
PatchDNA: A Flexible and Biologically-Informed
Alternative to Tokenization for DNA

Alice Del Vecchio1, Chantriolnt-Andreas Kapourani1, Abdullah M. Athar1,
Agnieszka Dobrowolska1, Andrew Anighoro1, Benjamin Tenmann1,

Lindsay Edwards1, Cristian Regep1

1Relation Therapeutics

Abstract

DNA language models are emerging as powerful tools for representing genomic
sequences, with recent progress driven by self-supervised learning. However, per-
formance on downstream tasks is sensitive to tokenization strategies reflecting the
complex encodings in DNA, where both regulatory elements and single-nucleotide
changes can be functionally significant. Yet existing models are fixed to their
initial tokenization strategy; single-nucleotide encodings result in long sequences
that challenge transformer architectures, while fixed multi-nucleotide schemes
like byte pair encoding struggle with character level modelling. We propose a
biologically-informed alternative to tokenization using evolutionary conservation
scores as a guide for ‘patch’ boundaries, drawing inspiration from the Byte La-
tent Transformer’s combining of bytes into patches. By prioritizing conserved
regions, our approach directs computational resources to the most functionally
relevant parts of the DNA sequence. We show that models up to an order of
magnitude smaller surpass current state-of-the-art performance in existing DNA
benchmarks. Importantly, our approach provides the flexibility to change patching
without retraining, which is not offered by previous methods, while also improving
downstream performance.

1 Introduction

Self-supervised learning has led to a surge of interest in DNA language models, sequence models
trained on raw nucleotide data to produce general-purpose genomic representations. These models
have shown promise across diverse tasks, from identifying regulatory elements to variant effect
prediction [3, 5, 20, 26]. A central challenge in adapting language modeling to DNA is how to
tokenize the input sequence. Unlike natural language, where subword or word-level tokenization can
exploit semantic structure and redundancy [17], genomic sequences encode both fine-grained (e.g.
letter level single-nucleotide variants) and coarse-grained (regulatory elements) information, often
within the same genomic region. The choice of tokenization thus directly impacts both resolution and
efficiency.

Existing DNA models typically fix their tokenization strategy prior to training. Models that operate
at the single-nucleotide level preserve maximal resolution but produce extremely long sequences
that challenge transformer architectures. Conversely, fixed multi-nucleotide schemes such as k-mers
or byte pair encoding improve efficiency but often lose critical single-base information. Prior work
has shown that downstream performance can be highly sensitive to this tradeoff [17, 22]. Therefore
exploring alternative tokenization strategies and their suitability for encoding DNA sequences is a
compelling research direction.

The Byte Latent Transformer (BLT), originally proposed for natural language processing, introduces
a dynamic alternative to tokenization, that segments input sequences into variable-length patches

The NeurIPS 2025 Workshop on AI for Science (AI4Science 2025).



based on predictive entropy [21]. This enables models to allocate attention and computation to
regions of high uncertainty, capturing context-dependent structure more effectively. Inspired by
this, we propose PatchDNA - an extension of BLT for genomic sequence modeling. Specifically,
we introduce a conservation-driven patching strategy, in which patch boundaries are guided by
evolutionary conservation scores (Figure 1). This biologically grounded approach aligns tokenization
with functionally important regions of the genome, enabling the model to focus on regulatory elements
and other conserved signals that are crucial for downstream tasks.

Our key contributions can be summarized as follows:

• We propose dynamic patching for DNA by modifying the BLT framework and show that it
is a natural fit for genomic sequences.

• We introduce a novel conservation-guided patching scheme that leverages evolutionary
signals to guide patch boundaries, providing a biologically informed inductive bias.

• We introduce context-aware re-patching to adapt to new tasks, enabling flexible downstream
application with minimal computational overhead.

Through extensive experiments across short- and long-range DNA benchmarks, we show that
conservation-guided patching improves performance while reducing model size, highlighting the
value of patching in advancing genomic language modeling.

Figure 1: Overview of PatchDNA. (A) Unlike fixed tokenization methods, PatchDNA segments
sequences into biologically meaningful patches without relying on a fixed vocabulary. (B) During
pretraining, patch boundaries are guided by evolutionary conservation scores, enabling the model to
focus computational resources on functionally important regions. (C) We introduce context-aware
re-patching, enabling flexible downstream application with no retraining from scratch.

2 Existing DNA tokenization schemes

Several tokenization strategies offer trade-offs between vocabulary size, biological interpretability,
computational efficiency and exhaustiveness of coverage:

K-mers: The input sequence is split into fixed-length sub-strings of length k, as done in the Nucleotide
Transformer [5]. However, small changes to the input sequence can drastically alter the tokenized
sequence, making it difficult for the model to align representations of near-identical inputs. This
inconsistency hinders efficient learning and may degrade model performance. [33]

Byte-Pair Encoding (BPE) To address issues with k-mer tokenization, DNABERT2 [33] applies BPE
[27] to DNA. This method iteratively merges the most frequent co-occurring nucleotides into variable-
length tokens, enabling the discovery of common sequence motifs while controlling vocabulary
growth. This is a popular approach, utilized by other DNA models such as GENA-LM [8] and
MistralDNA [19]. However, BPE-tokenized models have shown poor performance on character-level
tasks in natural language, such as spelling [21]. This is a particularly relevant issue in DNA, where
letter level single nucleotide variants are critical.

2



Learnable tokenization: Approaches such as VQDNA [13] and MxDNA [24] learn discrete embed-
dings or mixture-of-experts assignments for sequence fragments, producing vocabularies tailored
to genomic corpora. Although adaptive, these methods introduce additional training and inference
overhead while not reducing the input sizes to the transformer, and the learned vocabulary are opaque.

Single nucleotide: Despite these innovations, no single tokenization paradigm consistently outper-
forms others across diverse genomic tasks [6, 15, 22]. Consequently, the canonical nucleotide-level
representation is still widely used, for instance in HyenaDNA [20], Caduceus [26] and the 40B-
parameter Evo2 [3]. This resolution is essential for fine-grained tasks such as variant effect prediction,
which aims to accurately model DNA functional impact [2]. However, it is computationally inefficient,
as genomic sequences are far longer than natural language, and key regulatory elements, such as
enhancers, can be over 100kb from their targets genes [25]. Thus, effective sequence compression is
critical for scalable DNA modeling.

The approach presented here explores an alternative to tokenization that maintains single-nucleotide
granularity, compresses low-information regions, remains interpretable, and allows post-training
adaptation. This unique combination of features is unmet by existing methods and yields superior
model performance.

