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Abstract

DNA language models are emerging as powerful tools for representing genomic1

sequences, with recent progress driven by self-supervised learning. However, per-2

formance on downstream tasks is sensitive to tokenization strategies reflecting the3

complex encodings in DNA, where both regulatory elements and single-nucleotide4

changes can be functionally significant. Yet existing models are fixed to their5

initial tokenization strategy; single-nucleotide encodings result in long sequences6

that challenge transformer architectures, while fixed multi-nucleotide schemes7

like byte pair encoding struggle with character level modelling. We propose a8

biologically-informed alternative to tokenization using evolutionary conservation9

scores as a guide for ‘patch’ boundaries, drawing inspiration from the Byte La-10

tent Transformer’s combining of bytes into patches. By prioritizing conserved11

regions, our approach directs computational resources to the most functionally12

relevant parts of the DNA sequence. We show that models up to an order of13

magnitude smaller surpass current state-of-the-art performance in existing DNA14

benchmarks. Importantly, our approach provides the flexibility to change patching15

without retraining, which is not offered by previous methods, while also improving16

downstream performance.17

1 Introduction18

Self-supervised learning has led to a surge of interest in DNA language models, sequence models19

trained on raw nucleotide data to produce general-purpose genomic representations. These models20

have shown promise across diverse tasks, from identifying regulatory elements to variant effect21

prediction [3, 5, 20, 26]. A central challenge in adapting language modeling to DNA is how to22

tokenize the input sequence. Unlike natural language, where subword or word-level tokenization can23

exploit semantic structure and redundancy [17], genomic sequences encode both fine-grained (e.g.24

letter level single-nucleotide variants) and coarse-grained (regulatory elements) information, often25

within the same genomic region. The choice of tokenization thus directly impacts both resolution and26

efficiency.27

Existing DNA models typically fix their tokenization strategy prior to training. Models that operate28

at the single-nucleotide level preserve maximal resolution but produce extremely long sequences29

that challenge transformer architectures. Conversely, fixed multi-nucleotide schemes such as k-mers30

or byte pair encoding improve efficiency but often lose critical single-base information. Prior work31

has shown that downstream performance can be highly sensitive to this tradeoff [17, 22]. Therefore32

exploring alternative tokenization strategies and their suitability for encoding DNA sequences is a33

compelling research direction.34

The Byte Latent Transformer (BLT), originally proposed for natural language processing, introduces35

a dynamic alternative to tokenization, that segments input sequences into variable-length patches36
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based on predictive entropy [21]. This enables models to allocate attention and computation to37

regions of high uncertainty, capturing context-dependent structure more effectively. Inspired by38

this, we propose PatchDNA - an extension of BLT for genomic sequence modeling. Specifically,39

we introduce a conservation-driven patching strategy, in which patch boundaries are guided by40

evolutionary conservation scores (Figure 1). This biologically grounded approach aligns tokenization41

with functionally important regions of the genome, enabling the model to focus on regulatory elements42

and other conserved signals that are crucial for downstream tasks.43

Our key contributions can be summarized as follows:44

• We propose dynamic patching for DNA by modifying the BLT framework and show that it45

is a natural fit for genomic sequences.46

• We introduce a novel conservation-guided patching scheme that leverages evolutionary47

signals to guide patch boundaries, providing a biologically informed inductive bias.48

• We introduce context-aware re-patching to adapt to new tasks, enabling flexible downstream49

application with minimal computational overhead.50

Through extensive experiments across short- and long-range DNA benchmarks, we show that51

conservation-guided patching improves performance while reducing model size, highlighting the52

value of patching in advancing genomic language modeling.53

Figure 1: Overview of PatchDNA. (A) Unlike fixed tokenization methods, PatchDNA segments
sequences into biologically meaningful patches without relying on a fixed vocabulary. (B) During
pretraining, patch boundaries are guided by evolutionary conservation scores, enabling the model to
focus computational resources on functionally important regions. (C) We introduce context-aware
re-patching, enabling flexible downstream application with no retraining from scratch.

2 Existing DNA tokenization schemes54

Several tokenization strategies offer trade-offs between vocabulary size, biological interpretability,55

computational efficiency and exhaustiveness of coverage:56

K-mers: The input sequence is split into fixed-length sub-strings of length k, as done in the Nucleotide57

Transformer [5]. However, small changes to the input sequence can drastically alter the tokenized58

sequence, making it difficult for the model to align representations of near-identical inputs. This59

inconsistency hinders efficient learning and may degrade model performance. [33]60

Byte-Pair Encoding (BPE) To address issues with k-mer tokenization, DNABERT2 [33] applies BPE61

[27] to DNA. This method iteratively merges the most frequent co-occurring nucleotides into variable-62

length tokens, enabling the discovery of common sequence motifs while controlling vocabulary63

growth. This is a popular approach, utilized by other DNA models such as GENA-LM [8] and64

MistralDNA [19]. However, BPE-tokenized models have shown poor performance on character-level65

tasks in natural language, such as spelling [21]. This is a particularly relevant issue in DNA, where66

letter level single nucleotide variants are critical.67
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Learnable tokenization: Approaches such as VQDNA [13] and MxDNA [24] learn discrete embed-68

dings or mixture-of-experts assignments for sequence fragments, producing vocabularies tailored69

to genomic corpora. Although adaptive, these methods introduce additional training and inference70

overhead while not reducing the input sizes to the transformer, and the learned vocabulary are opaque.71

Single nucleotide: Despite these innovations, no single tokenization paradigm consistently outper-72

forms others across diverse genomic tasks [6, 15, 22]. Consequently, the canonical nucleotide-level73

representation is still widely used, for instance in HyenaDNA [20], Caduceus [26] and the 40B-74

parameter Evo2 [3]. This resolution is essential for fine-grained tasks such as variant effect prediction,75

which aims to accurately model DNA functional impact [2]. However, it is computationally inefficient,76

as genomic sequences are far longer than natural language, and key regulatory elements, such as77

enhancers, can be over 100kb from their targets genes [25]. Thus, effective sequence compression is78

critical for scalable DNA modeling.79

The approach presented here explores an alternative to tokenization that maintains single-nucleotide80

granularity, compresses low-information regions, remains interpretable, and allows post-training81

adaptation. This unique combination of features is unmet by existing methods and yields superior82

model performance.83

3 PatchDNA: Biologically-informed modeling of DNA84

3.1 Patching preliminaries85

We follow the patching framework set out by the BLT [21]. Let x = (x1, x2, . . . , xn) be a vector86

denoting a sequence of n bytes. A patching function is defined as fp : x 7→ b ∈ {0, 1}n, where87

bi = 1 indicates that position i marks the beginning of a new patch, and bi = 0 otherwise. To ensure88

existence of at least a single patch we set b1 = 1. This binary sequence b = (b1, b2, . . . , bn) partitions89

the input sequence x into m =
∑n

i=1 bi contiguous subsequences, or patches, p = (p1, p2, . . . , pm).90

We distinguish between tokens and patches in the context of sequence modeling. Tokens are91

predefined groupings of bytes drawn from a finite vocabulary V , which is determined prior to training.92

