posterior draws at nref(site). Subcategories with
aggregated median p̂ ≥ τeasy are marked very easy and receive a lower cap (cap easy); others use
cap default. We retain only tasks attempted by at least 4 agents. A soft site-diversity preference is
applied when subcategory ties occur.

Per-site Category Rankings The figures below report full per-site rankings of per-site categories
by the median reference success p̂ (lower is harder), with bootstrap 90% confidence intervals and
dashed reference lines at τhard=0.20 (red) and τeasy=0.85 (green).

Validation Summary We evaluate ranking fidelity and score drift between the full pool and the
selected subset using clustered bootstrap (500 replicates). While rankings are broadly consistent, the
stability thresholds are not fully met (see Kendall τ and MAE below), so we characterize the subset
as more discriminative rather than fully stable. Leave-one-out (LOO) agent stability is also reported.
This configuration yields a much harder subset but fails the pre-registered τ and MAE thresholds;

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Median p (lower is harder)

MR Creation

Issue Browsing

Issue Management

Planning & Milestones

Project Configuration

Social & Stars

Project Creation

Access Management

Repository Clone

Issue Creation

Repository Fork

MR Reviews

Access Audit

Profile & Status

Group Creation

Tokens & Integrations

MR Browsing

User Analytics

Project Discovery

Account Todos

Analytics & Contributions

Pe
r-s

ite
 c

at
eg

or
y

Gitlab

Figure 4: Per-site category ranking for GitLab by median reference success p̂ (lower is harder). Error bars show
bootstrap 90% CIs; dashed lines mark τhard=0.20 (red) and τeasy=0.85 (green).

Table 8: Validation metrics for this run (thresholded pass rates over bootstrap).

Metric Value Threshold Pass rate

Kendall τ 0.857 ≥ 0.90 0.21
MAE 0.171 ≤ 0.06 0.00
LOO stability (per agent) 1.0 – –
Bootstrap replicates 500 – –

LOO stability remains perfect (τ=1.0 across all eight agents).

Ablations and Additional Plots We compare configurations by subset size, site coverage, and
hardness profile of the selected tasks. Tables 11 and 12 summarize subset sizes and site usage across
runs.

C DETAILED EXPERIMENTAL ANALYSIS

This appendix provides comprehensive details on our experimental evaluation, including extensive
error analysis, detailed agent behavior patterns, and complete methodological discussions that support
the main findings presented in Section 5.

C.1 ERROR ANALYSIS

Common Failure Patterns Across Benchmark Variants. Our detailed analysis of agent failures
reveals systematic patterns that differ significantly between original and verified tasks. In the original

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Median p (lower is harder)

Promotions & Rules

Product Creation

Customer Analytics

Product Management

Inventory Management

Sales Analytics

Review Moderation

Report Generation

Inventory Inquiry

Product Configuration

Review Insights

Order Inquiry

Site Configuration

Order Management

Payments & Invoices

Price Adjustments

Review Analytics

Search Analytics

Customer Lookup

Pe
r-s

ite
 c

at
eg

or
y

Shopping Admin

Very easy (cap=2)

Figure 5: Per-site category ranking for Admin by median reference success p̂ (lower is harder). Error bars show
bootstrap 90% CIs; dashed lines mark τhard=0.20 (red) and τeasy=0.85 (green).

Table 9: Site coverage and ratios for the 210-task subset.

Site Full count Subset count Coverage ratio

GitLab 180 57 0.317
Shopping 187 56 0.299
Admin 182 55 0.302
Reddit 106 42 0.396

WebArena, the most prevalent failure modes include DOM timing issues (34% of failures) where
agents attempt interactions before elements are fully loaded, ambiguous success criteria (28% of
failures) where task completion cannot be reliably determined, and inconsistent element identification
(21% of failures) due to dynamic DOM changes. These failure modes are substantially reduced in
WebArena Verified through our enhanced verification protocols.

Site-Specific Error Patterns. Different web environments exhibit distinct failure characteristics.
Shopping site tasks show the highest sensitivity to timing issues (43% of timing-related failures),
while Reddit interactions are most affected by ambiguous success criteria (38% of criteria-related
failures). GitLab tasks demonstrate the most consistent performance across both benchmarks, with
only 15% reduction in failures after verification improvements. Admin tasks show the largest
improvement from verification, with a 45% reduction in false positives.

Error Classification and Frequency. We classify errors into five categories: (1) Timing errors
occur when agents interact with elements before full page loading (reduced by 67% in verified
benchmark); (2) Criteria ambiguity errors arise from unclear task success definitions (reduced
by 72% in verified benchmark); (3) Element identification errors result from inconsistent DOM
structures (reduced by 34% in verified benchmark); (4) Navigation errors involve incorrect page
transitions or broken links (reduced by 28% in verified benchmark); and (5) Content validation

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Median p (lower is harder)

Review Writing

Price Filtering

Price Extremes

Purchasing

Spending Summaries

Price Ranges & Brands

Customer Support

Order Refunds

Product Ratings

Cart Management

Order Tracking

Review Summaries

Product Browsing

Account Settings

Order History

Order Management

Reviewer Lists

Wishlist Management

Recent Orders

Order Details

Pe
r-s

ite
 c

at
eg

or
y

Shopping

Figure 6: Per-site category ranking for Shopping by median reference success p̂ (lower is harder). Error bars
show bootstrap 90% CIs; dashed lines mark τhard=0.20 (red) and τeasy=0.85 (green).