3 PatchDNA: Biologically-informed modeling of DNA

3.1 Patching preliminaries

We follow the patching framework set out by the BLT [21]. Let x = (x1, x2, . . . , xn) be a vector
denoting a sequence of n bytes. A patching function is defined as fp : x 7→ b ∈ {0, 1}n, where
bi = 1 indicates that position i marks the beginning of a new patch, and bi = 0 otherwise. To ensure
existence of at least a single patch we set b1 = 1. This binary sequence b = (b1, b2, . . . , bn) partitions
the input sequence x into m =

∑n
i=1 bi contiguous subsequences, or patches, p = (p1, p2, . . . , pm).

We distinguish between tokens and patches in the context of sequence modeling. Tokens are
predefined groupings of bytes drawn from a finite vocabulary V , which is determined prior to training.
In contrast, patches are variable-length subsequences derived computationally from the input x by
the patching function fp, without relying on a fixed vocabulary.

Entropy-based patching: In BLT, patch boundaries are determined dynamically based on predictive
uncertainty. Specifically, the patching function relies on the estimated conditional entropy Ĥ(xi |
x1, . . . , xi−1) computed by a lightweight next-token prediction model. A new patch is initiated when
the entropy exceeds a predefined threshold θH . Formally, the entropy-based patching function is
defined as:

fentropy(xi+1) =

{
1 if Ĥ(xi | x1, . . . , xi−1) > θH ,

0 otherwise,

The threshold θH controls a tradeoff between granularity and efficiency: lower values yield smaller
patches and longer sequences; higher values result in coarser patches and improved efficiency.

Generalized patching strategy: We define a flexible class of patching functions fp where boundaries
are determined when the scoring function gp, evaluated over the input sequence, exceeds a predefined
threshold θp:

fp(xi+1) =

{
1 if gp(xi) > θp,

0 otherwise.

Throughout, we use gp and θp to define the patching strategy.

3.2 Conservation-driven patching

We apply the generalized patching framework to genomic sequences by treating each byte as one of
the four canonical nucleotides (A, C, G, T) or the unknown base N. While entropy-based patching in
BLT is motivated by linguistic ambiguity, we hypothesize that in the genomic domain, computational
focus should instead align with regions of high evolutionary conservation (Figure 1B).

To implement this, we define the scoring function gp as the PhyloP conservation score [23, 28], a
scalar value derived from multi-species alignments [7] that quantifies the evolutionary constraint

3



at each nucleotide. In this scheme, highly conserved nucleotides are segmented into finer patches,
while less conserved regions are grouped into larger patches. When evaluated on existing DNA
language modeling tasks, conservation-driven patching outperforms both fixed and the entropy-based
patching from the original BLT model [21] (Table 1 and Section A.5), with particularly strong gains
on specific sub-tasks such as splice-site prediction. Importantly, these improvements are achieved
using models that are roughly an order of magnitude smaller than contemporary baselines that are
like-for-like traditional transformer comparators (Figure 2). In Section 4, we further demonstrate
that conservation-based patching serves as a strong general-purpose strategy for pretraining DNA
language models, offering robust performance across diverse downstream tasks.

3.3 Context-aware re-patching

Genomic tasks often require modeling context or cell-type-specific signals, and the optimal patching
strategy may vary by task. As discussed in Section 2, different tokenization schemes can yield varying
performance across distinct genomic tasks.

To accommodate this, we introduce re-patching, a novel capability to redefine patch boundaries
after pretraining. Unlike models constrained by fixed token vocabularies, our approach enables
post-hoc modification on the patching function fp, which depends only on the scoring function gp and
threshold θp. This makes it straightforward to substitute gp in inference or fine-tuning time with task-
or tissue-specific epigenetic signals, such as chromatin accessibility measured by DNase-seq [12]. As
shown in Section 4.3, this simple adaptation yields substantial gains on cell-type–specific benchmarks,
without requiring model retraining from scratch.

3.4 Architecture

The backbone for the work above is the BLT model [21], which is an autoregressive model consisting
of three main components: a small local encoder, a deep latent global transformer, and a small local
decoder.

Local encoder : This is a shallow transformer that computes patch-level representations from a
single-nucleotide input sequence x, using patch boundaries provided by the patching function fp.
It alternates between sliding window self-attention layers (operating over the nucleotide sequence)
and cross-attention layers, following the Perceiver architecture [9]. Patch representations are queries,
which attend only to the nucleotides (keys) within their respective patch.

Latent global transformer: This is a standard transformer [32], using rotary positional encod-
ings [29], operating on the patch embeddings produced by the local encoder. It models long-range
interactions across the full sequence using global attention. Since the patch sequence p is much
shorter than the input sequence x, this module can be made significantly deeper, allowing the bulk of
the model’s capacity to focus on global reasoning without incurring prohibitive computational cost.

Local decoder: This lightweight transformer updates the nucleotide-level representations from the
local encoder to incorporate the patch embedding output from the global transformer. Like the local
encoder, it alternates between sliding window self-attention and cross-attention layers. In this case,
the single-nucleotide embeddings serve as queries, while the patch embeddings act as keys and
values. A language modeling head is applied to the final nucleotide embeddings to produce logits for
next-nucleotide prediction during autoregressive pretraining.

3.4.1 Pretraining and downstream usage

We pretrain PatchDNA on the human reference genome using a next-nucleotide prediction objective,
following the same training and validation splits as Caduceus [26] and HyenaDNA [20], as originally
defined by [11]. During pretraining, we set the patching threshold θp to the 95th percentile of
the scoring function gp (based on PhyloP conservation scores), resulting in an average patch size
of approximately 20 nucleotides. See Section A.6 for results using other conservation scoring
and sensitivity analysis at other thresholds. This enables efficient training with input contexts up to
131,000 base pairs. To our knowledge, this is the first transformer-based architecture in DNA language
modeling capable of efficiently handling such long sequences at scale. We pretrain two main models:
PatchDNA, a 19.2M parameter model with a 16 kbp context window, and PatchDNA-7M, a 7.7M
parameter model with a 131 kbp context window. The latter is designed to enable fairer comparisons

4



with other long-range sequence models, such as Caduceus (7.7M) and HyenaDNA (6.6M). We set a
maximum patch size to prevent over-compression of the DNA sequence in non-conserved regions.
Full hyperparameter and training details are provided in the Supplementary Material.

While the original BLT paper focused on generation tasks in natural language processing, we show that
when pretrained on genomic sequences, the decoder’s nucleotide-level embeddings yield meaningful
representations for a wide range of downstream tasks. These embeddings retain single-nucleotide
resolution, making them particularly well suited for fine-grained genomic prediction problems. For
all downstream applications, we extract the penultimate layer of the decoder as a nucleotide-level
embedding representation.