In contrast, patches are variable-length subsequences derived computationally from the input x by93

the patching function fp, without relying on a fixed vocabulary.94

Entropy-based patching: In BLT, patch boundaries are determined dynamically based on predictive95

uncertainty. Specifically, the patching function relies on the estimated conditional entropy Ĥ(xi |96

x1, . . . , xi−1) computed by a lightweight next-token prediction model. A new patch is initiated when97

the entropy exceeds a predefined threshold θH . Formally, the entropy-based patching function is98

defined as:99

fentropy(xi+1) =

{
1 if Ĥ(xi | x1, . . . , xi−1) > θH ,

0 otherwise,

The threshold θH controls a tradeoff between granularity and efficiency: lower values yield smaller100

patches and longer sequences; higher values result in coarser patches and improved efficiency.101

Generalized patching strategy: We define a flexible class of patching functions fp where boundaries102

are determined when the scoring function gp, evaluated over the input sequence, exceeds a predefined103

threshold θp:104

fp(xi+1) =

{
1 if gp(xi) > θp,

0 otherwise.

Throughout, we use gp and θp to define the patching strategy.105

3.2 Conservation-driven patching106

We apply the generalized patching framework to genomic sequences by treating each byte as one of107

the four canonical nucleotides (A, C, G, T) or the unknown base N. While entropy-based patching in108

BLT is motivated by linguistic ambiguity, we hypothesize that in the genomic domain, computational109

focus should instead align with regions of high evolutionary conservation (Figure 1B).110

To implement this, we define the scoring function gp as the PhyloP conservation score [23, 28], a111

scalar value derived from multi-species alignments [7] that quantifies the evolutionary constraint112
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at each nucleotide. In this scheme, highly conserved nucleotides are segmented into finer patches,113

while less conserved regions are grouped into larger patches. When evaluated on existing DNA114

language modeling tasks, conservation-driven patching outperforms both fixed and the entropy-based115

patching from the original BLT model [21] (Table 1 and Section A.5), with particularly strong gains116

on specific sub-tasks such as splice-site prediction. Importantly, these improvements are achieved117

using models that are roughly an order of magnitude smaller than contemporary baselines that are118

like-for-like traditional transformer comparators (Figure 2). In Section 4, we further demonstrate119

that conservation-based patching serves as a strong general-purpose strategy for pretraining DNA120

language models, offering robust performance across diverse downstream tasks.121

3.3 Context-aware re-patching122

Genomic tasks often require modeling context or cell-type-specific signals, and the optimal patching123

strategy may vary by task. As discussed in Section 2, different tokenization schemes can yield varying124

performance across distinct genomic tasks.125

To accommodate this, we introduce re-patching, a novel capability to redefine patch boundaries126

after pretraining. Unlike models constrained by fixed token vocabularies, our approach enables127

post-hoc modification on the patching function fp, which depends only on the scoring function gp and128

threshold θp. This makes it straightforward to substitute gp in inference or fine-tuning time with task-129

or tissue-specific epigenetic signals, such as chromatin accessibility measured by DNase-seq [12]. As130

shown in Section 4.3, this simple adaptation yields substantial gains on cell-type–specific benchmarks,131

without requiring model retraining from scratch.132

3.4 Architecture133

The backbone for the work above is the BLT model [21], which is an autoregressive model consisting134

of three main components: a small local encoder, a deep latent global transformer, and a small local135

decoder.136

Local encoder : This is a shallow transformer that computes patch-level representations from a137

single-nucleotide input sequence x, using patch boundaries provided by the patching function fp.138

It alternates between sliding window self-attention layers (operating over the nucleotide sequence)139

and cross-attention layers, following the Perceiver architecture [9]. Patch representations are queries,140

which attend only to the nucleotides (keys) within their respective patch.141

Latent global transformer: This is a standard transformer [32], using rotary positional encod-142

ings [29], operating on the patch embeddings produced by the local encoder. It models long-range143

interactions across the full sequence using global attention. Since the patch sequence p is much144

shorter than the input sequence x, this module can be made significantly deeper, allowing the bulk of145

the model’s capacity to focus on global reasoning without incurring prohibitive computational cost.146

Local decoder: This lightweight transformer updates the nucleotide-level representations from the147

local encoder to incorporate the patch embedding output from the global transformer. Like the local148

encoder, it alternates between sliding window self-attention and cross-attention layers. In this case,149

the single-nucleotide embeddings serve as queries, while the patch embeddings act as keys and150

values. A language modeling head is applied to the final nucleotide embeddings to produce logits for151

next-nucleotide prediction during autoregressive pretraining.152

3.4.1 Pretraining and downstream usage153

We pretrain PatchDNA on the human reference genome using a next-nucleotide prediction objective,154

following the same training and validation splits as Caduceus [26] and HyenaDNA [20], as originally155

defined by [11]. During pretraining, we set the patching threshold θp to the 95th percentile of156

the scoring function gp (based on PhyloP conservation scores), resulting in an average patch size157

of approximately 20 nucleotides. See Section A.8 for results using other conservation scoring158

and sensitivity analysis at other thresholds. This enables efficient training with input contexts up to159

131,000 base pairs. To our knowledge, this is the first transformer-based architecture in DNA language160

modeling capable of efficiently handling such long sequences at scale. We pretrain two main models:161

PatchDNA, a 19.2M parameter model with a 16 kbp context window, and PatchDNA-7M, a 7.7M162

parameter model with a 131 kbp context window. The latter is designed to enable fairer comparisons163
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with other long-range sequence models, such as Caduceus (7.7M) and HyenaDNA (6.6M). We set a164

maximum patch size to prevent over-compression of the DNA sequence in non-conserved regions.165

Full hyperparameter and training details are provided in the Supplementary Material.166

While the original BLT paper focused on generation tasks in natural language processing, we show that167

when pretrained on genomic sequences, the decoder’s nucleotide-level embeddings yield meaningful168

representations for a wide range of downstream tasks. These embeddings retain single-nucleotide169

resolution, making them particularly well suited for fine-grained genomic prediction problems. For170

all downstream applications, we extract the penultimate layer of the decoder as a nucleotide-level171

embedding representation.172

4 Experiments173

4.1 Short-range genomics tasks174

To evaluate the effectiveness of our biologically-informed patching strategy, we evaluate pretrained175

representations on a suite of short-range genomic classification tasks drawn from the Nucleotide176

Transformer (NT) [5] and DART-Eval [22] benchmarks. These relatively short sequences allow us177

to isolate and test the local feature extraction capabilities of each model, making them particularly178

suitable for evaluating the expressivity of embedding strategies, independent of long-range mod-179

eling interactions. We compare against a range of strong baselines, including small models such180

as HyenaDNA [20] and Caduceus [26] both with around 7 million parameters, as well as large-181

scale DNA models ranging from 110 million to 2.5 billion parameters, including GENA-LM [8],182