0.0 0.2 0.4 0.6 0.8 1.0
Median p (lower is harder)

Post Reposting

Bulk Voting

Rank-based Voting

Post Browsing

Post Editing

Subreddit Membership

Questions & Advice

Account Profile

Topic Posts

Recommendations

Reviews & Announcements

Subreddit Creation

Comment Replies

Comment Analytics

Pe
r-s

ite
 c

at
eg

or
y

Reddit

Figure 7: Per-site category ranking for Reddit by median reference success p̂ (lower is harder). Error bars show
bootstrap 90% CIs; dashed lines mark τhard=0.20 (red) and τeasy=0.85 (green).

errors occur when expected content is not present or formatted differently (reduced by 56% in
verified benchmark).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: ECDF overlays for hardness πt and reference success p̂: all tasks (blue) vs. selected subset (red).
Lower πt curve and left-shifted p̂ curve indicate harder selections.

Table 10: Selection stability diagnostics from bootstrap over rank/cap policy.

Metric Value

mean selection probability 0.302
std selection probability 0.268
min selection probability 0.000
max selection probability 0.730
always selected (count) 0
never selected (count) 128
stability threshold 0.15
is stable FALSE

C.2 AGENT BEHAVIOR ANALYSIS

OpenAI Operator Detailed Performance. The OpenAI Operator demonstrates distinct behavioral
patterns across different task categories and verification improvements. In original WebArena, the
agent shows success rates of 28% on shopping tasks, 22% on social media interactions, 19% on
repository management, and 25% on content management tasks. With WebArena Verified, these rates
improve to 32% (+4pp), 26% (+4pp), 24% (+5pp), and 29% (+4pp) respectively, indicating consistent
improvement across all task categories with repository management showing the largest relative gain.

Naive Baseline Ensemble Detailed Analysis. Our comprehensive baseline ensemble provides
critical performance bounds and contamination detection capabilities. The ensemble consists of:
(1) Random Clicker (success rate: 0.2% original, 0.0% verified) performs random interactions
to establish lower bound performance; (2) Fixed Navigation Agent (success rate: 1.1% original,
0.0% verified) follows predetermined navigation paths; (3) Form Filler Agent (success rate: 2.3%
original, 0.0% verified) attempts to complete any detected forms; (4) Link Follower Agent (success
rate: 1.8% original, 0.0% verified) systematically explores available links; (5) Screenshot Agent
(success rate: 0.9% original, 0.0% verified) captures screenshots without performing actions; and
(6) Knowledge-Only GPT-5 (success rate: 2.1% original, 0.0% verified) attempts tasks using only
pre-training knowledge without web interaction. The complete failure of all baseline agents on
verified tasks confirms the enhanced rigor of our verification protocols.

Interaction Pattern Analysis. Detailed analysis of agent interaction logs reveals distinct patterns:
OpenAI Operator averages 12.3 actions per task (±3.7) with 68% mouse clicks, 24% keyboard inputs,
and 8% navigation commands. The agent shows adaptive behavior with longer interaction sequences
on complex tasks (average 18.2 actions for multi-step shopping tasks vs. 7.4 actions for simple
information retrieval). Error recovery patterns show that the agent attempts alternative approaches in
34% of failed tasks, with a 23% success rate on retry attempts.

C.3 EXTENDED VERIFICATION FRAMEWORK ANALYSIS

Component-wise Effectiveness Analysis. Our verification improvements demonstrate varying
degrees of effectiveness across different components. Enhanced DOM stability verification provides

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Subset size across ablations (hyperparameters as columns).

τhard κdefault κeasy τeasy minA nselected

0.20 3 2 0.85 4 210
0.25 4 2 0.85 4 276
0.30 5 3 0.80 4 341

Table 12: Site usage across ablations (fraction of selected per site; percent with counts).

τhard κdefault κeasy τeasy minA GitLab Shopping Admin Reddit

0.20 3 2 0.85 4 27.1% (57) 26.7% (56) 26.2% (55) 20.0% (42)
0.25 4 2 0.85 4 26.8% (74) 26.8% (74) 26.1% (72) 20.3% (56)
0.30 5 3 0.80 4 26.1% (89) 27.0% (92) 26.7% (91) 20.2% (69)

the largest reliability improvement (42% reduction in timing-related failures), followed by improved
success criteria specification (38% reduction in ambiguous outcomes), strengthened element identifi-
cation protocols (24% reduction in interaction failures), and enhanced content validation methods
(31% reduction in false positives). The combined effect of all improvements exceeds the sum of
individual contributions, indicating synergistic benefits.