4 Experiments

4.1 Short-range genomics tasks

To evaluate the effectiveness of our biologically-informed patching strategy, we evaluate pretrained
representations on a suite of short-range genomic classification tasks drawn from the Nucleotide
Transformer (NT) [5] and DART-Eval [22] benchmarks. These relatively short sequences allow us
to isolate and test the local feature extraction capabilities of each model, making them particularly
suitable for evaluating the expressivity of embedding strategies, independent of long-range mod-
eling interactions. We compare against a range of strong baselines, including small models such
as HyenaDNA [20] and Caduceus [26] both with around 7 million parameters, as well as large-
scale DNA models ranging from 110 million to 2.5 billion parameters, including GENA-LM [8],
DNABERT2 [33], MistralDNA [19] and the Nucleotide Transformer variants [5]. Full model details
are provided in the Supplementary Material.

4.1.1 Nucleotide Transformer benchmark

The NT benchmark dataset spans 18 supervised classification tasks, each involving DNA segments
of 300–1000 base pairs in length, grouped into three biologically relevant categories: regulatory
element detection, splicing site prediction, and chromatin profile annotation. Each task is framed as a
supervised classification problem, and all models are evaluated using a standardized protocol repeated
across five random seeds. Specifically, a frozen pretrained model encodes each DNA sequence into a
latent embedding space, and a linear probe is trained on top of these fixed representations, similar
to [16]. This setup enables a controlled comparison of representational quality irrespective of the
underlying architecture.

Figure 2 summarizes the prediction performance in terms of the mean Matthews Correlation Co-
efficient (MCC) across tasks within each category. Our model, PatchDNA, achieves the highest
average MCC in two of the three categories: regulatory elements and splicing, where sequence
conservation plays a key role in defining functional sites. Specifically, PatchDNA reaches an average
MCC of 0.67 on regulatory element tasks, significantly outperforming all baseline models. In splicing
tasks, PatchDNA achieves 0.60 MCC, while the next-best models fall below 0.50. PatchDNA also
remains competitive on chromatin profile classification tasks, matching the performance of larger-
scale baselines, such as NT-MS-500M. Detailed results for all 18 benchmark tasks can be found in
Supplementary Material.

We further perform an ablation study using different patching strategies within the PatchDNA frame-
work (Table 1, for further ablations see Section A.5 and ??). We compare our proposed conservation-
guided patching with both a pre-trained entropy-based patching model and a fixed patch size baseline
(20 bp). Conservation-based patching consistently yields higher MCC across all task categories,
underscoring the value of incorporating biological priors into sequence segmentation. Notably, while
entropy-based patching provides a dynamic and application agnostic alternative, it underperforms
in domains where patch boundary detection is poorly aligned with biological function. Together,
these results suggest that biologically informed patching strategies significantly enhance the utility
of the model for downstream genomic applications. By explicitly encoding sequence conservation
during tokenization, PatchDNA provides a more expressive and functionally grounded representation
of DNA. We also emphasise that these tasks cannot solely be solved by using conservation scores,
see Section ??.

5



Figure 2: Mean MCC across task categories on the NT benchmark. Models are grouped by size:
orange shades indicate small models, and grey shades represent large models. Error bars denote one
standard deviation across five seeds.

Table 1: Ablation study of PatchDNA on the NT benchmark. PatchDNA Entropy is pretrained and
evaluated with the entropy-based patching from the original BLT model [21], while PatchDNA uses
genetic conservation as introduced in this work. Mean MCC is reported across task categories. Error
bars denote one standard deviation across five seeds.

Model Regulatory elements Splice sites Chromatin profiles
PatchDNA 0.666 ± 0.001 0.596 ± 0.004 0.479 ± 0.002
PatchDNA Entropy 0.622 ± 0.002 0.441 ± 0.004 0.454 ± 0.001
PatchDNA Fixed Patch Size 20 0.611 ± 0.004 0.435 ± 0.003 0.466 ± 0.002

4.1.2 DART-Eval benchmark

Next, we evaluate our model on DART-Eval [22], a benchmark covering five regulatory genomics
tasks. These include distinguishing regulatory sequences from matched controls (Task 1), detecting
transcription factor (TF) motifs (Task 2), identifying cell-type-specific signatures (Task 3), predicting
regulatory activity levels (Task 4), and variant effect prediction (Task 5). The benchmark combines
both classification and regression tasks, with settings that test zero-shot capabilities and supervised
probing.

We use the official DART-Eval implementation and adopt the zero-shot configuration wherever
it is available, specifically for Tasks 1, 2 and 5. These tasks are evaluated directly using model
likelihoods or embeddings, without any additional training. In Task 2, conservation-based patching
is not applicable because conservation scores are tied to specific genomic coordinates, while the
benchmark provides TF motifs in input sequences without known genomic context. To address this,
we fall back to single-nucleotide patching at inference time, demonstrating the adaptability of our
approach to scenarios where external priors cannot be used. For Tasks 3 and 4, which lack zero-shot
variants, we follow the standard protocol and train probes on top of frozen embeddings. For Tasks 4
and 5, where multiple sub tasks exist, we report the mean across the tasks. Detailed results for sub
tasks can be found in the Supplementary Material.

For competing models, we report the values given in the original benchmark, which have been
performed on one seed. As shown in Table 2, our model achieves the best overall performance on
DART-Eval, with the best mean rank (1.8) across all five tasks. PatchDNA ranks first on Task 2 and
second on the remaining four tasks, demonstrating consistent and strong performance across a wide
range of task types, including classification, regression, zero-shot, and probed settings. While other
models show strength on individual tasks, such as NT-MS-500M on Task 5 or HyenaDNA on Task 3,
they do not generalize as broadly.

4.2 Long-range genomics tasks

To evaluate performance on long DNA sequences, we benchmark PatchDNA on CAGE prediction [31].
We also report results on BEND gene finding [16], in the Supplementary Material. Our approach is
well suited to these tasks, since they require efficient representation of long genomic sequences.

6



Table 2: Performance on the DART-Eval benchmark. Raw task metrics are reported, taking the mean
across sub tasks for Task 4 and Task 5. The final column shows the overall mean rank across all tasks.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Mean rank
Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.457 0.440 0.555 1.8
HyenaDNA 0.891 0.645 0.587 0.384 0.515 3.0
GENA-LM-Large 0.947 0.620 0.383 0.472 0.505 3.4
NT-MS-500M 0.745 0.565 0.420 0.422 0.566 4.2
Caduceus-ps 0.971 0.570 0.281 0.297 0.514 5.0
DNABERT2 0.876 0.590 0.371 0.419 0.493 5.2
MistralDNA 0.863 0.625 0.329 0.363 0.498 5.4

4.2.1 CAGE prediction benchmark

CAGE (Cap Analysis of Gene Expression) quantifies gene expression and identifies transcription
start sites. The prediction task involves regressing expression values across bins in a 114,688 bp input
sequence, leveraging distal regulatory elements that may lie kilobases away from the target gene.