DNABERT2 [33], MistralDNA [19] and the Nucleotide Transformer variants [5]. Full model details183

are provided in the Supplementary Material.184

4.1.1 Nucleotide Transformer benchmark185

The NT benchmark dataset spans 18 supervised classification tasks, each involving DNA segments186

of 300–1000 base pairs in length, grouped into three biologically relevant categories: regulatory187

element detection, splicing site prediction, and chromatin profile annotation. Each task is framed as a188

supervised classification problem, and all models are evaluated using a standardized protocol repeated189

across five random seeds. Specifically, a frozen pretrained model encodes each DNA sequence into a190

latent embedding space, and a linear probe is trained on top of these fixed representations, similar191

to [16]. This setup enables a controlled comparison of representational quality irrespective of the192

underlying architecture.193

Figure 2 summarizes the prediction performance in terms of the mean Matthews Correlation Co-194

efficient (MCC) across tasks within each category. Our model, PatchDNA, achieves the highest195

average MCC in two of the three categories: regulatory elements and splicing, where sequence196

conservation plays a key role in defining functional sites. Specifically, PatchDNA reaches an average197

MCC of 0.67 on regulatory element tasks, significantly outperforming all baseline models. In splicing198

tasks, PatchDNA achieves 0.60 MCC, while the next-best models fall below 0.50. PatchDNA also199

remains competitive on chromatin profile classification tasks, matching the performance of larger-200

scale baselines, such as NT-MS-500M. Detailed results for all 18 benchmark tasks can be found in201

Supplementary Material.202

We further perform an ablation study using different patching strategies within the PatchDNA frame-203

work (Table 1, for further ablations see Section A.5 and A.7). We compare our proposed conservation-204

guided patching with both a pre-trained entropy-based patching model and a fixed patch size baseline205

(20 bp). Conservation-based patching consistently yields higher MCC across all task categories,206

underscoring the value of incorporating biological priors into sequence segmentation. Notably, while207

entropy-based patching provides a dynamic and application agnostic alternative, it underperforms208

in domains where patch boundary detection is poorly aligned with biological function. Together,209

these results suggest that biologically informed patching strategies significantly enhance the utility210

of the model for downstream genomic applications. By explicitly encoding sequence conservation211

during tokenization, PatchDNA provides a more expressive and functionally grounded representation212

of DNA. We also emphasise that these tasks cannot solely be solved by using conservation scores,213

see Section A.6.214
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Figure 2: Mean MCC across task categories on the NT benchmark. Models are grouped by size:
orange shades indicate small models, and grey shades represent large models. Error bars denote one
standard deviation across five seeds.

Table 1: Ablation study of PatchDNA on the NT benchmark. PatchDNA Entropy is pretrained and
evaluated with the entropy-based patching from the original BLT model [21], while PatchDNA uses
genetic conservation as introduced in this work. Mean MCC is reported across task categories. Error
bars denote one standard deviation across five seeds.

Model Regulatory elements Splice sites Chromatin profiles
PatchDNA 0.666 ± 0.001 0.596 ± 0.004 0.479 ± 0.002
PatchDNA Entropy 0.622 ± 0.002 0.441 ± 0.004 0.454 ± 0.001
PatchDNA Fixed Patch Size 20 0.611 ± 0.004 0.435 ± 0.003 0.466 ± 0.002

4.1.2 DART-Eval benchmark215

Next, we evaluate our model on DART-Eval [22], a benchmark covering five regulatory genomics216

tasks. These include distinguishing regulatory sequences from matched controls (Task 1), detecting217

transcription factor (TF) motifs (Task 2), identifying cell-type-specific signatures (Task 3), predicting218

regulatory activity levels (Task 4), and variant effect prediction (Task 5). The benchmark combines219

both classification and regression tasks, with settings that test zero-shot capabilities and supervised220

probing.221

We use the official DART-Eval implementation and adopt the zero-shot configuration wherever222

it is available, specifically for Tasks 1, 2 and 5. These tasks are evaluated directly using model223

likelihoods or embeddings, without any additional training. In Task 2, conservation-based patching224

is not applicable because conservation scores are tied to specific genomic coordinates, while the225

benchmark provides TF motifs in input sequences without known genomic context. To address this,226

we fall back to single-nucleotide patching at inference time, demonstrating the adaptability of our227

approach to scenarios where external priors cannot be used. For Tasks 3 and 4, which lack zero-shot228

variants, we follow the standard protocol and train probes on top of frozen embeddings. For Tasks 4229

and 5, where multiple sub tasks exist, we report the mean across the tasks. Detailed results for sub230

tasks can be found in the Supplementary Material.231

For competing models, we report the values given in the original benchmark, which have been232

performed on one seed. As shown in Table 2, our model achieves the best overall performance on233

DART-Eval, with the best mean rank (1.8) across all five tasks. PatchDNA ranks first on Task 2 and234

second on the remaining four tasks, demonstrating consistent and strong performance across a wide235

range of task types, including classification, regression, zero-shot, and probed settings. While other236

models show strength on individual tasks, such as NT-MS-500M on Task 5 or HyenaDNA on Task 3,237

they do not generalize as broadly.238

4.2 Long-range genomics tasks239

To evaluate performance on long DNA sequences, we benchmark PatchDNA on CAGE prediction [31].240

We also report results on BEND gene finding [16], in the Supplementary Material. Our approach is241

well suited to these tasks, since they require efficient representation of long genomic sequences.242
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Table 2: Performance on the DART-Eval benchmark. Raw task metrics are reported, taking the mean
across sub tasks for Task 4 and Task 5. The final column shows the overall mean rank across all tasks.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Mean rank
Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.457 0.440 0.555 1.8
HyenaDNA 0.891 0.645 0.587 0.384 0.515 3.0
GENA-LM-Large 0.947 0.620 0.383 0.472 0.505 3.4
NT-MS-500M 0.745 0.565 0.420 0.422 0.566 4.2
Caduceus-ps 0.971 0.570 0.281 0.297 0.514 5.0
DNABERT2 0.876 0.590 0.371 0.419 0.493 5.2
MistralDNA 0.863 0.625 0.329 0.363 0.498 5.4

4.2.1 CAGE prediction benchmark243

CAGE (Cap Analysis of Gene Expression) quantifies gene expression and identifies transcription244

start sites. The prediction task involves regressing expression values across bins in a 114,688 bp input245

sequence, leveraging distal regulatory elements that may lie kilobases away from the target gene.246

We follow the setup from [31], using 50 CAGE tracks and the full 114k context window. We only247

compare to other DNA language models that can handle such long sequences in one forward pass. For248

fair comparison, we use the PatchDNA-7M model to match the parameter budget of HyenaDNA and249

Caduceus. All models are fine-tuned for one epoch using an MLP head and evaluated using Pearson250

correlation at the gene, cell, and full-track levels, following the metrics introduced in Enformer [1].251

We give detailed explanations of these metrics in the Supplementary Material.252

As shown in Table 3, PatchDNA-7M outperforms all baselines across evaluation metrics, achieving253

the highest gene- and cell-level Pearson correlations. To further boost performance, we introduce a254

variant that adjusts the patching strategy during fine-tuning by leveraging cCRE annotations [18] to255

focus attention on known regulatory regions. This modification, which is applied only at fine-tuning256

time, and can only be done with PatchDNA, leads to additional gains. This demonstrates that our257

framework can flexibly incorporate biological priors without requiring model retraining or changes to258

the underlying architecture. PatchDNA also offers practical efficiency advantages, finetuning up to259

4× faster than HyenaDNA, see Section A.4.1 and A.10 for timing details, highlighting the benefit of260

moving beyond single-nucleotide tokenization.261

Table 3: Performance on the CAGE prediction task. We report mean Pearson correlation across genes,
cells, and full sequence bins. Error bars denote one standard deviation across five seeds.