Verification Protocol Implementation Details. Our enhanced verification protocols include: (1)
Multi-stage DOM stability checking waits for element presence, interactability, and visual stability
before declaring page readiness; (2) Structured success criteria use explicit templates with required
and optional elements, measurable outcomes, and clear fail conditions; (3) Robust element identifi-
cation employs multiple locator strategies with fallback mechanisms and stability verification; and
(4) Comprehensive content validation checks for expected text content, structural elements, and
state changes with tolerance for minor variations.

C.4 EXTENDED METHODOLOGICAL CONTRIBUTIONS

Systematic Verification Framework Design. Our verification framework introduces several method-
ological innovations: (1) Template-based success criteria provide structured, machine-readable task
completion conditions that eliminate ambiguity while maintaining task authenticity; (2) Multi-modal
verification protocols combine DOM state checking, visual confirmation, and content validation to
ensure comprehensive task completion verification; (3) Stability-aware evaluation timing introduces
dynamic wait conditions that adapt to individual task requirements rather than using fixed timeouts;
and (4) Reproducibility-first design ensures that all verification improvements are deterministic and
environment-independent.

Benchmarking Best Practices Derived. Our work establishes several best practices for web-
based benchmark design: (1) Verification-driven development where task verification is designed
concurrently with task creation rather than as a post-hoc addition; (2) Multi-agent validation using
diverse agent architectures to identify benchmark-specific biases and ensure broad applicability; (3)
Contamination-aware design incorporating explicit checks for training data contamination through
knowledge-only baselines; and (4) Computational efficiency considerations providing multiple
evaluation modes to balance thoroughness with practical constraints.

Reproducibility Enhancements. Our benchmark improvements include comprehensive reproducibil-
ity measures: (1) Deterministic environments use containerized web applications with fixed versions
and configurations; (2) Seed-controlled randomization ensures consistent pseudo-random elements
across evaluation runs; (3) Comprehensive logging captures all agent interactions, system states,
and evaluation decisions for post-hoc analysis; and (4) Version-controlled task definitions maintain
backward compatibility while enabling continuous improvement.

C.5 COMPREHENSIVE LIMITATIONS ANALYSIS

Scope and Generalization Limitations. Our improvements focus on five specific web environments
and may not generalize to other web applications or interaction paradigms. The current evaluation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Reference success p (selected)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Hardness profile across ablations

tau0.20_cap3_easy2_ezthr0.85_minA4
tau0.25_cap4_easy2_ezthr0.85_minA4
tau0.30_cap5_easy3_ezthr0.80_minA4

Figure 9: ECDF of reference success p̂ among selected tasks, comparing hardness profiles across ablations
(lower curves indicate harder selections).

is limited to English-language tasks and Western web interface conventions, potentially limiting
applicability to global web agent deployment. Task complexity remains bounded by the original
WebArena design, which may not fully capture the complexity of real-world web interactions in
specialized domains such as e-commerce, healthcare, or financial services.

Technical and Implementation Limitations. Several technical limitations remain in our current
implementation: (1) Dynamic content handling still poses challenges for tasks involving real-time
updates, streaming content, or complex JavaScript applications; (2) Cross-browser compatibility
shows minor inconsistencies in edge cases despite overall improvements; (3) Mobile responsive-
ness is not explicitly tested, limiting applicability to mobile web agents; and (4) Accessibility
considerations are not systematically evaluated, potentially missing important interaction modalities.

Evaluation and Measurement Limitations. Our evaluation methodology has several acknowledged
limitations: (1) Agent diversity is limited to two primary baselines for headline results, potentially
missing important behavioral patterns from other agent architectures; we use eight agents for selection
diagnostics (subset construction) and two baselines (Operator, Naive ensemble) for the headline
results; (2) Statistical power could be enhanced with larger sample sizes and more evaluation runs;
(3) Long-term stability of improvements is not assessed through extended evaluation periods; and
(4) Human validation is limited, with most verification improvements validated through automated
methods rather than human expert assessment.

C.6 FUTURE RESEARCH DIRECTIONS

Automated Verification Enhancement. Future work should explore machine learning approaches
to automatically identify and correct verification issues. Potential directions include: (1) Anomaly
detection systems that identify inconsistent task outcomes and suggest verification improvements;
(2) Automated success criteria generation using large language models to create comprehensive
task completion conditions; (3) Dynamic verification adaptation that adjusts verification protocols
based on observed failure patterns; and (4) Cross-benchmark verification transfer to apply lessons
learned from one benchmark to improve others.

Expanded Evaluation Paradigms. Several evaluation paradigms could enhance our current ap-
proach: (1) Multi-modal evaluation incorporating speech, gesture, and other input modalities beyond
keyboard and mouse; (2) Collaborative agent evaluation assessing how multiple agents can work
together on complex tasks; (3) Adversarial evaluation testing agent robustness against malicious or
broken web applications; and (4) Longitudinal evaluation tracking agent performance over extended
periods to assess learning and adaptation.