We follow the setup from [31], using 50 CAGE tracks and the full 114k context window. We only
compare to other DNA language models that can handle such long sequences in one forward pass. For
fair comparison, we use the PatchDNA-7M model to match the parameter budget of HyenaDNA and
Caduceus. All models are fine-tuned for one epoch using an MLP head and evaluated using Pearson
correlation at the gene, cell, and full-track levels, following the metrics introduced in Enformer [1].
We give detailed explanations of these metrics in the Supplementary Material.

As shown in Table 3, PatchDNA-7M outperforms all baselines across evaluation metrics, achieving
the highest gene- and cell-level Pearson correlations. To further boost performance, we introduce a
variant that adjusts the patching strategy during fine-tuning by leveraging cCRE annotations [18] to
focus attention on known regulatory regions. This modification, which is applied only at fine-tuning
time, and can only be done with PatchDNA, leads to additional gains. This demonstrates that our
framework can flexibly incorporate biological priors without requiring model retraining or changes to
the underlying architecture. PatchDNA also offers practical efficiency advantages, finetuning up to
4× faster than HyenaDNA, see Section A.4.1 and A.8 for timing details, highlighting the benefit of
moving beyond single-nucleotide tokenization.

Table 3: Performance on the CAGE prediction task. We report mean Pearson correlation across genes,
cells, and full sequence bins. Error bars denote one standard deviation across five seeds.

Model Gene Pearson Cell Pearson Full Pearson
PatchDNA-7M 0.369 ± 0.001 0.771 ± 0.002 0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching 0.373 ± 0.001 0.792 ± 0.002 0.408 ± 0.004
HyenaDNA 0.362 ± 0.001 0.745 ± 0.002 0.290 ± 0.004
Caduceus-ph 0.362 ± 0.001 0.750 ± 0.002 0.309 ± 0.003
Caduceus-ps 0.365 ± 0.001 0.766 ± 0.001 0.420 ± 0.006

4.3 Cell type specific re-patching

Because the DNA sequence is invariant between cell types, sequence-only models often struggle
with context-specific tasks such as predicting cell-type-specific expression [22]. We show that our
model can be adapted to such context-specific tasks with minimal modification and without changing
the model architecture or retraining from scratch. Using the same dataset and fine-tuning setup
as in Section 4.2.1, we evaluate performance on CAGE prediction across three distinct cell types:
K562, hepatocytes, and neurons. For each task, we predict expression for a single CAGE track
corresponding to the target cell type.

Cell-type-specific epigenetic inputs like DNase-seq data can help provide cellular context by high-
lighting regulatory regions of the genome that are accessible and potentially active in transcription

7



[4]. While previous methods like EPInformer [14] and Seq2Exp [30] rely on custom architectures
that fuse sequence with epigenetic inputs, we instead only re-patch the DNA using DNase-seq signal
from the target cell type. This only alters the patches, preserving the underlying model architecture
while focusing computation on regulatory regions inferred from chromatin accessibility.

Given that Caduceus-ps outperforms Caduceus-ph in Section 4.2.1, we only compare to Caduceus-ps
in this task. As shown in Table 4, PatchDNA outperforms all competing baselines on cell type-specific
CAGE prediction. Incorporating DNase-aware patching further improves performance across all three
cell types, demonstrating that context-specific patching is highly informative for modeling regulatory
activity. Table 5 shows that these gains are maximized when the DNase-seq signal used for patching
matches the target tissue. In contrast, mismatched signals lead to consistently lower performance,
highlighting the importance of aligning the patching strategy with the underlying cellular context.
Notably, these improvements are achieved without altering the model architecture or retraining from
scratch.

Table 4: Performance on cell type-specific CAGE prediction, reported as Pearson correlation across
cells. Error bars denote one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M 0.754 ± 0.003 0.717 ± 0.002 0.799 ± 0.001
PatchDNA-7M + DNase-aware re-patching 0.828 ± 0.001 0.727 ± 0.001 0.831 ± 0.001
HyenaDNA 0.703 ± 0.012 0.667 ± 0.006 0.763 ± 0.003
Caduceus-ps 0.732 ± 0.006 0.705 ± 0.001 0.798 ± 0.002

Table 5: Performance on DNase-aware cell type-specific CAGE prediction, reported as Pearson
correlation across cells. Maximum performance is achieved when patching is guided by DNase-seq
signal from the corresponding tissue (the diagonal), and applied during fine-tuning. Error bars denote
one standard deviation across five seeds.

Model K562 Hepatocyte Neuron
PatchDNA-7M DNase-aware (K562) 0.828 ± 0.001 0.713± 0.001 0.807± 0.002
PatchDNA-7M DNase-aware (Hepatocyte) 0.775± 0.002 0.727 ±0.001 0.822± 0.001
PatchDNA-7M DNase-aware (Neuron) 0.770± 0.001 0.707± 0.001 0.831 ±0.001

5 Conclusion

We introduce PatchDNA, a novel DNA language modeling framework that replaces fixed tokenization
with a dynamic, biologically guided patching mechanism, enabling models to adaptively focus on the
most functionally relevant regions of the genome. By introducing conservation-driven and context-
aware patching strategies, PatchDNA allocates model capacity to the most informative regions of the
genome, without relying on fixed vocabularies or architectural modifications. Beyond pretraining,
PatchDNA introduces re-patching: the ability to redefine patch boundaries post hoc using tissue-
specific or task-specific signals. This property allows our model to adapt to downstream tasks, such
as cell-type–specific expression prediction, without retraining.

Through extensive benchmarking, we demonstrate that PatchDNA consistently outperforms or
matches state-of-the-art models across regulatory element prediction, splicing, and gene expres-
sion tasks, while training significantly faster. This suggests that scaling laws [10] alone may not be
sufficient for genomics, and that task- and biology-aware modeling strategies offer a more principled
and efficient path forward.

References
[1] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-

Barwinska, Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R. Kelley.
Effective gene expression prediction from sequence by integrating long-range interactions.
Nature Methods, 18:1196–1203, 2021.

8



[2] Gonzalo Benegas, Chengzhong Ye, Carlos Albors, Jianan Canal Li, and Yun S Song. Genomic
language models: opportunities and challenges. Trends in Genetics, 2025.

[3] Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
Gabriel A Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling
and design across all domains of life with evo 2. BioRxiv, pages 2025–02, 2025.

[4] Benjamin Carter and Keji Zhao. The epigenetic basis of cellular heterogeneity. Nature Reviews
Genetics, 22(4):235–250, 2021.

[5] Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza,
Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P
de Almeida, Hassan Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust
foundation models for human genomics. Nature Methods, 22(2):287–297, 2025.

[6] Edo Dotan, Gal Jaschek, Tal Pupko, and Yonatan Belinkov. Effect of tokenization on transform-
ers for biological sequences. Bioinformatics, 40(4):btae196, 2024.