Model Gene Pearson Cell Pearson Full Pearson
PatchDNA-7M 0.369 ± 0.001 0.771 ± 0.002 0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching 0.373 ± 0.001 0.792 ± 0.002 0.408 ± 0.004
HyenaDNA 0.362 ± 0.001 0.745 ± 0.002 0.290 ± 0.004
Caduceus-ph 0.362 ± 0.001 0.750 ± 0.002 0.309 ± 0.003
Caduceus-ps 0.365 ± 0.001 0.766 ± 0.001 0.420 ± 0.006

4.3 Cell type specific re-patching262

Because the DNA sequence is invariant between cell types, sequence-only models often struggle263

with context-specific tasks such as predicting cell-type-specific expression [22]. We show that our264

model can be adapted to such context-specific tasks with minimal modification and without changing265

the model architecture or retraining from scratch. Using the same dataset and fine-tuning setup266

as in Section 4.2.1, we evaluate performance on CAGE prediction across three distinct cell types:267

K562, hepatocytes, and neurons. For each task, we predict expression for a single CAGE track268

corresponding to the target cell type.269

Cell-type-specific epigenetic inputs like DNase-seq data can help provide cellular context by high-270

lighting regulatory regions of the genome that are accessible and potentially active in transcription271
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[4]. While previous methods like EPInformer [14] and Seq2Exp [30] rely on custom architectures272

that fuse sequence with epigenetic inputs, we instead only re-patch the DNA using DNase-seq signal273

from the target cell type. This only alters the patches, preserving the underlying model architecture274

while focusing computation on regulatory regions inferred from chromatin accessibility.275

Given that Caduceus-ps outperforms Caduceus-ph in Section 4.2.1, we only compare to Caduceus-ps276

in this task. As shown in Table 4, PatchDNA outperforms all competing baselines on cell type-specific277

CAGE prediction. Incorporating DNase-aware patching further improves performance across all three278

cell types, demonstrating that context-specific patching is highly informative for modeling regulatory279

activity. Table 5 shows that these gains are maximized when the DNase-seq signal used for patching280

matches the target tissue. In contrast, mismatched signals lead to consistently lower performance,281

highlighting the importance of aligning the patching strategy with the underlying cellular context.282

Notably, these improvements are achieved without altering the model architecture or retraining from283

scratch.284

Table 4: Performance on cell type-specific CAGE prediction, reported as Pearson correlation across
cells. Error bars denote one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M 0.754 ± 0.003 0.717 ± 0.002 0.799 ± 0.001
PatchDNA-7M + DNase-aware re-patching 0.828 ± 0.001 0.727 ± 0.001 0.831 ± 0.001
HyenaDNA 0.703 ± 0.012 0.667 ± 0.006 0.763 ± 0.003
Caduceus-ps 0.732 ± 0.006 0.705 ± 0.001 0.798 ± 0.002

Table 5: Performance on DNase-aware cell type-specific CAGE prediction, reported as Pearson
correlation across cells. Maximum performance is achieved when patching is guided by DNase-seq
signal from the corresponding tissue (the diagonal), and applied during fine-tuning. Error bars denote
one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M DNase-aware (K562) 0.828 ± 0.001 0.713± 0.001 0.807± 0.002
PatchDNA-7M DNase-aware (Hepatocyte) 0.775± 0.002 0.727 ±0.001 0.822± 0.001
PatchDNA-7M DNase-aware (Neuron) 0.770± 0.001 0.707± 0.001 0.831 ±0.001

5 Conclusion285

We introduce PatchDNA, a novel DNA language modeling framework that replaces fixed tokenization286

with a dynamic, biologically guided patching mechanism, enabling models to adaptively focus on the287

most functionally relevant regions of the genome. By introducing conservation-driven and context-288

aware patching strategies, PatchDNA allocates model capacity to the most informative regions of the289

genome, without relying on fixed vocabularies or architectural modifications. Beyond pretraining,290

PatchDNA introduces re-patching: the ability to redefine patch boundaries post hoc using tissue-291

specific or task-specific signals. This property allows our model to adapt to downstream tasks, such292

as cell-type–specific expression prediction, without retraining.293

Through extensive benchmarking, we demonstrate that PatchDNA consistently outperforms or294

matches state-of-the-art models across regulatory element prediction, splicing, and gene expres-295

sion tasks, while training significantly faster. This suggests that scaling laws [10] alone may not be296

sufficient for genomics, and that task- and biology-aware modeling strategies offer a more principled297

and efficient path forward.298
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A Appendix and Supplementary Material399

A.1 Details of Pretrained Baseline Models400

Table 6: Overview of pretrained DNA language models used in this study. We list HuggingFace IDs,
number of parameters, and species coverage.

Model HuggingFace ID Parameters Species

HyenaDNA LongSafari/hyenadna-large-1m-seqlen-hf 6.6M Human
Caduceus-ps kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16 7.7M Human
Caduceus-ph kuleshov-group/caduceus-ph_seqlen-131k_d_model-256_n_layer-16 7.7M Human
DNABERT2 zhihan1996/DNABERT-2-117M 117M Human
GENA-LM-Base AIRI-Institute/gena-lm-bert-base-t2t 110M Human
GENA-LM-Large AIRI-Institute/gena-lm-bert-large-t2t 336M Multi-species
MistralDNA RaphaelMourad/Mistral-DNA-v1-1.6B-hg38 1.6B Human
NT-H InstaDeepAI/nucleotide-transformer-500m-human-ref 500M Human
NT-MS-500M InstaDeepAI/nucleotide-transformer-v2-500m-multi-species 500M Multi-species
NT-MS-2.5B InstaDeepAI/nucleotide-transformer-2.5b-multi-species 2.5B Multi-species
NT-1000G InstaDeepAI/nucleotide-transformer-2.5b-1000g 2.5B Human

A.2 Pretraining details401

Architecture Hyperparameters402

Table 7: Architecture hyperparameters for PatchDNA and PatchDNA-7M. The patching threshold is
the 95% quantile of all PhyloP scores

Hyperparameter PatchDNA PatchDNA-7M
Num Local Encoder Layers 4 2
Num Local Decoder Layers 4 2
Num Global Transformer Layers 8 3
Embedding Dimension 256 256
Context Length 16,000 131,072
Max Patch Length 128 1,024
Number of Global Transformer Heads 8 4
Number of Local Encoder Heads 8 4
Number of Local Decoder Heads 8 4
PhyloP Patching Threshold 1.5 1.5
Num parameters 19.2M 7.7M

Training Hyperparameters403

We use the same optimizer, learning rate, weight decay, and gradient clipping as [21].404