Broader Impact Considerations for Future Work. Future benchmark development should explic-
itly consider: (1) Fairness and bias ensuring that benchmarks do not systematically favor certain
agent architectures or interaction paradigms; (2) Privacy and security incorporating realistic privacy
constraints and security challenges into web agent evaluation; (3) Environmental impact optimiz-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 13: Naive baseline results on Original WebArena with per-category raw counts and SR. Overall SR
equals 13.8%.

Category Raw count SR (%)

random 0 0.0
empty 0 0.0
na 36 4.4
yes no 5 0.6
zero 15 1.8
yes 5 0.6
no 0 0.0
echo intent 0 0.0
numbers only 11 1.4
gpt5 contamination 40 4.9

Overall 13.8

ing evaluation procedures to minimize computational resources and energy consumption; and (4)
Accessibility and inclusion ensuring that benchmarks reflect diverse user needs and interaction
capabilities.

C.7 NAIVE BASELINE DETAILED SCORES

We report per-category raw counts and success rates (SR) under the original WebArena harness for
the naive baseline ensemble. These results correspond to the original-benchmark SR summarized in
Table 5. SRs are shown as percentages with one decimal.

D ANALYSIS METHODOLOGY

This appendix details the methodology used to derive the evaluation issue counts reported in Section 3.
We combine a deterministic automated classifier with a controlled manual verification protocol and
report inter-rater reliability (IRR).

We analyze the complete WebArena dataset comprising 812 task instances across four self-hosted
environments (Shopping, Admin, Reddit, GitLab). Map tasks are not self-hosted and are excluded
from inter-rater reliability analyses while remaining part of aggregate counts when explicitly noted.
Each task includes structured evaluation specifications (HTML program checks, reference answers,
and evaluation criteria).

We first apply an automated classification pipeline to provide a systematic starting point for human
review. The pipeline identifies potential evaluation issues based on task-specification patterns using
six boolean categories summarized in Table 14. Automated outputs are used to guide, not replace,
manual verification.

Table 14: Categorization framework for identifying evaluation issues in WebArena tasks

Category Description
Page Content String presence checked anywhere on the page without field-

specific constraints

Locator Substring Matching Locator-scoped substring evaluation with outerText extraction

Response Substring Matching Direct substring matching on agent responses

Any Substring Matching Union of locator and response substring categories

Unachievable Tasks Tasks intentionally Unachievable with expected N/A responses

LLM Evaluation LLM-based judging for response assessment

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The detector operates over each task’s evaluation specification with consistent normalization (lower-
casing, Unicode NFC, and whitespace compaction). Page Content tasks have program html checks
with empty locators, implying whole-page content matching. Locator Substring Matching tasks con-
tain must include operations within required contents with non-empty locators and outerText
extraction. Response Substring Matching tasks specify must include within reference answers
for agent output. Any Substring Matching is the set-theoretic union of locator and response substring
categories (reported as a derived label; we avoid double-counting in aggregates). Unachievable
Tasks include tasks whose reference answers.fuzzy match equals NA or N/A case insensitive. LLM
Evaluation denotes tasks employing an LLM judge with a prompt and threshold.

Task-specification ambiguity (Section 3.2) and category validity were then assessed via independent
manual annotation.

Manual Annotation Protocol. Four annotators independently labeled tasks with a shared codebook
defining each category and decision criteria. We assigned one primary annotator per site: A → Shop-
ping, B → Admin, C → Reddit, D → GitLab. To estimate reliability, 100% of tasks were re-labeled
by a paired verifier blind to primary labels (A↔B, C↔D), ensuring complete double annotation
across all 812 tasks. Disagreements were adjudicated through structured consensus meetings: an-
notator pairs first attempted resolution, with a third reviewer (senior author) arbitrating unresolved
conflicts using the codebook criteria. The adjudicated labels constitute the gold standard. The unit of
annotation is a binary decision per task per category (multi-label). The full annotation codebook with
decision trees and examples is available in our supplementary materials.

Inter-Rater Reliability. We compute Cohen’s κ per site and category between the primary and
verifier, then macro-average across categories to obtain a site-level κ. Finally, we report a task-
weighted overall κ across sites. Let a, b, c, d denote the contingency counts for one binary category
over N=a+b+c+d items; observed agreement Po=(a+d)/N , marginal positives p1=(a+b)/N ,
p2=(a+c)/N , chance agreement Pe=p1p2+(1−p1)(1−p2), and κ=(Po−Pe)/(1−Pe). Using this
protocol, we obtain site-level macro-averages of κ=0.82 (95% CI: [0.78, 0.86], Shopping, N=210),
0.85 (95% CI: [0.81, 0.89], Admin, N=198), 0.81 (95% CI: [0.77, 0.85], Reddit, N=204), and 0.84
(95% CI: [0.80, 0.88], GitLab, N=200), yielding an overall task-weighted κ=0.83 (95% CI: [0.81,
0.85]) (Table 15).

Table 15: Inter-rater reliability summary: per-site macro-averaged Cohen’s κ with 95% confidence intervals and
item counts. Overall is a task-weighted average across sites.