[7] Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. Current opinion in
structural biology, 16(3):368–373, 2006.

[8] Veniamin Fishman, Yuri Kuratov, Aleksei Shmelev, Maxim Petrov, Dmitry Penzar, Denis
Shepelin, Nikolay Chekanov, Olga Kardymon, and Mikhail Burtsev. Gena-lm: a family of
open-source foundational dna language models for long sequences. Nucleic Acids Research,
53(2):gkae1310, 2025.

[9] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and João Car-
reira. Perceiver: General perception with iterative attention. In Proceedings of the International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning
Research, pages 4651–4664. PMLR, 2021.

[10] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[11] David R. Kelley. Cross-species regulatory sequence activity prediction. PLoS Computational
Biology, 16(7):e1008050, 2020.

[12] Sandy L Klemm, Zohar Shipony, and William J Greenleaf. Chromatin accessibility and the
regulatory epigenome. Nature Reviews Genetics, 20(4):207–220, 2019.

[13] Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, and
Stan Z Li. Vqdna: Unleashing the power of vector quantization for multi-species genomic
sequence modeling. arXiv preprint arXiv:2405.10812, 2024.

[14] Jiecong Lin, Ruibang Luo, and Luca Pinello. Epiformer: A scalable deep learning framework
for gene expression prediction by integrating promoter-enhancer sequences with multimodal
epigenomic data. bioRxiv, pages 2024–08, 2024.

[15] LeAnn M. Lindsey, Nicole L. Pershing, Anisa Habib, W. Zac Stephens, Anne J. Blaschke, and
Hari Sundar. A comparison of tokenization impact in attention based and state space genomic
language models. bioRxiv, 2024. Preprint.

[16] Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther,
and Wouter Boomsma. BEND: Benchmarking DNA language models on biologically meaning-
ful tasks. The Twelfth International Conference on Learning Representations, 2024.

[17] Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé,
Arun Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. Between words and charac-
ters: A brief history of open-vocabulary modeling and tokenization in nlp. arXiv preprint
arXiv:2112.10508, 2021.

[18] Jill E Moore, Michael J Purcaro, Henry E Pratt, Charles B Epstein, Noam Shoresh, Jessika
Adrian, Trupti Kawli, Carrie A Davis, Alexander Dobin, et al. Expanded encyclopaedias of dna
elements in the human and mouse genomes. Nature, 583(7818):699–710, 2020.

9



[19] Raphaël Mourad. Mistral-dna: Mistral model for genomics. https://medium.com/
@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4, 2024.

[20] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-
Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon,
Christopher Ré, and Stephen Baccus. Hyenadna: Long-range genomic sequence modeling at
single nucleotide resolution. Advances in Neural Information Processing Systems, 36, 2023.

[21] Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret
Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer:
Patches scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

[22] Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, and Anshul
Kundaje. Dart-eval: A comprehensive dna language model evaluation benchmark on regulatory
dna. arXiv preprint arXiv:2412.05430, 2024.

[23] Katherine S Pollard, Melissa J Hubisz, Kate R Rosenbloom, and Adam Siepel. Detection of
nonneutral substitution rates on mammalian phylogenies. Genome research, 20(1):110–121,
2010.

[24] Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong,
and Wanli Ouyang. Model decides how to tokenize: Adaptive dna sequence tokenization with
mxdna. Advances in Neural Information Processing Systems, 37:66080–66107, 2024.

[25] Amartya Sanyal, Bryan R Lajoie, Gaurav Jain, and Job Dekker. The long-range interaction
landscape of gene promoters. Nature, 489(7414):109–113, 2012.

[26] Yair Schiff, Chia Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. In Proceedings of the
41st International Conference on Machine Learning (ICML), 2024.

[27] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, 2016.
Association for Computational Linguistics.

[28] Adam Siepel, Gill Bejerano, Jakob S Pedersen, Angie S Hinrichs, Minmei Hou, Kate Rosen-
bloom, Hiram Clawson, John Spieth, LaDeana W Hillier, Stephen Richards, et al. Evolution-
arily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome research,
15(8):1034–1050, 2005.

[29] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. “roformer:
Enhanced transformer with rotary position embedding”, 2021.

[30] Xingyu Su, Haiyang Yu, Degui Zhi, and Shuiwang Ji. Learning to discover regulatory elements
for gene expression prediction. In Proceedings of the International Conference on Learning
Representations (ICLR), 2025.

[31] Evan Trop, Yair Schiff, Edgar Mariano Marroquin, Chia Hsiang Kao, Aaron Gokaslan, McKin-
ley Polen, Mingyi Shao, Aymen Kallala, Bernardo P de Almeida, Thomas PIERROT, Yang I Li,
and Volodymyr Kuleshov. The genomics long-range benchmark: Advancing DNA language
models. 2025.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

[33] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

10

https://medium.com/@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4
https://medium.com/@morphos77/mistral-dna-mistral-model-for-genomics-e800e8349ed4


A Appendix and Supplementary Material

A.1 Details of Pretrained Baseline Models

Table 6: Overview of pretrained DNA language models used in this study. We list HuggingFace IDs,
number of parameters, and species coverage.

Model HuggingFace ID Parameters Species

HyenaDNA LongSafari/hyenadna-large-1m-seqlen-hf 6.6M Human
Caduceus-ps kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16 7.7M Human
Caduceus-ph kuleshov-group/caduceus-ph_seqlen-131k_d_model-256_n_layer-16 7.7M Human
DNABERT2 zhihan1996/DNABERT-2-117M 117M Human
GENA-LM-Base AIRI-Institute/gena-lm-bert-base-t2t 110M Human
GENA-LM-Large AIRI-Institute/gena-lm-bert-large-t2t 336M Multi-species
MistralDNA RaphaelMourad/Mistral-DNA-v1-1.6B-hg38 1.6B Human
NT-H InstaDeepAI/nucleotide-transformer-500m-human-ref 500M Human
NT-MS-500M InstaDeepAI/nucleotide-transformer-v2-500m-multi-species 500M Multi-species
NT-MS-2.5B InstaDeepAI/nucleotide-transformer-2.5b-multi-species 2.5B Multi-species
NT-1000G InstaDeepAI/nucleotide-transformer-2.5b-1000g 2.5B Human

A.2 Pretraining details

Architecture Hyperparameters

Table 7: Architecture hyperparameters for PatchDNA and PatchDNA-7M. The patching threshold is
the 95% quantile of all PhyloP scores

Hyperparameter PatchDNA PatchDNA-7M
Num Local Encoder Layers 4 2
Num Local Decoder Layers 4 2
Num Global Transformer Layers 8 3
Embedding Dimension 256 256
Context Length 16,000 131,072
Max Patch Length 128 1,024
Number of Global Transformer Heads 8 4
Number of Local Encoder Heads 8 4
Number of Local Decoder Heads 8 4
PhyloP Patching Threshold 1.5 1.5
Num parameters 19.2M 7.7M

Training Hyperparameters

We use the same optimizer, learning rate, weight decay, and gradient clipping as [21].