Table 8: Training hyperparameters for PatchDNA and PatchDNA-7M.
Hyperparameter PatchDNA PatchDNA-7M
Learning Rate 0.0004 0.0004
Training Steps 100,000 100,000
Weight Decay 0.1 0.1
Optimizer AdamW AdamW
Batch Size 64 8
Gradient Clipping 1.0 1.0
Training Time (4×A100 80GB) ∼18 hours ∼10 hours

Patching ablation Configurations405

• PatchDNA Entropy: Uses identical hyperparameters to PatchDNA, except it employs a406

small entropy model for patching with a threshold of 1.37 (which is 95% quantile of all407
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scores from the entropy model across the genome). Hyperparameter details for the entropy408

model are in Table 9.409

• PatchDNA Fixed Patch Size 20: Shares the same hyperparameters as PatchDNA, but410

uses a fixed patch size of 20. i.e., every 20 nucleotides are in one patch. We use this411

because a patching threshold of the 95% quantile of all scores gives an average patch size of412

approximately 20.413

Table 9: Hyperparameters for the entropy model used in PatchDNA Entropy.
Hyperparameter Value
Number of Layers 8
Embedding Dimension 256
Context Length 8,192
Sliding window 512
Number of Heads 8
Batch size 256
Learning Rate 0.0004
Training Steps 100,000
Weight Decay 0.1
Optimizer AdamW
Gradient Clipping 1.0
Num parameters 6.8M

Data414

We use the same train and validation splits as HyenaDNA [20] and Caduceus [26], which originate415

from [11], available at https://console.cloud.google.com/storage/browser/basenji_barnyard/data416

We use the PhyloP scores [28, 23] downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/417

Code418

We use publicly available code from [21] to define the model architecture. All code, including model419

checkpoints, will be released upon publication.420

A.3 Short-Range Genomics Tasks details421

A.3.1 Nucleotide Transformer Benchmark422

We evaluated model performance on the Nucleotide Transformer (NT) benchmark, a diverse collection423

of 18 classification tasks designed to assess the biological utility of pretrained DNA language models.424

The benchmark was accessed via the HuggingFace Hub1, and includes pre-defined train and test425

splits for each task. For each task, we further partitioned the provided training set into 90% training426

and 10% validation splits. All experiments were repeated across five random seeds, with each seed427

generating a new train/validation split to evaluate consistency and robustness.428

To ensure fair and consistent evaluation across models, we adopted a linear probing protocol. Specif-429

ically, each pretrained model was frozen and used to encode input DNA sequences into latent430

embeddings, over which a linear classifier was trained. The input representation dimensionality var-431

ied across models: PatchDNA, Caduceus-ph and HyenaDNA produced 256-dimensional embeddings,432

while GENA-LM-Base and NT-MS-500M yielded 768 and 1024-dimensional embeddings, respectively.433

All models were evaluated under identical training conditions: a batch size of 64, a total of 50434

training epochs, and optimization using AdamW with a learning rate of 5e − 4 and weight decay435

of 0.01. For each model and seed, we report performance on the official test set using Matthews436

Correlation Coefficient (MCC), averaged across all runs. Full per-task results with standard deviations437

are presented in Supplementary Figure 3.438

1https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised
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Figure 3: Detailed performance across all 18 tasks in the Nucleotide Transformer Benchmark.
Bars indicate mean Matthews Correlation Coefficient (MCC) over 5 random seeds, with error bars
denoting standard deviation. PatchDNA achieves consistent improvements across regulatory element
and splicing site prediction tasks, and remains competitive on chromatin profile classification.

A.3.2 DART-Eval439

We evaluated our model’s performance by adding it to each task using the original evaluation code440

provided by the authors at https://github.com/kundajelab/DART-Eval. To ensure consistency, we441

maintained the original experimental setup and report the published results for all other baseline442

models directly from the original paper [22]. We use 1 A100 80GB GPU for each task.443

For Task 1 and Task 2, we use the zero-shot likelihoods formulation, while for Task 5, we apply the444

zero-shot embeddings approach. When both likelihoods and embeddings could be used, we choose445

between them based on the relative performance of models across tasks. For example, in Task 2,446

embeddings from all DNA models perform significantly worse than likelihoods, making the latter the447

preferred choice. For Task 2, we report median accuracy.448

For Task 3 and Task 4, where no zero-shot formulation exists, a lightweight probe is trained on top of449

frozen model embeddings.450

Extended results451

We present extended results for Tasks 3, 4 and 5 in Tables 10, 12, 11. In the main results in the paper,452

we report the Overall Accuracy for Task 3, the mean Spearman r across the 5 cell types for Task 4,453

and the mean AUROC for Task 5.454

Table 10: Accuracy and AUROC across different cell types for Task 3 in DART-Eval
Model Overall Accuracy GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.457 0.740 0.817 0.806 0.783 0.710
Caduceus 0.281 0.535 0.622 0.680 0.576 0.587
DNABERT2 0.371 0.652 0.757 0.762 0.691 0.691
GENA-LM-Large 0.383 0.627 0.787 0.773 0.714 0.693
HyenaDNA 0.587 0.849 0.889 0.862 0.882 0.799
Mistral-DNA 0.329 0.582 0.678 0.723 0.643 0.646
NT-MS-500M 0.420 0.744 0.795 0.783 0.779 0.711
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Table 11: Zero-shot AUROC performance using embedding-based predictions for African and
Yoruban datasets for Task 5 in DART-Eval

Model African AUROC Yoruban AUROC
PatchDNA 0.545 0.564
Caduceus 0.519 0.508
DNABERT2 0.480 0.505
GENA-LM-Large 0.508 0.501
HyenaDNA 0.515 0.515
Mistral-DNA 0.520 0.475
NT-MS-500M 0.519 0.613

Table 12: Spearman r among positives across five cell types for Task 4 in DART-Eval
Model GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.434 0.636 0.400 0.319 0.412
Caduceus 0.251 0.371 0.312 0.149 0.401
DNABERT2 0.395 0.584 0.357 0.275 0.483
GENA-LM-Large 0.490 0.678 0.401 0.329 0.461
HyenaDNA 0.362 0.538 0.345 0.237 0.438
Mistral-DNA 0.293 0.500 0.349 0.244 0.431
NT-MS-500M 0.410 0.595 0.337 0.270 0.499

A.4 Long-Range Genomics Tasks Details455

A.4.1 CAGE prediction benchmark456

We use the CAGE dataset from https://huggingface.co/datasets/InstaDeepAI/genomics-long-range-457

benchmark, consisting of 50 CAGE tracks selected from the original 638 in the Basenji dataset.458

Each model receives a sequence of 114,688 single nucleotides. We extract per-nucleotide embeddings459

and pass them through a two-layer MLP, where the hidden dimension is set to twice the embedding460

size and the output dimension is 50, following the setup in [3]. The MLP outputs are mean-pooled461

over non-overlapping windows of 128 nucleotides, resulting in a final output of shape 896×50.462

Training is performed using the Poisson negative log-likelihood loss, as in Enformer [1]. We fully463

finetune each model for one epoch, consistent with [3]. We use the Adam optimizer, with a learning464

rate of 5e− 5 and a total batch size of 8.465

For baseline models, HyenaDNA, Caduceus-ps and Caduceus-ph we use the pretrained weights466

available via Hugging Face, with model identifiers listed in Table 6.467

For regulatory element based patching, we use annotations from [18], creating a score function, gp468

, that assigns a value of 1 to nucleotides in these regions, and 0 otherwise. We then use a patching469

threshold, θp, of 0.99.470

All experiments are repeated with five random seeds. We report the mean and standard deviation of471

performance on the test set, using the same metrics as [1], described in Section A.11. Finetuning472

runtimes for one epoch are reported in Table 13.473

Table 13: One epoch finetuning time and FLOPS for various models, using 4 A100 80GB GPUs on
CAGE prediction benchmark.