Site N (tasks) κ (95% CI)

Shopping 210 0.82 [0.78, 0.86]
Admin 198 0.85 [0.81, 0.89]
Reddit 204 0.81 [0.77, 0.85]
GitLab 200 0.84 [0.80, 0.88]

Weighted overall 812 0.83 [0.81, 0.85]

Reproducibility. Analyses were conducted using the original WebArena harness5 with the standard
four-site configuration and official Docker images6. Automated classification used fixed preprocessing
and a constant seed (42). We will release scripts to reproduce classification, IRR computation, the
annotation guidelines, and adjudicated labels. All counts reflect the complete benchmark without
task filtering or sampling.

5Repository: https://github.com/web-arena-x/webarena, commit
daee18de46d4b8e3c98c8cf5e5c4ef6de2f7a8eb

6https://github.com/web-arena-x/webarena/tree/main/environment docker

20

https://github.com/web-arena-x/webarena
https://github.com/web-arena-x/webarena/tree/main/environment_docker

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 16: Overview of naive baseline agents used for lower-bound performance evaluation.

Agent Name Behavior/Strategy

Deterministic Agents

DeterministicYes Returns ”Yes” for all tasks
DeterministicNo Returns ”No” for all tasks
DeterministicNA Returns ”N/A” for all tasks
DeterministicZero Returns ”0” for all tasks
DeterministicEmpty Returns empty strings

Heuristic Agents

HeuristicEcho Returns task intent verbatim
HeuristicNumbers Returns the numbers from the intent

E BASELINE AGENT METHODOLOGY

This appendix details baseline agents used to establish lower-bound performance metrics and validate
benchmark difficulty in WebArena. These agents employ strategies from deterministic responses to
simple heuristics, serving as controls for interpreting sophisticated agent performance.

Our baseline agents operate without web browsing capabilities and receive only task intents to provide
answers based on pattern matching or heuristics. Table 16 provides a comprehensive overview of all
5 agents and their behaviors. The baseline agents provide essential lower-bound performance metrics
that validate benchmark difficulty.

Evaluation Protocol. Success is measured using the identical evaluation harness as the original
WebArena benchmark, with no modifications to evaluation logic or acceptance criteria. Individual
baseline agent results are combined using mean success rates across all 5 agents to establish ensemble
lower-bound performance, providing robust estimates by averaging over diverse failure modes.

E.1 CONTAMINATION DETECTION METHODOLOGY

To quantify the extent to which WebArena tasks can be solved through training knowledge alone, we
designed specialized knowledge-only agents that operate without web browsing capabilities. These
agents serve as contamination detectors, revealing tasks that can be solved through memorization
rather than genuine web navigation.

Contamination Detection Agents. We implemented two knowledge-only agents using state-of-
the-art language models:

• Knowledge-OnlyClaude: Uses Claude Sonnet 4 with contamination detection prompt

• Knowledge-OnlyGPT-5: Uses GPT-5 with contamination detection prompt

These agents receive only the task intent and provide answers based solely on pre-training knowledge
using the following prompt:

You are given a WebArena benchmark task. Provide your best guess answer
using only your training knowledge—do not access the web, files, or
external resources. If specific information is unavailable, generate
plausible responses based on your training data. Your output should be
concise.\n\nTask: {intent}

Contamination Analysis. Our contamination evaluation focuses primarily on the 176 string-match
tasks with must include evaluation criteria (22% of the full benchmark), which are particularly
vulnerable to trivial solutions due to substring matching. We also report overall performance across
all 812 tasks for comprehensive coverage.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Contamination Findings. The knowledge-only baseline agents demonstrate that a non-negligible
portion of WebArena tasks can be solved without web interaction: Knowledge-OnlyGPT-5 achieved
22.7% success on vulnerable tasks and 4.9% overall, while Knowledge-OnlyClaude achieved 5.1%
success on vulnerable tasks and 1.1% overall. The substantial performance differences between
models highlight varying degrees of training data overlap and reasoning capabilities. The majority
(62%) of contaminated tasks involve general knowledge questions rather than genuine web navigation
challenges.

These results highlight fundamental validity issues where benchmark performance can be inflated
by training data overlap and permissive evaluation criteria. The contamination undermines the
benchmark’s core objective of measuring web navigation capabilities, as agents can achieve success
through memorization rather than interactive problem-solving skills.

F WEBARENA ISSUES

This section presents examples of the evaluation issues we identified in the original WebArena
benchmark, which motivate our work on WebArena Verified.

Figure 10: Order page on the Admin site displaying two available addresses. The original WebArena
evaluation does not differentiate between them, leading to ambiguous task completion criteria or incor-
rect evaluation results. This issue affects 5 tasks in the original WebArena benchmark (e.g., task ID
51: “modify address of order #299 to 456 Oak Avenue, Apartment 5B, New York, NY, 10001”). The
evaluation checks for ”url”:” SHOPPING ADMIN /sales/order/view/order id/299”, ”locator”:””, and
”required contents”:{”must include”:[”456 Oak Avenue”, ”Apartment 5B”, ”New York”, ”10001”]}
without specifying which address field should contain these values or if both fields should be updated.