Table 8: Training hyperparameters for PatchDNA and PatchDNA-7M.
Hyperparameter PatchDNA PatchDNA-7M
Learning Rate 0.0004 0.0004
Training Steps 100,000 100,000
Weight Decay 0.1 0.1
Optimizer AdamW AdamW
Batch Size 64 8
Gradient Clipping 1.0 1.0
Training Time (4×A100 80GB) ∼18 hours ∼10 hours

Patching ablation Configurations

• PatchDNA Entropy: Uses identical hyperparameters to PatchDNA, except it employs a
small entropy model for patching with a threshold of 1.37 (which is 95% quantile of all

11



scores from the entropy model across the genome). Hyperparameter details for the entropy
model are in Table 9.

• PatchDNA Fixed Patch Size 20: Shares the same hyperparameters as PatchDNA, but
uses a fixed patch size of 20. i.e., every 20 nucleotides are in one patch. We use this
because a patching threshold of the 95% quantile of all scores gives an average patch size of
approximately 20.

Table 9: Hyperparameters for the entropy model used in PatchDNA Entropy.
Hyperparameter Value
Number of Layers 8
Embedding Dimension 256
Context Length 8,192
Sliding window 512
Number of Heads 8
Batch size 256
Learning Rate 0.0004
Training Steps 100,000
Weight Decay 0.1
Optimizer AdamW
Gradient Clipping 1.0
Num parameters 6.8M

Data

We use the same train and validation splits as HyenaDNA [20] and Caduceus [26], which originate
from [11], available at https://console.cloud.google.com/storage/browser/basenji_barnyard/data

We use the PhyloP scores [28, 23] downloaded from https://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/

Code

We use publicly available code from [21] to define the model architecture. All code, including model
checkpoints, will be released upon publication.

A.3 Short-Range Genomics Tasks details

A.3.1 Nucleotide Transformer Benchmark

We evaluated model performance on the Nucleotide Transformer (NT) benchmark, a diverse collection
of 18 classification tasks designed to assess the biological utility of pretrained DNA language models.
The benchmark was accessed via the HuggingFace Hub1, and includes pre-defined train and test
splits for each task. For each task, we further partitioned the provided training set into 90% training
and 10% validation splits. All experiments were repeated across five random seeds, with each seed
generating a new train/validation split to evaluate consistency and robustness.

To ensure fair and consistent evaluation across models, we adopted a linear probing protocol. Specif-
ically, each pretrained model was frozen and used to encode input DNA sequences into latent
embeddings, over which a linear classifier was trained. The input representation dimensionality var-
ied across models: PatchDNA, Caduceus-ph and HyenaDNA produced 256-dimensional embeddings,
while GENA-LM-Base and NT-MS-500M yielded 768 and 1024-dimensional embeddings, respectively.

All models were evaluated under identical training conditions: a batch size of 64, a total of 50
training epochs, and optimization using AdamW with a learning rate of 5e − 4 and weight decay
of 0.01. For each model and seed, we report performance on the official test set using Matthews
Correlation Coefficient (MCC), averaged across all runs. Full per-task results with standard deviations
are presented in Supplementary Figure 3.

1https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised

12

https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks_revised


Figure 3: Detailed performance across all 18 tasks in the Nucleotide Transformer Benchmark.
Bars indicate mean Matthews Correlation Coefficient (MCC) over 5 random seeds, with error bars
denoting standard deviation. PatchDNA achieves consistent improvements across regulatory element
and splicing site prediction tasks, and remains competitive on chromatin profile classification.

A.3.2 DART-Eval

We evaluated our model’s performance by adding it to each task using the original evaluation code
provided by the authors at https://github.com/kundajelab/DART-Eval. To ensure consistency, we
maintained the original experimental setup and report the published results for all other baseline
models directly from the original paper [22]. We use 1 A100 80GB GPU for each task.

For Task 1 and Task 2, we use the zero-shot likelihoods formulation, while for Task 5, we apply the
zero-shot embeddings approach. When both likelihoods and embeddings could be used, we choose
between them based on the relative performance of models across tasks. For example, in Task 2,
embeddings from all DNA models perform significantly worse than likelihoods, making the latter the
preferred choice. For Task 2, we report median accuracy.

For Task 3 and Task 4, where no zero-shot formulation exists, a lightweight probe is trained on top of
frozen model embeddings.

Extended results

We present extended results for Tasks 3, 4 and 5 in Tables 10, 12, 11. In the main results in the paper,
we report the Overall Accuracy for Task 3, the mean Spearman r across the 5 cell types for Task 4,
and the mean AUROC for Task 5.

Table 10: Accuracy and AUROC across different cell types for Task 3 in DART-Eval
Model Overall Accuracy GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.457 0.740 0.817 0.806 0.783 0.710
Caduceus 0.281 0.535 0.622 0.680 0.576 0.587
DNABERT2 0.371 0.652 0.757 0.762 0.691 0.691
GENA-LM-Large 0.383 0.627 0.787 0.773 0.714 0.693
HyenaDNA 0.587 0.849 0.889 0.862 0.882 0.799
Mistral-DNA 0.329 0.582 0.678 0.723 0.643 0.646
NT-MS-500M 0.420 0.744 0.795 0.783 0.779 0.711

13



Table 11: Zero-shot AUROC performance using embedding-based predictions for African and
Yoruban datasets for Task 5 in DART-Eval

Model African AUROC Yoruban AUROC
PatchDNA 0.545 0.564
Caduceus 0.519 0.508
DNABERT2 0.480 0.505
GENA-LM-Large 0.508 0.501
HyenaDNA 0.515 0.515
Mistral-DNA 0.520 0.475
NT-MS-500M 0.519 0.613

Table 12: Spearman r among positives across five cell types for Task 4 in DART-Eval
Model GM12878 H1ESC HEPG2 IMR90 K562
PatchDNA 0.434 0.636 0.400 0.319 0.412
Caduceus 0.251 0.371 0.312 0.149 0.401
DNABERT2 0.395 0.584 0.357 0.275 0.483
GENA-LM-Large 0.490 0.678 0.401 0.329 0.461
HyenaDNA 0.362 0.538 0.345 0.237 0.438
Mistral-DNA 0.293 0.500 0.349 0.244 0.431
NT-MS-500M 0.410 0.595 0.337 0.270 0.499

A.4 Long-Range Genomics Tasks Details

A.4.1 CAGE prediction benchmark

We use the CAGE dataset from https://huggingface.co/datasets/InstaDeepAI/genomics-long-range-
benchmark, consisting of 50 CAGE tracks selected from the original 638 in the Basenji dataset.