Model Time (minutes) FWD FLOPS (G)
PatchDNA 22.4 678.60
HyenaDNA 76.6 1493.96
Caduceus-ph 99.2 3142.71
Caduceus-ps 238.3 6285.42
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A.4.2 BEND gene finding benchmark474

This task, drawn from the BEND benchmark [16], involves nucleotide-level multi-class classification.475

Each base is labeled as belonging to one of several genomic features, such as exons, introns, donor476

sites, acceptor sites, or non-coding regions, on either strand. Accurate annotation requires capturing477

both local context (e.g. codon structure) and long-range dependencies (e.g. between distant splice478

sites) over sequences up to 14,000 base pairs in length. Unlike previous sequence-level evaluations,479

this task demands fine-grained resolution. Our patching strategy, combined with a cross-attention480

mechanism, enables the model to form precise nucleotide-level representations, while benefiting from481

flexible context aggregation.482

We follow the original BEND evaluation protocol, by training a probe on top of frozen embeddings483

and reporting multiclass MCC. For competing models, we report the values given in the original484

benchmark, which have been performed on one seed. As shown in Table 14, PatchDNA achieves485

strong performance, outperforming larger models such as GENA-LM-Large and DNABERT2, and sec-486

ond only to the NT-MS-2.5B model, which has 100 fold greater capacity (2.5B vs 19.2M parameters),487

and is also pre-trained on a larger dataset formed of multiple species.488

Table 14: Performance on the BEND gene finding task, reported as multiclass MCC.
Model

PatchDNA NT-MS-2.5B GENA-LM-Large NT-1000G Caduceus-ph DNABERT2 HyenaDNA
0.58 0.68 0.52 0.49 0.44 0.43 0.35

We use the original code from https://github.com/frederikkemarin/BEND to evaluate our model on the489

gene finding task. We implement a custom embedder class for our model and leverage the provided490

training pipeline, which trains an MLP on top of frozen embeddings using cross-entropy loss to491

predict 9 genomic element classes for each nucleotide. We report Matthews Correlation Coefficient492

(MCC) on the test set.493

For competing models, we report the published results from the original paper [16].494

A.4.3 Cell type specific re-patching495

We pick paired CAGE-DNase tracks from the Basenji dataset [11], focusing on Neurons, Hepatocytes496

and K562. The ids for the tracks that we used are in Table 15. We keep the same train/validation/test497

splits. For each cell type we follow the same protocol outlined in Section A.4.1, where instead of498

predicting 50 tracks we predict only 1 track. Since only 1 track is predicted, we opt to focus on cell499

correlation.500

DNase patching details The DNase-seq data used for patching were obtained from the ENCODE501

Project portal (https://www.encodeproject.org/) using the ENCODE ids in Table 15. We use502

a patching threshold, θp, of 0.99 for all DNase sources.503

Table 15: Dataset identifiers for paired DNase-seq and CAGE expression tracks used in the cell-type-
specific prediction task.

Cell Type DNase ENCODE ID CAGE FANTOM5 ID
K562 ENCFF413AHU CNhs11250
Hepatocyte ENCFF136YOJ CNhs12338
Neuron ENCFF399ISP CNhs12338

A.5 Further Ablations504

After evaluating multiple patching methods, we performed ablation studies across all benchmarks.505

We consistently observed that the architecture performs well regardless of which strategy is used.506

This indicates that the BLT-based architecture itself confers a meaningful performance benefit. Im-507

portantly, however, these ablations clearly demonstrate that the conservation-based patching strategy508

consistently achieves the strongest overall results, validating its significant additional contribution.509
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Table 16: DART-Eval Ablation Results
Model Task 1 Task 2 Task 3 Task 4 Task 5

Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.459 0.4402 0.555
PatchDNA Entropy 0.965 0.650 0.450 0.4002 0.523
PatchDNA Fixed Patch Size 20 0.967 0.675 0.460 0.4174 0.539

Table 17: BEND Ablation Results
Model Test MCC
PatchDNA 0.58
PatchDNA Entropy 0.37
PatchDNA Fixed Patch Size 20 0.38

Table 18: CAGE Ablation Results
Model Gene Pearson Cell Pearson Full Pearson
PatchDNA-7M 0.369 ± 0.001 0.771 ± 0.002 0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching 0.373 ± 0.001 0.792 ± 0.002 0.408 ± 0.004
PatchDNA Entropy 0.368 ± 0.001 0.770 ± 0.001 0.385 ± 0.003
PatchDNA Fixed Patch Size 20 0.369 ± 0.002 0.768 ± 0.003 0.384 ± 0.003
HyenaDNA 0.362 ± 0.001 0.745 ± 0.002 0.290 ± 0.004
Caduceus-ph 0.362 ± 0.001 0.750 ± 0.002 0.309 ± 0.003
Caduceus-ps 0.365 ± 0.001 0.766 ± 0.001 0.420 ± 0.006

A.6 Correlation between PhyloP scores and labels510

We investigated the relationship between conservation scores and labels across downstream tasks.511

Across tasks, conservation scores alone cannot reproduce the results, and importantly, PatchDNA512

does not backpropagate through PhyloP scores at any stage. Crucially, we observe several cases with513

no significant score-label relationship, yet PatchDNA still outperforms baselines.514

For sequence-level tasks (i.e. NT benchmark and DART-Eval), we pool PhyloP scores across the515

sequence by summing, and assess the relationship of pooled scores with task labels.516

• Binary classification: We report AUROC and Pearson correlation between scores and517

labels.518

• Multiclass classification: No direct metric exists, so we train a probe on PhyloP scores.519

• Regression tasks: We report Pearson correlation only.520

Tasks where the above was infeasible (multiclass without probe training due to time constraints) are521

excluded and explicitly noted.522

Nucleotide Transformer Benchmark523

All tasks presented in Table 19 are sequence-level binary classification tasks. We exclude two tasks,524

enhancer_types and splice_sites_all, as these are multi-class tasks and require probe training.525
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Table 19: AUROC and Pearson correlation between PhyloP scores and labels across NT benchmark
tasks.