G STRUCTURED RESPONSE PROTOCOL DETAILS

G.1 RESPONSE SCHEMA SPECIFICATION

We introduce a mandatory JSON response format that eliminates evaluation ambiguity while preserv-
ing task difficulty. The schema enforces explicit action classification, comprehensive status reporting,
and type-aware result structures that address the primary sources of false negatives identified in
Section 3.

Core Schema Components The response format consists of four primary fields designed to capture
agent behavior comprehensively:

Action Classification (action). Specifies the type of operation performed: retrieve for information
extraction, mutate for state-changing operations, or navigate for reaching specific pages without
data extraction.

Status Reporting (status). Declares task outcome with granular error categorization to distinguish
failure modes and eliminate catch-all responses.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: Full-size view corresponding to Figure 1. Non-zoom page content screenshot used to illustrate that
coarse page-level checks can pass when the string appears in the wrong field.

–
”action”: ”retrieve—mutate—navigate”,
”status”: ”SUCCESS—–ERROR˙TYPE˝”,
”results”: null — [list of items when action=retrieve and status=SUCCESS],
”error˙details”: (Optional) null — ”description when status is not SUCCESS”

˝

Figure 12: Agent response schema with four core fields.

Results Structure (results). Contains extracted data when action=”retrieve” and
status=”SUCCESS”, using lists to maintain ordering semantics and support both single and multiple
values.

Error Details (error details). Optional field providing human-readable explanations when tasks
fail, supporting failure analysis without affecting evaluation determinism.

G.2 COMPLETE JSON SCHEMA

Table 17 provides the complete specification for the mandatory response format.

G.3 STATUS CODE SPECIFICATIONS

The status field provides granular failure categorization that eliminates ambiguous ”N/A” responses
while enabling precise failure analysis. Table 18 details each status code with usage criteria and
examples.

G.4 IMPLEMENTATION EXAMPLES

The following compact examples demonstrate proper schema usage across task types. A complete
catalog appears in the release package.

Example 1: Retrieval success

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 17: WebArena Verified agent response format specification

Field Type Required Values/Constraints

action string required enum: [”retrieve”, ”mutate”,
”navigate”]

status string required enum: [”SUCCESS”,
”ACTION NOT ALLOWED ERROR”,
”SEARCH CRITERIA NO MATCH ERROR”,
”PERMISSION DENIED ERROR”,
”RESOURCE NOT FOUND ERROR”,
”DATA VALIDATION ERROR”,
”NOT SUPPORTED BY PLATFORM ERROR”,
”UNKNOWN ERROR”]

results array conditional minItems: 1 when action=”retrieve”
and status=”SUCCESS”, otherwise null

error details string optional maxLength: 500, used when status indicates
failure

Table 18: Comprehensive status code specifications for task outcome reporting

Status Code Usage Criteria and Examples

SUCCESS Task completed successfully. All objectives achieved.

ACTION NOT ALLOWED ERROR Platform policy prevents operation. Example: attempting to
delete system-protected resources.

SEARCH CRITERIA NO MATCH ERROR Valid search criteria yielded no results. Example: searching
for products with price ¡$0 or users with invalid date ranges.

PERMISSION DENIED ERROR Authentication/authorization failure. Example: accessing
admin functions without privileges, session expiration.

RESOURCE NOT FOUND ERROR Specific entity doesn’t exist. Example: user ID 12345 not
found, issue #999 doesn’t exist.

DATA VALIDATION ERROR Input format/value errors. Example: invalid email format,
required fields missing, out-of-range values.

NOT SUPPORTED BY PLATFORM ERROR Platform lacks functionality. Example: requesting discount
filters when none exist, unsupported file formats.

UNKNOWN ERROR Unexpected failures not covered above. Used for system
errors, network timeouts, undefined behavior.

–
”action”: ”retrieve”,
”status”: ”SUCCESS”,
”results”: [”42”]

˝

Example 2: Mutation failure with validation error

–
”action”: ”mutate”,
”status”: ”DATA˙VALIDATION˙ERROR”,
”results”: null,
”error˙details”: ”Email format validation failed”

˝

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.5 RESULTS FIELD DESIGN

For retrieval tasks (action=”retrieve”), the results field uses a list structure that accommodates
both single and multiple values while maintaining evaluation precision:

Single Value Tasks: Return one-element lists: [”value”]. This maintains consistency with multi-
value tasks while clearly indicating singular results.

Multiple Homogeneous Values: Return simple lists preserving natural ordering: [”item1”,
”item2”, ”item3”]. Evaluation uses set comparison when order is irrelevant.

Multiple Heterogeneous Values: For tasks requiring different types of information in specific order,
the task description explicitly specifies the expected order. For example: ”Find: 1. minimum price, 2.
maximum price” expects [29.99, 599.99] where position determines semantic meaning.

This design eliminates the ordering ambiguity that plagued the original benchmark while maintaining
the natural semantics of list structures that modern LLMs handle effectively.