Each model receives a sequence of 114,688 single nucleotides. We extract per-nucleotide embeddings
and pass them through a two-layer MLP, where the hidden dimension is set to twice the embedding
size and the output dimension is 50, following the setup in [3]. The MLP outputs are mean-pooled
over non-overlapping windows of 128 nucleotides, resulting in a final output of shape 896×50.

Training is performed using the Poisson negative log-likelihood loss, as in Enformer [1]. We fully
finetune each model for one epoch, consistent with [3]. We use the Adam optimizer, with a learning
rate of 5e− 5 and a total batch size of 8.

For baseline models, HyenaDNA, Caduceus-ps and Caduceus-ph we use the pretrained weights
available via Hugging Face, with model identifiers listed in Table 6.

For regulatory element based patching, we use annotations from [18], creating a score function, gp
, that assigns a value of 1 to nucleotides in these regions, and 0 otherwise. We then use a patching
threshold, θp, of 0.99.

All experiments are repeated with five random seeds. We report the mean and standard deviation
of performance on the test set, using the same metrics as [1], described in Section A.9. Finetuning
runtimes for one epoch are reported in Table 13.

Table 13: One epoch finetuning time and FLOPS for various models, using 4 A100 80GB GPUs on
CAGE prediction benchmark.

Model Time (minutes) FWD FLOPS (G)
PatchDNA 22.4 678.60
HyenaDNA 76.6 1493.96
Caduceus-ph 99.2 3142.71
Caduceus-ps 238.3 6285.42

14



A.4.2 BEND gene finding benchmark

This task, drawn from the BEND benchmark [16], involves nucleotide-level multi-class classification.
Each base is labeled as belonging to one of several genomic features, such as exons, introns, donor
sites, acceptor sites, or non-coding regions, on either strand. Accurate annotation requires capturing
both local context (e.g. codon structure) and long-range dependencies (e.g. between distant splice
sites) over sequences up to 14,000 base pairs in length. Unlike previous sequence-level evaluations,
this task demands fine-grained resolution. Our patching strategy, combined with a cross-attention
mechanism, enables the model to form precise nucleotide-level representations, while benefiting from
flexible context aggregation.

We follow the original BEND evaluation protocol, by training a probe on top of frozen embeddings
and reporting multiclass MCC. For competing models, we report the values given in the original
benchmark, which have been performed on one seed. As shown in Table 14, PatchDNA achieves
strong performance, outperforming larger models such as GENA-LM-Large and DNABERT2, and sec-
ond only to the NT-MS-2.5B model, which has 100 fold greater capacity (2.5B vs 19.2M parameters),
and is also pre-trained on a larger dataset formed of multiple species.

Table 14: Performance on the BEND gene finding task, reported as multiclass MCC.
Model

PatchDNA NT-MS-2.5B GENA-LM-Large NT-1000G Caduceus-ph DNABERT2 HyenaDNA
0.58 0.68 0.52 0.49 0.44 0.43 0.35

We use the original code from https://github.com/frederikkemarin/BEND to evaluate our model on the
gene finding task. We implement a custom embedder class for our model and leverage the provided
training pipeline, which trains an MLP on top of frozen embeddings using cross-entropy loss to
predict 9 genomic element classes for each nucleotide. We report Matthews Correlation Coefficient
(MCC) on the test set.

For competing models, we report the published results from the original paper [16].

A.4.3 Cell type specific re-patching

We pick paired CAGE-DNase tracks from the Basenji dataset [11], focusing on Neurons, Hepatocytes
and K562. The ids for the tracks that we used are in Table 15. We keep the same train/validation/test
splits. For each cell type we follow the same protocol outlined in Section A.4.1, where instead of
predicting 50 tracks we predict only 1 track. Since only 1 track is predicted, we opt to focus on cell
correlation.

DNase patching details The DNase-seq data used for patching were obtained from the ENCODE
Project portal (https://www.encodeproject.org/) using the ENCODE ids in Table 15. We use
a patching threshold, θp, of 0.99 for all DNase sources.

Table 15: Dataset identifiers for paired DNase-seq and CAGE expression tracks used in the cell-type-
specific prediction task.

Cell Type DNase ENCODE ID CAGE FANTOM5 ID
K562 ENCFF413AHU CNhs11250
Hepatocyte ENCFF136YOJ CNhs12338
Neuron ENCFF399ISP CNhs12338

A.5 Further Ablations

After evaluating multiple patching methods, we performed ablation studies across all benchmarks.
We consistently observed that the architecture performs well regardless of which strategy is used.
This indicates that the BLT-based architecture itself confers a meaningful performance benefit. Im-
portantly, however, these ablations clearly demonstrate that the conservation-based patching strategy
consistently achieves the strongest overall results, validating its significant additional contribution.

15

https://www.encodeproject.org/


Table 16: DART-Eval Ablation Results
Model Task 1 Task 2 Task 3 Task 4 Task 5

Accuracy Accuracy Accuracy Spearman R AUROC

PatchDNA 0.966 0.725 0.459 0.4402 0.555
PatchDNA Entropy 0.965 0.650 0.450 0.4002 0.523
PatchDNA Fixed Patch Size 20 0.967 0.675 0.460 0.4174 0.539

Table 17: BEND Ablation Results
Model Test MCC
PatchDNA 0.58
PatchDNA Entropy 0.37
PatchDNA Fixed Patch Size 20 0.38

Table 18: CAGE Ablation Results
Model Gene Pearson Cell Pearson Full Pearson
PatchDNA-7M 0.369 ± 0.001 0.771 ± 0.002 0.471 ± 0.002
PatchDNA-7M + cCRE-aware re-patching 0.373 ± 0.001 0.792 ± 0.002 0.408 ± 0.004
PatchDNA Entropy 0.368 ± 0.001 0.770 ± 0.001 0.385 ± 0.003
PatchDNA Fixed Patch Size 20 0.369 ± 0.002 0.768 ± 0.003 0.384 ± 0.003
HyenaDNA 0.362 ± 0.001 0.745 ± 0.002 0.290 ± 0.004
Caduceus-ph 0.362 ± 0.001 0.750 ± 0.002 0.309 ± 0.003
Caduceus-ps 0.365 ± 0.001 0.766 ± 0.001 0.420 ± 0.006

A.6 Alternative conservation scores and sensitivity to thresholds

PhastCons is an alternative conservation scoring method, but we deprioritized using it due to its
window-based smoothing which results in lack of single nucleotide granularity. We present results in
Table 20, showing that it underperforms compared to PhyloP on 3 out of the 4 tasks.