Task AUROC Pearson
enhancers 0.4885 0.0793
promoter_all 0.6039 0.2363
promoter_no_tata 0.5949 0.2174
promoter_tata 0.6561 0.2879
splice_sites_acceptors 0.7365 0.4455
splice_sites_donors 0.7451 0.4445
H2AFZ 0.4515 -0.0334
H3K27ac 0.5163 0.0438
H3K27me3 0.3498 -0.1050
H3K36me3 0.5782 0.2145
H3K4me1 0.4792 -0.0009
H3K4me2 0.4574 -0.0198
H3K4me3 0.4649 0.0127
H3K9ac 0.4667 -0.0422
H3K9me3 0.4838 -0.0436
H4K20me1 0.3972 -0.0940

To show that PhyloP patching adds value even when raw conservation scores are uninformative,526

we subset the NT benchmark to tasks where the direct AUROC between PhyloP scores and labels527

is < 0.55 (very weak or no relationship). Compared to baselines without PhyloP patching, our528

model outperforms in 7 of 10 tasks, indicating it leverages conservation-based patching in ways that529

generalize beyond raw score–label correlation. These results are illustrated in Table 20.530

Table 20: PatchDNA and baseline results on NT benchmark tasks (test set MCC) with AUROC
< 0.55 between PhyloP scores and labels.

PatchDNA PatchDNA Entropy PatchDNA Fixed Patch Size 20
Pre-training patching PhyloP Entropy Fixed Patch size 20
Patching during probing PhyloP Entropy Fixed Patch size 20
enhancers 0.475 ± 0.004 0.454 ± 0.01 0.448 ± 0.013
H2AFZ 0.396 ± 0.005 0.401 ± 0.007 0.405 ± 0.005
H3K27ac 0.41 ± 0.022 0.352 ± 0.008 0.386 ± 0.006
H3K27me3 0.557 ± 0.004 0.529 ± 0.004 0.522 ± 0.008
H3K4me1 0.406 ± 0.009 0.381 ± 0.009 0.392 ± 0.005
H3K4me2 0.459 ± 0.004 0.457 ± 0.013 0.469 ± 0.012
H3K4me3 0.614 ± 0.006 0.583 ± 0.006 0.592 ± 0.01
H3K9ac 0.47 ± 0.011 0.458 ± 0.023 0.486 ± 0.015
H3K9me3 0.393 ± 0.012 0.346 ± 0.009 0.35 ± 0.013
H4K20me1 0.576 ± 0.008 0.554 ± 0.005 0.563 ± 0.005

Dart-eval Benchmark531

For Dart-eval, we follow a task-specific evaluation:532

• Task 1 (Binary classification): Sum-pool PhyloP scores across the sequence and compute533

AUROC against binary labels. Both classes have the same PhyloP scores by design of this534

task, so Pearson correlation is reported as undefined.535

• Task 4 (Regression): Sum-pool scores and compute Pearson correlation with labels.536

• Task 5 (Variant effect prediction, binary classification): Following the PhyloP variant537

effect baseline from [3], we take the conservation score at the exact variant position as the538

prediction, then compute AUROC against binary effect/no-effect labels.539

• Task 3 (Multiclass): Excluded due to time constraints (requires probe training).540

Task 2 does not use PhyloP scores, so is excluded.541
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Table 21: Relation between PhyloP scores and labels on Dart-eval benchmark tasks.
Task AUROC Pearson
Task 1 0.50 NaN (0 variance)
Task 4 N/A 0.0616
Task 5 0.536 N/A

BEND542

Using the provided setup from BEND, we train a probe on top of PhyloP scores in a 9-way single543

nucleotide multi-classification task.544

Table 22: Probe performance on PhyloP scores vs PatchDNA on BEND 9-way classification task.
Model Test MCC
PhyloP linear/naive baseline 0.1927
PatchDNA 0.58

A.7 Shuffling Phylop signal and benchmarking PatchDNA545

Shuffling consistently reduced performance, confirming that PatchDNA benefits from meaningful546

conservation priors. However, the extent of the drop varied across tasks, and in several cases was547

minimal, highlighting the robustness of the pretrained representations. This implies the model is not548

solely reliant on PhyloP patching. Further on, from a foundation model perspective, this suggests that549

PhyloP patching during pretraining provides a valuable biological prior, enabling broad effectiveness550

across downstream tasks.551

NT Benchmark552

Performance drop is greatest in tasks with high conservation–label correlation (e.g., splice sites),553

but remains measurable even when conservation is less predictive. Crucially, even after shuffling,554

performance remains strong relative to appropriate non-conservation baselines (e.g., entropy-based),555

indicating that pretraining with PhyloP patching provides a lasting benefit to the learned sequence556

representations.557

Table 23: Performance comparison on NT benchmark tasks (test set MCC) with PhyloP, shuffled
PhyloP, and entropy-based patching.

PatchDNA PatchDNA Shuffled PhyloP PatchDNA Entropy
Pre-training patching PhyloP PhyloP Entropy
Patching during probing PhyloP Shuffled PhyloP Entropy
promoter_all 0.779 ± 0.007 0.761 ± 0.006 0.719 ± 0.007
promoter_no_tata 0.786 ± 0.003 0.77 ± 0.002 0.743 ± 0.003
promoter_tata 0.853 ± 0.009 0.811 ± 0.009 0.749 ± 0.04
enhancers 0.475 ± 0.004 0.466 ± 0.001 0.454 ± 0.01
enhancers_types 0.441 ± 0.005 0.431 ± 0.0 0.421 ± 0.008
splice_sites_acceptors 0.669 ± 0.006 0.601 ± 0.002 0.497 ± 0.005
splice_sites_all 0.454 ± 0.018 0.364 ± 0.005 0.311 ± 0.011
splice_sites_donors 0.692 ± 0.014 0.629 ± 0.003 0.512 ± 0.007
H2AFZ 0.396 ± 0.005 0.386 ± 0.014 0.401 ± 0.007
H3K27ac 0.41 ± 0.022 0.37 ± 0.005 0.352 ± 0.008
H3K27me3 0.557 ± 0.004 0.527 ± 0.007 0.529 ± 0.004
H3K36me3 0.542 ± 0.004 0.505 ± 0.001 0.498 ± 0.006
H3K4me1 0.406 ± 0.009 0.396 ± 0.01 0.381 ± 0.009
H3K4me2 0.459 ± 0.004 0.457 ± 0.003 0.457 ± 0.013
H3K4me3 0.614 ± 0.006 0.563 ± 0.006 0.583 ± 0.006
H3K9ac 0.47 ± 0.011 0.459 ± 0.011 0.458 ± 0.023
H3K9me3 0.393 ± 0.012 0.375 ± 0.008 0.346 ± 0.009
H4K20me1 0.576 ± 0.008 0.571 ± 0.003 0.554 ± 0.005

Dart-eval Benchmark558

Minimal performance change with shuffled PhyloP scores. Task 2 does not use PhyloP scores, so is559

excluded. Task 4 was excluded due to compute and time constraint.560
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Table 24: Performance on Dart-eval benchmark with original PhyloP, shuffled PhyloP, and entropy
patching.