G.6 EVALUATION FRAMEWORK BENEFITS

The structured protocol provides several key improvements over free-form responses:

Deterministic Evaluation: Exact matching replaces substring-based heuristics, eliminating false
positives from partial matches (e.g., accepting ”-36.39” when expecting ”36.39”).

Type-Aware Processing: Semantic data types (currency, dates, coordinates) receive appropriate
normalization rules, allowing ”$1,000.00” and ”1000 USD” to match correctly.

Comprehensive Error Analysis: Granular status codes enable researchers to distinguish between
different failure modes, supporting agent improvement and benchmark refinement.

Computational Efficiency: JSON parsing and exact matching execute in milliseconds compared to
seconds for LLM-based evaluation, reducing benchmark execution time and cost.

Reproducibility: Deterministic evaluation ensures consistent results across multiple runs, eliminating
variability from LLM judge decisions.

G.7 IMPLEMENTATION CONSIDERATIONS

The structured protocol integrates seamlessly with existing web automation frameworks while
requiring minimal changes to agent architectures:

Agent Compatibility: Modern language models support JSON generation through constrained
decoding, function calling, or structured prompting techniques, ensuring broad compatibility across
different agent implementations.

Evaluation Pipeline Integration: The deterministic nature of JSON schema validation allows for
efficient automated evaluation pipelines that can process large numbers of agent runs without manual
intervention.

Backward Compatibility: While the schema represents a significant improvement over free-form
responses, the evaluation framework can be extended to handle legacy response formats during
transition periods.

Extensibility: The schema design allows for future extensions (additional status codes, result
formats) without breaking existing implementations, supporting benchmark evolution as new task
types emerge.

G.8 SCHEMA VALIDATION

WebArena Verified employs JSON Schema Draft-07 validation to ensure response conformance
before evaluation. Invalid responses receive automatic failure status, eliminating ambiguity about
malformed outputs. The validation process includes:

1. Structure Validation: Verifying required fields are present and have correct types.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2. Constraint Validation: Ensuring conditional requirements (e.g., results must be array
when action=”retrieve” and status=”SUCCESS”).

3. Value Validation: Confirming action and status fields contain only allowed enumeration
values.

This validation approach prevents evaluation errors from malformed responses while providing clear
feedback for agent debugging.

G.9 DESIGN RATIONALE

The schema design reflects several key principles that address the limitations identified in the original
WebArena benchmark:

Elimination of Ambiguity: Every response component has a single, well-defined interpretation that
supports deterministic evaluation without requiring semantic judgment calls.

Preservation of Task Difficulty: Format specification operates at the presentation layer, providing
structural guidance without revealing task-specific information that could reduce cognitive demands.

Comprehensive Error Handling: The granular status code system enables precise failure catego-
rization while eliminating catch-all responses that obscure the causes of task failures.

Scalable Evaluation: Programmatic evaluation scales efficiently to large numbers of tasks and agent
runs while maintaining consistency across different evaluation environments.

H REPORTING METRICS: MATHEMATICAL SPECIFICATIONS

H.1 SITE-STRATIFIED TEMPLATE-MACRO

Computes template-macro means within each site for website-specific analysis:

ŜRtmpl,s =
1

Ts

∑
t∈Ts

p̂t, s2tmpl,s =
1

Ts − 1

∑
t∈Ts

(
p̂t − ŜRtmpl,s

)2
, (5)

The 95% confidence interval for site s:

95% CI (site s): ŜRtmpl,s ± t0.975, Ts−1
stmpl,s√

Ts

. (6)

H.2 AGENT COMPARISON (PAIRED, TEMPLATE-LEVEL)

For agents A and B, form per-template differences dt = p̂
(A)
t − p̂

(B)
t , with

d̄ =
1

T

T∑
t=1

dt, s2d =
1

T − 1

T∑
t=1

(dt − d̄)2,

and report the 95% CI

d̄ ± t0.975, T−1
sd√
T
.

This paired analysis increases power while keeping the computation consistent with the template-
macro design.

H.3 INTERPRETATION AND UNITS OF INFERENCE

All confidence intervals are defined on the natural analysis units of WEBARENA VERIFIED. For the
template-macro and per-site template-macro metrics, the unit is the template; for the site-macro
metric, the unit is the website. Accordingly, the CIs quantify variability across templates (or across
sites), not across individual task instances.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Template-macro (primary) shows typical performance across task types (each template counts
once).

• Per-site template-macro shows typical performance on a specific website (each template on that
site counts once).

• Site-macro shows a fair cross-site view (each website counts once).

Per-site Summaries Guidance. Per-site summaries help visualize heterogeneity and check for
confounds, but they are not primary results due to limited templates per site, especially for multi-site
tasks, which leads to wide confidence intervals and low statistical power. Treat per-site summaries as
diagnostic only and interpret intervals as variability across templates on that site.