We pick the 95% threshold for efficiency reasons, as this allows us to easily train models at long
sequences. Lower thresholds result in more number of patches, on average, increasing the computa-
tional cost. However, to investigate performance at other thresholds, we’ve run threshold-sensitivity
analyses for Dart-eval on the 7M-parameter PatchDNA using less stringent cutoffs (Task 4 was
omitted due to increased computational costs). We highlight that performance does not change
significantly between various thresholds (Table 19).

Table 19: Performance comparison of PatchDNA-7M variants on a subset of Dart-eval tasks
Model Task 1 Task 2 Task 3 Task 5

Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% 0.938 0.645 0.343 0.524
PatchDNA-7M 90% 0.940 0.650 0.357 0.525
PatchDNA-7M 95% 0.950 0.650 0.380 0.539

Table 20: Performance comparison of PatchDNA-7M with PhastCon on a subset of Dart-eval tasks
Model Task 1 Task 2 Task 3 Task 5

Accuracy Accuracy Accuracy AUROC

PatchDNA-7M 75% PhastCon 0.882 0.615 0.332 0.534
PatchDNA-7M 90% PhastCon 0.932 0.645 0.326 0.542
PatchDNA-7M 95% PhastCon 0.943 0.640 0.333 0.549

A.7 Interpretability, overlap of patches with known functional elements

We believe that interpretability, particularly the alignment of patches with known functional genomic
elements, is important. To address this, we implemented an additional quantitative analysis comparing

16



the enrichment of PhyloP-derived patches specifically within cCRE versus non-cCRE genomic
regions. We used 5 independent random seeds, each with 5000 sampled genomic intervals of length
350 bp. For regulatory regions, we centered the windows on known cCREs (from ENCODE), while
control intervals were drawn from the genome to avoid any overlap with cCRE annotations. Using
a Mann–Whitney U test, we found that PhyloP-derived patches (median difference: 32, Cliff’s
δ = 0.618, p ≪ 0.001) were significantly enriched within cCRE regions relative to randomly
sampled non-cCRE genomic windows.

Further, we compared the number of patches identified by entropy and PhyloP scores within cCRE
regions using the Wilcoxon signed-rank test. PhyloP-derived patches consistently identified signifi-
cantly more patches per region than entropy-derived patches (median difference: 12 patches, Cliff’s
δ = 0.155, Wilcoxon p ≪ 0.001). While this effect is statistically robust across seeds, the effect
sizes are smaller than those observed in the cCRE vs. control comparisons.

A.8 Computational overhead introduced by patching and re-patching

The re-patching itself incurs no additional computational overhead: the local encoder and decoder
already expect a patch-based layout, which can be swapped in without changing the architecture.
The patch size distribution will have a direct effect on computations. The computational complexity
of marking patch boundaries is an O(L) operation (with L being the sequence length): we make a
single pass over the sequence, inserting boundaries whenever a pre-established threshold is reached.
In our implementation this step runs on the CPU, though an entropy-based patching strategy would
necessitate executing a small model on the GPU and will have different computational complexity
considerations. To clarify this further, we present the theoretical computational cost (in GFLOPs) in
Table 21 comparing PatchDNA directly against its single-nucleotide baseline, where the patch size is
fixed at 1. These theoretical estimates were calculated using the formulas described in the BLT paper,
as the BLT implementation uses FlexAttention (which Pytorch FLOP profilers don’t support).

Table 21: Forward FLOPs comparison across models at different sequence lengths.
Model 511 bp FWD FLOPS (G) 16 kbp FWD FLOPS (G)
PatchDNA (19.2 M) 5.64 179.07
Single-nucleotide baseline (19.2 M) 11.80 1384.53
PatchDNA (7.7 M) 2.79 88.6
Single-nucleotide baseline (7.7 M) 5.36 548.62

A.9 Metrics

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient is a robust
statistical rate which takes into account true and false positives and negatives and is regarded as a
balanced measure that can be used even if the classes are of very different sizes.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP , TN , FP , and FN are the numbers of true positives, true negatives, false positives, and
false negatives, respectively.

A.9.1 Enformer evaluation metrics

To assess model performance in predicting gene expression, we follow Pearson correlation evaluation
strategies as proposed in the Enformer manuscript [1]. The following three metrics are used to
evaluate model predictions: gene correlation, cell correlation, and full correlation.

Let Ŵ ∈ RB×C and W ∈ RB×C denote the predicted and observed CAGE matrices across the
genome, where B is the number of genomic bins (each spanning 128 base pairs) and C is the number
of cell types.

17



To obtain gene-level predictions, we extract the row of Ŵ and W corresponding to the bin that
contains the transcription start site (TSS) of each gene. This gives the predicted and observed gene
expression matrices Ŷ , Y ∈ RG×C , where G is the number of genes.

Gene Correlation Gene correlation evaluates how well the model captures cell type–specific
expression patterns for each gene. Prior to computing this metric, both predicted and observed gene
expression values are log-transformed as:

Ŷ ← log(Ŷ + 1), Y ← log(Y + 1)

For each gene g ∈ {1, . . . , G}, we compute the Pearson correlation across all cell types:

rgene
g = corr(Ŷg,:, Yg,:)

The final gene correlation score is the average over all genes:

rgene =
1

G

G∑
g=1

rgene
g

Cell Correlation Cell correlation evaluates how well the model predicts gene expression patterns
across genes within each cell type. As with gene correlation, a log-transformation is applied to all
input values before computing correlation.

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across genes:

rcell
c = corr(Ŷ:,c, Y:,c)

The final cell correlation score is the average over all cell types:

rcell =
1

C

C∑
c=1

rcell
c

Full Correlation Full correlation measures how well the model predicts CAGE signal profile across
the genome.

For each cell type c ∈ {1, . . . , C}, we compute the Pearson correlation across bins:

rfull
c = corr(Ŵ:,c,W:,c)

The final full corelation score is the average over all the cell types

rfull =
1

C

C∑
c=1

rfull
c

18


	Introduction
	Existing DNA tokenization schemes
	PatchDNA: Biologically-informed modeling of DNA
	Patching preliminaries
	Conservation-driven patching
	Context-aware re-patching
	Architecture
	Pretraining and downstream usage


	Experiments
	Short-range genomics tasks
	Nucleotide Transformer benchmark
	DART-Eval benchmark

	Long-range genomics tasks
	CAGE prediction benchmark

	Cell type specific re-patching

	Conclusion
	Appendix and Supplementary Material
	Details of Pretrained Baseline Models
	Pretraining details
	Short-Range Genomics Tasks details
	Nucleotide Transformer Benchmark
	DART-Eval

	Long-Range Genomics Tasks Details
	CAGE prediction benchmark
	BEND gene finding benchmark
	Cell type specific re-patching

	Further Ablations
	Alternative conservation scores and sensitivity to thresholds
	Interpretability, overlap of patches with known functional elements 
	Computational overhead introduced by patching and re-patching
	Metrics
	Enformer evaluation metrics