Pre-training patching Patching during probing Task 1 Task 3 Task 5
Accuracy Accuracy AUROC

PhyloP PhyloP 0.966 0.459 0.555
PhyloP Shuffled PhyloP 0.950 0.452 0.527
Entropy Entropy 0.965 0.450 0.523

BEND561

The drop in performance with shuffling is substantial, even with respect to the Entropy baseline,562

suggesting that the shuffling is actually destructive. We hypothesize that this introduces focused563

computation between biologically irrelevant regions. We believe that this effect would be particularly564

pronounced in long-range tasks, like BEND. Additionally, the PhyloP-only baseline from the previous565

section shows limited predictive power.566

Table 25: Performance on BEND benchmark with original PhyloP, shuffled PhyloP, entropy, and
naive baseline.

Pre-training patching Patching during probing Test MCC
PhyloP PhyloP 0.58
PhyloP Shuffled PhyloP 0.244
Entropy Entropy 0.37
No-pretraining No-patching – PhyloP naive baseline 0.1927

A.8 Alternative conservation scores and sensitivity to thresholds567

PhastCons is an alternative conservation scoring method, but we deprioritized using it due to its568

window-based smoothing which results in lack of single nucleotide granularity. We present results in569

Table 27, showing that it underperforms compared to PhyloP on 3 out of the 4 tasks.570

We pick the 95% threshold for efficiency reasons, as this allows us to easily train models at long571

sequences. Lower thresholds result in more number of patches, on average, increasing the computa-572

tional cost. However, to investigate performance at other thresholds, we’ve run threshold-sensitivity573

analyses for Dart-eval on the 7M-parameter PatchDNA using less stringent cutoffs (Task 4 was574

omitted due to increased computational costs). We highlight that performance does not change575

significantly between various thresholds (Table 26).576

Table 26: Performance comparison of PatchDNA-7M variants on a subset of Dart-eval tasks
Model Task 1 Task 2 Task 3 Task 5

Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% 0.938 0.645 0.343 0.524
PatchDNA-7M 90% 0.940 0.650 0.357 0.525
PatchDNA-7M 95% 0.950 0.650 0.380 0.539

Table 27: Performance comparison of PatchDNA-7M with PhastCon on a subset of Dart-eval tasks
Model Task 1 Task 2 Task 3 Task 5

Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% PhastCon 0.882 0.615 0.332 0.534
PatchDNA-7M 90% PhastCon 0.932 0.645 0.326 0.542
PatchDNA-7M 95% PhastCon 0.943 0.640 0.333 0.549

A.9 Interpretability, overlap of patches with known functional elements577

We believe that interpretability, particularly the alignment of patches with known functional genomic578

elements, is important. To address this, we implemented an additional quantitative analysis comparing579
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the enrichment of PhyloP-derived patches specifically within cCRE versus non-cCRE genomic580

regions. We used 5 independent random seeds, each with 5000 sampled genomic intervals of length581

350 bp. For regulatory regions, we centered the windows on known cCREs (from ENCODE), while582

control intervals were drawn from the genome to avoid any overlap with cCRE annotations. Using583

a Mann–Whitney U test, we found that PhyloP-derived patches (median difference: 32, Cliff’s584

δ = 0.618, p ≪ 0.001) were significantly enriched within cCRE regions relative to randomly585

sampled non-cCRE genomic windows.586

Further, we compared the number of patches identified by entropy and PhyloP scores within cCRE587

regions using the Wilcoxon signed-rank test. PhyloP-derived patches consistently identified signifi-588

cantly more patches per region than entropy-derived patches (median difference: 12 patches, Cliff’s589

δ = 0.155, Wilcoxon p ≪ 0.001). While this effect is statistically robust across seeds, the effect590

sizes are smaller than those observed in the cCRE vs. control comparisons.591

A.10 Computational overhead introduced by patching and re-patching592

The re-patching itself incurs no additional computational overhead: the local encoder and decoder593

already expect a patch-based layout, which can be swapped in without changing the architecture.594

The patch size distribution will have a direct effect on computations. The computational complexity595

of marking patch boundaries is an O(L) operation (with L being the sequence length): we make a596

single pass over the sequence, inserting boundaries whenever a pre-established threshold is reached.597

In our implementation this step runs on the CPU, though an entropy-based patching strategy would598

necessitate executing a small model on the GPU and will have different computational complexity599

considerations. To clarify this further, we present the theoretical computational cost (in GFLOPs) in600

Table 28 comparing PatchDNA directly against its single-nucleotide baseline, where the patch size is601

fixed at 1. These theoretical estimates were calculated using the formulas described in the BLT paper,602

as the BLT implementation uses FlexAttention (which Pytorch FLOP profilers don’t support).603

Table 28: Forward FLOPs comparison across models at different sequence lengths.
Model 511 bp FWD FLOPS (G) 16 kbp FWD FLOPS (G)
PatchDNA (19.2 M) 5.64 179.07
Single-nucleotide baseline (19.2 M) 11.80 1384.53
PatchDNA (7.7 M) 2.79 88.6
Single-nucleotide baseline (7.7 M) 5.36 548.62

A.11 Metrics604

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient is a robust605

statistical rate which takes into account true and false positives and negatives and is regarded as a606

balanced measure that can be used even if the classes are of very different sizes.607

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP , TN , FP , and FN are the numbers of true positives, true negatives, false positives, and608

false negatives, respectively.609

A.11.1 Enformer evaluation metrics610

To assess model performance in predicting gene expression, we follow Pearson correlation evaluation611

strategies as proposed in the Enformer manuscript [1]. The following three metrics are used to612

evaluate model predictions: gene correlation, cell correlation, and full correlation.613

Let Ŵ ∈ RB×C and W ∈ RB×C denote the predicted and observed CAGE matrices across the614

genome, where B is the number of genomic bins (each spanning 128 base pairs) and C is the number615

of cell types.616
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To obtain gene-level predictions, we extract the row of Ŵ and W corresponding to the bin that617

contains the transcription start site (TSS) of each gene. This gives the predicted and observed gene618

expression matrices Ŷ , Y ∈ RG×C , where G is the number of genes.619

Gene Correlation Gene correlation evaluates how well the model captures cell type–specific
expression patterns for each gene. Prior to computing this metric, both predicted and observed gene
expression values are log-transformed as:

Ŷ ← log(Ŷ + 1), Y ← log(Y + 1)

For each gene g ∈ {1, . . . , G}, we compute the Pearson correlation across all cell types:

rgene
g = corr(Ŷg,:, Yg,:)

The final gene correlation score is the average over all genes:

rgene =
1

G

G∑
g=1

rgene
g

Cell Correlation Cell correlation evaluates how well the model predicts gene expression patterns620

across genes within each cell type. As with gene correlation, a log-transformation is applied to all621

input values before computing correlation.622

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across genes:

rcell
c = corr(Ŷ:,c, Y:,c)

The final cell correlation score is the average over all cell types:

rcell =
1

C

C∑
c=1

rcell
c

Full Correlation Full correlation measures how well the model predicts CAGE signal profile across623

the genome.624

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across bins:

rfull
c = corr(Ŵ:,c,W:,c)

The final full corelation score is the average over all the cell types

rfull =
1

C

C∑
c=1

rfull
c
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