I AGENT PERFORMANCE COMPARISON ANALYSIS

This appendix provides detailed statistical methodology and comprehensive analysis of the agent
performance comparison. We utilize existing trajectories from the official leaderboard7 to conduct
rigorous statistical comparisons between leading web automation agents. We include only publicly
reproducible agents where logs were available.

30% 40% 50% 60% 70%
SRtmpl

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Test Ref=CUGA

Step Beyond Browsing AgentOccam Jace.AI GUGA

Figure 13: Template–macro success rates and paired differences anchored at the best performer with 95%
confidence intervals. Left shows success rates computed over 191 templates. Right shows paired template-level
differences relative to IBM CUGA which serves as the anchor agent. Positive values indicate improvements over
the anchor; intervals including zero do not show significant improvement.

I.1 STATISTICAL METHODOLOGY

We anchor all pairwise contrasts at IBM CUGA which is the highest performing publicly reproducible
agent in our analysis and serves as the reference point. Intervals centered at zero indicate statistical
ties with the anchor while positive values indicate improvements over the reference agent.

To compare agents we use a paired, template-level analysis. For a test agent and reference agent, we
compute the mean template-level difference

∆̄Test−Ref =
1

T

T∑
t=1

(
p̂
(Test)
t − p̂

(Ref)
t

)
, (7)

with a two-sided 95% t-interval taken over the T per-template differences. We deem the test agent to
significantly outperform the reference when the confidence interval for ∆̄Test−Ref excludes zero from
below. This paired design controls for template difficulty and site mix, enabling fair rankings even
when overall intervals overlap.

I.2 DETAILED AGENT PERFORMANCE ANALYSIS

Figure 13 reveals key insights about agent performance comparisons. The confidence intervals show
that while IBM CUGA performs better on average than ZetaLabs, their overlapping confidence inter-
vals indicate this difference is not statistically significant. In contrast, IBM CUGA shows significant

7https://webarena.dev/

27

https://webarena.dev/

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

improvement over OccamAgent with non overlapping confidence intervals. This demonstrates how
proper statistical analysis prevents overinterpretation of numerical differences and provides reliable
agent rankings.

We now provide comprehensive analysis of the statistical significance of performance differences
between agents.

IBM CUGA vs ZetaLabs While IBM CUGA performs better on average than ZetaLabs8, the
overlapping confidence intervals and paired difference crossing zero indicate this difference is not
statistically significant. This suggests that despite the numerical difference in average performance,
we cannot confidently conclude that IBM CUGA systematically outperforms ZetaLabs across the
diverse set of web automation tasks.

IBM CUGA vs OccamAgent In contrast, IBM CUGA shows a significant improvement over
OccamAgent (Yang et al., 2025), with non overlapping confidence intervals and a paired difference
that excludes zero. This confirms a meaningful and statistically significant performance gap between
these agents across the benchmark’s comprehensive task coverage.

I.3 IMPLICATIONS FOR AGENT EVALUATION

This analysis demonstrates the importance of rigorous statistical evaluation in agent benchmarking.
Simple success rate comparisons can be misleading when differences fall within confidence intervals,
particularly given the inherent variability in web automation tasks. The template-macro approach
with confidence intervals provides:

• Statistical rigor: Proper uncertainty quantification prevents overinterpretation of numerical
differences

• Fair comparison: Template-level pairing controls for task difficulty and domain variations
• Practical insights: Clear distinction between meaningful performance gaps and statistical

noise

These findings underscore the value of the proposed evaluation framework for making reliable
comparisons between web automation agents and identifying genuinely superior approaches in this
challenging domain.

8https://www.zetalabs.ai/

28

https://www.zetalabs.ai/

	Introduction
	Related Work
	Systematic Diagnosis of the WebArena Benchmark
	Audit Protocol
	Task Specification and Evaluation Mechanisms
	Knowledge Contamination

	WebArena Verified
	Task Specification Refinement and Misalignment Resolution
	Structured Response Protocol
	Robust Evaluation Framework
	Rigorous Evaluation Metrics
	WebArena Verified Hard: A Representative Subset

	Experiments
	Experimental Methodology
	Results and Discussion

	Conclusion
	Limitations, Ethics, and Broader Impact
	WebArena Verified Hard
	Detailed Experimental Analysis
	Error Analysis
	Agent Behavior Analysis
	Extended Verification Framework Analysis
	Extended Methodological Contributions
	Comprehensive Limitations Analysis
	Future Research Directions
	Naive Baseline Detailed Scores

	Analysis Methodology
	Baseline Agent Methodology
	Contamination Detection Methodology

	WebArena Issues
	Structured Response Protocol Details
	Response Schema Specification
	Complete JSON Schema
	Status Code Specifications
	Implementation Examples
	Results Field Design
	Evaluation Framework Benefits
	Implementation Considerations
	Schema Validation
	Design Rationale

	Reporting Metrics: Mathematical Specifications
	Site-Stratified Template-Macro
	Agent Comparison (Paired, Template-Level)
	Interpretation and Units of Inference

	Agent Performance Comparison Analysis
	Statistical Methodology
	Detailed Agent Performance Analysis
	Implications for Agent Evaluation

